JP5076730B2 - Phase detector - Google Patents

Phase detector Download PDF

Info

Publication number
JP5076730B2
JP5076730B2 JP2007214090A JP2007214090A JP5076730B2 JP 5076730 B2 JP5076730 B2 JP 5076730B2 JP 2007214090 A JP2007214090 A JP 2007214090A JP 2007214090 A JP2007214090 A JP 2007214090A JP 5076730 B2 JP5076730 B2 JP 5076730B2
Authority
JP
Japan
Prior art keywords
phase
voltage
detection
amplitude
angular frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007214090A
Other languages
Japanese (ja)
Other versions
JP2009050091A (en
Inventor
剛幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007214090A priority Critical patent/JP5076730B2/en
Publication of JP2009050091A publication Critical patent/JP2009050091A/en
Application granted granted Critical
Publication of JP5076730B2 publication Critical patent/JP5076730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、太陽光発電装置や燃料電池発電装置などの直流電力を単相交流電力に変換し、単相交流電力系統に連系させて負荷に電力を供給する単相系統連系インバータ装置の系統電圧位相の検出に好適な位相検出装置に関する。   The present invention relates to a single-phase grid-connected inverter device that converts DC power, such as a solar power generation device or a fuel cell power generation device, into single-phase AC power and links the single-phase AC power system to supply power to a load. The present invention relates to a phase detection device suitable for detecting a system voltage phase.

インバータ装置を含む典型的な単相電力系統は、図1に示すように複数のインバータ装置即ち第1及び第2のインバータ装置2,2´を含む。第1のインバータ装置2の第1及び第2の直流入力端子1a、1bは、太陽電池、燃料電池、蓄電池等から成る第1の直流電源1に接続されている。第1のインバータ装置2の第1及び第2交流出力端子2a、2bは抵抗(R),インダクタンス(L),キャパシタンス(C)を有する負荷4に接続され、且つ回路遮断器5を介して単相交流電力系統3に接続されている。従って、第1の直流電源1と第1のインバータ装置2とから成る第1の分散化電源と単相交流電力系統3とが連系して負荷4に電力を供給する。なお、図1では、第1の直流電源1及び第1のインバータ装置2とから成る第1の分散化電源の他に、第1の直流電源1及び第1のインバータ装置2と同様に構成された第2の直流電源1´及び第2のインバータ装置2´とから成る第2の分散化電源が設けられており、第2のインバータ装置2´も負荷4に接続されている。即ち、第1及び第2のインバータ装置2、2´は並列接続されている。第2の分散化電源の構成及び機能は第1の分散化電源と実質的に同じであるので、その説明を省略する。また、以下の説明では第1の直流電源1及び第1のインバータ装置2を単に直流電源1、インバータ装置2と呼ぶことにする。   A typical single-phase power system including an inverter device includes a plurality of inverter devices, that is, first and second inverter devices 2 and 2 'as shown in FIG. The first and second DC input terminals 1a and 1b of the first inverter device 2 are connected to a first DC power source 1 including a solar cell, a fuel cell, a storage battery and the like. The first and second AC output terminals 2 a and 2 b of the first inverter device 2 are connected to a load 4 having a resistance (R), an inductance (L), and a capacitance (C), and are simply connected via a circuit breaker 5. It is connected to the phase AC power system 3. Therefore, the first distributed power source composed of the first DC power source 1 and the first inverter device 2 and the single-phase AC power system 3 are connected to supply power to the load 4. In FIG. 1, in addition to the first distributed power source including the first DC power source 1 and the first inverter device 2, the configuration is the same as the first DC power source 1 and the first inverter device 2. In addition, a second distributed power source including a second DC power source 1 ′ and a second inverter device 2 ′ is provided, and the second inverter device 2 ′ is also connected to the load 4. That is, the first and second inverter devices 2 and 2 ′ are connected in parallel. Since the configuration and function of the second distributed power supply are substantially the same as those of the first distributed power supply, description thereof is omitted. In the following description, the first DC power source 1 and the first inverter device 2 are simply referred to as the DC power source 1 and the inverter device 2.

インバータ装置2は、直流―交流変換回路即ちインバータ回路6、リアクトルLo及びコンデンサCoから成るフィルタ回路、制御回路7、電圧検出ライン8、電流検出器CT、及び単独運転阻止用の回路遮断器9を有する。 The inverter device 2 includes a DC-AC converter circuit, that is, an inverter circuit 6, a filter circuit including a reactor Lo and a capacitor Co, a control circuit 7, a voltage detection line 8, a current detector CT, and a circuit breaker 9 for preventing an independent operation. Have.

負荷4の保守点検時には、原則として回路遮断器5,9をオフにする。もし、一方の回路遮断器5がオフであっても他方の回路遮断器9がオンに保たれていれば、単独運転になり、既に説明したように負荷4の保守点検者に危険を及ぼす。このため、回路遮断器9の手動によるオフ操作が忘れられたとしても、単独運転検出手段(図示せず)で単独運転を検出し、インバータ装置2から負荷4への電力供給が停止することが必要になる。一般に単独運転検出手段は制御回路7の中に設けられ、電圧検出ライン8の検出電圧の位相に基づいて単独運転を検出する。また、インバータ装置2においては、一般的に電力系統の力率が1になるようにインバータスイッチが制御され、この力率制御のためにも系統電圧位相が必要になる。従って、系統電圧位相の正確且つ容易な検出が要求されている。このため、制御回路7は位相検出装置7aを内蔵している。   When the load 4 is inspected, the circuit breakers 5 and 9 are turned off in principle. If one circuit breaker 5 is off and the other circuit breaker 9 is kept on, the circuit breaker 9 is in an isolated operation, which poses a risk to the maintenance inspector of the load 4 as already described. For this reason, even if the manual OFF operation of the circuit breaker 9 is forgotten, the isolated operation is detected by the isolated operation detecting means (not shown), and the power supply from the inverter device 2 to the load 4 is stopped. I need it. Generally, the isolated operation detecting means is provided in the control circuit 7 and detects the isolated operation based on the phase of the detection voltage of the voltage detection line 8. Further, in the inverter device 2, the inverter switch is generally controlled so that the power factor of the power system becomes 1, and the system voltage phase is also required for this power factor control. Therefore, accurate and easy detection of the system voltage phase is required. For this reason, the control circuit 7 has a built-in phase detector 7a.

