JP5074704B2 - Image projection device - Google Patents

Image projection device Download PDF

Info

Publication number
JP5074704B2
JP5074704B2 JP2006137099A JP2006137099A JP5074704B2 JP 5074704 B2 JP5074704 B2 JP 5074704B2 JP 2006137099 A JP2006137099 A JP 2006137099A JP 2006137099 A JP2006137099 A JP 2006137099A JP 5074704 B2 JP5074704 B2 JP 5074704B2
Authority
JP
Japan
Prior art keywords
light
beam splitter
image
polarization
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006137099A
Other languages
Japanese (ja)
Other versions
JP2007310036A (en
JP2007310036A5 (en
Inventor
貴士 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006137099A priority Critical patent/JP5074704B2/en
Publication of JP2007310036A publication Critical patent/JP2007310036A/en
Publication of JP2007310036A5 publication Critical patent/JP2007310036A5/ja
Application granted granted Critical
Publication of JP5074704B2 publication Critical patent/JP5074704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、液晶プロジェクタなどの画像投射装置に用いられる色分離合成系に関し、黒表示時の画像の色味、色ムラを改善し、画像のコントラスト特性を向上させる色分離合成系に関する。   The present invention relates to a color separation / synthesis system used in an image projection apparatus such as a liquid crystal projector, and more particularly, to a color separation / synthesis system that improves the color tone and color unevenness of an image during black display and improves the contrast characteristics of the image.

現在、液晶プロジェクタは高輝度化、高コントラスト化が進んでいる。特に近年ではホームシアター用途として、コントラストの高いモードを持つ方式の製品が多く市場に出ている。そうした中、シネマ鑑賞等において画像のコントラスト特性を改善するべく、絞りを用いたタイプが多く用いられている。画像のコントラストに関し、画像の有効内でのコントラストを高める絞りを用いた従来例としては、特許文献1がある。この従来例は、光源、光源の光をライトバルブに向けて平行光として反射する放物面リフレクター、該リフレクターからの平行光束を分割して2次光源像を作り、ライトバルブに重ね合わせて照明する光学手段を設けており、前記2次光源像近傍に光束を制限する手段を設けている。これにより、入射角度特性に敏感な光学素子に入射する光の角度範囲を狭めることができるので、コントラスト特性を改善できる。
特開平05−303085号公報
At present, liquid crystal projectors are increasing in brightness and contrast. In particular, in recent years, many products with a mode having a high contrast mode have been put on the market for home theater applications. Under such circumstances, a type using an aperture is often used in order to improve the contrast characteristics of an image in cinema viewing or the like. Japanese Patent Application Laid-Open No. 2003-228867 discloses a conventional example using a diaphragm that increases the contrast within the effective image range. In this conventional example, a light source, a parabolic reflector that reflects light from the light source toward the light valve as parallel light, a parallel light beam from the reflector is divided to create a secondary light source image, and the light is superimposed on the light valve for illumination. Optical means is provided, and means for limiting the luminous flux is provided in the vicinity of the secondary light source image. As a result, the angle range of light incident on the optical element sensitive to the incident angle characteristic can be narrowed, so that the contrast characteristic can be improved.
JP 05-303085 A

しかし、上記の従来例では、画像のコントラストを改善できるが、光源像近傍で光束を制限しているために、光量低下が大きいという問題がある。また、色分離合成の前の照明系で光束制限しているために、波長ごとに光束制限を行なうことができないため、黒表示時における黒の色味、色ムラに関して効果的な手段となっていない。   However, in the above conventional example, the contrast of the image can be improved, but there is a problem that the light amount is greatly reduced because the light flux is limited in the vicinity of the light source image. In addition, since the luminous flux is limited by the illumination system before color separation and synthesis, the luminous flux cannot be limited for each wavelength, and this is an effective means for black color and color unevenness during black display. Absent.

そこで、本発明の例示的目的は、黒の色味、色ムラに有効で、光量低下を抑え、低コストを実現する画像投射装置を提供することにある。   Accordingly, an exemplary object of the present invention is to provide an image projection apparatus that is effective for black color and color unevenness, suppresses a decrease in light amount, and realizes low cost.