図2に従来の単相電力系統の位相検出装置が示されている。この位相検出装置は、電力系統における交流電圧vα=Vpcosθsを検出する電圧検出手段10と、電圧検出手段10から得られた交流電圧vαの90度遅れ信号vβ´を作成する90度遅れ回路13aと、電圧検出手段10から得られた交流電圧vαと90度遅れ回路13aから得られた90度遅れ信号vβ´とを位相検出信号出力ライン19の検出位相θdを用いて回転座標変換して、交流電圧vαの位相と検出位相θdとの位相差vqを出力する位相差検出手段14aと、位相差検出手段14aから得られた位相差vqを示す信号を増幅して補償角周波数ωcを得る補償角周波数作成手段15と、基準角周波数ωbを発生する基準角周波数発生手段16と、補償角周波数ωcと基準角周波数ωbとに基づいて検出角周波数ωdを作成する検出角周波数作成手段17と、検出角周波数ωdを積分して検出位相θdを出力する積分手段18と、積分手段18に接続された位相検出信号出力ライン19とから成る。 FIG. 2 shows a conventional phase detector for a single-phase power system. This phase detection device creates a voltage detection means 10 for detecting an AC voltage v α = V p cos θs in the power system and a 90-degree delayed signal v β ′ of the AC voltage v α obtained from the voltage detection means 10 90. Using the detection phase θ d of the phase detection signal output line 19, the degree delay circuit 13 a, the AC voltage v α obtained from the voltage detection means 10, and the 90 degree delay signal v β ′ obtained from the 90 degree delay circuit 13 a are used. rotating coordinate transformation Te, a signal indicating a phase difference detector 14a for outputting a phase difference v q between the phase and the detected phase theta d of the AC voltage v alpha, a phase difference v q obtained from the phase difference detecting means 14a Based on the compensation angular frequency generating means 15 for obtaining the compensation angular frequency ω c , the reference angular frequency generating means 16 for generating the reference angular frequency ω b , the compensation angular frequency ω c and the reference angular frequency ω b. detection to create a detection angular frequency ω d Frequency creating unit 17, the integrating means 18 for outputting a detected phase theta d by integrating the detected angular frequency omega d, consisting connected phase detected signal output line 19. to the integrator means 18.

位相差検出手段14aは、周知のα−β/d−q座標変換手段からなり、静止座標の入力信号としての交流電圧vαとこの90度遅れ信号vβ´とを検出位相θdを用いて回転座標変換して、d軸成分電圧vdとq軸成分電圧vqとの内の一方のq軸成分電圧vqを位相差を示す信号として出力するものである。補償角周波数作成手段15は、PI(比例積分)手段から成り、位相差vqを示す信号を増幅して補償角周波数ωc(rad/sec)を得るものである。基準周波数発生手段16は基準角周波数ωb(rad/sec)を発生する。検出角周波数作成手段17は、例えば加算器からなり、補償角周波数ωcと基準角周波数ωbとを加算して検出角周波数ωd(rad/sec)を作成する。1/sで示されている積分手段18は検出角周波数ωdを積分して検出位相θdを位相検出信号出力ライン19に出力する。 The phase difference detection means 14a is composed of a well-known α-β / dq coordinate conversion means, and uses an AC voltage v α as an input signal of stationary coordinates and the 90-degree delayed signal v β ′ as a detection phase θ d . rotating coordinate transformation Te, and outputs one of the q-axis component voltage v q of the d-axis component voltage v d and the q-axis component voltage v q as a signal indicating the phase difference. Compensation angular frequency creation means 15 comprises PI (proportional integration) means, and amplifies a signal indicating phase difference v q to obtain compensation angular frequency ω c (rad / sec). The reference frequency generating means 16 generates a reference angular frequency ω b (rad / sec). The detection angular frequency creation means 17 is composed of, for example, an adder, and creates the detection angular frequency ω d (rad / sec) by adding the compensation angular frequency ω c and the reference angular frequency ω b . The integration means 18 indicated by 1 / s integrates the detection angular frequency ω d and outputs the detection phase θ d to the phase detection signal output line 19.

90度遅れ回路13aは、例えば次の(1)(2)(3)のいずれか1つで形成される。
(1)半導体メモリを使用し、半導体メモリに電圧検出手段10の出力(交流電圧Vα)を読み込み、90度遅で読み出し、90度遅れ信号Vβ´を得る回路。
(2)微分器を使用し、微分器で電圧検出手段10の出力(交流電圧vα)を微分して90度遅れ信号vβ´を得る回路。
(3)フィルタを使用し、フィルタに電圧検出手段10の出力(交流電圧Vα)を通すことによって90度遅れ信号vβ´を得る回路。
The 90-degree delay circuit 13a is formed by any one of the following (1), (2), and (3), for example.
(1) A circuit that uses a semiconductor memory, reads the output (AC voltage V α ) of the voltage detection means 10 into the semiconductor memory, reads it with a 90 ° delay, and obtains a 90 ° delayed signal V β ′.
(2) A circuit that uses a differentiator and differentiates the output (AC voltage v α ) of the voltage detecting means 10 with the differentiator to obtain a 90-degree delayed signal v β ′.
(3) A circuit that uses a filter and obtains a 90-degree delayed signal v β ′ by passing the output of the voltage detection means 10 (AC voltage V α ) through the filter.

ところで、90度遅れ回路13aを上記(1)に示すように半導体メモリを用いて構成した場合には、精度良い位相検出を行うために半導体メモリの容量を大きくすること、ハイスペックなCPU及びメモリを用意することが必要になる。また、交流電圧に周波数変動が発生した場合に90度遅れ成分を作成することが困難となる。
90度遅れ回路13aを上記(2)に示すように微分器を用いて構成した場合には、ノイズ誤動作する可能性が大きい。また、周波数変動が発生した場合、検出電圧と位相遅れ成分に振幅差が発生する。
90度遅れ回路13aを上記(3)に示すようにフィルタを用いて構成した場合には、周波数変動が発生した時に90度遅れ成分は90度位相差ではなくなり、振幅誤差も発生する。
By the way, when the 90-degree delay circuit 13a is configured using a semiconductor memory as shown in (1) above, the capacity of the semiconductor memory is increased in order to perform accurate phase detection, and a high-spec CPU and memory. It is necessary to prepare. In addition, it is difficult to create a 90-degree delayed component when a frequency variation occurs in the AC voltage.
When the 90-degree delay circuit 13a is configured using a differentiator as shown in (2) above, there is a high possibility of noise malfunction. Further, when frequency fluctuation occurs, an amplitude difference is generated between the detected voltage and the phase delay component.
When the 90-degree delay circuit 13a is configured using a filter as shown in (3) above, the 90-degree delay component is not a 90-degree phase difference and an amplitude error occurs when a frequency variation occurs.