本発明の一側面としての画像投射装置は、光源、照明光学系、色分離合成系、画像形成素子としての反射型のライトバルブ、投射光学系とから構成される。照明光学系は、偏光変換素子を有しており、光源からの無偏光光を所定の偏光に変換する。色分離合成系は、照明光学系からの白色光をRGBに分離して、ライトバルブに導き、各画像光を合成する手段である。色分離合成系は、照明光学系から出射された光のうちRB成分を反射させ、G成分を透過させて、色分離するダイクロイックミラーと、RB成分の光のうちのRとBのいずれか一方の光の偏波面を90°回転させ、他方の光は偏波面を変化させないことによって、Rの光をS偏光、Bの光をP偏光とする波長選択性位相板と、Rの光をRのライトバルブ側に反射させ、Bの光をBのライトバルブ側に透過するプリズム形状のRB用の偏光ビームスプリッターと、ライトバルブで画像変調を受けた画像光であってRB用の偏光ビームスプリッターから出射した後のBの光を検光する第1の偏光板と、ダイクロイックミラーを透過したGの光を透過させることにより、Gのライトバルブ側に導くプリズム形状のG用の偏光ビームスプリッターと、Gのライトバルブで画像変調を受けた画像光であってG用の偏光ビームスプリッターにより反射されて該G用の偏光ビームスプリッターから出射した後の光を検光する第2の偏光板と、RGBの画像光を合成して投射光学系に導くとともに、Rの光を検光する作用を有する合成プリズムと、から構成されている。Gのライトバルブに入射する光線角度をθ、G用の偏光ビームスプリッターの屈折率をnとするとき、Gの偏光ビームスプリッターの膜面の光線入射角度βは、β=45°+sin −1 (1/n×sinθ)と表され、ダイクロイックミラーの光線入射角度αは、α=45°−θと表され、第2の偏光板を透過する偏波面はS偏光であり、ダイクロイックミラーにおいて透過率が5%となる波長のうち、長波長側の波長をWa、G用の偏光ビームスプリッターの膜面への光線入射角度βでのS偏光透過率をTs(β)としたとき、W<Waなる波長域Wにおいて、Ts(β)≦5%を満足することを特徴とする。 An image projection apparatus according to one aspect of the present invention includes a light source, an illumination optical system, a color separation / synthesis system, a reflective light valve as an image forming element, and a projection optical system. The illumination optical system has a polarization conversion element and converts non-polarized light from the light source into predetermined polarized light. The color separation / combination system is means for separating the white light from the illumination optical system into RGB and guiding it to a light valve to synthesize each image light. The color separation / synthesis system reflects the RB component of the light emitted from the illumination optical system and transmits the G component to separate the colors, and either one of R and B of the light of the RB component The wavelength-selective phase plate for rotating the R light into S-polarized light and the B light as P-polarized light, and rotating the R light into the R-polarized light A prism-shaped RB polarization beam splitter that reflects the light beam to the light valve side and transmits the B light to the B light valve side, and image light modulated by the light valve , the RB polarization beam A first polarizing plate for analyzing the B light after being emitted from the splitter, and a G-shaped polarizing beam splitter for the G-shaped prism that guides the G light transmitted through the dichroic mirror to the G light valve side When , An image light which has received the image modulated by the light valve G, and a second polarizer for analyzing the light after emitted from the polarization beam splitter for the G is reflected by the polarization beam splitter for G And a composite prism having a function of combining RGB image light and guiding it to the projection optical system and analyzing R light. When the angle of light incident on the G light valve is θ and the refractive index of the polarizing beam splitter for G is n, the light incident angle β on the film surface of the G polarizing beam splitter is β = 45 ° + sin −1 ( 1 / n × sin θ), the light incident angle α of the dichroic mirror is expressed as α = 45 ° −θ, the plane of polarization transmitted through the second polarizing plate is S-polarized light, and the transmittance in the dichroic mirror W <Wa where W is the wavelength on the long wavelength side and Ts (β) is the S-polarized light transmittance at the light incident angle β on the film surface of the polarizing beam splitter for G. In the wavelength region W, Ts (β) ≦ 5% is satisfied.

本発明の他の一側面としての画像投射装置は、光源、照明光学系、色分離合成系、画像形成素子としての反射型のライトバルブ、投射光学系とを備える画像投射装置であって、前記照明光学系は、偏光変換素子を有しており、前記光源からの無偏光光を所定の偏光に変換し、前記色分離合成系は、前記照明光学系からの白色光をRGBに分離して、前記ライトバルブに導き、各画像光を合成する手段であり、前記色分離合成系は、前記照明光学系から出射された光のうちRB成分を反射させ、G成分を透過させて、色分離するダイクロイックミラーと、RB成分の光のうちのRとBのいずれか一方の光の偏波面を90°回転させ、他方の光は偏波面を変化させないことによって、Rの光をS偏光、Bの光をP偏光とする波長選択性位相板と、Rの光をRのライトバルブ側に反射させ、Bの光をBのライトバルブ側に透過するプリズム形状のRB用の偏光ビームスプリッターと、前記ライトバルブで画像変調を受けた画像光であって、前記RB用の偏光ビームスプリッターから出射した後のBの光を検光する第1の偏光板と、前記ダイクロイックミラーを透過したGの光を反射させることにより、Gのライトバルブ側に導くプリズム形状のG用の偏光ビームスプリッターと、前記Gのライトバルブで画像変調を受けた画像光であって、前記G用の偏光ビームスプリッターを透過して該G用の偏光ビームスプリッターから出射した後の光を検光する第2の偏光板と、前記RGBの画像光を合成して前記投射光学系に導くとともに、Rの光を検光する作用を有する合成プリズムと、から構成され、前記Gのライトバルブに入射する光線角度をθ、前記G用の偏光ビームスプリッターの屈折率をnとするとき、前記Gの偏光ビームスプリッターの膜面の光線入射角度βは、β=45°+sin −1 (1/n×sinθ)と表され、前記ダイクロイックミラーの光線入射角度αは、α=45°−θと表され、前記第2の偏光板を透過する偏波面はP偏光であり、前記ダイクロイックミラーにおいて透過率が5%となる波長のうち、長波長側の波長をWaとしたとき、前記G用の偏光ビームスプリッターの膜面への光線入射角度βでのP偏光反射率をRp(β)としたとき、W<Waなる波長域Wにおいて、Rp(β)≦5%を満足することを特徴とする。 An image projection apparatus according to another aspect of the present invention is an image projection apparatus including a light source, an illumination optical system, a color separation / synthesis system, a reflective light valve as an image forming element, and a projection optical system, The illumination optical system has a polarization conversion element, converts non-polarized light from the light source into predetermined polarization, and the color separation / synthesis system separates white light from the illumination optical system into RGB. The color separation / synthesizing system reflects the RB component of the light emitted from the illumination optical system and transmits the G component for color separation. Rotating the polarization plane of one of R and B of the RB component light by 90 ° and changing the polarization plane of the other light without changing the polarization plane, A wavelength-selective phase plate with P light as P-polarized light, Is a prism-shaped RB polarization beam splitter that reflects the light of R to the R light valve side and transmits the B light to the B light valve side, and image light that has undergone image modulation by the light valve, A first polarizing plate for analyzing the B light after exiting from the RB polarizing beam splitter, and a prism shape that guides the G light transmitted through the dichroic mirror to the G light valve side Image light that has undergone image modulation by the G polarization beam splitter and the G light valve, and that has passed through the G polarization beam splitter and is emitted from the G polarization beam splitter. And a second prism that combines the RGB image light and guides it to the projection optical system, and has a function of analyzing the R light. Where the angle of light incident on the G light valve is θ and the refractive index of the G polarizing beam splitter is n, the light incident angle β on the film surface of the G polarizing beam splitter is β = 45 ° + sin −1 (1 / n × sin θ), the light incident angle α of the dichroic mirror is expressed as α = 45 ° −θ, and the plane of polarization transmitted through the second polarizing plate is P-polarized light. Yes, when the wavelength on the long wavelength side of the wavelength at which the transmittance is 5% in the dichroic mirror is Wa, the P-polarized reflectance at the light incident angle β to the film surface of the G polarization beam splitter Is Rp (β), Rp (β) ≦ 5% is satisfied in the wavelength region W where W <Wa .