従来の別な位相検出装置が特開平10−295073号公報(特許文献1)に開示されている。この特許文献1の位相検出装置では、位相検出のための入力交流電圧に振幅変動が発生した場合に振幅誤差を補償して位相を検出する。しかし、この特許文献1の位相検出装置では、振幅誤差を検出電圧(交流電圧)の絶対値から求めているので、振幅誤差が振動成分となり、且つ補償ゲインを高くする必要がある。従って、位相検出における制御性が悪く、ノイズに対しても弱い系になる可能性がある。
特開平10−295073号公報
Another conventional phase detector is disclosed in Japanese Patent Laid-Open No. 10-295073 (Patent Document 1). In the phase detection device of Patent Document 1, when an amplitude fluctuation occurs in the input AC voltage for phase detection, the phase is detected by compensating for the amplitude error. However, in the phase detection device disclosed in Patent Document 1, the amplitude error is obtained from the absolute value of the detection voltage (alternating voltage), so that the amplitude error becomes a vibration component and the compensation gain needs to be increased. Therefore, controllability in phase detection is poor, and there is a possibility that the system is weak against noise.
Japanese Patent Laid-Open No. 10-295073

従って、本発明が解決しようとする課題は、交流電圧の振幅、位相、周波数が変動した場合においても速やかに位相を検出できる制御性のよい方式が要求されていることであり、本発明の目的は上記要求に応えることができる位相検出装置を提供することにある。   Therefore, the problem to be solved by the present invention is that there is a demand for a controllable system capable of quickly detecting the phase even when the amplitude, phase and frequency of the AC voltage fluctuate. Is to provide a phase detector capable of meeting the above requirements.

次に上記課題を解決し、上記目的を達成するための本発明を、実施例を示す図面の符号を参照して説明する。ただし、特許請求の範囲及びここでの参照符号は本発明の理解を助けるためのものであり、本発明を限定するものではない。
本発明の電力系統における交流電圧の位相を検出する位相検出装置は、電力系統における交流電圧(vα=Vpcosθs)を検出する電圧検出手段(10)とPLL位相検出部(11)と電圧振幅補償部(12)と仮想β軸電圧作成部(13)と位相検出信号出力ライン(19)とを有し、
前記PLL位相検出部(11)は、前記電圧検出手段(10)から得られた前記交流電圧(v α )と後記乗算手段(27)から得られた前記交流電圧(v α )よりも90度遅れの仮想β軸電圧(v β )とを前記位相検出信号出力ライン(19)の検出位相(θ d )を用いて回転座標変換して、前記交流電圧(v α )の位相と前記検出位相(θ d )との位相差(v q )を出力し且つ前記交流電圧(v α )と前記仮想β軸電圧(v β )との振幅誤差(v d )を出力する位相差及び振幅誤差検出手段(14)と、前記位相差及び振幅誤差検出手段(14)から得られた前記位相差(v q )を示す信号を増幅して補償角周波数(ω c )を得る補償角周波数作成手段(15)と、基準角周波数(ω b )を発生する基準角周波数発生手段(16)と、前記補償角周波数(ω c )と前記基準角周波数(ω b )とに基づいて検出角周波数(ω d )を作成する検出角周波数作成手段(17)と、前記検出角周波数(ω d )を積分して検出位相(θ d )を前記位相検出信号出力ライン(19)に出力する積分手段(18)とから成り
前記電圧振幅補償部(12)は、前記位相差及び振幅誤差検出手段(14)から得られた前記位相差(v q )を示す信号に含まれる交流成分(v )及び振幅誤差(v d )を示す信号に含まれる交流成分(v )を抽出する交流成分抽出手段(20)と、前記位相検出信号出力ライン(19)の前記検出位相(θ d )に対して逆位相の2倍を示す逆位相2倍信号を作成する逆位相2倍信号作成手段(21)と、前記交流成分抽出手段(20)から得られた2つの交流成分(v 、v )を前記逆位相2倍信号作成手段(21)から得られた前記逆位相2倍信号を用いて逆回転座標変換して直流振幅誤差(v d2 )を検出する直流振幅誤差検出手段(22)と、前記直流振幅誤差検出手段(22)から得られた前記直流振幅誤差(v d2 )を増幅して補償電圧(V c )を得る補償電圧作成手段(23)と、基準電圧(K v )を発生する基準電圧発生手段(24)と、前記補償電圧(V c )と前記基準電圧(K v )とに基づいて検出振幅(V q )を作成する検出振幅作成手段(25)とから成り
前記仮想β軸電圧作成部(13)は、前記位相検出信号出力ライン(19)の前記検出位相(θd)を位相角とする正弦波信号(sinθd)を作成する正弦波信号作成手段(26)と、前記検出振幅作成手段(25)から得られた前記検出振幅(Vq)と前記正弦波信号作成手段(26)から得られた前記正弦波信号(sinθd)とを乗算して前記電圧検出手段(10)から得られた前記交流電圧(Vα)よりも90度遅れの仮想β軸電圧(vβ)を出力する乗算手段(27)とから成る。
Next, the present invention for solving the above-described problems and achieving the above-described object will be described with reference to the reference numerals of the drawings showing embodiments. It should be noted, however, that the claims and the reference signs used herein are intended to assist the understanding of the present invention and are not intended to limit the present invention.
The phase detection device for detecting the phase of the AC voltage in the power system of the present invention includes a voltage detection means (10), a PLL phase detection unit (11), and a voltage that detect an AC voltage (v α = V p cos θs) in the power system. An amplitude compensator (12), a virtual β-axis voltage generator (13), and a phase detection signal output line (19);
The PLL phase detector (11) is 90 degrees from the AC voltage (v α ) obtained from the voltage detector (10) and the AC voltage (v α ) obtained from the multiplier (27) described later. The delayed virtual β-axis voltage (v β ) is subjected to rotational coordinate conversion using the detection phase (θ d ) of the phase detection signal output line (19), and the phase of the AC voltage (v α ) and the detection phase Phase difference and amplitude error detection that outputs a phase difference (v q ) from d ) and an amplitude error (v d ) between the AC voltage (v α ) and the virtual β-axis voltage (v β ) Compensation angular frequency generating means ( amplifying a signal indicating the phase difference (v q ) obtained from the means (14) and the phase difference and amplitude error detection means (14) to obtain a compensation angular frequency (ω c ) 15), the reference angular frequency generating means for generating a reference angular frequency (omega b) and (16), wherein Integration 償角frequency (omega c) and said reference angular frequency (omega b) and the detected angular frequency generating means for generating a detection angular frequency (omega d) on the basis of (17), the detected angular frequency (omega d) And integrating means (18) for outputting the detection phase (θ d ) to the phase detection signal output line (19) ,
The voltage amplitude compensator (12) includes an AC component (v ) and an amplitude error (v d ) included in the signal indicating the phase difference (v q ) obtained from the phase difference and amplitude error detector (14). AC component extraction means (20) for extracting an AC component (v ) included in the signal indicating ), and twice the phase opposite to the detected phase (θ d ) of the phase detection signal output line (19) and antiphase twice signal creating means for creating an anti-phase double signal indicating (21), two AC components above obtained from the AC component extracting means (20) (v Q [beta], v d [alpha]) the reverse phase 2 DC amplitude error detecting means (22) for detecting a DC amplitude error (v d2 ) by performing reverse rotation coordinate conversion using the antiphase double signal obtained from the double signal generating means (21 ), and the DC amplitude error obtained from the detecting means (22) said DC amplitude error and (v d2) Width compensation voltage compensating voltage generating means for obtaining (V c) (23), the reference voltage (K v) reference voltage generating means for generating (24), said compensation voltage (V c) and said reference voltage ( K v ) and detection amplitude generation means (25) for generating detection amplitude (V q ) based on
The virtual β-axis voltage generator (13) is a sine wave signal generator (sin θ d ) that generates a sine wave signal (sin θ d ) having the detected phase (θ d ) of the phase detection signal output line (19) as a phase angle. 26), the detected amplitude (V q ) obtained from the detected amplitude creating means (25) and the sine wave signal (sin θ d ) obtained from the sine wave signal creating means (26) And multiplication means (27) for outputting a virtual β-axis voltage (v β ) delayed by 90 degrees from the AC voltage (V α ) obtained from the voltage detection means (10).