本発明によれば、黒画像表示時において、黒の色味や色むらを改善でき、画像のコントラストを高めることが可能となる。さらに、偏光板をなくすことができるために、コストダウンができると同時に、偏光板による耐久時の劣化をなくすことができるので、非常に効果的である。   According to the present invention, when displaying a black image, it is possible to improve the color and unevenness of black and increase the contrast of the image. Furthermore, since the polarizing plate can be eliminated, the cost can be reduced, and at the same time, the deterioration at the time of durability due to the polarizing plate can be eliminated, which is very effective.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本発明の実施例1である液晶プロジェクタ(画像投射装置)の構成を示している。本実施例のプロジェクタは、光源1と、照明光学系2と、色分離合成光学系3と、画像形成素子としての反射型の液晶パネル6、7、8(ライトバルブ)と、投射レンズ4とにより構成される。照明光学系2は、光源1の光を液晶パネル6、7、8に導く光学系である。 FIG. 1 shows the configuration of a liquid crystal projector (image projection apparatus) that is Embodiment 1 of the present invention. The projector according to the present embodiment includes a light source 1, an illumination optical system 2, a color separation / synthesis optical system 3, reflection type liquid crystal panels 6, 7 and 8 (light valves) as image forming elements, a projection lens 4, and the like. Consists of. The illumination optical system 2 is an optical system that guides light from the light source 1 to the liquid crystal panels 6, 7, and 8.

液晶パネル6、7、8は反射型のRGBの液晶パネルであり、色分離合成系3は照明系2からの白色光をRGBに分離し、RGBの各パネルに導き、各パネルからの画像光を合成して投射光学系4に導く。投射光学系4は各パネルの表示画像をスクリーン5に向けて投射する光学系である。光源1から出射された光は、無偏光であるが、照明系2に含まれる非図示の偏光変換素子により、所定の偏光(本実施例ではP偏光となる。 The liquid crystal panels 6, 7, and 8 are reflective RGB liquid crystal panels. The color separation / combination system 3 separates white light from the illumination system 2 into RGB and guides it to each RGB panel, and image light from each panel. Are combined and guided to the projection optical system 4. The projection optical system 4 is an optical system that projects the display image of each panel toward the screen 5. Light emitted from the light source 1 is a non-polarized light, by a non-illustrated polarization conversion element included in the illumination system 2, the (P-polarized light in this embodiment) predetermined polarization.

色分離合成系3は、3つのプリズム形状の偏光ビームスプリッター(以下、PBSとする)から構成されている。以下では、10をG−PBS、11をRB−PBS、12を合成PBSとする。   The color separation / combination system 3 includes three prism-shaped polarization beam splitters (hereinafter referred to as PBS). In the following, 10 is G-PBS, 11 is RB-PBS, and 12 is synthetic PBS.