本発明によれば、位相差及び振幅誤差検出手段(14)における回転座標変換によって、交流電圧(vα)の位相と検出位相(θd)との位相差(vq)及び交流電圧(vα)と仮想β軸電圧(vβ)との振幅誤差(vd)を求め、これに基づいて検出位相(θd)、検出振幅(Vq)及び交流電圧(Vα)よりも90度遅れの仮想β軸電圧(vβ)を求めるので、交流電圧の振幅、位相、周波数が変動した場合においても速やかに位相を検出でき且つ制御性がよい位相検出装置を提供することができる。 According to the present invention, the phase difference (v q ) between the phase of the AC voltage (v α ) and the detected phase (θ d ) and the AC voltage (v The amplitude error (v d ) between α ) and the virtual β-axis voltage (v β ) is obtained, and based on this, the detected phase (θ d ), detected amplitude (V q ), and AC voltage (V α ) are 90 degrees. Since the delayed virtual β-axis voltage (v β ) is obtained, it is possible to provide a phase detector that can detect the phase quickly and has good controllability even when the amplitude, phase, and frequency of the AC voltage fluctuate.

次に、図3を参照して本発明の実施形態を説明する。なお、図3において図2と共通する部分に図2と同一の参照符号が付されている。   Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same reference numerals as those in FIG.

図3に示す本発明の実施例1に従う位相検出装置は、図1の位相検出装置7aとして使用することができるものであり、大別して電圧検出手段10と、回転座標変換手段を使用して検出位相θdを作成するPLL位相検出部11と、PLL位相検出部11の信号を使用して交流電圧のピ−ク値の推定値に相当する検出振幅Vqを作成する電圧振幅補償部12と、交流電圧vα=Vpcosθsと90度の位相差を有し且つ検出振幅Vqをピ−ク値とする仮想β軸電圧vβ=Vqsinθdを作成する仮想β軸電圧作成部13とから成る。 The phase detection apparatus according to the first embodiment of the present invention shown in FIG. 3 can be used as the phase detection apparatus 7a of FIG. 1, and is roughly detected using the voltage detection means 10 and the rotational coordinate conversion means. A PLL phase detector 11 for generating the phase θ d , a voltage amplitude compensator 12 for generating a detection amplitude V q corresponding to the estimated value of the peak value of the AC voltage using the signal of the PLL phase detector 11, and And a virtual β-axis voltage generator that generates a virtual β-axis voltage v β = V q sin θ d having a phase difference of 90 degrees from the AC voltage v α = V p cos θs and having the detected amplitude V q as a peak value. 13 and.

電圧検出手段10は図1の電圧検出ライン8に相当するものに接続され、電力系統における交流電圧vα=Vpcosθsを検出する。 The voltage detection means 10 is connected to the one corresponding to the voltage detection line 8 in FIG. 1, and detects the AC voltage v α = V p cos θs in the power system.

PLL位相検出部11は、位相差及び振幅誤差検出手段14と、補償角周波数作成手段15と、基準角周波数発生手段16と、検出角周波数作成手段17と、積分手段18と、位相検出信号出力ライン19とから成り、検出位相θdを出力する。次に、PLL位相検出部11の各部を詳しく説明する。 The PLL phase detector 11 includes a phase difference and amplitude error detector 14, a compensation angular frequency generator 15, a reference angular frequency generator 16, a detection angular frequency generator 17, an integrator 18, and a phase detection signal output. Line 19 and outputs the detection phase θ d . Next, each part of the PLL phase detector 11 will be described in detail.

位相差及び振幅誤差検出手段14はα−β/d−q回転座標変換手段(演算手段)から成り、電圧検出手段10に接続され第1の入力端子と、仮想β軸電圧作成部13の乗算手段27に接続された第2の入力端子と、位相検出信号出力ライン19に接続された位相信号入力端子と、第1及び第2の出力端子14a、14bとを有し、電圧検出手段10から得られた交流電圧vαと乗算手段27から得られた交流電圧vαよりも90度遅れの仮想β軸電圧vβとを位相検出信号出力ライン19の検出位相θdを用いて回転座標変換して、交流電圧vαと仮想β軸電圧vβとの振幅誤差vdを演算によって求めて第1の出力端子14aに出力し、交流電圧vαの位相と検出位相θdとの位相差vqを演算によって求めて第2の出力端子14bに出力する。位相差及び振幅誤差検出手段14の入出関係は次の式(1)に示す通りである。 The phase difference and amplitude error detection means 14 is composed of α-β / dq rotation coordinate conversion means (calculation means), which is connected to the voltage detection means 10 and multiplied by the first input terminal and the virtual β-axis voltage generator 13. A second input terminal connected to the means 27; a phase signal input terminal connected to the phase detection signal output line 19; and first and second output terminals 14a and 14b; The obtained alternating voltage v α and the virtual β-axis voltage v β delayed by 90 degrees from the alternating voltage v α obtained from the multiplying means 27 are subjected to rotational coordinate conversion using the detected phase θ d of the phase detection signal output line 19. Then, an amplitude error v d between the AC voltage v α and the virtual β-axis voltage v β is obtained by calculation and output to the first output terminal 14a, and the phase difference between the phase of the AC voltage v α and the detected phase θ d vq is calculated and output to the second output terminal 14b. The input / output relationship of the phase difference and amplitude error detecting means 14 is as shown in the following equation (1).