色分離合成系3は、照明系2からの白色光のうち、ダイクロイックミラー9により、Red(R成分)とBlue(B成分)の光を反射させ、Green(G成分)の光は透過させることで、RB光路とG光路を分離している。また、RB光路において、ダイクロイックミラーで反射されたRB成分の光をRedとBlueに分離するために、波長選択性位相板15を設けている。波長選択性位相板は図2に示す特性であり、これにより、一方(本実施例ではRedの光はP偏光からS偏光へと偏光状態を変化(偏波面を90°回転)させるが、他方(本実施例ではBlueの光はP偏光のままである。 The color separation / combination system 3 reflects red (R component) and blue (B component) light and transmits green (G component) light by the dichroic mirror 9 out of white light from the illumination system 2. Thus, the RB optical path and the G optical path are separated. In addition, a wavelength selective phase plate 15 is provided in the RB optical path in order to separate RB component light reflected by the dichroic mirror into Red and Blue. The wavelength-selective phase plate has the characteristics shown in FIG. 2, whereby one ( Red in this embodiment ) light changes its polarization state from P-polarized light to S-polarized light (the polarization plane is rotated by 90 °) . The other ( Blue in this embodiment ) light remains P-polarized light.

波長選択性位相板透過後のRedの光はS偏光であり、RB−PBS11(RB用の偏光ビームスプリッター)により反射され、Redパネル8に導かれる。Redパネル8(Rのライトバルブ側)に導かれた光は、パネルで画像変調されてP偏光となり、RB−PBS11を透過し、合成PBS12に至る。一方、Blueの光はP偏光でRB−PBS11に入射し、RB−PBS11を透過してBlueパネル7(Bのライトバルブ側)に導かれる。パネル7に入射した光は画像変調を受けて、S偏光となり、RB−PBS11で反射されて、合成PBS12に至る。 The Red light after passing through the wavelength-selective phase plate is S-polarized light, reflected by RB-PBS11 (polarization beam splitter for RB) , and guided to the Red panel 8. The light guided to the Red panel 8 (R light valve side) is image-modulated by the panel to become P-polarized light, passes through the RB-PBS 11, and reaches the combined PBS 12. On the other hand, Blue light is incident on the RB-PBS 11 as P-polarized light, passes through the RB-PBS 11, and is guided to the Blue panel 7 (B light valve side) . The light incident on the panel 7 undergoes image modulation, becomes S-polarized light, is reflected by the RB-PBS 11, and reaches the combined PBS 12.

合成PBS12は、図3に示す特性であり、Redの光に対して偏光ビームスプリッターの機能を有しており、BlueとGreenに対しては、ダイクロ膜の機能を有したプリズム形状の光学素子である。この合成PBSと前記RB−PBSの間には、Blueの光を検光する偏光板16を配置しており、Blueの光はこの偏光板で検光された後、合成PBS12に入射し、透過して投射系4に至る。また、Redの光は、合成PBS12の図3に示す検光特性により検光されて透過し、投射系4に至る。   The combined PBS 12 has the characteristics shown in FIG. 3 and has a function of a polarizing beam splitter for Red light, and is a prism-shaped optical element having a dichroic film function for Blue and Green. is there. Between this synthetic PBS and the RB-PBS, a polarizing plate 16 for analyzing the blue light is disposed. After the blue light is analyzed by this polarizing plate, it enters the synthetic PBS 12 and is transmitted therethrough. Then, the projection system 4 is reached. Further, the red light is detected and transmitted by the detection characteristics shown in FIG. 3 of the synthetic PBS 12 and reaches the projection system 4.

一方、ダイクロイックミラー9を透過したGreenの光は、P偏光であり、G−PBS10(G用の偏光ビームスプリッター)を透過してGreenパネル6に入射する。Greenパネル6に入射した光は、パネルにより画像変調を受けてS偏光となり、G−PBS10によって反射され、合成PBS12に入射する。合成PBS12とG−PBS10の間には、Greenの光を検光する偏光板を配置しており、これによりGreenの光を検光した後、合成PBS12によって反射させ、投射系4に導いている。 On the other hand, the Green light transmitted through the dichroic mirror 9 is P-polarized light, passes through the G-PBS 10 (G polarization beam splitter) , and enters the Green panel 6. The light incident on the green panel 6 undergoes image modulation by the panel to become S-polarized light, is reflected by the G-PBS 10, and enters the combined PBS 12. A polarizing plate for detecting the green light is arranged between the synthetic PBS 12 and the G-PBS 10, and after detecting the green light, it is reflected by the synthetic PBS 12 and guided to the projection system 4. .

図4に、本実施例におけるダイクロイックミラー9の特性を図示しており、実線が入射角度45°での透過率、点線が入射角度が45°よりも大きいときの透過率、一点破線が入射角度が45°よりも小さいときの透過率である。また、図5には、G−PBSのS偏光透過の特性を示している。   FIG. 4 shows the characteristics of the dichroic mirror 9 in this embodiment. The solid line indicates the transmittance at an incident angle of 45 °, the dotted line indicates the transmittance when the incident angle is greater than 45 °, and the one-dot broken line indicates the incident angle. Is the transmittance when is less than 45 °. FIG. 5 shows the S-polarized light transmission characteristics of G-PBS.

ここで、実線光線入射角度45°における透過率、点線は光線入射角度が45°よりも小さいときの透過率、一点破線は光線入射角度が45°よりも大きいときの透過率を示している。図6に示すように、ダイクロイックミラー9光線入射角度αが45°よりも小さいときには、G−PBS10の膜面に入射する光線角度は45°よりも大きくなる。 Here, the solid line indicates the transmittance at a light incident angle of 45 °, the dotted line indicates the transmittance when the light incident angle is smaller than 45 °, and the one-dot broken line indicates the transmittance when the light incident angle is larger than 45 °. . As shown in FIG. 6, when the light incident angle α of the dichroic mirror 9 is smaller than 45 ° , the light incident on the film surface of the G-PBS 10 is larger than 45 °.

ここで、本実施例では色分離合成系3に入射する光のほとんどはP偏光であるが、実際には、僅かであるがS偏光の成分も混じっている。Greenの光路において、この僅かなS偏光成分がG−PBS10に入射した場合、図5に示すS偏光透過特性により、長波長側の光がG−PBS10を透過してしまう。この透過光は、Greenパネル6に入射し、黒表示時には変調を受けないため、S偏光として出射し、G−PBS10に入射し、反射されて合成プリズム12に導かれ、投射系を通してスクリーン5に至る。このGreen光路から発生する長波長成分の光漏れは、黒表示時の画像の色味、色むらを劣化させ、コントラストを低下させる原因となる。   In this embodiment, most of the light incident on the color separation / combination system 3 is P-polarized light, but actually, it is slightly mixed with S-polarized light component. When this slight S-polarized component is incident on the G-PBS 10 in the Green optical path, light on the long wavelength side is transmitted through the G-PBS 10 due to the S-polarized light transmission characteristics shown in FIG. Since this transmitted light enters the green panel 6 and is not modulated during black display, it exits as S-polarized light, enters the G-PBS 10, is reflected, guided to the combining prism 12, and passes through the projection system to the screen 5. It reaches. The light leakage of the long wavelength component generated from the Green optical path deteriorates the color tone and color unevenness of the image during black display, and causes a decrease in contrast.

ここで、図6において、パネル入射角度をθ、G−PBSの屈折率をnとした場合、G−PBSの膜面の光線入射角度βは下記で表される。 Here, in FIG. 6, when the panel incident angle is θ 2 and the refractive index of G-PBS is n , the light incident angle β on the film surface of G-PBS is expressed as follows.

β=45°+sin−1(1/n×sinθ) β = 45 ° + sin −1 (1 / n × sin θ)

そして、入射角度βにおけるG−PBSのS偏光透過率をTs(β)とした場合、
Ts(β)≦5%
を満足するようにすることで、G−PBSの入射側に偏光板を設けることなく黒表示時の漏れ光を低減できる。これにより、コストダウンと、耐久時における偏光板の劣化の回避が可能となる。
When the S-polarized light transmittance of G-PBS at the incident angle β is Ts (β),
Ts (β) ≦ 5%
By satisfying the above, it is possible to reduce leakage light during black display without providing a polarizing plate on the incident side of the G-PBS. This makes it possible to reduce costs and avoid deterioration of the polarizing plate during durability.

なお、参考として、図10には、従来のG−PBSのS偏光の透過率特性を示す。   For reference, FIG. 10 shows the S-polarized light transmittance characteristics of a conventional G-PBS.

図7には、本発明の実施例2である液晶プロジェクタの構成を示している。基本的な構成は上記の実施例1と同じであるが、照明系出射後の偏光はS偏光となるようにしている。ダイクロイックミラー9によってRBとGを分離するところも実施例1と同様であるが、波長選択性位相板によって、Redの光はS偏光のままであるが、Blueの光はS偏光からP偏光へと偏光状態を変化するようにしている。この後の光学作用は、実施例1と同様である。G光路において、ダイクロイックミラー9を透過したGreen光は、G−PBS10に入射し、S偏光のためG−PBS10の膜面にて反射しGreenパネル6に入射する。パネル6に入射した光は、画像変調されてP偏光となり、G−PBS10を透過して合成PBS12側に出射される。G−PBS10を出射した画像光は、G−PBS10と合成PBS12の間の偏光板17によって検光され、合成PBS12に入射し、合成PBS12の膜面で反射されて投射系4に導かれ、スクリーン5に至る。ここで、合成PBS12は、実施例1と同様の特性である。   FIG. 7 shows the configuration of a liquid crystal projector that is Embodiment 2 of the present invention. The basic configuration is the same as in the first embodiment, but the polarized light after exiting the illumination system is S-polarized light. The separation of RB and G by the dichroic mirror 9 is the same as in the first embodiment, but the red light remains S-polarized by the wavelength-selective phase plate, but the blue light is changed from S-polarized light to P-polarized light. The polarization state is changed. The subsequent optical action is the same as that of the first embodiment. In the G optical path, the Green light transmitted through the dichroic mirror 9 is incident on the G-PBS 10, reflected by the film surface of the G-PBS 10 due to S polarization, and incident on the Green panel 6. The light incident on the panel 6 is image-modulated to become P-polarized light, passes through the G-PBS 10, and is emitted to the synthetic PBS 12 side. The image light emitted from the G-PBS 10 is analyzed by the polarizing plate 17 between the G-PBS 10 and the synthetic PBS 12, enters the synthetic PBS 12, is reflected by the film surface of the synthetic PBS 12, and is guided to the projection system 4. 5 is reached. Here, the synthetic PBS 12 has the same characteristics as in the first embodiment.