Figure 0005076730
Figure 0005076730

位相差及び振幅誤差検出手段14の第2の出力端子14bに接続された補償角周波数作成手段15は比例積分手段(PI回路)から成り、位相差及び振幅誤差検出手段14から得られた位相差 qを示す信号を増幅して補償角周波数ωc(rad/sec)を出力する。 Compensation angular frequency generation means 15 connected to the second output terminal 14 b of the phase difference and amplitude error detection means 14 is composed of proportional integration means (PI circuit), and the phase difference obtained from the phase difference and amplitude error detection means 14. A signal indicating v q is amplified to output a compensation angular frequency ω c (rad / sec).

基準角周波数発生手段16は電力系統の交流電圧の基準角周波数ωb(rad/sec)を発生する。検出角周波数作成手段17は加算手段から成り、補償角周波数作成手段15と基準角周波数発生手段16とに接続され、基準角周波数ωbに補償角周波数ωcを加算して検出角周波数ωd(rad/sec)を作成する。なお、補償角周波数作成手段15と基準角周波数発生手段16とのいずれか1つの極性を変えて検出角周波数作成手段17を減算手段で構成することもできる。 The reference angular frequency generation means 16 generates a reference angular frequency ω b (rad / sec) of the AC voltage of the power system. The detection angular frequency creation means 17 comprises addition means, and is connected to the compensation angular frequency creation means 15 and the reference angular frequency generation means 16, and adds the compensation angular frequency ω c to the reference angular frequency ω b to detect the detection angular frequency ω d. Create (rad / sec). Note that the detection angular frequency generation means 17 may be configured by a subtraction means by changing the polarity of any one of the compensation angular frequency generation means 15 and the reference angular frequency generation means 16.

検出角周波数作成手段17に接続された積分手段18は、検出角周波数ωdを積分して検出位相θd(rad)を位相検出信号出力ライン19に出力する。検出位相θd(rad)は単独運転検出、及びインバータ装置にける力率制御等に使用される。 The integration unit 18 connected to the detection angular frequency generation unit 17 integrates the detection angular frequency ω d and outputs the detection phase θ d (rad) to the phase detection signal output line 19. The detection phase θ d (rad) is used for isolated operation detection, power factor control in the inverter device, and the like.

電圧振幅補償部12は、交流成分出手段20と、逆位相2倍信号作成手段21と、直流振幅誤差検出手段22と、補償電圧作成手段23と、基準電圧発生手段24と、検出振幅作成手段25とから成り、検出振幅Vqを出力する。次に、電圧振幅補償部12の各部を詳しく説明する。 Voltage amplitude compensation section 12, and an AC component extracting detecting means 20, an inverse phase twice signal generating means 21, a DC amplitude error detection means 22, and compensation voltage generating means 23, a reference voltage generating means 24, detects amplitude creation And a detection amplitude V q is output. Next, each part of the voltage amplitude compensation part 12 is demonstrated in detail.

交流成分出手段20は d 、v q に含まれる交流成分を出するフィルタ手段(HPF)から成り、位相差及び振幅誤差検出手段14の第1及び第2の出力端子14a、14bに接続された第1及び第2の入力端子20a、20bと、振幅誤差 dを示す信号に含まれる交流成分vdα を出力する第1の出力端子20cと、位相差vqを示す信号に含まれる交流成分vqβ を出力する第2の出力端子20dとを有し、位相差及び振幅誤差検出手段14から得られた振幅誤差vdを示す信号に含まれる交流成分vdα 及び位相差vqを示す信号に含まれる交流成分vqβ 出する。2つの交流成分vdα 及びvqβ は、位相差及び振幅誤差検出手段14に入力する交流電圧(検出電圧)vαと仮想β軸電圧vβとの振幅誤差ΔVに関係して変化する。今、交流電圧(検出電圧)vαの位相θsと検出位相θdとが等しく、交流電圧(検出電圧)vαと仮想β軸電圧vβとの間に振幅誤差ΔVがあると仮定し、それぞれを次の式(A)で表すAC component Extraction means 20 v d, an AC component included in v q consist filter means (HPF) that to extract the first and second output terminals 14a of the phase difference and amplitude error detection means 14, the 14b first and second input terminals 20a connected, and 20b, a first output terminal 20c for outputting an amplitude error v AC component contained in the signal indicating the d v d alpha, a signal indicating a phase difference v q And a second output terminal 20d for outputting the included AC component v q β , and the AC component v d α and the level included in the signal indicating the amplitude error v d obtained from the phase difference and amplitude error detector 14. retardation v to extract an AC component v q beta included in the signal indicating the q. The two AC components v d α and v q β change in relation to the amplitude error ΔV between the AC voltage (detection voltage) v α and the virtual β-axis voltage v β input to the phase difference and amplitude error detection means 14. . Now, an AC voltage (detection voltage) v and phase theta s of alpha detection phase theta d are equal, assuming that there is amplitude error ΔV between the AC voltage and the (detected voltage) v alpha and virtual beta -axis voltage v beta , Each is represented by the following formula (A) .