照明系2から出射する光はほとんどS偏光であるが、実際には、僅かにP偏光の成分が混じっている。このP偏光は、G−PBS10の膜をほとんど透過するが、実際には図8に示すように、短波長側において、反射する成分がある。図9に示すように、パネル入射角度をθとした場合、G−PBS入射角度βは下記で表される。   Most of the light emitted from the illumination system 2 is S-polarized light, but actually, a P-polarized component is slightly mixed. This P-polarized light is almost transmitted through the film of the G-PBS 10, but actually has a component that reflects on the short wavelength side as shown in FIG. As shown in FIG. 9, when the panel incident angle is θ, the G-PBS incident angle β is expressed as follows.

β=45°+sin−1(1/n×sinθ) β = 45 ° + sin −1 (1 / n × sin θ)

そして、入射角度βにおけるG−PBSのP偏光反射率をRp(β)とした場合、
Rp(β)≦5%
を満足するようにすることで、G−PBSの入射側に偏光板を設けることなく黒表示時の漏れ光を低減できる。これにより、コストダウンと、耐久時における偏光板の劣化の回避が可能となる。
When the P-polarized reflectance of G-PBS at the incident angle β is Rp (β),
Rp (β) ≦ 5%
By satisfying the above, it is possible to reduce leakage light during black display without providing a polarizing plate on the incident side of the G-PBS. This makes it possible to reduce costs and avoid deterioration of the polarizing plate during durability.

本発明の第1実施例の概略構成図。The schematic block diagram of 1st Example of this invention. 本発明の第1実施例における波長選択性位相板の特性図。The characteristic view of the wavelength-selective phase plate in 1st Example of this invention. 本発明の第1実施例における合成PBSの特性図。The characteristic view of synthetic | combination PBS in 1st Example of this invention. 本発明の第1実施例におけるダイクロイックミラーの角度特性図。The angle characteristic figure of the dichroic mirror in 1st Example of this invention. 本発明の第1実施例におけるG−PBSのS偏光透過率特性図。The S polarization | polarized-light transmittance characteristic figure of G-PBS in 1st Example of this invention. 本発明の第1実施例におけるダイクロイックミラーからGreenパネルまでの概略図。1 is a schematic diagram from a dichroic mirror to a green panel in a first embodiment of the present invention. 本発明の第2実施例の概略構成図。The schematic block diagram of 2nd Example of this invention. 本発明の第2実施例におけるG−PBSのP偏光反射率特性。The P polarization | polarized-light reflectance characteristic of G-PBS in 2nd Example of this invention. 本発明の第2実施例におけるダイクロイックミラーからGreenパネルまでの概略図。Schematic from the dichroic mirror to the Green panel in 2nd Example of this invention. 従来のG−PBSのS偏光透過率特性図。The S polarization | polarized-light transmittance characteristic figure of conventional G-PBS.

符号の説明Explanation of symbols

1 光源
2 照明系
3 色分離合成系
4 投射光学系
5 スクリーン
6 Greenの液晶パネル
7 Blueの液晶パネル
8 Redの液晶パネル
9 ダイクロイックミラー
10 G−PBS
11 RB−PBS
12 合成PBS
15 波長選択性位相板
16 B偏光板
17 G偏光板
DESCRIPTION OF SYMBOLS 1 Light source 2 Illumination system 3 Color separation synthesis system 4 Projection optical system 5 Screen 6 Green liquid crystal panel 7 Blue liquid crystal panel 8 Red liquid crystal panel 9 Dichroic mirror 10 G-PBS
11 RB-PBS
12 Synthetic PBS
15 Wavelength selective phase plate 16 B polarizing plate 17 G polarizing plate

Claims (2)

光源、照明光学系、色分離合成系、画像形成素子としての反射型のライトバルブ、投射光学系とを備える画像投射装置であって、
前記照明光学系は、偏光変換素子を有しており、前記光源からの無偏光光を所定の偏光に変換し、
前記色分離合成系は、前記照明光学系からの白色光をRGBに分離して、前記ライトバルブに導き、各画像光を合成する手段であり、
前記色分離合成系は、
前記照明光学系から出射された光のうちRB成分を反射させ、G成分を透過させて、色分離するダイクロイックミラーと、
RB成分の光のうちのRとBのいずれか一方の光の偏波面を90°回転させ、他方の光は偏波面を変化させないことによって、Rの光をS偏光、Bの光をP偏光とする波長選択性位相板と、
Rの光をRのライトバルブ側に反射させ、Bの光をBのライトバルブ側に透過するプリズム形状のRB用の偏光ビームスプリッターと、
前記ライトバルブで画像変調を受けた画像光であって前記RB用の偏光ビームスプリッターから出射した後のBの光を検光する第1の偏光板と、
前記ダイクロイックミラーを透過したGの光を透過させることにより、Gのライトバルブ側に導くプリズム形状のG用の偏光ビームスプリッターと、
前記Gのライトバルブで画像変調を受けた画像光であって前記G用の偏光ビームスプリッターにより反射されて前記G用の偏光ビームスプリッターから出射した後の光を検光する第2の偏光板と、
前記RGBの画像光を合成して前記投射光学系に導くとともに、Rの光を検光する作用を有する合成プリズムと、から構成され、
前記Gのライトバルブに入射する光線角度をθ、前記G用の偏光ビームスプリッターの屈折率をnとするとき、前記Gの偏光ビームスプリッターの膜面の光線入射角度βは、
β=45°+sin−1(1/n×sinθ)
と表され、前記ダイクロイックミラーの光線入射角度αは、
α=45°−θ
と表され、
前記第2の偏光板を透過する偏波面はS偏光であり、
前記ダイクロイックミラーにおいて透過率が5%となる波長のうち、長波長側の波長をWa前記Gの偏光ビームスプリッターの膜面への光線入射角度βでのS偏光透過率をTs(β)としたとき、
W<Waなる波長域Wにおいて、
Ts(β)≦5%
を満足することを特徴とする画像投射装置。
An image projection apparatus comprising a light source, an illumination optical system, a color separation / synthesis system, a reflective light valve as an image forming element, and a projection optical system,
The illumination optical system includes a polarization conversion element converts unpolarized light from the light source into a predetermined polarization,
The color separation / synthesis system is a means for separating the white light from the illumination optical system into RGB, guiding it to the light valve, and synthesizing each image light,
The color separation / synthesis system is:
Reflects the RB components of the light emitted from the illumination optical system, by transmitting the G component, and the dichroic mirror for color separation,
By rotating the plane of polarization of either R or B of the RB component light by 90 ° and changing the plane of polarization of the other light, the R light is S-polarized and the B light is P-polarized. A wavelength-selective phase plate and
A prism-shaped RB polarizing beam splitter that reflects R light to the R light valve side and transmits B light to the B light valve side;
Wherein an image light received images modulated by the light valve, a first polarizer for analyzing the light of B after emitted from the polarization beam splitter for the RB,
By transmitting light of G that has passed through the dichroic mirror, a polarization beam splitter for G prism-shaped guiding the light valve side of the G,
Wherein an image light received images modulated by the light valve G, a second polarizer for analyzing the light after emitted from the polarization beam splitter for the G is reflected by the polarization beam splitter for the G When,
The RGB image light is combined and guided to the projection optical system, and composed of a combining prism having an action of analyzing R light,
When the light ray incident on the G light valve is θ and the refractive index of the G polarizing beam splitter is n, the light incident angle β on the film surface of the G polarizing beam splitter is:
β = 45 ° + sin −1 (1 / n × sin θ)
And the light incident angle α of the dichroic mirror is
α = 45 ° -θ
And
The plane of polarization transmitted through the second polarizing plate is S-polarized light,
Of the wavelength at which the transmittance is 5% at the dichroic mirror, the wavelength of the long wavelength side Wa, the S-polarized light transmittance at light incident angle beta to the membrane surface of the polarizing beam splitter for the G Ts (beta) When
In the wavelength range W where W <Wa,
Ts (β) ≦ 5%
An image projection apparatus characterized by satisfying
光源、照明光学系、色分離合成系、画像形成素子としての反射型のライトバルブ、投射光学系とを備える画像投射装置であって、
前記照明光学系は、偏光変換素子を有しており、前記光源からの無偏光光を所定の偏光に変換し、
前記色分離合成系は、前記照明光学系からの白色光をRGBに分離して、前記ライトバルブに導き、各画像光を合成する手段であり、
前記色分離合成系は、前記照明光学系から出射された光のうちRB成分を反射させ、G成分を透過させて、色分離するダイクロイックミラーと、
RB成分の光のうちのRとBのいずれか一方の光の偏波面を90°回転させ、他方の光は偏波面を変化させないことによって、Rの光をS偏光、Bの光をP偏光とする波長選択性位相板と、
Rの光をRのライトバルブ側に反射させ、Bの光をBのライトバルブ側に透過するプリズム形状のRB用の偏光ビームスプリッターと、
前記ライトバルブで画像変調を受けた画像光であって、前記RB用の偏光ビームスプリッターから出射した後のBの光を検光する第1の偏光板と、
前記ダイクロイックミラーを透過したGの光を反射させることにより、Gのライトバルブ側に導くプリズム形状のG用の偏光ビームスプリッターと、
前記Gのライトバルブで画像変調を受けた画像光であって、前記G用の偏光ビームスプリッターを透過して該G用の偏光ビームスプリッターから出射した後の光を検光する第2の偏光板と、
前記RGBの画像光を合成して前記投射光学系に導くとともに、Rの光を検光する作用を有する合成プリズムと、から構成され、
前記Gのライトバルブに入射する光線角度をθ、前記G用の偏光ビームスプリッターの屈折率をnとするとき、前記Gの偏光ビームスプリッターの膜面の光線入射角度βは、
β=45°+sin −1 (1/n×sinθ)
と表され、前記ダイクロイックミラーの光線入射角度αは、
α=45°−θ
と表され、
前記第2の偏光板を透過する偏波面をP偏光、
前記ダイクロイックミラーにおいて透過率が5%となる波長のうち、長波長側の波長をWaとしたとき、前記G用の偏光ビームスプリッターの膜面への光線入射角度βでのP偏光反射率をRp(β)としたとき、
W<Waなる波長域Wにおいて、
Rp(β)≦5%
を満足することを特徴とする画像投射装置。
An image projection apparatus comprising a light source, an illumination optical system, a color separation / synthesis system, a reflective light valve as an image forming element, and a projection optical system,
The illumination optical system has a polarization conversion element, converts non-polarized light from the light source into predetermined polarized light,
The color separation / synthesis system is a means for separating the white light from the illumination optical system into RGB, guiding it to the light valve, and synthesizing each image light,
The color separation / synthesis system reflects a RB component of light emitted from the illumination optical system, transmits a G component, and performs color separation, and
By rotating the plane of polarization of either R or B of the RB component light by 90 ° and changing the plane of polarization of the other light, the R light is S-polarized and the B light is P-polarized. A wavelength-selective phase plate and
A prism-shaped RB polarizing beam splitter that reflects R light to the R light valve side and transmits B light to the B light valve side;
A first polarizing plate that detects image light that has undergone image modulation by the light valve and that has exited from the polarization beam splitter for the RB; and
A G-shaped polarization beam splitter in the form of a prism that guides the G light transmitted through the dichroic mirror to the G light valve side;
A second polarizing plate that detects image light that has undergone image modulation by the G light valve and that has passed through the G polarization beam splitter and is emitted from the G polarization beam splitter. When,
The RGB image light is combined and guided to the projection optical system, and composed of a combining prism having an action of analyzing R light,
When the light ray incident on the G light valve is θ and the refractive index of the G polarizing beam splitter is n, the light incident angle β on the film surface of the G polarizing beam splitter is:
β = 45 ° + sin −1 (1 / n × sin θ)
And the light incident angle α of the dichroic mirror is
α = 45 ° -θ
And
The polarization plane that passes through the second polarizing plate is P-polarized light,
The dichroic among wavelengths at which the transmittance is 5% in the dichroic mirror, when the wavelength on the long wavelength side was Wa, P-polarized light the reflectivity at the light incident angle β to the membrane surface of the polarizing beam splitter for the G Is Rp (β),
In the wavelength range W where W <Wa,
Rp (β) ≦ 5%
An image projection apparatus characterized by satisfying
JP2006137099A 2006-05-16 2006-05-16 Image projection device Expired - Fee Related JP5074704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137099A JP5074704B2 (en) 2006-05-16 2006-05-16 Image projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137099A JP5074704B2 (en) 2006-05-16 2006-05-16 Image projection device