Figure 0005076730
Figure 0005076730

θdを用いて回転座標変換すると、位相差及び振幅誤差検出手段14の第1及び第2の出力端子14a、14bの振幅誤差vdと位相差vqとを次の式(2)で示すことができる。従って、交流成分出手段20の出力を次の式(3)で示すことができる。これ等の式(2)(3)から明らかなように振幅誤差ΔVがあると、位相差及び振幅誤差検出手段14から得られる振幅誤差vd、及び交流成分出手段20から得られる2つの交流成分vdα 及びvqβ に、検出電圧即ち交流電圧vα に対して逆位相の2倍の周波数の振動成分が含まれる。従って、交流成分出手段20は検出電圧即ち交流電圧vα に対して逆位相の2倍の周波数の振動成分を検出している。 When rotating coordinate conversion is performed using θ d , the amplitude error v d and the phase difference v q of the first and second output terminals 14a and 14b of the phase difference and amplitude error detecting means 14 are expressed by the following equation (2). be able to. Therefore, it is possible to show the output of the alternating current component extracting detecting means 20 by the following equation (3). If this like have an expression (2) (3) the amplitude As is clear from the error ΔV of the phase difference and amplitude error detection means 14 obtained from the amplitude error v d, and the AC component extracting detecting means 20 from the two resulting The alternating current components v d α and v q β include a vibration component having a frequency twice the opposite phase to the detection voltage, that is, the alternating voltage v α . Thus, the AC component extracting detecting means 20 detects the double oscillation component of the frequency of the opposite phase to the detected voltage or the AC voltage v alpha.

Figure 0005076730
Figure 0005076730

位相検出信号出力ライン19に接続された2倍信号作成手段21は、検出位相θd に対して逆位相の2倍を示す逆位相2倍信号(―2×θd)を作成する。 The double signal creating means 21 connected to the phase detection signal output line 19 creates a reverse phase double signal (−2 × θ d ) indicating twice the reverse phase with respect to the detection phase θ d .

直流振幅誤差検出手段22は、α−β/d−q回転座標変換手段(演算手段)から成り、交流成分出手段20の第1及び第2の出力端子20c、20dに接続された第1及び第2の入力端子と、逆位相2倍信号作成手段21に接続された位相信号入力端子と、d軸成分を出力する端子とを有し、交流成分出手段20から得られた2倍の振動成分から成る2つの交流成分vqβ 、vdα 逆位相2倍信号作成手段21から得られた逆位相2倍信号(―2×θd)を用いて逆回転座標変換して、制御性の良い直流量として直流振幅誤差vd2を検出する。この直流振幅誤差検出手段22における逆回転座標変換は次の式(4)で行われる。直流振幅誤差検出手段22からはq軸成分が取り出されず、d軸成分のみが取り出されので、直流振幅誤差検出手段22から得られる直流量の振幅誤差vd2は次の式(5)で示される。 DC amplitude error detection means 22 is made α-β / d-q rotational coordinate transformation means (calculating means), first and second output terminals 20c of the AC component extracting detecting means 20, the first connected to 20d and and a second input terminal, and the phase signal input terminal connected to opposite phases twice signal generating means 21, and a terminal for outputting a d-axis component, twice that obtained from the AC component extraction means 20 AC component v q beta of the two consisting vibration component, and the reverse rotation coordinate conversion using the v d antiphase doubled signal obtained α from reverse phase twice signal creating means 21 (-2 × θ d) The DC amplitude error v d2 is detected as a DC amount with good controllability . The reverse rotation coordinate conversion in the DC amplitude error detecting means 22 is performed by the following equation (4). Since the q-axis component is not extracted from the DC amplitude error detecting means 22 and only the d-axis component is extracted, the DC amount amplitude error v d2 obtained from the DC amplitude error detecting means 22 is expressed by the following equation (5). .

Figure 0005076730
Figure 0005076730

直流振幅誤差検出手段22に接続された補償電圧作成手段23は、直流振幅誤差検出手段22から得られた直流振幅誤差vd2を増幅して補償電圧Vcを得るための増幅手段から成る。 The compensation voltage creating means 23 connected to the DC amplitude error detecting means 22 is composed of an amplifying means for amplifying the DC amplitude error v d2 obtained from the DC amplitude error detecting means 22 to obtain the compensation voltage V c .

基準電圧発生手段24は、固定の基準電圧Kv即ち電力系統の交流電圧の定格値(実効値)を発生する。基準電圧発生手段24と補償電圧作成手段23とに接続された検出振幅作成手段25は加算手段から成り、補償電圧Vcと基準電圧Kvとを加算して検出振幅Vqを作成する。この検出振幅Vqは系統電圧のピーク値Vpの推定値を示す。なお、補償電圧Vcと基準電圧Kvとのいずれか1つの極性を変えて検出振幅作成手段25を減算手段で構成することもできる。 The reference voltage generating means 24 generates a fixed reference voltage K v, that is, a rated value (effective value) of the AC voltage of the power system. The detection amplitude creating means 25 connected to the reference voltage generating means 24 and the compensation voltage creating means 23 is composed of an adding means, and creates the detected amplitude V q by adding the compensation voltage V c and the reference voltage K v . This detected amplitude V q indicates an estimated value of the peak value V p of the system voltage. Note that the detection amplitude generating means 25 can be configured by a subtracting means by changing the polarity of any one of the compensation voltage V c and the reference voltage K v .

仮想β軸電圧作成部13はフィードバック部と呼ぶこともできるものであり、正弦波信号作成手段26と乗算手段27とから成る。位相検出信号出力ライン19に接続された正弦波信号作成手段26は検出位相θdに基づいて正弦波信号sinθdを作成する。乗算手段27は、検出振幅作成手段25と正弦波信号作成手段26とに接続され、検出振幅作成手段25から得られた検出振幅Vqと正弦波信号作成手段26から得られた正弦波信号sinθdとを乗算して仮想β軸電圧vβ=Vqsinθdを出力する。仮想β軸電圧Vβは電圧検出手段10から得られた検出電圧即ち交流電圧Vαよりも90度遅れの信号であり、β軸信号として位相差及び振幅誤差検出手段14に送られる。 The virtual β-axis voltage creation unit 13 can also be called a feedback unit, and includes a sine wave signal creation unit 26 and a multiplication unit 27. Sinusoidal signal generating means 26 connected to the phase detection signal output line 19 to create a sine wave signal sin [theta d based on the detected phase theta d. The multiplication unit 27 is connected to the detection amplitude generation unit 25 and the sine wave signal generation unit 26, and the detection amplitude V q obtained from the detection amplitude generation unit 25 and the sine wave signal sin θ obtained from the sine wave signal generation unit 26. The virtual β-axis voltage v β = V q sin θ d is output by multiplying by d . The virtual β-axis voltage V β is a signal delayed by 90 degrees from the detection voltage obtained from the voltage detection means 10, that is, the AC voltage V α , and is sent to the phase difference and amplitude error detection means 14 as a β-axis signal.

本実施例の位相検出装置は次の効果を有する。
(1)直流振幅誤差検出手段22としてα−β/d−q回転座標変換手段(演算手段)を用いて制御性の良い直流量の振幅誤差vd2を求め、これを使用して補償電圧Vcを決定し、この補償電圧Vcと基準電圧Kvとに基づいて検出振幅Vqを作成する。しかる後、この検出振幅Vqを使用して位相差及び振幅誤差検出手段14が要求する仮想β軸電圧vβを作成する。従って、制御性及び耐ノイズが良い位相検出装置を提供することができる。
(2)検出振幅Vqと検出位相θdとに基づいて仮想β軸電圧vβを容易に作成することができる。
(3)検出位相θdと位相差及び振幅誤差検出手段14との出力とに基づいて検出振幅Vqを容易に作成することができる。
The phase detector of the present embodiment has the following effects.
(1) Using the α-β / dq rotating coordinate conversion means (calculation means) as the DC amplitude error detection means 22, the DC error amplitude error v d2 with good controllability is obtained and used to obtain the compensation voltage V c is determined, and a detection amplitude V q is created based on the compensation voltage V c and the reference voltage K v . Thereafter, a virtual β-axis voltage v β required by the phase difference and amplitude error detecting means 14 is created using the detected amplitude V q . Therefore, it is possible to provide a phase detection device with good controllability and noise resistance.
(2) The virtual β-axis voltage v β can be easily created based on the detected amplitude V q and the detected phase θ d .
(3) The detection amplitude V q can be easily created based on the detection phase θ d and the output of the phase difference and amplitude error detection means 14.

本発明は上述の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1) 図3の各手段をディジタル回路で構成することができる。
(2) 図3において複数の手段を一体化することができる。
(3) 図3の位相検出装置を、図1以外の回路にも使用可能である。
The present invention is not limited to the above-described embodiments, and for example, the following modifications are possible.
(1) Each means in FIG. 3 can be constituted by a digital circuit.
(2) In FIG. 3, a plurality of means can be integrated.
(3) The phase detector of FIG. 3 can be used for circuits other than FIG.

本発明の実施例1に従う位相検出装置を使用することができるインバータ装置を含む電力系統を示す回路図である。It is a circuit diagram which shows the electric power system containing the inverter apparatus which can use the phase detection apparatus according to Example 1 of this invention. 従来の位相検出装置を示す回路図である。It is a circuit diagram which shows the conventional phase detection apparatus. 本発明の実施例1に従う位相検出装置を示す回路図である。It is a circuit diagram which shows the phase detection apparatus according to Example 1 of this invention.

10 電圧検出手段
11 PLL位相検出部
12 電圧振幅補償部
13 仮想β軸電圧作成部
14 位相差及び振幅誤差検出手段
DESCRIPTION OF SYMBOLS 10 Voltage detection means 11 PLL phase detection part 12 Voltage amplitude compensation part 13 Virtual beta axis voltage preparation part 14 Phase difference and amplitude error detection means

Claims (1)

電力系統における交流電圧の位相を検出する位相検出装置であって、
電力系統における交流電圧(vα=Vpcosθs)を検出する電圧検出手段(10)とPLL位相検出部(11)と電圧振幅補償部(12)と仮想β軸電圧作成部(13)と位相検出信号出力ライン(19)とを有し、
前記PLL位相検出部(11)は、前記電圧検出手段(10)から得られた前記交流電圧(v α )と後記乗算手段(27)から得られた前記交流電圧(v α )よりも90度遅れの仮想β軸電圧(v β )とを前記位相検出信号出力ライン(19)の検出位相(θ d )を用いて回転座標変換して、前記交流電圧(v α )の位相と前記検出位相(θ d )との位相差(v q )を出力し且つ前記交流電圧(v α )と前記仮想β軸電圧(v β )との振幅誤差(v d )を出力する位相差及び振幅誤差検出手段(14)と、前記位相差及び振幅誤差検出手段(14)から得られた前記位相差(v q )を示す信号を増幅して補償角周波数(ω c )を得る補償角周波数作成手段(15)と、基準角周波数(ω b )を発生する基準角周波数発生手段(16)と、前記補償角周波数(ω c )と前記基準角周波数(ω b )とに基づいて検出角周波数(ω d )を作成する検出角周波数作成手段(17)と、前記検出角周波数(ω d )を積分して検出位相(θ d )を前記位相検出信号出力ライン(19)に出力する積分手段(18)とから成り
前記電圧振幅補償部(12)は、前記位相差及び振幅誤差検出手段(14)から得られた前記位相差(v q )を示す信号に含まれる交流成分(v )及び振幅誤差(v d )を示す信号に含まれる交流成分(v )を抽出する交流成分抽出手段(20)と、前記位相検出信号出力ライン(19)の前記検出位相(θ d )に対して逆位相の2倍を示す逆位相2倍信号を作成する逆位相2倍信号作成手段(21)と、前記交流成分抽出手段(20)から得られた2つの交流成分(v 、v )を前記逆位相2倍信号作成手段(21)から得られた前記逆位相2倍信号を用いて逆回転座標変換して直流振幅誤差(v d2 )を検出する直流振幅誤差検出手段(22)と、前記直流振幅誤差検出手段(22)から得られた前記直流振幅誤差(v d2 )を増幅して補償電圧(V c )を得る補償電圧作成手段(23)と、基準電圧(K v )を発生する基準電圧発生手段(24)と、前記補償電圧(V c )と前記基準電圧(K v )とに基づいて検出振幅(V q )を作成する検出振幅作成手段(25)とから成り
前記仮想β軸電圧作成部(13)は、前記位相検出信号出力ライン(19)の前記検出位相(θ d )を位相角とする正弦波信号(sinθ d )を作成する正弦波信号作成手段(26)と、前記検出振幅作成手段(25)から得られた前記検出振幅(V q )と前記正弦波信号作成手段(26)から得られた前記正弦波信号(sinθ d )とを乗算して前記電圧検出手段(10)から得られた前記交流電圧(V α )よりも90度遅れの仮想β軸電圧(v β )を出力する乗算手段(27)とから成ることを特徴とする位相検出装置。
A phase detection device for detecting the phase of an AC voltage in a power system,
Voltage detection means (10) for detecting AC voltage (v α = V p cos θs) in the power system, PLL phase detection unit (11), voltage amplitude compensation unit (12), virtual β-axis voltage generation unit (13) and phase A detection signal output line (19),
The PLL phase detector (11) is 90 degrees from the AC voltage (v α ) obtained from the voltage detector (10) and the AC voltage (v α ) obtained from the multiplier (27) described later. The delayed virtual β-axis voltage (v β ) is subjected to rotational coordinate conversion using the detection phase (θ d ) of the phase detection signal output line (19), and the phase of the AC voltage (v α ) and the detection phase Phase difference and amplitude error detection that outputs a phase difference (v q ) from d ) and an amplitude error (v d ) between the AC voltage (v α ) and the virtual β-axis voltage (v β ) Compensation angular frequency generating means ( amplifying a signal indicating the phase difference (v q ) obtained from the means (14) and the phase difference and amplitude error detection means (14) to obtain a compensation angular frequency (ω c ) 15), the reference angular frequency generating means for generating a reference angular frequency (omega b) and (16), wherein Integration 償角frequency (omega c) and said reference angular frequency (omega b) and the detected angular frequency generating means for generating a detection angular frequency (omega d) on the basis of (17), the detected angular frequency (omega d) And integrating means (18) for outputting the detection phase (θ d ) to the phase detection signal output line (19) ,
The voltage amplitude compensator (12) includes an AC component (v ) and an amplitude error (v d ) included in the signal indicating the phase difference (v q ) obtained from the phase difference and amplitude error detector (14). AC component extraction means (20) for extracting an AC component (v ) included in the signal indicating ), and twice the phase opposite to the detected phase (θ d ) of the phase detection signal output line (19) and antiphase twice signal creating means for creating an anti-phase double signal indicating (21), two AC components above obtained from the AC component extracting means (20) (v Q [beta], v d [alpha]) the reverse phase 2 DC amplitude error detecting means (22) for detecting a DC amplitude error (v d2 ) by performing reverse rotation coordinate conversion using the antiphase double signal obtained from the double signal generating means (21 ), and the DC amplitude error obtained from the detecting means (22) said DC amplitude error and (v d2) Width compensation voltage compensating voltage generating means for obtaining (V c) (23), the reference voltage (K v) reference voltage generating means for generating (24), said compensation voltage (V c) and said reference voltage ( K v ) and detection amplitude generation means (25) for generating detection amplitude (V q ) based on
The virtual β-axis voltage generator (13) is a sine wave signal generator (sin θ d ) that generates a sine wave signal (sin θ d ) having the detected phase (θ d ) of the phase detection signal output line (19 ) as a phase angle. 26), the detected amplitude (V q ) obtained from the detected amplitude creating means (25) and the sine wave signal (sin θ d ) obtained from the sine wave signal creating means (26) Phase detection means comprising: multiplication means (27) for outputting a virtual β-axis voltage (v β ) delayed by 90 degrees from the AC voltage (V α ) obtained from the voltage detection means (10). apparatus.
JP2007214090A 2007-07-25 2007-08-20 Phase detector Active JP5076730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214090A JP5076730B2 (en) 2007-07-25 2007-08-20 Phase detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007193820 2007-07-25
JP2007193820 2007-07-25
JP2007214090A JP5076730B2 (en) 2007-07-25 2007-08-20 Phase detector

Publications (2)

Publication Number Publication Date
JP2009050091A JP2009050091A (en) 2009-03-05
JP5076730B2 true JP5076730B2 (en) 2012-11-21

Family

ID=40501781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214090A Active JP5076730B2 (en) 2007-07-25 2007-08-20 Phase detector

Country Status (1)

Country Link
JP (1) JP5076730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101329580B1 (en) 2012-09-24 2013-11-14 주식회사 팩테크 Distortion-tolerant method and apparatus for generating phase control signal, and ac/dc converting apparatus thereof
RU2592887C1 (en) * 2015-05-28 2016-07-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Method for phase automatic frequency control with filtration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777996B2 (en) * 2011-09-29 2015-09-16 株式会社ダイヘン Signal processing apparatus having coordinate transformation processing means, electric motor, and grid interconnection inverter used for renewable energy
JP5926067B2 (en) * 2012-02-15 2016-05-25 株式会社ダイヘン Phase conversion device and control circuit using the phase conversion device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627664A (en) * 1979-08-15 1981-03-18 Toshiba Corp Single-phase ac signal phase detector
JPH10295073A (en) * 1997-04-17 1998-11-04 Hitachi Ltd Apparatus and method for phase detection
JP2005003530A (en) * 2003-06-12 2005-01-06 Toshiba Corp Phase detector
JP2006271075A (en) * 2005-03-23 2006-10-05 Fuji Electric Systems Co Ltd Control system for reactive power compensation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101329580B1 (en) 2012-09-24 2013-11-14 주식회사 팩테크 Distortion-tolerant method and apparatus for generating phase control signal, and ac/dc converting apparatus thereof
RU2592887C1 (en) * 2015-05-28 2016-07-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Method for phase automatic frequency control with filtration

Also Published As

Publication number Publication date
JP2009050091A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
KR890002874B1 (en) Ac current control system
US8971066B2 (en) Harmonic current suppression method and harmonic current suppression device of power conversion device
KR100934311B1 (en) Inverter device
TW200826464A (en) Instantaneous voltage-drop compensation circuit, power conversion apparatus, instantaneous voltage-drop compensation method and computer readable medium storing instantaneous voltage-drop compensation program
JP5585371B2 (en) Distributed power system
JP5003819B2 (en) System stabilization device
JP2012205325A (en) Distributed power supply system
JP2012205325A5 (en)
JP5076730B2 (en) Phase detector
JP2016082655A (en) Phase-locked loop, power conversion device and phase synchronization method
JP2008234298A (en) Semiconductor power conversion device
JPH09233701A (en) Controller of active filter
Wu et al. Effect of adding DC‐offset estimation integrators in there‐phase enhanced phase‐locked loop on dynamic performance and alternative scheme
KR101736531B1 (en) Apparatus for restarting medium-voltage inverter
JP2012080666A (en) Power conversion device
JPH10304572A (en) Solar light power generation system
JP5078144B2 (en) Power conversion method and power conversion device
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
CN111799816B (en) Angular joint chained STATCOM current optimization method
JP6342354B2 (en) Isolated operation detection device, isolated operation detection device control method, and grid-connected inverter
US20230188030A1 (en) Power conversion device and control device
JP2000102168A (en) Active filter control method
JP2007225427A (en) Power interruption detecting circuit and uninterruptible power supply unit
EP4318918A1 (en) Power conversion device and control device
KR102541094B1 (en) Controller for active power filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350