Publications (3)

Publication Number Publication Date
JP2007310036A JP2007310036A (en) 2007-11-29
JP2007310036A5 JP2007310036A5 (en) 2009-07-02
JP5074704B2 true JP5074704B2 (en) 2012-11-14

Family

ID=38842969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137099A Expired - Fee Related JP5074704B2 (en) 2006-05-16 2006-05-16 Image projection device

Country Status (1)

Country Link
JP (1) JP5074704B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544282B2 (en) * 1996-05-09 2004-07-21 パイオニア株式会社 Projection type image display device
JPH11295658A (en) * 1998-04-07 1999-10-29 Sony Corp Liquid crystal projector
JP3762272B2 (en) * 2001-09-04 2006-04-05 キヤノン株式会社 Color separation / synthesis optical system, image display optical system, and projection type image display apparatus
JP2003233124A (en) * 2002-02-13 2003-08-22 Minolta Co Ltd Projection optical system
JP2006071761A (en) * 2004-08-31 2006-03-16 Canon Inc Polarizing beam splitter and image display device using the same
JP5127143B2 (en) * 2006-02-09 2013-01-23 キヤノン株式会社 Color separation optical system and image projection apparatus

Also Published As

Publication number Publication date
JP2007310036A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US20070216869A1 (en) Projection type image display apparatus
JP2004020621A (en) Reflection type image projection apparatus, projection type image display using the same, and light source apparatus to be used therefor
US8727537B2 (en) Image projection apparatus and color separation/combination optical system
JP4072452B2 (en) Image display device
US7374291B2 (en) Projection optical system and image display apparatus using same
JP2015222418A (en) Color separating/combining system, and color separating/combining device using the same, and image display device
JP4258293B2 (en) Projection-type image display device
JP2007102101A (en) Illumination optical system and image projection device having the same
JP5127143B2 (en) Color separation optical system and image projection apparatus
JP2010096840A (en) Projection device
JP4422986B2 (en) Image display device
JP2004271654A (en) Image display device
US7148936B1 (en) Color-separation/synthesis optical system with particular cut-off wavelengths and emission-side polarizer and projection type liquid crystal display device using the same
US6827452B2 (en) LCD projection system
JP2015145977A (en) Light source device and projection type display device using the same
JP2004045907A (en) Image display device
JP2007528512A (en) LCD projection system with dichroic mirror for polarization conversion
JP5074704B2 (en) Image projection device
JP5311790B2 (en) Image display device
JP5245588B2 (en) Projector device and image composition device for projector device
JP2003043255A (en) Color separating device and projector
US10271025B2 (en) Color separating and combining system and projecting display apparatus including the same
JP2006085077A (en) Projection type image display device and adjusting method used therefor
JP2004061599A (en) Projector
JP2005106901A (en) Image projection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R151 Written notification of patent or utility model registration

Ref document number: 5074704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees