JP5074648B2 - Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program - Google Patents

Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program Download PDF

Info

Publication number
JP5074648B2
JP5074648B2 JP2001152874A JP2001152874A JP5074648B2 JP 5074648 B2 JP5074648 B2 JP 5074648B2 JP 2001152874 A JP2001152874 A JP 2001152874A JP 2001152874 A JP2001152874 A JP 2001152874A JP 5074648 B2 JP5074648 B2 JP 5074648B2
Authority
JP
Japan
Prior art keywords
battery
voc
secondary battery
voltage
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001152874A
Other languages
Japanese (ja)
Other versions
JP2002050410A (en
JP2002050410A5 (en
Inventor
総一郎 川上
靖三郎 出藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001152874A priority Critical patent/JP5074648B2/en
Publication of JP2002050410A publication Critical patent/JP2002050410A/en
Publication of JP2002050410A5 publication Critical patent/JP2002050410A5/ja
Application granted granted Critical
Publication of JP5074648B2 publication Critical patent/JP5074648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池の劣化状態、または蓄電量、蓄電容量および内部抵抗で代表される内部状態を検知する方法およびその装置、該検知装置を備えた機器、内部状態検知プログラム、および該プログラムを収めた媒体に関する。
【0002】
【従来技術】
半導体素子の進歩や、小型、軽量で高性能な二次電池の開発によって、携帯型パーソナルコンピュータ、ビデオカメラ、デジタルカメラ、携帯電話、および携帯端末などのモバイル機器が急激に発展してきている。
【0003】
また、環境問題が取り上げられ、大気中に含まれるCO2ガス量が増加しつつあるため、温室効果により地球の温暖化が生じると予測されている。このため、CO2ガスを多量に排出する火力発電所は、新たに建設することが難しくなって来ており、火力発電所などの発電機にて作られた電力の有効利用として、夜間電力を一般家庭に設置した二次電池に蓄えて、これを電力消費量が多い昼間に使用して負荷を平準化する、いわゆるロードレベリングが提案されている。また、大気汚染物質を排出しないという特徴を有する電気自動車、大気汚染物質の排出を抑え燃料効率を高めた二次電池と内燃エンジンもしくは燃料電池を組み合わせたハイブリッド型電気自動車に、必須な二次電池として、高エネルギー密度の二次電池の開発が期待されている。
【0004】
上記二次電池の使用されているモバイル機器や電気自動車や前記ロードレベリングのためのロードコンディショナーでは、二次電池の放電できる容量(残量)および寿命を精度よく検知できることが、突然の作動停止を回避する上で重要である。
【0005】
前記二次電池の代表としては、リチウム二次電池(リチウムイオン二次電池も含めてここではリチウムイオンの還元およびリチウムの酸化反応を利用した電池の総称とする)、ニッケル−水素化物電池(ニッケル水素電池)、ニッケルカドミウム電池、鉛電池などが、挙げられる。
【0006】
残存容量(残量)検知方法の一つとしては、電池電圧を計測して残存容量を推測し検出する方法が提案されている。具体的には、負極材料に黒鉛材料以外の炭素材料を使用したリチウムイオン二次電池に用いられており、放電電気量に対する電池電圧がなだらかに低下するため、電池電圧を計測することによって残存容量の検知がなされている。しかし、上記電池電圧から残量を算出する方法では、残量が同じであっても流れる電流により電池電圧が異なるために、精度よく残量を検知することは困難であった。さらに、寿命に近くなり性能が劣化した電池では残存容量を検知することは極めて難しかった。また、上記炭素材料が黒鉛系炭素材料の場合、放電電気量に対する電池電圧が平坦であり、電池電圧から残存容量を算出する方法を適用することは容易ではなかった。
【0007】
他の残存容量検知方法としては、積算放電電気量を記憶し、充電電気量から積算放電電気量を差し引いて残存容量を算出する方法も提案されている。しかし、この手法では、常に電流値と放電時間を記憶することが必要であり、完全放電に至らない蓄電状態で継ぎ足し充電をする場合には誤差が大きくなる、寿命に近くなり性能が劣化した電池には対応できない、など精度の高い残量の検知は望めなかった。
【0008】
また、特開平4−2066号公報にはパルス放電後の電池電圧の回復特性により鉛蓄電池の容量を判別する方法が提案され、特開平4−136774号公報には電源オン時に一時的に大電流で放電し、電圧降下を検出し、予め設定した電池電圧値と比較し、大きいと残存容量が不足していると判断する方法が、提案されている。さらには、特開平11−16607号公報に、二次電池に所定電流を所定時間印加したときの電池電圧を測定し、予め記録しておいた電池電圧−残存容量対応表で照合して二次電池の残存容量を検出する方法が提案されている。しかし、上記いずれの提案も劣化して内部抵抗が高くなったり蓄電容量が低下した電池の残存容量を検出することは困難であった。
【0009】
次いで、特開平9−134742では、放電終止電圧直前の内部インピーダンスを、蓄電池にインピーダンス測定器で交流電流を流して測定し、劣化を判定する方法が提案されているが、交流電流を発生してインピーダンスを計測する測定器が必要であるために、計測装置が大がかりなものになること、二次電池を使用している間は計測できないことから、実用的ではなかった。
【0010】
したがって、各種の二次電池に対応でき、蓄電容量が低下したり内部抵抗が増大して性能の劣化した電池にも対応できる、精度の高い残量を検知する方法および装置が強く望まれている。さらには、電池の寿命すなわち性能低下を検知する方法および装置の開発も期待されている。
【0011】
【発明が解決しようとする課題】
本発明は、上記従来の電池の残存容量(残量)の検知の精度が低いという問題点を解決し、検知精度を上げ、性能の劣化した電池にも対応できる、残存容量(残量)を検知する方法および装置、それを適用した各種機器・機械を提供することにある。
【0012】
【課題を解決するための手段および作用】
本発明者らは、二次電池の劣化状態、または蓄電容量および内部抵抗で代表される内部状態の検知方法において、
先ず、二次電池が正常であるか劣化しているか、劣化している場合の劣化モードは何か判定した後に、二次電池の正常であるか劣化しているか劣化はどのような劣化であるかに合わせて、蓄電量や内部抵抗を算出することで、精度の高い二次電池の内部状態の検知方法を提供できることを見出した。
【0013】
特に、本発明の好ましい実施の形態によれば、予め取得した正常な電池の特性データから判定モードを作成しその判定モードよって、二次電池が短絡しているか否か、内部抵抗は増大しているか否か、蓄電容量は低下しているか否か、を判定した後に、電池の状態(休止状態、充電状態、放電状態)によって、劣化の程度を把握し、蓄電量を算出するために、精度の高い内部状態の検知が可能になる。
さらに、上記本発明の精度の高い二次電池の内部状態検知方法を機能化した装置を電池パック(モジュール)や機器・機械に搭載することで、二次電池並びに二次電池を電源とする機器・機械の性能を最大限に発揮することができる。
【0014】
本発明の二次電池の内部状態検知方法は、劣化していない(正常な)二次電池を各種温度下、各種電流で充放電したときに計測されるべき電池電圧、蓄電量(放電可能な量)もしくは放電量の基礎データを予め取得した上で、
検知対象の二次電池の電圧値もしくは電圧値と電流値を計測し、前記基礎データと比較して、
(a)検知対象二次電池が短絡している、
(b)検知対象二次電池の蓄電容量(蓄電可能な電気量)が低下しておらず内部抵抗が増加している、
(c)検知対象二次電池の蓄電容量(蓄電可能な電気量)が低下しており内部抵抗が増加していない、
(d)検知対象二次電池の蓄電容量が低下しかつ内部抵抗が増加している、または
(e)検知対象二次電池は劣化していない(正常である)、
のいずれかにあたるかを判定し
あるいは、
検知対象二次電池の電圧値、または電圧値と電流値を計測し、該基礎データと比較して、
検知対象二次電池が放電末期にあるか短絡している、
検知対象二次電池の蓄電容量の内部抵抗が増加している、
検知対象二次電池の蓄電容量が低下している、
または
検知対象二次電池は正常である、
のいずれにあたるかを判定し、
その後に、これらの判定結果を用いた後述の方法で、蓄電量、または機器が使用可能な電気量である残量を算出することを特徴とする。
ここで、正常な二次電池とは、製品(二次電池)の公称容量等の性能の仕様を満たす電池を指す。また、ここでは蓄電容量とは二次電池に蓄電可能な電気量で製品での公称容量に相当する。また、ここでの蓄電量とはその状態から放電できる電気量を表す。
【0015】
前記基礎データは、例えば、予め、複数個の正常な二次電池の各種温度下、各種電流での充放電を行い、計測された電池電圧、および蓄電量もしくは放電量から得られる平均化したデータや、予めコンピュータシミュレーションにより得られた基礎データを用いることができる。コンピュータシミュレーションでは、例えば仕様または設計上のデータ、あるいは、単位セルの構造が同一で出力電流(サイズ)、出力電圧(直列数)、形状などが異なる類似の電池で得られた基礎データ等、既存のデータを元にシミュレーションを行う。
【0016】
次いで、前記基礎データは、例えば以下に示すもので、
(1)正常な電池の開回路電圧(開放電圧)Vocに対する電池の放電可能な容量(蓄電量)Qを計測して、得られる蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式、
(2)満充電の正常な電池の各種温度T下での各種放電電流Idでの電池電圧Vd、放電を一時停止して開回路電圧Vocを測定し、得られた電池電圧Vdと、開回路電圧Vocと放電電流Idおよび電池温度Tの関係のデータあるいは関数式化したVd(Voc,Id,T)、あるいは、さらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から算出される電池電圧Vd(Q,Id,T)もしくはQ(Vd,Id,T)の、データまたは関数式、
(3)前記(2)において電池の内部抵抗をRdとする時の関係式Vd=Voc−Id×RdもしくはRd=(Voc−Vd)/Idから算出される内部抵抗のデータまたはこのデータを関数式化したRd(Voc,Id,T)またはRd(Vd,Id,T)、あるいは、さらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から得られる内部抵抗Rd(Q,Id,T)もしくはQ(Rd,Id,T)の、データまたは関数式、
(4)蓄電量がゼロの正常な電池を温度T下で、充電電流Icで充電するときの電池電圧Vcを計測し、次いで充電を一時停止して開回路電圧Vocを測定し、得られた電池電圧Vcと開回路電圧Vocと充電電流Icおよび電池温度Tの関係のデータまたは関数式化したVc(Voc,Ic,T)、あるいは、さらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から算出される電池電圧Vc(Q,Ic,T)もしくはQ(Vc,Ic,T)の、データまたは関数式、
(5)前記(4)において電池の内部抵抗をRcとする時の関係式Vc=Voc+Ic×RcもしくはRc=(Vc−Voc)/Icから算出される内部抵抗のデータまたはこのデータを関数式化したRc(Voc,Ic,T)、あるいは、さらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から得られる内部抵抗Rc(Q,Ic,T)もしくはQ(Rc,Ic,T)の、データまたは関数式、
の上記(1)(2)(3)(4)(5)から選択される少なくとも一つ以上のデータもしくは関数式である。
【0017】
本発明の二次電池の内部状態検知方法は、この前記基礎データまたは関数式を元に、二次電池の休止、充電、放電、状態での、二次電池の開回路電圧、電池電圧、内部抵抗から選択される情報から、判定モードにしたがって、前述の二次電池の判定を行う、ことを可能にする。
【0018】
本発明ではさらに、充電電流もしくは放電電流の変動時の電池電圧の過渡特性がe-t/ τ(eは自然対数の底で、tは時間で、τは電池のインピーダンス等で決まる時定数)を用いた式で表されると仮定し、その式に基づいて内部抵抗、内部抵抗の増加率、蓄電容量(蓄電可能な容量)の低下率等を算出して、蓄電量(放電可能な容量)を求める、ことができる。
【0019】
また、本発明によれば、二次電池を電源にしている機器が作動するために必要な最小な電圧(最低作動電圧)に到達したときの蓄電量を算出し、機器の消費電流もしくは消費電力から、残りの作動時間を割り出すことができる。これにより、突然の機器の作動停止を未然に防ぎ、しかるべき時に二次電池の交換もしくは充電を行うことが可能になる。
【0020】
【発明の実施の形態】
本発明者らは、正常な二次電池の蓄電量(または放電可能容量)と開回路電圧(開放電圧)、および蓄電量と内部抵抗の関係のデータもしくは関数式を基礎データとして取得した上で、使用中の検知対象の二次電池の電池電圧、電流値を計測し、正常な二次電池の特性のデータもしくは関数式と比較することで、正常であるか劣化しているか先ず判定し、この判定に基づき蓄電容量や内部抵抗を算出し、精度よく電池の残存放電容量(蓄電量)を算出することができることを見出した。
【0021】
〔正常な二次電池の基礎データの取得および関数式化〕
二次電池の開回路電圧は、負極と正極の化学ポテンシャルの差に比例し、その時点の負極と正極のそれぞれの化学ポテンシャルによって、放電可能な容量(蓄電量)が決まる。すなわち、負極と正極のそれぞれの化学ポテンシャルは、蓄電量によって変わり蓄電量との相関がある。言い換えれば、蓄電量と開回路電圧は相関がある。また、蓄電量によって状態が変化する負極と正極は、その時点時点の抵抗も異なり、内部抵抗も異なる。したがって、電池の内部抵抗と開回路電圧および蓄電量とは相関がある。また、電池電圧、電流、開回路電圧、内部抵抗の間には
[放電時の電池電圧]=[開回路電圧]−[放電電流]×[内部抵抗]
[充電時の電池電圧]=[開回路電圧]+[充電電流]×[内部抵抗]
の関係があるので、本発明者らは予め前記電池の内部抵抗と蓄電量、および開回路電圧と蓄電量との相関を求めておいて、電池電圧、電流、開回路電圧、内部抵抗の関係から、放電可能容量(蓄電量)を算出できることを見出した。
【0022】
図18の(1)〜(3)および図19の(1)〜(2)は、正常な二次電池の蓄電量に対する、開回路電圧、充電電圧もしくは放電電圧、内部抵抗と開回路電圧、2種類の放電電流における電池電圧、2種類の電池温度における放電電圧、の関係をそれぞれ示したものである。ここでは、正常な二次電池とは製品として販売され、使用して容量が低下するとか内部抵抗が増すとかの劣化をする前の二次電池を示す。
【0023】
図18の(1)は二次電池の公称容量Cもしくは劣化する前の蓄電容量を100%としたときの蓄電量Qすなわち100×Q/C%に対する開回路電圧Vocの関係を示したグラフである。二次電池の開回路電圧は概ね二次電池の温度にはほとんど依存せずその時の蓄電量によって決まるので、電池の蓄電量(または放電可能な容量)Qに対する電池の開回路電圧Vocを計測して、得られる蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式が得られる。実際には開回路電圧Vocが蓄電量Qのn次の関数であると仮定して、Voc(Q)=cn×Qn+cn-1×Qn-1+cn-2×Qn-2+‥‥+ c1×Q+c0 (但し、nは正の整数)で表されるVoc(Q)と、実際に計測した開回路電圧Voc時に放電できた電気量(蓄電量)Qとを比較し、最小二乗法やニュートン法の手法を用いて、計測データに最も近い関数式を得ることができる。
【0024】
図18の(2)は電池温度が一定の時の二次電池の公称容量を100%としたときの蓄電量に対する開回路電圧Vocと、充電電圧Vc、放電電圧Vdの関係を示したグラフである。
【0025】
図18の(3)は二次電池の公称容量もしくは劣化する前の蓄電容量を100%としたときの蓄電量に対する二次電池の内部抵抗Rの関係を示したグラフである。これらのグラフに示すデータから、放電時の電池の内部抵抗をRdとする時の関係式Vd=Voc−Id×Rd、もしくはRd=(Voc−Vd)/Idから算出される内部抵抗のデータあるいはこのデータを関数式化したRd(Voc,Id,T)またはRd(Vd,Id,T)が得られる。また、充電時の電池の内部抵抗をRcとする時の関係式Vc=Voc+Ic×Rc、もしくはRc=(Vc−Voc)/Icから算出される内部抵抗のデータあるいはこのデータを関数式化したRc(Voc,Ic,T)が得られる。さらに、これらのデータもしくは関数式と上記図18の(1)に示すデータから得られた蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から内部抵抗Rd(Q,Id,T)もしくはQ(Rd,Id,T)の、データまたは関数式が得られる。
【0026】
図19の(1)は二次電池の公称容量を100%としたときの蓄電量に対する放電電流値Id=i1, i2に対する放電電圧Vdの関係を示したグラフである。放電電流の大きさによって、電池の内部抵抗も変わり、そのため電池電圧も変わる。もちろん、充電時も充電電流の大きさによって、電池の内部抵抗も変わり、そのため電池電圧も変わる。
【0027】
図19の(2)は二次電池の公称容量もしくは劣化する前の蓄電容量を100%としたときの蓄電量に対する電池温度T=T1, T2に対する開回路電圧Vocと放電電圧Vdの関係を示したグラフである。これより、放電時の電池電圧Vdと開回路電圧Vocと放電電流Idおよび電池温度Tの関係のデータあるいは関数式化したVd(Voc,Id,T)が得られる。さらにこれらのデータもしくは関数式と上記図18の(1)から得られた蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から、電池電圧Vd(Q,Id,T)もしくはQ(Vd,Id,T)の、データまたは関数式が得られる。もちろん、充電時の電池電圧Vcと開回路電圧Vocと充電電流Icおよび電池温度Tの関係のデータ、あるいは関数式化したVc(Voc,Ic,T)も得られる。
【0028】
上記電池電圧並びに内部抵抗は、二次電池に用いられる電解液の凝固温度より高く電解液の溶媒の沸点より低い温度範囲、または二次電池に用いられる固形化電解質のガラス転移温度より高く固形化電解質の溶融温度より低い範囲では、電池温度に対して連続する関数で表せるが、電解液の凝固温度および電解液の溶媒の沸点、または固形化電解質のガラス転移温度および固形化電解質の溶融温度を境に不連続となる。不連続となるのは、電解液あるいは固形化電解質のイオン電導度がこれらの境界の温度で急激に変化するためである。
【0029】
図18の(1)〜(3)および図19の(1)〜(2)のような取得データから、二次電池の蓄電量は開回路電圧の関数、電池電圧は蓄電量と電流と電池温度による関数、内部抵抗も蓄電量と電流と電池温度による関数、として表せる。求める関数式は、例えば、n次(nは正の整数)式で表せる関数として仮定し、データとの差が最小になるように、ニュートン法や最小二乗法などの手法を用いて求めることができる。
【0030】
また、図19の(3)は二次電池の公称容量もしくは劣化する前の蓄電容量を100%としたときの蓄電量に対する開回路電圧Vocと放電電圧Vdの関係を放電初期Iと放電中期IIと放電末期IIIに分けて示したグラフである。このように分けることによって、蓄電量に対する開回路電圧、電池電圧および内部抵抗などの特性をより簡素化した低次の関数式で表すことも可能になる。
【0031】
〔二次電池が正常であるか否かの判定〕
本実施形態では、実際の二次電池の蓄電量の算出の前に、その二次電池が充電も放電も行われていない休止状態か、充電中であるか、放電中であるか、によって、適した判定方法を選択し、二次電池が短絡しているか、蓄電容量が低下しているか、内部抵抗が増加しているか、正常であるか、予め取得しておいた正常な電池の特性と比較して判定する。その後、それぞれの判定にしたがって、蓄電量を算出する。
【0032】
上記判定では、先ず、電池が短絡しているかどうか判定し、次に電池の蓄電容量が低下しているかどうか判定する、または電池の内部抵抗が増大しているかどうか判定する。次いで、本実施形態の検知方法では、蓄電量、蓄電容量、内部抵抗、容量低下係数および寿命などの内部状態を検知する。図1はこの二次電池の内部状態の検知の流れを示したフローチャートの一例である。図1では、さらに、電池が充電中であれば、満充電量や充電終了までの所要時間、機器に接続され使用状態であれば、機器が使用可能な電池の蓄電量(残量)や機器の作動時間を算出するフローチャートも記載されている。また、図1では短絡を判定した後に、内部抵抗の増加を判定し、蓄電容量の低下を判定するようになっているが、短絡の判定の次に蓄電容量の低下を判定し、ついで内部抵抗の増加を判定するフローでも良い。
【0033】
短絡判定
使用している二次電池が短絡していると判定する場合の判断基準は、
(i)放電も充電も行わない休止時に、経時(経過時間)に対する開回路電圧の低下がある、
(ii)充電時に電池電圧もしくは開回路電圧の上昇が正常な電池に比べて小さい、
(iii)正常な電池に比較して開回路電圧が著しく低く、放電時の電池電圧の低下が正常な電池に比べて著しく大きい、
(iv)内部抵抗が正常な電池に比べて著しく小さい、
のいずれかである。図20は、短絡した電池と短絡していない電池の開回路電圧Vocの経時変化を示したものである。
【0034】
内部抵抗増
使用している二次電池の内部抵抗が増加していると判定する場合は、上記短絡と判定した場合に該当せず、かつ
(i)正常な電池に比較して開回路電圧は同等であるが、充電時に電池電圧の上昇が正常な電池に比べて大きい、
(ii)正常な電池に比較して開回路電圧は同等であるが、放電時の電池電圧の低下が正常な電池に比べて大きい、
(iii)電池の内部抵抗が正常な電池の内部抵抗に比べて大きい、
のいずれかである。
【0035】
図21の(1)は二次電池の公称容量Cもしくは劣化する前の蓄電容量を100%としたときの蓄電量Qすなわち100×Q/C %に対する内部抵抗のグラフで、内部抵抗が増加した電池の内部抵抗(R'=a×R+b)を正常な電池の内部抵抗(R)と比較したものである。
【0036】
図21の(2)は内部抵抗が増加したもの(R'=a×Rd+b)と正常なもの(R=Rd)との放電時の蓄電量%に対する電池電圧Vdの関係を示したグラフである。
【0037】
図21の(3)は内部抵抗が増加したもの(R'=a×Rc+b)と正常なもの(R=Rc)との充電時の蓄電量%に対する電池電圧Vcの関係を示したグラフである。また、上記内部抵抗の算出は、休止状態からの充電または放電の開始時の過渡特性から行うことも可能である。
【0038】
蓄電容量低下
使用している二次電池の蓄電容量が低下していると判定する場合は、上記短絡の場合に該当せず、
(i)充電時の電池電圧および開回路電圧の上昇が正常な電池のそれらに比べて大きい、
(ii)放電時の電池電圧および開回路電圧の低下が短絡時より小さいが、正常な電池のそれらに比べて大きい、
のいずれかである。
【0039】
使用している二次電池において、内部抵抗の増加はないが、蓄電容量C'が正常な電池の蓄電容量CのD倍に低下している場合の蓄電量Q'=D×Q(Q:正常な電池での蓄電量)と開回路電圧Vocの関係は図22の(1)のようになる。但し、ここでの蓄電量%は二次電池の公称容量Cもしくは劣化する前の蓄電容量を100%としたときの蓄電量Qすなわち100×Q/C %に相当するものを表している。
【0040】
正常な電池の蓄電量Q%に対する開回路電圧Vocの関数式Voc(Q)から、容量低下後の蓄電量Q'に対する開回路電圧の関数式はVoc(Q'/D)と表せる。また、蓄電量に対する充電時または放電時の電池電圧は図22の(2)のグラフの関係になる。蓄電容量がCからC'(C'=D×C)に低下した電池での蓄電量Q'に対する充電時の電池電圧と放電時の電池電圧はそれぞれ、Vc(Q'/D,Ic,T)、 Vd(Q'/D,Id,T)と表せることになる。
【0041】
正常
使用している二次電池は劣化していない(正常である)と判定できる場合は、上記短絡、内部抵抗増加、蓄電容量低下のいずれにも該当しない場合である。
【0042】
〔蓄電容量の算出〕
正常な二次電池であると判定できたものであれば、二次電池の開回路電圧Voc、または充電電流Iもしくは放電電流Iと電池電圧Vと電池の温度、を計測することによって、蓄電量Qと開回路電圧Vocの関係のVoc(Q)か、蓄電容量Qと放電時または充電時の電流値Iと電池温度Tと電池電圧Vの関係のV(Q,I,T)から、蓄電量Qを算出することができる。
【0043】
蓄電容量が低下した二次電池では、充電前後もしくは放電前後の開回路電圧Vocの変化とその時の蓄電量の増減、または、充電時の電池電圧Vcもしくは放電時の電池電圧Vdの変化とその時の蓄電量の増減、から容量の低下係数Dを算出することで、その時点の蓄電量を求めることが可能である。
【0044】
内部抵抗が増加しているが蓄電容量低下のない二次電池の蓄電容量は、開回路電圧は正常な電池と同等であるので、開回路電圧の計測で、蓄電量を求めることができる。また、二次電池の電流および電池電圧を計測して、内部抵抗を算出した後、蓄電容量を求めることもできる。
【0045】
蓄電容量が低下し、かつ内部抵抗が増加した二次電池の蓄電量は、容量低下係数Dと増加した内部抵抗R'を算出しつつ、求めることができる。
【0046】
〔内部抵抗の算出〕
内部抵抗が増大した二次電池では、増大した抵抗値R'を以下のような元の正常な抵抗Rの関数、
R'=a×R、もしくはR'=a×R+b、
もしくはR'=an×Rn+an-1×Rn-1+an-2×Rn-2+‥‥+a1×R+a0 (nは正の整数)、
として仮定することで、電流と電池電圧の複数の計測値から定数a,b,an,an-1,‥‥,a1,a0を求め、増加した内部抵抗を求めることができる。
【0047】
〔蓄電容量低下率の算出〕
蓄電容量が低下した二次電池では、前述のD倍に容量が低下した後の蓄電量Q'に対する開回路電圧の関数Voc(Q'/D)、容量低下後の蓄電量Q'に対する充電時の電池電圧Vc(Q'/D,Ic,T)もしくは放電時の電池電圧Vd(Q'/D,Id,T)の関係と、実際の充電前後の蓄電量の増加分もしくは放電前後の蓄電量の低下分の計算から、容量の低下係数Dを算出することができる。ついで、これにより実際の蓄電容量Q'も求めることができる。
【0048】
〔実際の機器で使用可能な残容量(残量)と作動可能時間〕
二次電池を電源にした機器では、機器が作動する最低の電圧がそれぞれの機器によって決められているので、二次電池の電圧が機器の最低作動電圧(機器を作動するための二次電池の必要な電圧)より低くなった場合には、放電可能な蓄電量が仮に残っていたとしても使用できない。ここでは、機器が使用可能な蓄電量を残容量(残量)と呼称する。そこで、二次電池の残量は、現蓄電量から前記機器の最低作動電圧に対応する電池電圧になった場合の蓄電量を減じた電気量となる。図23は正常な電池の(公称容量または蓄電容量Cに対する)蓄電量%に対する開回路電圧、放電時の電池電圧を示したもので、使用時点の蓄電量をQ、機器の最低作動電圧Vminに達したときの蓄電量をQminとしたとき、実際に機器が使用できる二次電池の蓄電量すなわち残量は〔Q−Qmin〕である。図24は蓄電容量がCからC'(C'=D×C)に低下した電池と正常な電池の蓄電量%に対する電池電圧の関係を示したものである。電池温度T、放電電流Id、電池電圧Vd、の容量低下電池の蓄電量がQ'である時、正常な電池の蓄電量QはQ=Q'/D(Dは容量低下係数)となる。また、機器の最低作動電圧Vminに達したときの蓄電容量低下の電池の蓄電量がQ'minである時、対応する正常な電池の蓄電容量はQ min=Q'min/D(Dは容量低下係数)となる。したがって、放電時の電池電圧の関係式Vd=Vd(Q'/D,Id,T)とVmin=Vd(Q'min/D,Id,T)から、蓄電量Q'とQ'minが算出でき、蓄電容量低下の電池の残量は〔Q'−Q'min〕となる。
【0049】
機器の作動可能時間は、機器の消費電流で前記残量を割って得られる時間、もしくは最低作動電圧になるまでの二次電池の供給エネルギーを機器の消費電力で割って得られる時間として表せることになる。
【0050】
〔二次電池の各使用状況における内部状態の検知〕
休止状態での二次電池の内部状態の検知
〈短絡判定〉
電池の開回路電圧Vocの経時変化を計測し、
I. Vocの低下速度が所定の値v0より大、すなわち-dVoc/dt>v0>0である場合に、電池が短絡していると判定し、
II. Vocの低下速度が0≦-dVoc/dt≦v0である場合に、電池が短絡していないと判定する。
図2は、上記二次電池休止時の短絡の判定をフローチャートにした一例である。
【0051】
休止状態から放電操作での二次電池の内部状態の検知
二次電池が充電も放電もしていない、休止状態にあり、電池の開回路電圧Voc0の経時変化を計測した後、開回路電圧Voc0から電流値I1×時間t1の電気量q1だけ放電し放電を停止するまでの間の電池電圧Vおよび停止後の開回路電圧Voc1を計測し、電池が正常であるか劣化しているかを判定する。上記操作における電池電圧と電流の経時変化を示したのが、図25の(1)である。上記放電電流は矩形波のパルス電流であることが好ましい。
【0052】
また、図3は、休止状態から二次電池に放電操作を加えて、二次電池が正常であるか、内部抵抗が増加しているのか、蓄電容量が低下しているのか、を判定するフローチャートの一例を示したものである。図3のフローチャート中のCase 1(S310)は、蓄電容量が予め取得した正常な電池の蓄電容量より大きいものでこの電池も正常であると見なす。また、Case 2(S316)は、内部抵抗が予め取得した正常な電池より小さいが短絡していないものでこの電池も正常であると見なす。なお、内部抵抗増加、容量低下と判定した後の内部抵抗の算出は、それぞれ図4、図5に示し、後述する。
【0053】
〈I.短絡の判定〉
開回路電圧Vocの低下速度が所定の値v0より大、すなわち-dVoc/dt> v0>0である場合に、電池が短絡していると判定する。
【0054】
〈II.正常あるいは内部抵抗増加の判定〉
上記Iの短絡に該当しない場合、すなわち開回路電圧の低下速度がv0以下である場合にこの判定をする。
蓄電容量が低下していない電池であれば、図18の(1)から、蓄電量と開回路電圧は1対1の対応があり、開回路電圧がわかれば蓄電容量がわかり、蓄電容量がわかれば開回路電圧がわかる。
図25の(1)において、電池の休止状態で開回路電圧Voc0を測定した後、電流値I1×時間t1の電気量q1だけ放電し、放電を停止するまでの間の電池電圧Vを計測し、放電停止後の開回路電圧Voc1も計測した。いま、この電池が容量低下のない電池であったなら、開回路電圧Voc0の時の蓄電量はQ0=Q(Voc0)で、電気量q1の放電後の蓄電量はQ0-q1、開回路電圧はVoc(Q0-q1)であるはずである。なお、ここで、蓄電量Qは開回路電圧Vocの関数式Q=Q(Voc)で表され、、開回路電圧Vocは蓄電量Qの関係式Voc=Voc(Q)で表される。
【0055】
開回路電圧Voc(Q0-q1)と測定値Voc1の差が、f0≦[Voc(Q0-q1)−Voc1]≦f1 (f 0<0<f1)で、製品の特性のバラツキ範囲内にある場合には、実質的に同等であると見なせるので、電池の容量低下はないと判定することができる。また、放電開始初期の電池電圧の過渡特性を次式で表せると仮定し、計測した放電時間tに対する電池電圧Vと
式V=V1+(Voc0−V1)×e-t/ τ
(但し、V1は時間tを無限大に外挿した時のVでτは電池の内部抵抗などで決まる時定数である)
によって、開回路電圧Voc0から放電電流I1で放電開始する時の時定数τを求めつつ、V1を算出する。図25の(2)は上記式から求められるV1と電池電圧の過渡特性を示したものである。
【0056】
さらに、電池の内部抵抗をR1とすると、
式V1=Voc0−I1×R1、R1=(Voc0−V1)/I1
から求めた内部抵抗R1と、予め取得された、開回路電圧Voc0(もしくは蓄電量Q0)と放電電流I1と電池温度Tに対する正常な電池の内部抵抗の関係Rd(Voc0,I1,T)(もしくはRd(Q0,I1,T))を比較して、
(i)内部抵抗R1と正常な電池の内部抵抗Rd(Voc0,I1,T)(もしくはRd(Q0,I1,T))が実質的に同等、すなわち製品の内部抵抗のバラツキ範囲のr1≦[R1- Rd(Q0,I1,T)]≦r2 (r1<0<r2)である場合には、電池は正常であると判定する。
(ii)[R1- Rd(Q0,I1,T)]>r2 (0<r2)である場合には、内部抵抗が増大していると判定する。
【0057】
〈III.容量低下の判定〉
上記Iの短絡に該当しない場合で、正常な電池が開回路電圧Voc0の時の蓄電量Q0を求め、さらに、正常な電池の蓄電量と開回路電圧の関係から求まる開回路電圧Voc(Q0-q1)とVoc1の差が、[Voc(Q0-q1)-Voc1]>f1 (0<f1)である場合には、電池の容量が低下していると判定する。
【0058】
〈内部抵抗増加時の内部抵抗の算出〉
上記II.の(ii)において、内部抵抗が増大していると判定した場合、内部抵抗が正常な電池の内部抵抗R=Rd(Q,Id,T)からR'=a×Rd(Q,Id,T)+b(a,bは定数、Qは蓄電量、Idは放電電流、Tは電池温度)に増加したと仮定すると、下記の操作で増加した内部抵抗の値を算出することができる。図3中のBから続くフローチャートを図4に示した。
【0059】
休止状態から少なくとも2回以上の放電を行い、すなわち開回路電圧Voc0から電流値I1×時間t1の電気量q1の放電の後、次いで開回路電圧Voc1から電流値I2×時間t2の電気量q2だけ放電し放電を停止するまでの間の電池電圧Vおよび停止後の開回路電圧Voc2を計測する。放電開始初期の電池電圧の過渡特性が次式で表せると仮定し、計測した放電時間tに対する電池電圧Vと
式V=V1+(Voc0−V1)×e-t/ τ
(但し、V1は時間tを無限大に外挿した時のVでτは時定数である)
によって、開回路電圧Voc0から放電電流I1で放電開始する時の時定数τを求めつつ、V1を算出する。この時の電池の内部抵抗をR1として、
V1=Voc0−I1×R1、またはR1=(Voc0−V1)/I1
からR1を求める。同様にして、V=V2+(Voc1−V2)×e-t/ τ
(但し、V2は時間tを無限大に外挿した時のVでτは時定数である)
によって、開回路電圧Voc1から放電電流I2で放電開始する時の時定数τを求めつつ、V2を算出する。この時の電池の内部抵抗をR2として、
V2=Voc1−I2×R2またはR2=(Voc1−V2)/I2
から内部抵抗R2を求め、
R1−[a×Rd(Q0,I1,T)+b]=0(Q0: 開回路電圧Voc0のときの蓄電量)と
R2−[a×Rd(Q0-q1,I2,T)+b]=0(Q1=Q0-q1:開回路電圧Voc1のときの蓄電量)、
もしくはQ1=Q(Voc1)でR2−[a×Rd(Q1,I2,T)+b]=0
から定数aおよびbとQ0を求め、増大した内部抵抗Rd'=a×Rd(Q,Id,T)+bを算出することができる。
【0060】
上記内部抵抗の算出では、放電電流変動時の電池電圧を推算するために、前述の時定数τを用いた式を仮定して使用したが、この式は一例であり、他の近似できる式を使用しても構わず、この式に何ら限定されるものではない。
【0061】
〈蓄電容量の低下率の算出〉
上記III.において、電池の蓄電容量が低下していると判定された場合、電池の蓄電容量が正常な電池の蓄電容量のD倍(Dは定数で0<D<1)になっていると仮定すると、下記の操作で低下した蓄電容量の値を算出することができる。図3のCから続くフローチャートを図5に示した。図5中のCase 2(S334)は、予め取得した正常な電池の内部抵抗より小さいが短絡していないもので、内部抵抗が増加していないものと判断する。
【0062】
図25の(1)において、休止状態の開回路電圧Voc0の電池を電流値I1で電気量q1放電した後、開回路電圧がVoc1になった場合、開回路電圧がVoc0の時の電池の蓄電量は、電池が正常であればQ0であるが、蓄電容量がD倍に低下している電池であるのでQ0'とする。正常な電池の蓄電量Qに対する開回路電圧の関係Voc(Q),Q (Voc)から、蓄電容量がD倍に低下した電池では、蓄電量を1/D倍すれば正常な電池と同じ蓄電量になると見なせる。
したがって、Voc0=Voc(Q0)=Voc(Q0'/D)、Q0=Q0'/D=Q(Voc0)となる。
また、電気量q1の放電後の蓄電容量低下の電池の蓄電量をQ1'とすると、
Q1'=Q0'−q1
Voc1=Voc(Q0'/D−q1/D)、Q0'/D−q1/D=Q(Voc1)
Q(Voc0)−q1/D=Q(Voc1)
q1/D=Q(Voc0)−Q(Voc1)
D=q1/〔Q(Voc0)−Q(Voc1)〕
となり、蓄電容量の低下定数Dを求めることができる。また、このときの電池の蓄電量はQ(Voc1)×Dとなる。
【0063】
(i)さらには上記II.で求められる前記R1から、r1≦[R1−Rd(Q0'/D,I1,T)]≦r2 (r1<0<r2)である場合には、電池は内部抵抗の増加はないが蓄電容量が低下していると判定することができる。
(ii)また、上記II.で求められる前記R1から[R1−Rd(Q0'/D,I1,T)]>r2 (0<r2)である場合には、蓄電容量が低下しかつ内部抵抗も増大していると判定することができる。
【0064】
図25の(2)において、次の2回目の電気量q2のパルス放電は不図示であるが、開回路電圧Voc0から電流値I1×時間t1の電気量q1の放電の後、次いで開回路電圧Voc1から電流値I2×時間t2の電気量q2だけ放電し放電を停止するまでの間の電池電圧Vおよび停止後の開回路電圧Voc2を計測し、放電開始初期の電池電圧の過渡特性が次式で表せると仮定し、計測した放電時間tに対する電池電圧Vから
V=V1+(Voc0−V1)×e-t/ τ
(但し、V1は時間tを無限大に外挿した時のVでτは時定数である)
この時の電池の内部抵抗をR1とすると、
V1=Voc0−I1×R1、R1=(Voc0−V1)/I1
同様にして、V=V2+(Voc1−V2)×e-t/ τ
(但し、V2は時間tを無限大に外挿した時のVでτは時定数である)
この時の電池の内部抵抗をR2とすると、
式V2=Voc1−I2×R2、R2=(Voc1−V2)/I2
電池の内部抵抗がRd(Q,Id,T)からa×Rd(Q,Id,T)+b(a,bは定数)に増加したと仮定して、
R1−[a×Rd(Q0,I1,T)+b]=0と
R2−[a×Rd(Q1,I2,T)+b]=R2−[a×Rd(Q0−q1/D,I2,T)+b]=0、
(但し、Q0=Q0'/D, Q1=Q1'/Dで、Q0',Q1'はそれぞれ開回路電圧がVoc0,Voc1の時の蓄電量である)
から定数aおよびb並びにDとQ0'を求め、蓄電容量低下電池の内部抵抗増大後の内部抵抗R'=a×Rd(Q'/D,Id,T)+b(Q'は容量低下時の真の蓄電量)の関係を求めることができる。
【0065】
休止状態から充電操作での二次電池の内部状態の検知
二次電池が充電も放電もしていない、休止状態にあり、電池の開回路電圧Voc0を計測した後、電流値Ic1で充電を開始し、電池電圧Vcを計測し、電流値Ic1×時間t1×充放電効率Effの電気量q1だけ充電し電池電圧がVc1になった時、充電を停止し開回路電圧Vocの経時変化を計測し、安定した開回路電圧をVoc1とすることで二次電池の内部状態の検知する。上記操作における電池電圧と電流の経時変化を示したのが、図26の(1)である。上記充電電流は矩形波のパルス電流であることが好ましい。
【0066】
充電を停止後の開回路電圧Voc1は、所定の時間経過後の開回路電圧Voc1を計測するか、過渡特性を示す式から算出できる。また、図6は、休止状態から二次電池に充電操作を加えて、二次電池が正常であるか、内部抵抗が増加しているのか、蓄電容量が低下しているのか、判定するフローチャートの一例を示したものである。なお、内部抵抗増加、容量低下と判定した後の内部抵抗の算出は、それぞれ図7、図8に示し、後述する。
なお、ここでは休止状態から充電操作を行い二次電池の内部状態を検知する方法を説明しているが、充電状態から休止パルスの操作を施すことによっても同様に二次電池の内部状態を検知することができる。
【0067】
〈I.短絡の判定〉
(i)正常な電池の蓄電量と開回路電圧の関係Voc(Q)から開回路電圧Voc0の時の蓄電量Q0を求め、さらに開回路電圧Voc(Q0+q1)とVoc1の差が、[Voc(Q0+q1)−Voc1]>g1 (g 1>0)である時、(ii)蓄電量と充電電流と電池温度と正常な電池の電池電圧の関係Vc(Q,Ic,T)により、[Vc(Q0+q1,Ic,T)−Vc1]>j1(j 1>0)である時、(iii)蓄電量もしくは開回路電圧と充電電流と電池温度と正常な電池の内部抵抗の関係Rc(Voc,Ic,T)より、[Rc1−Rc(Voc1,Ic,T)]<z1(z 1<0、Rc1は電池電圧Vc1時の内部抵抗)である時の、上記(i)、(ii)、(iii)のいずれかの場合に、電池が短絡していると判定する。
【0068】
〈II.正常、内部抵抗増加の判定〉
正常な電池の蓄電量と開回路電圧の関係Voc(Q)から開回路電圧Voc0の時の蓄電量Q0を求め、さらにVoc(Q)の関係から求まる開回路電圧Voc(Q0+q1)とVoc1の差が、g0≦[Voc(Q0+q1)−Voc1]≦g1 (g0<0<g1)である場合には、電池の容量低下はないと判定し、
さらに、充電開始初期の電池電圧の過渡特性が次式で表せると仮定し、計測した充電時間tに対する電池電圧Vc
式Vc=V1−(V1−Voc0)×e-t/ τ
(但し、V1は時間tを無限大に外挿した時のVcでτは電池の内部抵抗等から決まる時定数である)
によって、開回路電圧Voc0から充電電流Ic1で充電開始した時の時定数τを求めつつV1を算出する。図26の(2)は上記式から求められるV1と電池電圧の過渡特性を示したものである。
【0069】
また、この時の電池の内部抵抗をRc1として、
V1=Voc0 +Ic1×Rc1、Rc1=(V1−Voc0)/Ic1
から求めた内部抵抗Rc1と、正常な電池の内部抵抗Rc(Voc0,Ic1,T)もしくはRc(Q0,Ic1,T)との差から、以下のように判定する。
(i) z1≦[Rc1−Rc(Q0,Ic1,T)]≦z2 (z1<0<z2)である場合、
もしくはj1≦[Vc1-Vc(Q0+q1,Ic,T)]≦j2(j1<0<j2)である場合に、電池は正常であると判定する。
上記不等式で表される、内部抵抗、電池電圧は製品(正常な電池)の特性のバラツキ範囲によるものである。また、このバラツキ範囲(z1,z2、j1,j2、g0,g1)は電池の種類によって異なる。
(ii)[Rc1−Rc(Q0,Ic1,T)]>z2 (0<z2)である場合、
もしくはj2<[Vc1−Vc(Q0+q1,Ic,T)] (0<j2)である場合に、内部抵抗が増大していると判定する。
【0070】
〈III.蓄電容量低下の判定〉
前記開回路電圧Voc(Q0+q1)とVoc1の差が、[Voc(Q0+q1)−Voc1]<g0 (g0<0)である場合には、電池の容量が低下していると判定する。
【0071】
〈増加した内部抵抗の算出〉
上記II.の(ii)の内部抵抗増大の判定の後、一例として、電池の内部抵抗がR=Rc(Q,Ic,T)からR'=a×Rc(Q,Ic,T)+b(a,bは定数)に増加したと仮定した場合、下記の操作で増加した内部抵抗の値を算出することができる。図6中のFから続くフローチャートを図7に示した。
休止状態から少なくとも2回以上の充電を行い、すなわち開回路電圧Voc0から電流値Ic1×時間t1の電気量q1の充電の後、ついで開回路電圧Voc1から電流値Ic2×時間t2の電気量q2だけ充電し充電を停止するまでの間の電池電圧Vcおよび停止後の開回路電圧Voc2を計測して、以下の手順で、増加した内部抵抗R'=a×Rc(Q,Ic,T)+bを算出することができる。
【0072】
充電開始初期の電池電圧の過渡特性を次式で表せると仮定し、1回目の充電で
Vc=V1−(V1−Voc0)×e-t/ τ
(但し、V1は時間tを無限大に外挿した時のVcでτは電池の内部抵抗等で決まる時定数である)
によって、開回路電圧Voc0から充電電流Ic1で充電開始した時の時定数τを求めつつV1を算出できる。この時の電池の内部抵抗をRc1とすると、
V1=Voc0 +Ic1×Rc1、Rc1=(V1−Voc0)/Ic1
同様にして2回目の充電で
Vc=V2−(V2−Voc1)×e-t/ τ
(但し、V2は時間tを無限大に外挿した時のVcでτは時定数である)
によって、開回路電圧Voc1から充電電流Ic2で充電開始した時の時定数τを求めつつV2を算出でき、電池の内部抵抗をRc2とすると、
式V2=Voc1 +Ic2×Rc2、 Rc2=(V2−Voc1)/Ic2
から内部抵抗Rc2を求めることができる。
【0073】
さらに、電池の内部抵抗がRc(Q,Ic,T)からa×Rc(Q,Ic,T)+b(a,bは定数)に増加したとの仮定から、
Rc1−[a×Rc(Q0,Ic1,T)+b]=0と
Rc2−[a×Rc(Q0+q1,Ic2,T)+b]=0、
もしくはQ1=Q(Voc1)でRc2−[a×Rc(Q1,Ic2,T)+b]=0
と表せ、これらの式を解くことによって、定数aおよびbを求め、増大した内部抵抗Rc'=a×Rc(Q,Ic,T)+bを算出することができる。
【0074】
上記内部抵抗の算出では、充電電流変動時の電池電圧を推算するために、前述の時定数τを用いた式を仮定して使用したが、この式は一例であり、他の近似できる式を使用しても構わず、この式に何ら限定されるものではない。
【0075】
(蓄電容量の低下係数の算出)
上記III.の蓄電容量低下の判定後、電池の蓄電容量が正常な電池の蓄電容量のD倍(Dは定数で0<D<1)になっていると仮定した場合、下記の操作で増加した内部抵抗の値を算出することができる。図6中のGから続くフローチャートを図8に示した。図8中のCase 2(S434)は、予め取得した正常な電池の内部抵抗より小さいが短絡していないもので、内部抵抗が増加していないものと判断する。
【0076】
図26の(1)において、休止状態の開回路電圧Voc0の電池を電流値I1で電気量q1充電した後、開回路電圧がVoc1になった場合、開回路電圧がVoc0の時の電池の蓄電量は、電池が正常であればQ0であるが、蓄電容量がD倍に低下している電池であるのでQ0'とする。正常な電池の蓄電量Qに対する開回路電圧の関係Voc(Q),Q (Voc)から、蓄電容量がD倍に低下した電池では、蓄電量を1/D倍すれば正常な電池と同じ蓄電量になると見なせる。
したがって、Voc0=Voc(Q0)=Voc(Q0'/D)、Q0=Q0'/D=Q(Voc0)となる。
また、電気量q1の充電後の蓄電容量低下の電池の蓄電量をQ1'とすると、
Q1'=Q0'+q1
Voc1=Voc(Q0'/D+q1/D)、Q0'/D+q1/D=Q(Voc1)
Q(Voc0)+q1/D=Q(Voc1)
q1/D=Q(Voc1)−Q(Voc0)
D=q1/〔Q(Voc1)−Q(Voc0)〕
となり、蓄電容量の低下定数Dを求めることができる。また、このときの電池の蓄電量はQ(Voc1)×Dとなる。
(A)さらには上記II.と同様にして求められた前記Rc1から
z1≦[Rc1−Rc(Q0'/D,Ic1,T)]≦z2 (z1<0<z2)である場合には、電池は内部抵抗の増加はないが蓄電容量が低下していると判定することができる。
(B)また、前記Rc1から[Rc1−Rc(Q0'/D,Ic1,T)]>z2(0<z2)である場合には、蓄電容量が低下しかつ内部抵抗も増大していると判定できる。
【0077】
次いで、図26の(2)において、2回目の電気量q2のパルス放電は不図示であるが、1回目の充電停止から、開回路電圧Voc1から電流値Ic2×時間t2の電気量qc2だけ充電し、充電を停止するまでの間の電池電圧Vcおよび停止後の開回路電圧Voc2を計測し、次式の電池電圧の過渡特性を表す、
式Vc=V2−(V2−Voc1)×e-t/ τ
(但し、V2は時間tを無限大に外挿した時のVでτは時定数である)
によって、開回路電圧Voc1から充電電流Ic2で充電開始した時の時定数τを求めつつV2を算出できる。この時の電池の内部抵抗をRc2とすると、
V2=Voc1 +Ic2×Rc2、Rc2=(V2−Voc1)/Ic2
から内部抵抗Rc2を求めることができる。
【0078】
電池の内部抵抗がRc(Q×D,Ic,T)からa×Rc(Q×D,Ic,T)+b(a,bは定数)に増加したとの仮定から、以下のように表せ、
Rc1−[a×Rc(Q0'/D,Ic1,T)+b]=0と
Rc2−[a×Rc(Q0'/D+q1/D,Ic2,T)+b]=0、
もしくはQ1=Q1'/D=Q(Voc1)でRc2−[a×Rc(Q1'/D,Ic2,T)+b]=0
これらの式を解くことによって、定数aおよびbを求め、蓄電容量低下電池の内部抵抗増大後の内部抵抗Rc'=a×Rc(Q'/D,Ic,T)+bの関係を求めることができる。
【0079】
充電終了後の二次電池の内部状態の検知
二次電池の充電を電池電圧VcEで完了した後に、電池電圧の経時変化を計測し、開回路電圧Vocを決定して二次電池の内部状態の検知する。図27は、充電時の電池電圧と充電終了後の開回路電圧の経時変化を示したものである。
【0080】
上記開回路電圧の決定は、以下のように行う。充電終了から所定時間経過後の電池電圧を開回路電圧VocEとする。または、充電終了からの時間tとその時の開回路電圧Vocを計測し、開回路電圧Vocが定常状態になる開回路電圧をVocEとし、Vocが次式で表されると仮定し、
式Voc=VocE+(VcE−VocE)×e-t/ τ
と計測した複数点のVocの値から時定数τを求めつつ、VocEを算出して決定する。
【0081】
〈短絡の判定〉
開回路電圧Vocの経時変化すなわちVocの低下速度−dVoc/dtが所定の値vcより大きい、すなわち−dVocE/dt>vc>0である場合短絡と判定する。また、充電終了時の電池電圧VcEが、正常な二次電池のそれ(判定用の下限値をm0>0として予め基礎データに含めておく)より低い(VcE<m0)時も二次電池は短絡していると判定することができる。図9は上記判定の流れを示したフローチャートの一例である。
【0082】
〔定電流−定電圧充電終了時の判定〕
定電流で充電し所定の電圧VcLに到達したら定電圧VcLの充電に切り替わり、所定の時間経過後に充電を終了する方法の、定電流−定電圧充電方法で二次電池を充電する際に二次電池の内部状態を判定する。上記定電流−定電圧充電方法で充電が途中で停止することなく、正常に充電が完了した場合、電池の蓄電量は蓄電容量のほぼ100%の満充電状態になる。満充電後の二次電池の開回路電圧がVocEの時、二次電池の内部状態を以下のように判定する。
【0083】
〈I. 短絡判定〉
(i)電池の満充電後の開回路電圧VocEの経時変化が−dVocE/dt>vc>0である、
(ii)充電終了時の電池電圧がVcE<m0 (0<m0)である、
(iii)定電流充電時の電池電圧の上昇が正常な電池のそれ(s0:下限値)より小さく、dVc/dt<s0 (0<s0)である、
(iv) 充電開始時から電池の温度上昇が正常な電池のそれ(u0:上限値)に比較して大きく、dT/dt>u0 (u0>0)である、
のいずれかである場合、この電池は短絡していると判定する。
なお、上記vcは開回路電圧の低下速度から短絡の有無を判定するためのしきい値、m0は充電終了直前の電池電圧から短絡の有無を判定するためのしきい値、s0は定電圧充電に切り替わる前の定電流充電での電池電圧の上昇速度から短絡の有無を判定するためのしきい値、u0は定電圧充電に切り替わる前の定電流充電時の電池の温度上昇速度から短絡の有無を判定するためのしきい値、である。
【0084】
〈II. 内部抵抗増加の判定〉
定電流充電時の電池電圧の上昇速度dVc/dtが正常な電池の場合より大きく、かつ検知対象二次電池の満充電後の開回路電圧VocEが正常な電池のそれ(k0:下限値)より小さく、0<VocE<k0である時、この電池の内部抵抗は増加していると判定する。
【0085】
〈III. 蓄電容量低下の判定〉
所定の電池電圧から充電の上限電圧VcLに到達するまでの時間が正常な電池より短いかあるいは定電流充電領域での電池電圧の上昇速度dVc/dtが正常のものdVcn/dt(上限値をs1とする)より大きく、dVc/dt>s1>0、かつ検知対象二次電池の満充電後の開回路電圧VocEが正常な電池のそれ以上でVocE≧k0(k0>0)である時、この電池の蓄電容量が低下していると判定する。
【0086】
〈IV. 正常であるとの判定〉
所定の電池電圧から充電の上限電圧VcLに到達するまでの時間が正常な電池のそれと実質的に同等であるか、定電流充電領域での電池電圧の上昇速度dVc/dtが正常のものdVcn/dtと実質的に同等、すなわちs0≦dVc/dt≦s1 (0<s0<s1)であり、かつ満充電後の開回路電圧VocEが正常な電池のそれと同等以上である、すなわちk0≦VocE (0<k0)である時、この電池は正常であると判定する。図10のフローチャートは、上記判定の流れを示した一例である。
【0087】
〔電池電圧変化もしくは電池温度変化の制御による充電時の判定〕
定電流で二次電池を充電し、電池の温度の時間変化およびまたは電池電圧の時間変化を検知して、すなわち充電末期の温度上昇およびまたは充電末期の電圧の下降を検知して、充電を制御もしくは終了する充電方式の場合、二次電池の内部状態を以下のように判定する。
【0088】
〈I. 短絡の判定〉
(i)電池の満充電後の開回路電圧VocEの経時変化が−dVocE/dt>vc>0である、
(ii)充電開始時から電池の温度上昇が正常な電池のそれに比較して大きく、dT/dt>u0 (u0>0)である、
(iii)定電流充電時の電池電圧の上昇が正常な電池のそれより小さく、dVc/dt<s0 (0<s0)である、
のいずれかである場合、この電池は短絡していると判定する。
【0089】
〈II.内部抵抗増加の判定〉
定電流充電領域での電池電圧Vcの上昇速度(dVc/dt)が正常な電池のそれより大きい、すなわちdVc/dt>s1 (0<s1)で、かつ電池の満充電後の開回路電圧VocEが正常な電池のそれ以下である、すなわち0<VocE≦k0 (0<k0)である時、この電池の内部抵抗は増加していると判定する。
【0090】
〈III.蓄電容量低下の判定〉
定電流充電領域での電池電圧Vcの上昇速度(dVc/dt)が正常な電池のそれより大きい、すなわちdVc/dt>s1 (0<s1)で、かつ電池の満充電後の開回路電圧VocEが正常な電池のそれより大きい、すなわちVocE>k0 (0<k0)である時、この電池の蓄電容量は低下していると判定する。
【0091】
〈IV.正常であるとの判定〉
定電流充電領域での電池電圧Vcの上昇速度(dVc/dt)は正常な電池のそれと実質的に同等、すなわちs0≦dVc/dt≦s1 (0<s0<s1)で、かつ電池の満充電後の開回路電圧VocEが正常な電池のそれと実質的に同等以上、すなわちk0≦VocE (0<k0)である時、この電池は正常であると判定する。図11のフローチャートは、上記判定の流れを示した一例である。
【0092】
〔定電流充電終了時の判定〕
電池の開回路電圧がある値以下で、定電流充電で所定の時間経過後に充電を終了する、但し、電池電圧が所定の上限電圧VcLに達した時には充電を終了する場合、二次電池の内部状態を以下のように判定する。
【0093】
〈I. 短絡の判定〉
(i)電池の満充電後の開回路電圧VocEの経時変化が−dVocE/dt>vc>0である、(ii)充電終了時の電池電圧がVcE<m0 (0<m0)である、
(iii)定電流充電時の電池電圧の上昇が正常な電池のそれより小さく、dVc/dt<s0 (0<s0)である、
(iv)充電開始時から電池の温度上昇が正常な電池のそれに比較して大きく、dT/dt>u0 (u0>0)である、
のいずれかである場合、この電池は短絡していると判定する。
【0094】
〈II.内部抵抗増加の判定〉
定電流充電領域での電池電圧Vcの上昇速度(dVc/dt)が正常な電池の電池電圧の上昇速度(s1)より大きい、すなわちdVc/dt>s1 (0<s1)で、かつ電池の満充電後の開回路電圧VocEが正常な電池のそれ以下である、すなわち0<VocE≦k0 (0<k0)である時、この電池の内部抵抗は増加していると判定する。
【0095】
〈III.蓄電容量低下の判定〉
定電流充電領域での電池電圧Vcの上昇速度(dVc/dt)が正常な電池のそれより大きい、すなわちdVc/dt>s1 (0<s1)で、かつ電池の満充電後の開回路電圧VocEが正常な電池のそれより高い、すなわちVocE>k0 (0<k0)である時、この電池の蓄電容量は低下していると判定する。
【0096】
〈IV.正常であるとの判定〉
定電流充電領域での電池電圧Vcの上昇速度(dVc/dt)は正常な電池のそれと実質的に同等、すなわちs0≦dVc/dt≦s1 (0<s0<s1)で、かつ電池の満充電後の開回路電圧VocEが正常な電池のそれと実質的に同等以上、すなわちk0≦VocE (0<k0)である時、この電池は正常であると判定する。図12のフローチャートは、上記判定の流れを示した一例である。
【0097】
放電状態での二次電池の内部状態の検知
〈短絡の判定〉
二次電池が放電状態にあり、放電電流Id0と電池電圧Vdを計測し、
(i)電池電圧が所定の値未満である時か、あるいは
(ii)電池電圧Vdの低下速度が所定の値x1より大きい、すなわち−dVd/dt>x1 (0<x1)の時、
電池が放電末期にあるかあるいは短絡していると判定する。
【0098】
電池電圧が所定の値以上である時あるいは電池電圧Vdの低下速度が所定の値x1以下、すなわち0<−dVd/dt≦x1の時、電池が正常であるかあるいは短絡以外の劣化モードにあると判定する。図13のフローチャートは、上記判定の流れを示した一例である。
【0099】
〔定常放電状態からの二次電池の内部状態の検知〕
前記放電時の電池電圧の経時変化から短絡でないと判定した二次電池が実質的に定常な放電状態にあり、電池温度がTで、その時の放電電流がId0で電池電圧がVd0であり、電気量qだけ放電した後に定常状態の放電電流Id1で電池電圧はVd1になった時、二次電池が正常である場合、電池電圧がVd0のときの開回路電圧をVoc0、蓄電量をQ0とすると、予め取得していた正常な電池の特性の関係からVoc0=Voc(Q0)、Q0= Q(Voc0)、Vd0=Vd(Id0, Q0,T)、Vd1=Vd(Id1, Q0-q,T)と表せる。これより、以下の判定をすることができる。
【0100】
〈I.正常であるとの判定〉
予め取得された正常な電池の、蓄電量、放電電流、電池温度と電池電圧の関係から、
(i)y1≦[Vd1−Vd(Q0−q,Id1,T)]≦y2(y1<0<y2)の時、もしくは
(ii)w1≦Q(Id1,Vd1,T)−[Q(Id0,Vd0,T)−q]≦w2(w1<0<w2)の時、
二次電池は正常であると判定する。
【0101】
〈II.内部抵抗増加の判定〉
予め取得された正常な電池の、蓄電量、放電電流、電池温度と電池電圧の関係から、
(i)[Vd1−Vd(Q0−q, Id1,T)]>y2 (0<y2)の時、もしくは
(ii)Q(Id1,Vd1,T)−[Q(Id0,Vd0,T)−q]>w2 (0<w2)の時、
二次電池の内部抵抗は増大していると判定する。
【0102】
〈III.蓄電容量低下の判定〉
予め取得された正常な電池の、蓄電量、放電電流、電池温度と電池電圧の関係から、
(i)[Vd1−Vd(Q0−q,Id1,T)]<y1(y1<0)の時、もしくは
(ii)Q(Id1,Vd1,T)−[Q(Id0,Vd0,T)−q]<w1(w1<0)の時、
二次電池の蓄電容量は低下していると判定する。図14のフローチャートは、上記各種の判定の流れを示した一例である。
なお、前述の判定基準に使用した各種しきい値(v0, vc, f0, f1, r1, r2, g0, g1, j1, j2, z1, z2, m0, s0, s1, u0, x1, w1, w2, y1, y2)は、電池の種類と型式によって異なり、一律に決定されるものではなく、検知する電池と同種同型の電池の実測値から決定された値である。
【0103】
〔定常放電からの放電変動時の二次電池内部状態の検知〕
実質的に定常状態の放電状態にある二次電池の放電電流がn(nは正の整数で、n=1,2,3,4,…)回変動した場合、本実施形態では、変動時の電池電圧の過渡特性を計測して、二次電池の内部状態を検知する。図28の(1)と(2)は、一例として定常放電時に4回の放電電流の変動があった場合の、それぞれ、電池電圧、放電電流、の経時変化を示したものである。放電変動は、意図的に起こしてもよく、その場合の変動放電電流は矩形波のパルス電流であることが好ましい。さらに、変動は機器作動に影響を与えなければ、放電の変動が、放電電流がゼロである休止パルスであっても良い。
【0104】
定常状態にある放電電流がIn0で電池電圧がVd0である時、放電電流In0がIn1に変動し電流値In1×時間tn1の電気量qnだけ放電し定常電流での放電に戻った場合、変動時の電池電圧Vを複数点計測し、放電電流変動時の電池電圧Vの過渡特性が次式で表せると仮定すると、放電電流が変動してからの時間tに対する電池電圧値Vと
式V=Vn1+(Vn0−Vn1)×e-t/ τ
(但し、Vn1は時間tを無限大に外挿した時のVでτは電池の内部抵抗等で決まる時定数で、n=1,2,3,4,…である)
によって、放電電流変動時の時定数τを求めつつVn1を算出し、これを用いて、二次電池の状態を検知する。図28の(1)中のV11、V21、V31、V41は、放電電流が4回変動したときの電池電圧の過渡特性が式V=Vn1+(Vn0−Vn1)×e-t/ τで表せるとした場合のVn1(n=1,2,3,4)に相当する電圧との関係を示した図である。
【0105】
〈内部抵抗の算出〉
先の定常状態の放電からの判定のII.で、二次電池の内部抵抗が増加していると判定され、電池の内部抵抗が例えばRd(Q,Id,T)からa×Rd(Q,Id,T)+b(a,bは定数)に増加したと仮定した場合の、内部抵抗および蓄電量を算出する手順を以下に説明する。
【0106】
定常放電から、少なくとも3回以上の放電電流の変動する時、すなわち、放電電流I10の定常放電で電池電圧V10の時、放電電流がI11に変化し電流値I11×時間t11の放電し、電池電圧V10から電気量q1だけ放電し電池電圧V20になり、次いで定常放電の放電電流I20がI21に変化し電流値I21×時間t21の放電し、電池電圧V20から電気量q2だけ放電し電池電圧V30になり、次に定常放電の放電電流I30がI31に変化し電流値I31×時間t31の放電をしたとする。この時、定常放電の放電電流In0がIn1に変動し電流値In1×時間tn1の電気量qn放電した場合の、各放電電流変化時の電池電圧の過渡特性が次式で表せると仮定して、計測した放電電流が変化してからの時間tに対する電池電圧値Vと
式V=Vn1+(Vn0−Vn1)×e-t/ τ
(但し、Vn1は時間tを無限大に外挿した時のVでτは時定数で、n=1,2,3,…である)
によって、放電電流In0がIn1に変動した時の時定数τを求めつつVn1を算出する。次に、放電電流In0で電池電圧Vn0の時の蓄電量を有する電池の開回路電圧をVocn0とすると、Vocn0=Vn0+In0×Rd'(Qn0,In0,T)=Vn1+In1×Rd'(Qn0,In1,T) (n=1,2,3,…)と表せ、電池電圧がV10、V20、V30の時の蓄電量をそれぞれQ10、Q20、Q30とすると、
Q20=Q10−q1
Q30=Q20−q2= Q10−q1−q2となり、
V10−V11=I11×Rd'(Q10,I11,T)−I10×Rd'(Q10,I10,T)
V20−V21=I21×Rd'(Q20,I21,T)−I20×Rd'(Q20,I20,T)
V30−V31=I31×Rd'(Q30,I31,T)−I30×Rd'(Q30,I30,T)
Rd'(Q10,I10,T)=a×Rd(Q10,I10,T)+b(a,bは定数)
Rd'(Q10,I11,T)=a×Rd(Q10,I11,T)+b(a,bは定数)
Rd'(Q20,I20,T)=a×Rd(Q20,I20,T)+b(a,bは定数)
Rd'(Q20,I21,T)=a×Rd(Q20,I21,T)+b(a,bは定数)
Rd'(Q30,I30,T)=a×Rd(Q30,I30,T)+b(a,bは定数)
Rd'(Q30,I31,T)=a×Rd(Q30,I31,T)+b(a,bは定数)
上記式を解くことによって、蓄電量Q10、定数a、b、を求めることができ、現在の蓄電量Q30および劣化して内部抵抗が増大した電池の内部抵抗Rd'(Q,I,T)も算出することができる。
【0107】
図15および付随する図17のフローチャートは、図14で内部抵抗が増加していると判定した後に、上記内部抵抗並びに現在の蓄電量を算出するまでの流れを示した一例である。
【0108】
上記内部抵抗の算出では、放電電流変動時の電池電圧を推算するために、前述の時定数τを用いた式を仮定して使用したが、この式は一例であり、他の近似できる式を使用しても構わず、この式に何ら限定されるものではない。
【0109】
〈蓄電容量低下時の低下係数および内部抵抗の算出〉
先の定常状態の放電からの判定のIII.で、二次電池の蓄電容量が低下していると判定された場合、蓄電容量はCからC'=D×C(Dは定数で0<D<1)に低下し、さらに電池の内部抵抗もRd(Q,Id,T)からRd'(Q,Id,T)=a×Rd(Q,Id,T)+b (a,bは定数)に増加したと仮定して、容量低下係数および内部抵抗並びに蓄電量を算出する手順を以下に説明する。なお、上記蓄電容量の低下の仮定により、予め取得されている正常な電池の放電電流および電池電圧の関係から算出される蓄電量Qは実際はQ'=D×Qに低下していることになる。
【0110】
定常放電から、少なくとも4回以上の放電電流の変動する時、すなわち放電電流I10の定常放電で電池電圧V10の時、放電電流がI11に変動し電流値I11×時間t11の放電し、電池電圧V10から電気量q1だけ放電し電池電圧V20になり、次いで定常放電の放電電流I20がI21に変化し電流値I21×時間t21の放電し、電池電圧V20から電気量q2だけ放電し電池電圧V30になり、次に定常放電の放電電流I30がI31に変化し電流値I31×時間t31の放電し、電池電圧V30から電気量q3だけ放電し電池電圧V40になり、さらに定常放電の放電電流I40がI41に変化し電流値I41×時間t41の放電した時、定常放電の放電電流In0がIn1に変動し電流値In1×時間tn1の電気量q n放電したとする。
【0111】
各放電電流変動時の電池電圧の過渡特性が次式で表せると仮定すると、計測した放電電流が変化してからの時間tに対する電池電圧値Vと
式V=Vn1+(Vn0−Vn1)×e-t/ τ
(但し、Vn1は時間tを無限大に外挿した時のVでτは時定数で、n=1,2,3,4,…である)
によって、放電電流In0がIn1に変動した時の時定数τを求めつつVn1を算出できる。また、放電電流In0で電池電圧Vn0の時の蓄電量を有する電池の開回路電圧をVocn0とすると、Vocn0=Vn0+In0×Rd'(Qn0,In0,T) =Vn1+ In1×Rd'(Qn0,In1,T)(n=1,2,3,4,…)と表せ、電池電圧がV10、V20、V30、V40の時の蓄電量をそれぞれQ10、Q20、Q30、Q40とすると、
Q=Q'/DでQ20'=Q10'−q1、Q30'=Q20'−q2=Q10'−q1−q2、Q40'=Q30−q3=Q10'−q1−q2−q3、すなわち
Q10=Q10'/D、Q20=(Q10'−q1)/D、Q30=(Q10'−q1−q2)/D、Q40=(Q10'−q1−q2−q3)/Dで、
V10−V11=I11×Rd'(Q10,I11,T)−I10×Rd'(Q10,I10,T)
V20−V21=I21×Rd'(Q20,I21,T)−I20×Rd'(Q20,I20,T)
V30−V31=I31×Rd'(Q30,I31,T)−I30×Rd'(Q30,I30,T)
V40−V41=I41×Rd'(Q40,I41,T)−I40×Rd'(Q40,I40,T)
Rd'(Q10,I10,T)=a×Rd(Q10,I10,T)+b(a,bは定数)
Rd'(Q10,I11,T)=a×Rd(Q10,I11,T)+b(a,bは定数)
Rd'(Q20,I20,T)=a×Rd(Q20,I20,T)+b(a,bは定数)
Rd'(Q20,I21,T)=a×Rd(Q20,I21,T)+b(a,bは定数)
Rd'(Q30,I30,T)=a×Rd(Q30,I30,T)+b(a,bは定数)
Rd'(Q30,I31,T)=a×Rd(Q30,I31,T)+b(a,bは定数)
Rd'(Q40,I40,T)=a×Rd(Q40,I40,T)+b(a,bは定数)
Rd'(Q40,I41,T)=a×Rd(Q40,I41,T)+b(a,bは定数)
上記式を解くことによって、定数a、b、D、 Q10=Q10'/Dを求め、劣化してD倍になった蓄電容量および増大した内部抵抗を算出することができる。
【0112】
前述の定常放電からの変動電流は、前記放電電流In1は定常電流In0より大でIn1=In0+ΔIdとなるように意図的に流すことで、望むときに、より正確な二次電池の内部状態を検知することができる。また、前記放電電流In1は、0.5時間率(2C)放電の電流値以下であることが好ましい。
【0113】
図16および付随する図17のフローチャートは、図14で蓄電容量が低下していると判定した後に、上記内部抵抗並びに現在の蓄電量を算出するまでの流れを示した一例である。
【0114】
正常であると判定した二次電池の蓄電量の算出
休止状態、充電状態、放電状態、の各種状態において、正常であると判定された二次電池の蓄電量は以下のようにして算出される。
〈I.休止状態の場合〉
休止状態で測定された開回路電圧Voc0と予め取得された蓄電量Qに対する正常な電池の開回路電圧Vocの関係Voc(Q)から、式Voc(Q0)=Voc0もしくはQ0=Q(Voc0)と表せ、蓄電量Q0を算出することができる。
【0115】
〈II.充電中である場合〉
(i)充電電流と電池温度と電池電圧を計測し、予め取得された蓄電量Qと充電電流Icと電池温度Tに対する正常な電池の電圧Vcの関係Vc(Q, Ic,T)もしくはQ(Vc,Ic,T)から、蓄電量Qを求める、
(ii)充電の一時停止から、前述の電池電圧の過渡特性を表す式から時定数τとVocを計測してその時点の蓄電量を算出する、
(iii)充電電流Icでの充電終了電圧VcEまたは充電終了後の開回路電圧VocEの計測値と、予め取得された蓄電量Qと充電電流Icと電池温度Tに対する正常な電池の電圧Vcの関係式から、充電終了時の蓄電量をQEとすると、VcE=Vc(QE,Ic,T)、もしくはQ(VcE,Ic,T)、または予め取得された蓄電量Qに対する正常な電池の開回路電圧Vocの関係の式Voc(Q)から得られるVoc(QE)=VocEもしくはQE=Q(VocE)を用いて、蓄電量QEを求める、
上記(i)、(ii)、(iii)のいずれかの方法で蓄電量を算出することができる。
【0116】
〈III.放電中である場合〉
(i)予め取得された蓄電量Qと放電電流Idと電池温度Tに対する正常な電池の電圧Vdの関係の、Vd(Q,Id,T)もしくはQ(Vd,Id,T)から、蓄電量Qを算出する、
(ii)算出した電池の内部抵抗Rdと、予め取得された蓄電量Qと放電電流Idと電池温度Tに対する正常な電池の内部抵抗の関係のQ(Rd,Id,T)から蓄電量Qを求める、
上記(i)、(ii)のいずれかの方法で蓄電量を算出することができる。
【0117】
内部抵抗増加の二次電池の充電時および充電終了時の蓄電量の算出
前述の休止状態から充電し休止する操作から、短絡はなく容量低下もなく内部抵抗が増大していると判定した時は、増大した充電時の内部抵抗Rc'(Q,Ic,T)を求めた後、充電時の開回路電圧と電池電圧、充電電流、内部抵抗の関係の次式
Vc=Voc(Q)+Ic×Rc'(Q,Ic,T)
から、充電時および充電終了時の蓄電量を算出することができる。
【0118】
内部抵抗増加の二次電池の放電時の蓄電量の算出
前述の休止から放電し休止する操作、または定常放電中の放電の変動の計測から、短絡はなく容量低下もなく内部抵抗が増大していると判定した時は、増大した放電時の内部抵抗Rd'(Q,Id,T)を前述の方法で求めた後、放電時の開回路電圧Vocと電池電圧Vd、放電電流Id、内部抵抗Rd'(Q,Id,T)の関係の次式
Vd=Voc(Q)−Id×Rd'(Q,Id,T)
から、放電時の電池電圧Vdを蓄電量Qと放電電流Idと電池温度Tの関数Vd=Vd'(Q,Id,T)として表せ、電池電圧Vd、放電電流Id、電池温度Tの計測から放電時の蓄電量Qを算出することができる。
【0119】
蓄電容量の低下した二次電池の充電時および充電終了後の蓄電量の算出
前述の休止状態から充電し休止する操作から、蓄電容量が低下していると判定した時は、蓄電容量低下係数D(0<D<1)を求めた後に、以下のように蓄電量を算出する。
〈I.内部抵抗は増大していない場合〉
正常な電池であるとして求めた蓄電量QをD倍したものを実際の蓄電量とする。また、充電終了時(満充電時)の蓄電容量は正常な電池の公称容量のD倍であるとする。
〈II.内部抵抗が増大している場合〉
増大した充電時の内部抵抗Rc'(Q,Ic,T)を前述の方法で求めた後、開回路電圧と充電時の電池電圧Vc、充電電流Ic、内部抵抗Rc'(Q,Ic,T)の関係の次式
Vc=Voc(Q)+Ic×Rc'(Q,Ic,T)
から、蓄電量Qを算出する。次いで、算出したQをD倍した蓄電量Q'=D×Qを実際の蓄電量とする。また、充電終了時(満充電時)の蓄電容量C'としては正常の電池の蓄電容量(あるいは公称容量)CをD倍したものとすることができる。
【0120】
二次電池の公称容量もしくは使用初期の蓄電容量をCとした場合、劣化後の電池の蓄電容量に関する性能をC'/Cもしくは100×C'/C〔%〕として算出することもできる。そして、劣化後の電池の蓄電容量に関する性能100×C'/C〔%〕が一例として60%未満になった時、二次電池が寿命であると判定することも可能である。
【0121】
蓄電容量の低下した二次電池の放電時の蓄電量の算出
前述の休止から放電し休止する操作、または定常放電中の放電の変動の計測から、蓄電容量が低下していると判定された時は、
〈I.内部抵抗は増大していない場合〉
蓄電容量低下係数Dを求め、蓄電容量は正常な電池の蓄電量のD倍であるとする。
〈II.内部抵抗が増大している場合〉
蓄電容量低下係数Dおよび増大した放電時の内部抵抗を関数式Rd'(Q,Id,T)として求めた後、放電時の開回路電圧Voc(Q)と電池電圧Vd、放電電流Id、内部抵抗Rd'(Q,Id,T)の関係の関係式Vd=Voc(Q)−Id×Rd'(Q,Id,T)から、放電時の電池電圧Vdを見かけの蓄電量Qと放電電流Idと電池温度Tの関数Vd=Vd'(Q,Id,T)として表せ、電池電圧Vd、放電電流Id、電池温度Tの計測から見かけの蓄電量Qを算出し、見かけの蓄電量QをD倍した蓄電量Q'=D×Qを真の蓄電量として算出することができる。
【0122】
充電終了までの時間の算出
前述の方法で、二次電池が充電中に蓄電量Qを求めることによって、充電終了時の蓄電量に至るまでの時間を算出することができる。
【0123】
機器の使用できる二次電池の蓄電量(残量)の算出
前述の方法で、二次電池が放電中にある時の蓄電量Qを求めた後に、二次電池を電源に使用している機器が作動する最低の電圧Vminになったときの二次電池の蓄電量Qminを算出することによって、二次電池を電源にする機器が使用できる二次電池の電気量すなわち残量(Q−Qmin)を算出することができる。
【0124】
機器の作動時間の算出
前述の方法で、機器が使用できる電池の電気量すなわち残量(Q−Qmin)を算出の後、機器の平均消費電流をi、平均消費電力をpとする時、二次電池を電源にする機器の作動時間hは、次式の
h=(Q−Qmin)/i、もしくは
h=(Vd+Vmin)×(Q−Qmin)/2/p
で算出することができる。
【0125】
上記平均消費電流の値もしくは平均消費電力の値は、機器使用者の機器操作パターンおよび頻度から算出するのがより好ましい。
【0126】
二次電池の内部状態の検知方法適用可能な二次電池
前述してきた本発明の二次電池の内部状態の検知方法は、どのような二次電池にも適応可能であり、二次電池の例としてはリチウム(イオン)電池、ニッケル−水素化物電池、ニッケル−カドミウム電池、ニッケル−亜鉛電池、鉛蓄電池、などが挙げられる。また、一次電池であっても、同一製品を用いて、予め、放電電気量と開回路電圧の関係、放電電流と電池電圧と電池温度と放電電気量との関係を計測したデータを取得しておけば、放電時もしくは休止時の蓄電量を算出することも可能であり、もちろん使用時の機器の使用できる一次電池の大まかな電気量(残量)も算出することも可能である。
【0127】
〔二次電池の内部状態検知装置〕
本発明に係る二次電池の内部状態検知装置は、少なくとも、二次電池の端子間電圧を検出する手段と、二次電池を流れる電流(充電または放電電流)を検出する手段と、二次電池の温度を検出する手段と、予め求めた正常な電池の基礎データもしくは該基礎データを数式化した関数式を記憶する手段とを有し、かつ予め入力した正常な電池の基礎データもしくは基礎データの関数式と、上記検出手段から得られる情報から、二次電池の内部状態を検知する装置である。
【0128】
また、本発明に係る二次電池の内部状態検知装置は、前記基礎データと前記検出手段から得られた情報を加工する演算手段を有していることが好ましい。前記演算手段が、次の、▲1▼二次電池の現蓄電量を算出する手段、▲2▼二次電池の内部抵抗を算出する手段、▲3▼機器が使用できる二次電池の蓄電量である残量を算出する手段、▲4▼平均消費電流の値もしくは平均消費電力の値を算出する手段、▲5▼充電終了までに要する時間を算出する手段、▲6▼充電終了後の二次電池の蓄電量を算出する手段、の▲1▼〜▲6▼から選択される一種類以上の手段を有していることが好ましい。
【0129】
さらに、本発明に係る二次電池の内部状態検知装置は、二次電池が正常であるか劣化しているか、劣化の前記モードを判定する手段を有することが好ましい。
【0130】
また、本発明に係る二次電池の内部状態検知装置は、前記検出手段から得られる情報、および又は前記二次電池の内部状態に関する情報を、出力する手段や表示する手段を有していることが好ましい。
【0131】
本発明に係る二次電池の内部状態検知装置の構成例
本発明に係る、二次電池の劣化状態、蓄電容量、蓄電量、内部抵抗で代表される内部状態の検知装置の回路構成の一例を図29に示す。基本的には、二次電池を本装置と接続する端子(2101)、二次電池の端子間電圧を検出する電池電圧検出部(2102)、二次電池の温度を検出する電池温度検出部(2103)、二次電池の充電または放電電流を検出するところのセンス抵抗器(2104)、増幅器(2105)、二次電池に充電または放電パルス電流を付加するところの抵抗器1(2106)、抵抗器2(2107)、トランジスタ1(2108)、トランジスタ2(2109)、制御部(2110)から構成されている。
【0132】
ここで端子(2101)は本発明に係る内部状態検知方法を実施する対象の二次電池または(二次電池を1個以上組み込んでパッケージ化された)電池パックもしくは電池モジュール(以下、検知対象二次電池という)と本装置とを容易かつ確実に電気的に接続することが可能である。電池電圧検出部(2102)は、高い入力インピーダンスで二次電池正負極間の端子間電圧を検出し、この電圧情報は制御部(2110)に出力される。電池温度検出部(2103)は、例えばサーミスタや熱電対により検知対象二次電池の温度を検出し、この温度情報は制御部(2110)に出力される。二次電池の充電または放電電流の検出は、センス抵抗器(2104)により電流電圧変換されて電圧信号として増幅器(2105)に入力し、この電圧情報は制御部(2110)に出力される。抵抗器1(2106)、抵抗器2(2107)、トランジスタ1(2108)、トランジスタ2(2109)からなるパルス電流付加部は、制御部(2110)からの電圧信号波に応じた値で、端子(2101)に接続された二次電池とセンス抵抗器(2104)を含んだ系に電流を流すことができる。ここでの電圧信号波とは、矩形波、階段状波、ノコギリ状波もしくはこれらを2つ以上組み合わせた波形である。
【0133】
制御部(2110)は内部あるいは外部にメモリを有しており、端子(2101)に接続する、二次電池に対応する正常な二次電池のデータテーブルまたは近似曲線の関数式Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)、があらかじめ入力されている。ここでQは電池の蓄電量、Vocは電池の開回路電圧、Tは電池の温度、Idは放電電流、Vdは放電時の電池電圧、Icは充電電流、Vcは充電時の電池電圧、Rdは放電時の電池の内部抵抗、Rcは充電時の電池の内部抵抗である。
【0134】
端子(2101)に接続する二次電池の温度T、電流I、電圧Vの検出手段とパルス電流付加手段を有している本装置は、すでに説明した前述の検知手順の作業を行うことで、二次電池の内部状態の検知を行うことができる。なお、本装置制御部は二次電池あるいは電池パックの電圧、電流および電流の変化状態やその頻度等をデータとして取り込むことによって、本装置および二次電池あるいは電池パック(二次電池を1個以上組み込んでパッケージ化されたもの)を接続する機器において、その使用者の機器操作パターンや頻度を把握することもできる。そこで、把握した操作パターンや頻度をもとに、本発明に基づき算出した二次電池の残量から、本二次電池を接続する機器の作動時間を算出するに必要な平均消費電流値を、現状に即した値に変更していくことで、より精度の高い残量検知が可能である。また、本装置に、算出した電池の蓄電容量、電池残量、電池の蓄電容量劣化率、電池の寿命判定、あるいは消費電力等の情報表示機能を設けることで、使用者に対し明確に電池状態を知らせることが可能となる。
【0135】
図29で説明した本発明に係る二次電池の内部状態検知装置の構成の一例は、単独の装置として、二次電池と接続し所定の動作を行うことができる。この時必要となる本装置用の電源は、図示していないが、外部から供給する以外にも、接続する二次電池から、例えばレギュレータを介し、取り込むことも可能である。
【0136】
図30は、本装置を二次電池(2111)と組み合わせ、電池パックに内蔵した一例を示す回路構成図である。電池パックのプラス端子(2112)、マイナス端子(2113)、充電用プラス端子(2114)(充電用マイナス端子は前記マイナス端子を兼用)、電池電圧モニタ出力端子(2115)、および接続する機器との通信機能(2116)を有している。通信機能を有することにより、本発明に係る二次電池の内部状態検知装置を内蔵した電池パックは、接続する機器に二次電池あるいは電池パックの蓄電量や寿命等の内部の状態情報を知らせること、機器側から放電または充電電流変動発生の情報を得ることが可能となる。必要に応じ、図29で説明した動作とあわせ、本装置制御部に、電池パックに搭載する二次電池の過充電(2117)や過放電(2118)の保護のための制御を行わせることもできる。
【0137】
また、本装置を二次電池または電池パックの充電器に内蔵することができ、その場合、対象となる二次電池または電池パックをセットし、充電を開始する前や充電中に電池の蓄電量を認識することができる。それにより満充電に要する残り時間を把握し、表示や情報として外部に知らせることができる。電池の劣化状態や寿命に関しても同様に外部に知らせることができる。
【0138】
さらに本装置は、二次電池を使用する機器に内蔵することも可能である。この場合、機器については、わずかな変更で接続する二次電池あるいは電池パックの残量および寿命に代表される内部状態を知ることが可能となる。また、本装置制御部機能を機器本体に既存の制御部に盛り込み、本発明に係る二次電池の内部状態検知装置専用の制御部を省くこともできる。
【0139】
なお、本装置での二次電池の温度T、電流I、電圧Vの各検出手段と、制御部との間に、直列または並列に検出信号波形処理部を設けることも有効である。すなわち、例えば温度T、電流Iの各検出手段の出力に、制御部と並列に微分器を設け、各情報信号の変化を検出し、その情報を制御部に通知することで、制御部は温度T、電流Iを常時監視することなく、これらの変動を検知することができるので、制御部の負荷の軽減を図ることができる。また、例えば電圧Vの検出手段と制御部間に直列に積分器を設け、制御部で行う信号処理の一部を事前に行うことでも、制御部の負荷の軽減を図ることができる。
【0140】
以上説明した本発明に係る二次電池の内部状態検知装置の例では、接続もしくは一体とする二次電池に対応するデータテーブルまたは近似曲線の関数式Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)をあらかじめ本装置制御部のメモリに入力しておかなければならない。すなわち、データテーブルまたは近似曲線の関数式Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)が入力してある二次電池にのみ適応できると言うことである。しかし本装置は必要に応じ以下に示す機能を持たせることで、多種の二次電池に適応可能とすることができる。すなわち、装置制御部にあらかじめ複種類の二次電池と同一の種類および型式の正常な電池の特性のデータテーブルまたは近似曲線の関数式である、Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)をそれぞれ入力しておく。その上で、本装置に適応する二次電池のタイプを選択する手段を設けることで可能となる。ここでの二次電池のタイプ選択手段は、例えばスイッチ入力、有線もしくは無線の電気信号や光信号等での入力、また適応する二次電池もしくは電池パックが外部との通信機能を有する場合、本装置制御部に通信機能を持たせ、該二次電池もしくは電池パックからの情報より認識することもできる。
【0141】
先の実施形態では、二次電池を本装置と接続する端子(2101)、二次電池の端子間電圧を検出する電池電圧検出部(2102)、二次電池の温度を検出する電池温度検出部(2103)、二次電池の充電または放電電流を検出するところのセンス抵抗器(2104)、増幅器(2105)がそれぞれ1つの場合で説明したが、本発明の二次電池の内部状態検知装置は、これに限定されるものではない。
【0142】
さらに本発明に係る装置の別の例を図31を用いて説明する。図31は本発明に係る二次電池の内部状態の検知装置の回路構成の一例を示すものである。基本的にはn個の二次電池を本装置と接続する端子(2301aから2301n)、n個の二次電池の端子間電圧を検出する電池電圧検出部(2302aから2302n)、n個の二次電池の温度を検出する電池温度検出部(2303aから2303n)、二次電池の充電または放電電流を検出するところのセンス抵抗器(2304)、増幅器(2305)、二次電池に充電または放電パルス電流を付加するところの抵抗器1(2306)、抵抗器2(2307)、トランジスタ1(2308)、トランジスタ2(2309)、制御部(2310)から構成されている。
【0143】
ここでn個の端子(2301aから2301n)は検知対象のn個の二次電池と本装置とを容易かつ確実に電気的に接続することが可能である。n個の電池電圧検出部(2302aから2302n)は、高い入力インピーダンスでそれぞれ対応する二次電池の正負極間の端子間電圧を検出し、この電圧情報はそれぞれ制御部(2310)に出力される。n個の電池温度検出部(2303aから2303n)は、検知対象のn個の二次電池の温度をそれぞれ検出し、この温度情報はそれぞれ制御部(2310)に出力される。二次電池または電池パックの充電または放電電流の検出を行うセンス抵抗器(2304)、増幅器(2305)と、パルス電流の付加を行う抵抗器1(2306)、抵抗器2(2307)、トランジスタ1(2308)、トランジスタ2(2309)、および制御部(2310)は図29での説明と同様である。
【0144】
制御部(2310)は内部あるいは外部にメモリを有しており、n個の端子(2301aから2301n)に接続する二次電池と同一の種類および型式の正常な電池の特性のデータテーブルまたは近似曲線の関数式である、Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)があらかじめ入力されている。ここでQは電池の蓄電量、Vocは電池の開回路電圧、Tは電池の温度、Idは放電電流、Vdは放電時の電池電圧、Icは充電電流、Vcは充電時の電池電圧、Rdは放電時の電池の内部抵抗、Rcは充電時の電池の内部抵抗である。
【0145】
n個の端子(2301aから2301n)に接続するそれぞれの二次電池の温度T、電流I、電圧Vの検出手段とパルス電流付加手段を有している本装置は、すでに説明した二次電池の内部状態を検知する手順の作業を行うことで、それぞれの二次電池の劣化状態、蓄電容量、蓄電量、内部抵抗で代表される内部状態の検知を行うことができる。
【0146】
ここで、検知対象のn個の二次電池の温度をそれぞれ検出するため、n個の電池温度検出部(2303aから2303n)を設けたが、必ずしも必要とはしない。対象のn個の二次電池がほぼ同じ環境に設置されている場合、いくつかの電池温度検出部を設け、この温度情報を共用することができる。また本例では、n個の電池電圧検出部(2302aから2302n)により、それぞれ対応する二次電池の正負極間の端子間電圧を検出し、この電圧情報をそれぞれ制御部(2310)に出力しているが、n個の電池電圧検出部の出力を回線切替器、例えばマルチプレクサに入力し、制御部(2310)の指令により、任意の二次電池または電池パックの電圧情報のみを、制御部(2310)に出力することもできる。
【0147】
また本例では、n個の二次電池が直列に接続された例で説明したが、n×m個の二次電池が直並列に接続されている、すなわちn個の二次電池が直列に接続され1本のストリングスを形成しm本のストリングスが並列接続されている場合は、それぞれのストリングに二次電池の充電または放電電流の検出部を設けることで対応できる。この場合もm個の電流検出部出力は、それぞれセンス抵抗器により電流電圧変換された電圧信号であるため、回線切替器、例えばマルチプレクサに入力し、制御部(2310)の指令により、任意のストリングの電流値情報のみを、制御部(2310)に出力することもできる。
【0148】
(演算プログラムを収めたメモリ媒体)
以上説明した二次電池の内部状態の検知装置は、基本的に二次電池の温度T、電流I、電圧Vの検出手段と、必要に応じパルス電流付加手段を有し、対応する二次電池と同一の種類および型式の正常な電池の特性のデータテーブルまたは近似曲線の関数式、Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)、(ここでQは電池の蓄電量、Vocは電池の開回路電圧、Tは電池の温度、Idは放電電流、Vdは放電時の電池電圧、Icは充電電流、Vcは充電時の電池電圧、Rdは放電時の電池の内部抵抗、Rcは充電時の電池の内部抵抗)を予め取得した上で、測定した温度T、電流I、電圧Vの情報をもとに演算する機能を有することに特徴がある。そのため本発明を実施する際に必須となるハード的手段がすでに備わっている装置では、本発明を実施する制御プログラムおよび対応する二次電池のデータテーブルまたは近似曲線の関数式、Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)を入力することで、本発明の実施が可能となる。従ってこの制御プログラムを収めたメモリ媒体が、本発明の実施形態の一つである。以後詳細に説明する。
【0149】
例えば二次電池を接続している携帯型パーソナルコンピュータでは、一般的に本体の動作を主に司る主制御部と、周辺機器とのやりとりを主に司る副制御部をそれぞれ有している。副制御部では、多くの場合、搭載もしくは接続している二次電池(もしくは電池パック)の、端子間電圧、二次電池温度および二次電池が接続された系内を流れる電流の状態を監視している。上記監視情報を取得する副制御部に、本発明の制御プログラムおよび対応する二次電池のデータテーブルまたは近似曲線の関数式、Voc(Q)、Vd(Q,Id,T)、Vc(Q,Ic,T)、Rd(Q,Id,T)、Rc(Q,Ic,T)を入力することで、二次電池の内部状態の検知が可能となる。もちろん、主制御部に入力しても構わない。上記携帯型パーソナルコンピュータでは、パルス電流付加手段を有していないが、使用中の、例えばハードディスクや各種周辺機器にアクセスする際には、装置消費電流が変化し、二次電池の放電電流が変動する。この時の放電電流の変動は、二次電池の内部状態を検知するためのパルス電流付加手段によって放電電流を変動させた場合に相当すると見なせる。上記ハードディスクや各種周辺機器へのアクセスは、主あるいは副制御部の指令により行われるのであるから、本発明の制御プログラムが入力されている副制御部あるいは主制御部には、事前にハードディスクや各種周辺機器へのアクセスというイベントが発生することが認識できる。二次電池を接続している装置でのこのような二次電池の放電電流の変動は、携帯型パーソナルコンピュータ特有のものではなく、例えば携帯電話での待機時と送信時の変化、ビデオカメラの光学ズーム動作時、デジタルカメラ等でのフラッシュ動作時、等に生じる。したがって、このような機器の消費電流の変動を捕らえて、二次電池の放電電流の変動を検出し、二次電池の劣化状態、蓄電容量、蓄電量、内部抵抗で代表される内部状態の検知を行うことができる。また、これらの二次電池の内部状態の情報は、本発明を適応する機器の既存部に表示することも可能である。
【0150】
〔二次電池の内部状態検知方法および装置の応用機器〕
前述してきたように、本発明の二次電池の内部状態検知方法は、二次電池の種別に限定されることなく、二次電池が充電状態であれ、放電状態であれ、充電も放電もしていない休止状態であれ、劣化して蓄電容量の低下や内部抵抗の増加がもたらされた電池であっても、精度良く蓄電量を算出することができるため、二次電池を電源として使用する機器においては、機器の作動時間を精度良く割り出すことができるし、寿命となった電池の交換時期までわかる。そのため、本発明の二次電池の内部状態検知方法を使用した二次電池の内部状態検知装置を、二次電池を電源とする機器に搭載することで、機器と機器に搭載している二次電池の性能を最大限に引き出すことが可能になる。
【0151】
本発明の二次電池の内部状態検知装置を付加して性能が最大限引き出される機器の例としては、情報通信機能を有する携帯電話や情報端末、コンピュータ、電気自動車やハイブリッド型自動車などの二次電池を電源とする乗り物、が挙げられる。本発明の二次電池の内部状態検知装置を付加した、電池パック(単数個がパッケージ化されたもの、または複数個の二次電池が直列もしくは並列に接合されてパッケージ化されたもの)や充電器も応用例として挙げられる。上記電池パックには二次電池の内部状態の情報を機器とやりとりする通信機能を持たせても良い。
【0152】
その他の本発明の二次電池の内部状態検知装置を付加して機能が高まる装置やシステムとしては、製造した二次電池が良品であるか不良品であるか検査する機械、電力貯蔵システムが挙げられる。
【0153】
【実施例】
以下、実施例に基づき本発明を詳細に説明する。本発明はこれらの実施例に限定されるものではない。
〔二次電池の特性の基礎データの取得例〕
本発明で用いる二次電池の蓄電量(または放電可能容量)Qに対する開回路電圧Voc(Q)の関係のデータもしくは数式、および二次電池の電池温度T、接続された系内を流れる電流I、蓄電量Qに対する電池電圧V(Q,I,T)、内部抵抗R(Q,I,T)の関係のデータもしくは関数式を取得する方法の一例を図32〜34を参照して説明する。
【0154】
図32は、サイズが直径17mm高さ67mmで公称容量が1300mAhの市販のリチウムイオン二次電池において、次の条件で充電と放電を行った場合の充放電特性を示す図であり、横軸は時間、縦軸は電池電圧である。図32において、本二次電池は温度25℃にて、最大充電電圧を4.2Vとして、充電電流1Aでの定電流充電後、4.2Vに達した時点で定電圧充電に切り替え、充電開始から2.5時間で充電を終了する定電流−定電圧充電方法を採用し充電した。充電完了後、休止時間を設けた上で、放電を行った。放電は、0.2C(5時間率)の電流で15分放電(本二次電池公称電気容量の約5%の電気量の放電)後、休止させるという間欠放電動作を、電池電圧が事前に設定しているカットオフ電圧(2.75V)に達するまで繰り返した。
【0155】
図33は、図32で得られた放電時のデータの積算放電量に対する放電時の電池電圧および放電休止時の電池電圧および開回路電圧の関係を示したものである。図33において、点線で示しているのは、間欠放電後の休止時の電池電圧(開回路電圧)をトレースしたもので、実線で示してあるのが放電時の電池電圧を示し、角(つの)の部分は放電を停止して休止に入った時点を表している。上記積算放電量は、二次電池の蓄電容量もしくは公称容量から、放電可能な電気量(すなわち蓄電量)を減じた電気量を表すものである。したがって、図33は、蓄電量Qに対する、開回路電圧Voc(点線の曲線)と放電時の電池電圧Vd(実線の曲線)の関係を示すものである。さらに、上記放電レート以外の放電レート(例えば0.1C、0.5C、1.0C、2.0C)や1回の間欠での放電量を変化させて同様の計測を行ない、上記放電カットオフ電圧に達した時の蓄電量が異なるのみで、蓄電量Qに対する開回路電圧Vocの関係に違いがないことを確認した。本実施例では、この様にして得られたカーブから、離散的データとして任意の蓄電量に対する開回路電圧をそれぞれ読み取り、蓄電量Qに対する開回路電圧Vocの関係のデータベース(データテーブル)を作成、あるいは近似曲線の関数式Voc(Q)を求めるという作業を事前に行った。
【0156】
図34は、図32で示したのと同じリチウムイオン二次電池の放電電流をパラメータ(0.1C、0.2C、0.5C、1.0C、1.5C、2.0C)とした、温度25℃での放電特性を示す図であり、横軸は積算放電量、縦軸は電池電圧である。上記積算放電量は、二次電池の蓄電容量もしくは公称容量から、放電可能な電気量(すなわち蓄電量)を減じた電気量を表すものである。図34において、各電流で放電を行う前には全て温度25℃にて、最大充電電圧を4.2Vとして、1Aでの定電流充電で4.2Vに到達の後、定電圧充電に切り換え、充電開始から2.5時間行うことで満充電とした後、充分な休止時間の後に放電を開始した。
【0157】
それぞれの放電電流でのカーブを近似曲線の関数として表わし、本二次電池を搭載する機器の動作環境である各種温度T(-20℃、-10℃、0℃、40℃、50℃)にて同様に放電データを取得した。この様にして得られたカーブから、離散的データとして任意の蓄電量に対する電池電圧、内部抵抗をそれぞれ読み取り、蓄電量Qに対する放電時の、電池電圧Vd、内部抵抗Rdの関係のデータベース(データテーブル)を作成、あるいは近似曲線の関数式Vd(Q,Id,T)、Rd(Q,Id,T)を求めるという作業を事前に行った。
【0158】
表1には、上記操作等で得られた、サイズが直径17mm高さ67mmで公称容量が1300mAhの市販のリチウムイオン二次電池のデータテーブルの一例として、蓄電量Q〔Ah〕に対する開回路電圧Voc、および電池温度25℃での各種定電流Id(=0.13A、0.26A、0.65A、1.3A、1.95A、2.6A)での放電時の電池電圧Vd〔V〕の関係を示した。
【0159】
【表1】

Figure 0005074648
【0160】
蓄電量もしくは積算放電量の関数である開回路電圧
また、開回路電圧Vocは蓄電量Qのみで決まる関数と見なせるので、上記データテーブルの代わりに、開回路電圧Vocは例えば、以下のように蓄電量Qの関数として表すこともできる。
Voc(Q)=Pn×Qn+Pn-1×Qn-1+Pn-2×Qn-2+・・・+P1×Q1+P0×Q0
ここで、PnからP0は、二次電池の種類、型式、公称容量等によって異なる定数である。
【0161】
実際に蓄電量Qに対する開回路電圧Voc(Q)の近似曲線の関数式を表した一例を以下に示す。二次電池の蓄電容量(公称容量)をC、ある時点の蓄電量をQとすると、積算放電量は(C−Q)と表せる。本例では、開回路電圧Vocを積算放電量(C−Q)の12次の多項式と仮定し、サイズが直径17mm高さ67mmで公称容量が1300mAhの市販のリチウムイオン二次電池について、積算放電量(C−Q)と開回路電圧Vocに関する取得した基礎データを元に、蓄電量Qに対する開回路電圧Vocの関数式を算出した。ここでCの値は、本二次電池の公称容量(1.3Ah)であり、蓄電量Qのとりうる範囲は、0≦Q≦Cとする。算出した蓄電量Qに対する開回路電圧Vocの関数式は以下の通りである。
【0162】
Voc(Q)=−661.900042980173225×(C−Q)12+4678.290484010105502×(C−Q)11−14335.21335398782685×(C−Q)10+24914.67028729754384×(C−Q)9−26969.20124879933792×(C−Q)8+18786.93847206758073×(C−Q)7−8401.942857432433812×(C−Q)6+2331.619009308063141×(C−Q)5−370.18004193870911×(C−Q)4+26.914989189437676×(C−Q)3+0.445460210498741×(C−Q)2−0.883133725562348×(C−Q)+4.188863096991684
【0163】
蓄電量もしくは積算放電量の関数である内部抵抗
放電時の電流Id、開回路電圧Voc、電池電圧Vd、内部抵抗Rdとの関係は、Vd=Voc−Id×Rdと表せ、充電時の電流Ic、開回路電圧Voc、電池電圧Vc、内部抵抗Rcとの関係は、Vc=Voc+Ic×Rcと表せる。さらに、上記内部抵抗は電池温度の関数でもある。そのため、蓄電量Qに対する、電池電圧の関係、内部抵抗の関係は、それぞれ、蓄電量Qと電流Iと電池温度Tの関数のV(Q,I,T)、R(Q,I,T)の近似曲線として表すことができる。
【0164】
二次電池の、電池温度をT、放電電流をI、蓄電容量(公称容量)をC、ある時点の蓄電量をQとすると、積算放電量は(C−Q)と表せるので、放電時の蓄電量Qに対する内部抵抗Rd(Q,I,T)の関係式は、例えば蓄電量もしくは放電量に関するn次の関数式として、以下のように表すことができる。蓄電量Qの取り得る範囲は、0≦Q≦Cとする。
Rd(Q,I,T)=Fn×(C-Q)n+Fn-1×(C-Q)n-1+Fn-2×(C-Q)n-2+・・・+F1×(C-Q)1+F0×(C-Q)0
ここで、FnからF0は、例えばFn=Gn(T)×Hn(I)やFn=Gn(T)+Hn(I)の関数式として表すことができ、Gn(T)は電池温度Tの関数、Hn(I)は電流Iの関数である。
【0165】
あるいは、FnからF0は、
Fn=Kn m×Im+Kn m-1×Im-1+Kn m-2×Im-2+・・・+Kn 1×I1+Kn 0×I0
Fn-1=Kn-1 m×Im+Kn-1 m-1×Im-1+Kn-1 m-2×Im-2+・・・+Kn-1 1×I1+Kn-1 0×I0
……
F0=K0 m×Im+K0 m-1×Im-1+K0 m-2×Im-2+・・・+K0 1×I1+K0 0×I0
とした上で、さらにKn mからKn 0、 Kn-1 mからKn-1 0、・・・、K0 mからK0 0をそれぞれTの関数式として、表すこともできる。
【0166】
上記関数式を求めた実例として、サイズが直径17mm高さ67mmで公称容量が1300mAhの市販のリチウムイオン二次電池について、積算放電量もしくは蓄電量、放電電流、電池温度、に対する内部抵抗の基礎データを得た後、Rd(Q,I,T)の近似曲線の関数式で表した一例を以下に示す。本例では、まず内部抵抗Rdを積算放電量(C−Q)の12次の多項式で表せると仮定して、内部抵抗の基礎データにフィッティングするように関数式を算出した。上記Cの値は、本二次電池の公称容量(1.3Ah)である。算出できた放電時の内部抵抗Rd(Q,I,T)の関数式は以下の通りとなった。
Rd(Q,I,T)=F12×(C-Q)12+F11×(C-Q)11+F10×(C-Q)10+・・・+F1×(C-Q)1+F0×(C-Q)0
ここで、各係数F12からF0はそれぞれ、電流値Iの5次の多項式で表せた。
F12=K12 5×I5+K12 4×I4+K12 3×I3+K12 2×I2+K12 1×I1+K12 0×I0
F11=K11 5×I5+K11 4×I4+K11 3×I3+K11 2×I2+K11 1×I1+K11 0×I0
……
F0=K0 5×I5+K0 4×I4+K0 3×I3+K0 2×I2+K0 1×I1+K0 0×I0
【0167】
さらにK0 0からK12 5までの各係数は以下に示す電池温度Tの4次の多項式で表せた。
K0 0=0.0000003728422193×T4−0.0004690399886317×T3+0.219630909372119×T2−45.393541420206056×T+3495
K1 0=−0.0000179118075830736×T4+0.019047317301656×T3−7.507153217164846×T2+1295.900128065855824×T−82320.66124016915274
K2 0=0.0008393300954506×T4−0.925251141189932×T3+380.532287220051614×T2−69147.14363160646462×T + 4
K3 0=−0.017185353004619×T4+19.234599304257944×T3−8046.433143414219558×T2+1490563.733755752211×T−103127364.48805916309
K4 0=0.169551698762352×T4−190.999908140883917×T3+80470.07880103871866×T2−15024311.89118036628×T+1.048650819771948e+9
K5 0=−0.955959118340144×T4+1080.745597758554595×T3−457103.8624067021883×T2+85709740.95309616626×T−6.01059936858493e+9
K6 0=3.375841083746783×T4−3825.451933311166158×T3+1622083.712826749077×T2−304991211.3940501213×T+2.145317715502894e+10
K7 0=−7.810843719833634×T4+8866.183584053051163×T3−3766345.644136840012×T2+709567942.1204522848×T−5.001923236648273e+10
K8 0=12.033631252687844×T4−13677.64824440043594×T3+5818483.242671614513×T2−1.097858196917345e+9×T+7.751905044076741e+10
K9 0=−12.238187331253075×T4+13925.33526539518061×T3−5930710.459638201632×T2+1.120421761057557e+9×T−7.921808331037033e+10
K10 0=7.893435909900529×T4−8989.98957545310077×T3+3832542.024125073105×T2−724796162.165166378×T+5.130331180844828e+10
K11 0=−2.925896962983863×T4+3335.077681152527475×T3−1423000.113370831124×T2+269356095.2803371549×T−1.908424205759282e+10
K12 0=0.474786593515207×T4−541.575826871208278×T3+231252.3383636772924×T2−43807985.50071253628×T+3.106470547152108e+9
K0 1=0.000002810514762×T4−0.002898202547079×T3+1.105541936798752×T2−184.521855864246987×T + 11343
K1 1=0.000551705428643872×T4−0.618741510687609×T3+259.586933909031927×T2−48283.85493898519053×T+3359573.6900693262
K2 1=−0.0195475060621×T4+22.088617721865582×T3−9341.226422357953197×T2+1752157.602624612628×T−122996540.8737580031
K3 1=0.325763020172631×T4−369.724916377202248×T3+157069.7521357303194×T2−29601894.0842731744×T+2.088209856891993e+9
K4 1=−2.908705926352533×T4+3309.493716794020656×T3−1409607.063310474623×T2 + 266370644.6106990278×T−1.884257213245936e+10
K5 1=15.522568640313624×T4−17689.339928652651×T3+7546667.398559059016×T2−1.428474185012642e+9×T+1.012224248948845e+11
K6 1=−52.917599424765683×T4+60369.46012100671942×T3−25783514.46398825198×T2+4.88600354697663e+9×T−3.46629897478479e+11
K7 1=119.343894918586244×T4−136256.5889387205825×T3 + 58241129.37237557024×T2−1.104580399434835e+10×T + 7.84285673315848e+11
K8 1=−180.13279743136772×T4+205783.2935366885795×T3−88013024.84585164488×T2+1.670262265534591e+10×T−1.186691748976397e+12
K9 1=179.977612805760856×T4−205704.7138883229345×T3+88022247.56138792634×T2−1.671265663160231e+10×T+1.188005733152792e+12
K10 1=−114.22103353999718×T4+130600.7620928548568×T3−55907464.3364872858×T2+1.061943998671068e+10×T−7.551911324552615e+11
K11 1=41.695827710871889×T4−47691.58228996800608×T3+20422870.60793861002×T2−3.880626435474761e+9×T+2.760661086077543e+11
K12 1=−6.666496484950264×T4 + 7627.427708115624228×T3−3267274.46735554561×T2+621019135.6699528694×T−4.419293458561603e+10
K0 2=−0.0000149877533689156×T4+0.016264765981062×T3−6.586433677933296×T2+1179.630127694138537×T−78854.88604895926256
K1 2=−0.001671225994427×T4+1.877401817058471×T3−789.07213084094451×T2+147061.7484517464472×T−10255014.040370674804
K2 2=0.050857806024981×T4−57.421146649059438×T3+24263.23108479666916×T2−4547478.023707655258×T+318979066.9375175238
K3 2=−0.767138695737053×T4+869.501589442514955×T3−368895.5433750267257×T2+69431079.11021871865×T−4.891503969447994e+9
K4 2=6.458605207522703×T4−7339.346130055530012×T3+3122145.968177304138×T2−589259323.2726836204×T+4.163276005699007e+10
K5 2=−33.210693487729266×T4+37806.52151914418209×T3−16112231.32226052508×T2+3.046667102485437e+9×T−2.156707719286414e+11
K6 2=110.41654910551955×T4−125855.3597195415496×T3+53705964.79313132912×T2−1.0168738968952e+10×T+7.208109075952678e+11
K7 2=−244.609733706370236×T4+279071.9859447662602×T3−119200855.458073914×T2+2.259145651305348e+10×T−1.602974000459222e+12
K8 2=364.280446611480329×T4−415899.7378741699504×T3+177773139.5446700454×T2−3.37170978830763e+10×T+2.394178279874176e+12
K9 2=−360.133009104473672×T4+411398.5785509308916×T3−175950132.9841732085×T2+3.339073499857018e+10×T−2.372399659849292e+12
K10 2=226.571828904114568×T4−258946.2668825854489×T3+110800467.2156397104×T2−2.103706218735303e+10×T+1.495396594538536e+12
K11 2=−82.097460356641946×T4 + 93865.67427578115894×T3−40180264.4568978697×T2+7.631883991534069e+9×T−5.427255754183317e+11
K12 2=13.041315019963541×T4−14915.89122739454251×T3+6387139.428232744336×T2−1.213605887380284e+9×T+8.633362065024582e+10
K0 3=0.0000251678427397413×T4−0.027749417567646×T3+11.431003896028034×T2−2085.159978444959506×T+142128.8166474564059
K1 3=0.001751449385998×T4−1.965532828562073×T3+825.198818901071149×T2−153608.5966555425257×T+10697382.97613775916
K2 3=−0.045992909613442×T4+51.765049403509529×T3−21800.6951406261469×T2+4071656.867690694518×T−284551801.1211410761
K3 3=0.609139955562425×T4−687.607714664136665×T3+290488.4805661713472×T2−54432601.20337542892×T+3.817251073175302e+9
K4 3=−4.654946445586634×T4+5267.515010680999694×T3−2231088.309676257428×T2+419202946.5956563354×T−2.948124603910822e+10
K5 3=22.286869517195672×T4−25270.05467747936928×T3+10725593.31009998918×T2−2.019626285390959e+9×T+1.423544581998099e+11
K6 3=−70.273845850297775×T4+79808.32413277083833×T3−33930159.44685647637×T2+6.400054181017841e+9×T−4.51914538369342e+11
K7 3=149.601386715460876×T4−170118.3903450048529×T3+72421280.32549875974×T2−1.367911124421202e+10×T+9.672544733460782e+11
K8 3=−216.080536475273817×T4+245972.965744795074×T3−104825836. 75099624693×T2+1.982151737409837e+10×T−1.403160810753543e+12
K9 3=208.528016714157587×T4−237582.0518041840696×T3+101339354.76017145813×T2−1.917950228946529e+10×T+1.358957382793612e+12
K10 3=−128.648630272366432×T4+146680.9468983050902×T3−62612523.06659654528×T2+1.185900191909874e+10×T−8.409099766116382e+11
K11 3=45.862214041144405×T4−52323.81826514477143×T3+22349358.16426483542×T2−4.235780194080044e+9×T+3.005522361710247e+11
K12 3=−7.185307946068086×T4+8202.238421019834277×T3−3505436.076118038502×T2+664747740.961967349×T−4.719465114689993e+10
K0 4=−0.0000192255394011085×T4+0.021451855148696×T3−8.949177062086774×T2+1654.341424624854653×T−114347.8315392331278
K1 4=−0.000816454884929378×T4+0.915963370235589×T3−384.394885101222144×T2+71516.78036990862165×T−4977237.941760426387
K2 4=0.018665516848548×T4−20.945499132537545×T3+8792.787151743495997×T2−1636507.520356033929×T+113940643.510729596
K3 4=−0.208551404290907×T4+234.064252746103051×T3−98280.91590542987979×T2+18297020.93438888714×T−1.274317674892173e+9
K4 4=1.339574048511812×T4−1503.615180965887021×T3+631459.032932954724×T2−117585216.0713095963×T+8.191520568488794e+9
K5 4=−5.41634189133107×T4+6080.279572206331977×T3−2553905.465719996486×T2+475671351.9166372418×T−3.314607225791437e+10
K6 4=14.554042749470186×T4−16340.35331930969369×T3+6864766.807159300894×T2−1.278884505325829e+9×T+8.91410026807912e+10
K7 4=−26.702810592234627×T4+29985.37313494967748×T3−12599908.78297643736×T2+2.347923449255732e+9×T−1.637030338813723e+11
K8 4=33.616003692593779×T4−37755.79519816931134×T3+15868689.48295781203×T2−2.957814271722582e+9×T+2.062859919415767e+11
K9 4=−28.549327238622432×T4+32071.84076537256988×T3−13482853.98914256319×T2+2.513751298973701e+9×T−1.753644153967844e+11
K10 4=15.615889964970963×T4−17546.34309475550617×T3+7378066.55368669983×T2−1.375903085110361e+9×T+9.601048284484978e+10
K11 4=−4.961400910069002×T4+5575.897482064596261×T3−2345115.56629166659×T2 + 437428445.089415431×T−3.053090860965102e+10
K12 4=0.695014380923983×T4−781.253406883600064×T3+328646.8735752489884×T2−61314347.82639360428×T + 4.280426730538583e+9
K0 5=0.0000055685857458958×T4−0.006269943903778×T3+2.640726168426087×T2−493.072682310015125×T+34439.01298486242012
K1 5=0.000161459388938338×T4−0.181685886575457×T3+76.48491361543168×T2−14275.91988238808517×T+996832.7974418463418
K2 5=−0.003644982089995×T4+4.101798825788432×T3−1726.917806184043457×T2+322373.2470881768968×T−22513770.08513562009
K3 5=0.040176201294742×T4−45.2111990768366×T3+19035.3292236953348×T2−3553687.279590429272×T+248205168.0678731203
K4 5=−0.252724149200711×T4+284.364088978607867×T3−119717.74444384659×T2+22349178.49348734319×T−1.5609506067017e+9
K5 5=0.99321211747314×T4−1117.34604256486864×T3+470334.9616640359164×T2−87793226.38023105264×T+6.13128593721498e+9
K6 5=−2.577149995346287×T4+2898.568018064226635×T3−1219882.472908790689×T2+227667403.1106119156×T−1.589763369995698e+10
K7 5=4.546336695206962×T4−5112.045211581619696×T3+2150963.609311953653×T2−401358455.5349878669×T+2.802150292308567e+10
K8 5=−5.493312202741592×T4+6175.273952080845447×T3−2597737.064942202996×T2+484624717.2114210725×T−3.382866307244066e+10
K9 5=4.479715688077147×T4−5034.625069146578426×T3+2117431.804731178563×T2−394939977.4744403362×T+2.756315841920568e+10
K10 5=−2.35745032434141×T4+2648.891592185625086×T3−1113825.013085700106×T2+207708652.5919890404×T−1.449351552776621e+10
K11 5=0.722700953370907×T4−811.891530954773657×T3+341327.5026830868446×T2−63640350.16188571602×T+4.439957102906778e+9
K12 5=−0.098012110608512×T4+110.090753050316849×T3−46276.03871921345126×T2+8626818.395340621472×T−601771718.735604167
【0168】
上記式において定数項のe+9、e+10、e+11、e+12はそれぞれ×109、×1010、×1011、×1012を示す。
以上本例においては、内部抵抗Rd(Q,I,T)の近似曲線の関数式を、蓄電量Qの12次の多項式、次に各次係数をそれぞれ電流値Iの5次の多項式、さらにそれぞれの係数を電池温度Tの4次の多項式という順で表しているが、本発明においては、これらの多項式の次数および順序に限定されるものではない。また、前述の二次電池の基礎データを表す関数式がn次の多項式に限定されるものでもない。
【0169】
二次電池の蓄電量の検知
(実施例1)
市販の直径17mm高さ67mmの公称容量1300mAhの市販のリチウムイオン二次電池を3本用意し、図3のフローチャートの判定部分を用いて、3本すべてが正常であることを確認した。次に、3本とも、定電流充電時の電流値を0.7C、定電圧充電時の電圧を4.2Vに設定した定電流−定電圧充電方法で、3時間充電した後、0.2C(260mA)の電流で、それぞれ公称容量の20%、50%、80%放電し、蓄電量がそれぞれ80%、50%、20%である電池をサンプル1、サンプル2、サンプル3として用意した。
また、上記サンプルと同じ正常であると確認した市販の直径17mm高さ67mmの公称容量1300mAhのリチウムイオン二次電池の充放電から、各種特性を取得し、蓄電量Qと開回路電圧Vocの関係のデータもしくは関数式Voc(Q)、またはQ(Voc)等の基礎データを求めた。
【0170】
上記準備したサンプル電池3本を、先ず開回路電圧を計測し、先に求めた正常な電池の蓄電量Qと電池の開回路電圧Vocの関係Q(Voc)から蓄電量を求めた。その後、0.2Cの定電流にて放電し放電量を計測し、放電前の各サンプルの蓄電量を確認した。
【0171】
各電池の測定した開回路電圧値と、本発明の方法にて検知した蓄電量(検知量)と放電量、検知の精度を示す率としての[(検知量−放電量)/公称容量×100](%)を、表2にまとめて示した。表2の結果から、検知蓄電量と実際の放電量との公称容量値に対する割合は1%未満であり、極めて高い精度で検知量と実測値が一致することが分かった。
【0172】
【表2】
Figure 0005074648
【0173】
(実施例2)
市販の直径17mm高さ67mmの公称容量1300mAhのリチウムイオン二次電池を3本用意し、サンプル1、サンプル2、サンプル3とし、図3のフローチャートの判定部分を用いて、3本すべてが正常であることを確認した。
次に、0.2Cの電流で放電した後、0.2Cの電流での定電流充電を行い、充放電のクーロン効率から計算して、充電量がそれぞれ公称容量の20%、50%、80%となった時に、休止パルスを入れ、開回路電圧を計測または算出し、図6のフローチャートにしたがって、先の実施例1で求めた正常な電池の基礎データから蓄電量を求めた。その後、0.2Cの定電流にて放電し放電量を計測し確認した。
【0174】
各電池の測定した開回路電圧値と、本発明の方法にて検知した蓄電量(検知量)と放電量、検知の精度を示す率としての[(検知量−放電量)/公称容量×100](%)を、表3にまとめて示した。表3の結果から、検知蓄電量と実際の放電量との公称容量値に対する割合は、1%未満であり、極めて高い精度で一致することが分かった。
【0175】
【表3】
Figure 0005074648
【0176】
(実施例3)
市販の直径17mm高さ67mmの公称容量1300mAhのリチウムイオン二次電池を9本用意し、25℃の温度下、0.2Cの充電電流で100%充電した。その後、上記電池を3本ごとのグループに分け、次の電池温度Tと放電電流Idの3条件、▲1▼25℃、1.0C、▲2▼0℃、0.2C、▲3▼40℃、0.5Cで、放電を継続し、各グループの3本の電池の中、1本を260mAh、1本を650mAh、1本を1040mAh、放電した時点で、図14のフローチャートにしたがって、検知を開始し、9本全てが正常であると判定した(S1006)。その後に、前記実施例1の正常な電池の各種特性の取得で得られた電池の温度T、放電電流Id、電池電圧Vd、と蓄電量Q関係のデータもしくは関数式Vd(Q,Id,T)もしくはQ(Vd,Id,T)の基礎データを基に、各サンプルの蓄電量を検知した。さらに、各々の条件で放電し放電量を計測し、放電前の各サンプルの検知開始前の蓄電容量を確認した。
【0177】
各電池の測定した電池電圧値と、本発明の方法にて検知した蓄電量(検知量)と放電量、検知の精度を示す率としての[(検知量−放電量)/公称容量×100](%)を、表4にまとめて示した。表4の結果から、検知蓄電量と実際の放電量との公称容量値に対する割合は、2%未満であり、極めて高い精度で検知量と実測値が一致することが分かった。
【0178】
【表4】
Figure 0005074648
【0179】
(実施例4)
市販の直径17mm高さ67mmの公称容量1300mAhのリチウムイオン二次電池を用意し、最大充電電圧4.2V、充電電流1A、充電時間2.5時間の定電流−定電圧充電後、20分の休止時間を設けた上で、650mAの定電流で放電を、電池電圧が2.75Vに達するまで行い、放電完了後20分休止する、という充放電サイクルを200回繰り返して、本発明の検知方法にて内部状態を検知するためのサンプルとした。
【0180】
このサンプルの二次電池を、25℃の温度下で、前記同様の方法で充電した後、0.5C(650mA)の定電流で放電を開始し、図14、16および17のフローチャートにしたがって、上記定放電電流にさらに650mA×5秒の放電パルス電流を重畳させ4回の放電の変動を起こして、容量低下係数、増大した内部抵抗および蓄電量を、前記実施例1の正常な電池の基礎特性の取得で得られた電池の温度T、放電電流Id、電池電圧Vd、と蓄電量Q関係のデータもしくは関数式Vd(Q,Id,T)もしくはQ(Vd,Id,T)を基に、サンプルの蓄電量を検知した。その後、0.2C(260mA)の定電流にて放電し、放電量を計測して、放電前のサンプルの蓄電量を確認した。
【0181】
測定した、変動前後の電池電圧値と放電電流値を表5にまとめて示した。ここで、Vn0はn回目の変動前の電池電圧値、Vn1は式V=Vn1+(Vn0−Vn1)×e-t/τから計算される変動後の電池電圧値、In0はn回目の変動前の放電電流値、In1はn回目の変動後の放電電流値、を意味する。
【0182】
本発明の方法にて検知した蓄電量(検知量)と放電量、検知の精度を示す率としての[(検知量−放電量)/公称容量×100](%)、容量低下係数D、増加した内部抵抗の係数a、bを、表6にまとめて示した。なお、増加した内部抵抗は、増加前の正常時の内部抵抗をRとして、R'=a×R+bで表せるとして算出した。
【0183】
表6の結果から、サンプル電池は、蓄電容量が低下し、内部抵抗の増大していることがわかった。また、公称容量の3.5%程度の誤差の範囲で、算出した蓄電量と実際の蓄電量が一致し、性能の劣化した二次電池においても高い精度で蓄電量を検知できることが分かった。なお、今回の放電電流の変動回数は算出に必要な最低限の回数であったが、変動の回数を増すことによって、蓄電量の算出精度は上げることは可能である。
【0184】
【表5】
Figure 0005074648
【0185】
【表6】
Figure 0005074648
【0186】
(実施例5)
本実施例では、実施例1で用いたリチウムイオン電池に替えて、市販のAAサイズ公称容量1550mAhのニッケル水素化物二次電池に対して、実施例1と同様の操作で電池の内部状態を検知した。
【0187】
市販のAAサイズで公称容量1550mAhのニッケル水素化物二次電池を3本用意し、図3のフローチャートの判定部分を用いて、3本すべてが正常であることを確認した。次に、0.2Cの定電流充電で、7.5時間充電した後、0.2C(310mA)の電流で、それぞれ公称容量の20%、50%、80%放電し、蓄電量がそれぞれ80%、50%、20%となったであろう電池をサンプル1、サンプル2、サンプル3として用意した。
また、上記サンプルと同じ正常と確認した市販のAAサイズの公称容量1550mAhのニッケル水素化物二次電池の充放電から、各種特性を取得し、基礎特性から蓄電量Qと開回路電圧Vocの関係のデータもしくは関数式Voc(Q)、またはQ(Voc)等の基礎データを求めた。
【0188】
上記準備したサンプル電池3本の開回路電圧を計測し、先に求めた正常な電池の基礎データの蓄電量Qと電池の開回路電圧Vocの関係Q(Voc)から蓄電量を求めた。その後、0.2Cの定電流にて放電し放電量を計測し、放電前の各サンプルの蓄電量を確認した。
【0189】
各サンプル電池の測定した開回路電圧値と、本発明の方法にて検知した蓄電量(検知量)と放電量、検知の精度を示す率としての[(検知量−放電量)/公称容量×100](%)を、表7にまとめて示した。表7の結果から、検知蓄電量と実際の放電量との差すなわち誤差の公称容量値に対する割合は、1%未満であり、実施例1のリチウムイオン電池同様に、ニッケル水素化物電池においても極めて高い精度で一致することが分かった。
【0190】
【表7】
Figure 0005074648
【0191】
(実施例6)
本実施例では、実施例3で用いたリチウムイオン電池に替えて、市販のAAサイズ公称容量1550mAhのニッケル水素化物二次電池に対して、実施例3と同様の操作で本発明の検知方法を適用した結果について説明する。
【0192】
AAサイズの公称容量1550mAhの市販のニッケル水素二次電池を9本用意し、25℃の温度下、0.2Cの充電電流で7.5時間充電した。その後、上記電池を3本ごとのグループに分け、次の電池温度Tと放電電流Idの3条件、▲1▼25℃、1.0C、▲2▼0℃、0.2C、▲3▼40℃、0.5Cで放電を継続し、各グループの3本の電池の中、1本を310mAh、1本を775mAh、1本を1240mAh、放電した時点で、図14のフローチャートにしたがって検知を開始し、先の実施例5で求めた正常な電池の基礎データの温度T、放電電流Id、電池電圧Vd、と蓄電量Qの関係から、サンプル電池の蓄電量を検知した。その後、各々の条件で放電し放電量を計測し、サンプル電池の検知開始前の蓄電量を確認した。
各電池の測定した電池電圧値と、本発明の方法にて検知した蓄電量(検知量)と放電量、検知の精度を示す率としての[(検知量−放電量)/公称容量×100](%)を、表8にまとめて示した。表8の結果から、検知蓄電量と実際の放電量との差すなわち誤差の公称容量値に対する割合は、2%未満であり、実施例3のリチウムイオン電池同様に、ニッケル水素電池においても極めて高い精度で一致することが分かった。
【0193】
【表8】
Figure 0005074648
【0194】
以上、実施例1から実施例6までの評価において、本発明の二次電池の内部状態を検知する方法を用いれば、二次電池が正常な状態である劣化状態であるに関わらず、極めて精度の高い蓄電量の検知が可能で、これにより二次電池を電源にする機器の作動時間も精度良く検知することができる。寿命に関わる容量低下も検知することが可能であることが分かった。また、本発明は各種電池にも適用できることが分かった。
【0195】
【発明の効果】
本発明によれば、高精度の二次電池の内部状態を検知する方法が提供される。これによって、二次電池を電源に使用した機器および装置の電源制御が容易になるとともに、作動時間、充電のタイミング、電池の交換のタイミングなどを容易に知ることが可能になる。また、本発明によれば、二次電池の持つエネルギーを最大限に使用することができ、これにより二次電池を電源とする機器の作動時間も伸ばすことができる。したがって、本発明の検知方法による二次電池の内部状態の検知装置を電池パック、充電器、二次電池を電源とする機器に付加することによって、二次電池の性能を最大限に引き出すことができ、機器の性能も最大限に引き出すことができる。また、二次電池の出荷前に良品・不良品を検査する検査機械に、本発明の検知方法による二次電池の内部状態の検知装置を付加することで、精度の高い出荷検査を行うことが可能になる。
【図面の簡単な説明】
【図1】 本発明の二次電池の内部状態の検知およびその適用の流れを示したフローチャートの一例である。
【図2】 上記二次電池休止時の短絡の判定をフローチャートにした一例である。
【図3】 休止状態から二次電池に放電操作を加えて、二次電池が正常であるか、内部抵抗が増加しているのか、蓄電容量が低下しているのか、判定するフローチャートの一例である。
【図4】 図3で内部抵抗増加と判定した後の内部抵抗の算出するフローチャートの一例である。
【図5】 図3で容量低下と判定した後の内部抵抗の算出フローチャートの一例である。
【図6】 休止状態から二次電池に充電操作を加えて、二次電池が正常であるか、内部抵抗が増加しているのか、蓄電容量が低下しているのか、判定するフローチャートの一例である。
【図7】 図6で内部抵抗増加と判定した後の内部抵抗の算出するフローチャートの一例である。
【図8】 図6で容量低下と判定した後の内部抵抗の算出フローチャートの一例である。
【図9】 充電が終了した二次電池の短絡の有無の判定の流れを示したフローチャートの一例である。
【図10】 定電流-定電圧充電時の二次電池が、正常であるか、内部抵抗が増加しているのか、蓄電容量が低下しているのか、判定するフローチャートの一例である。
【図11】 電池電圧変化もしくは電池温度変化の制御による充電の二次電池が、正常であるか、内部抵抗が増加しているのか、蓄電容量が低下しているのか、判定するフローチャートの一例である。
【図12】 定電流充電時の二次電池が、正常であるか、内部抵抗が増加しているのか、蓄電容量が低下しているのか、判定するフローチャートの一例である。
【図13】 二次電池の放電中に二次電池の短絡の有無の判定するフローチャートの一例である。
【図14】 放電中の二次電池が、正常であるか、内部抵抗が増加しているか、蓄電容量が低下しているか、判定するフローチャートの一例である。
【図15】 図14で内部抵抗が増加していると判定した後に、上記内部抵抗並びに現在の蓄電量を算出するフローチャートの一例である。
【図16】 図14で蓄電容量が低下していると判定した後に、上記内部抵抗並びに現在の蓄電量を算出するフローチャートの一例である。
【図17】 図15および図16における放電中割り込みルーチンの詳細を示すフローチャートである。
【図18】 正常な二次電池の蓄電量に対する、開回路電圧、充電電圧もしくは放電電圧、内部抵抗と開回路電圧の関係の一例をそれぞれ示すグラフである。
【図19】 (1)および(2)は、正常な二次電池の蓄電量に対する、放電電流における電池電圧、電池温度における放電電圧、の関係の一例をそれぞれ示し、(3)は蓄電量に対する開回路電圧と放電電圧の関係を放電初期Iと放電中期IIと放電末期IIIに分けて示したグラフである。
【図20】 短絡した電池と短絡していない電池の開回路電圧の経時変化の一例を示したグラフである。
【図21】 (1)は、二次電池の蓄電量に対する、内部抵抗が増加した電池の内部抵抗と正常な電池の内部抵抗の関係を一例として示したグラフ、(2)は、蓄電量に対して、内部抵抗が増加した二次電池と正常な二次電池の放電時の電池電圧の関係の一例を示したグラフ、(3)は、蓄電量に対して、内部抵抗が増加した二次電池と正常な二次電池の充電時の電池電圧の関係の一例を示したグラフである。
【図22】 (1)は、正常な二次電池と蓄電容量が低下した二次電池の、蓄電量に対する開回路電圧の関係の一例を示したグラフ、(2)は、蓄電容量が低下した二次電池の、蓄電量に対する開回路電圧、充電時および放電時の電池電圧の関係の一例を示したグラフである。
【図23】 正常な電池の蓄電量に対する開回路電圧、放電時の電池電圧の関係の中で、実際に機器が使用できる二次電池の蓄電量(残量)の関係を示したグラフである。
【図24】 蓄電容量が低下した電池と正常な電池の蓄電量に対する放電時の電池電圧の関係の中で、実際に機器が使用できる二次電池の蓄電量(残量)の関係を示したグラフである。
【図25】 (1)は、休止状態から定電流パルス放電を行った際の、二次電池の電池電圧と電流の経時変化の関係の一例を示した曲線、(2)は、休止状態からの定電流パルス放電時の二次電池の電池電圧の過渡特性と時定数の式から求まる外挿電圧の関係を示した曲線である。
【図26】 (1)は、休止状態から定電流パルス充電を行った際の、二次電池の電池電圧と電流の経時変化の関係の一例を示した曲線、(2)は、休止状態からの定電流パルス充電時の二次電池の電池電圧の過渡特性と時定数の式から求まる外挿電圧の関係を示した曲線である。
【図27】 充電時の電池電圧と充電終了後の開回路電圧の経時変化の関係の一例を示したグラフである。
【図28】 定常放電状態からさらに定電流パルス放電を行った際の、それぞれ、二次電池の電池電圧の経時変化と放電電流の経時変化の関係の一例を示した曲線である。
【図29】 本発明に係る二次電池の内部状態検知装置の一例を示す回路構成図である。
【図30】 図29の内部状態検知装置を二次電池と組み合わせ、電池パックに内蔵した一例を示す回路構成図である。
【図31】 n個の二次電池に接続して二次電池の内部状態検知する本発明に係る装置の一例を示す回路構成図である。
【図32】 公称容量が1300mAhの市販のリチウムイオン二次電池を、定電流−定電圧充電後に、放電と放電停止(休止)を繰り返したときの電池電圧の経時変化を示した図である。
【図33】 図32で得られた放電時のデータの積算放電量に対する放電時の電池電圧および放電休止時の電池電圧(開回路電圧)の関係を示した図である。
【図34】 100%充電した公称容量が1300mAhの市販のリチウムイオン二次電池を、放電電流を変えて放電した場合の、積算放電量に対する電池電圧の関係を示した図である。
【符号の説明】
2101:接続端子、2102:電池電圧検出部、2103:電池温度検出部、2104:センス抵抗器、2105:増幅器、2106:抵抗器1、2107:抵抗器2、2108:トランジスタ1、2109:トランジスタ2、2110:制御部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for detecting a deterioration state of a secondary battery or an internal state represented by a storage amount, a storage capacity and an internal resistance, a device including the detection device, an internal state detection program, and the program Relates to a medium containing
[0002]
[Prior art]
Mobile devices such as portable personal computers, video cameras, digital cameras, mobile phones, and portable terminals have been rapidly developed due to advances in semiconductor elements and the development of small batteries, lightweight, and high performance secondary batteries.
[0003]
Also, environmental issues have been taken up and CO contained in the atmosphere2As the amount of gas is increasing, it is predicted that global warming will occur due to the greenhouse effect. For this reason, CO2Thermal power plants that emit large amounts of gas are becoming more difficult to construct, and night power was installed in ordinary households as an effective use of power generated by power generators such as thermal power plants. So-called load leveling has been proposed in which a secondary battery is stored and used in the daytime when the amount of power consumption is high to level the load. In addition, secondary batteries are indispensable for electric vehicles that do not emit air pollutants, and for hybrid electric vehicles that combine an internal combustion engine or fuel cell with a secondary battery that suppresses air pollutants and increases fuel efficiency. As a result, development of a secondary battery with high energy density is expected.
[0004]
In mobile devices, electric vehicles, and load conditioners for load leveling that use the above-mentioned secondary battery, it is possible to detect the capacity (remaining capacity) and life of the secondary battery with high accuracy, which can cause sudden shutdown. It is important to avoid.
[0005]
Representative examples of the secondary battery include a lithium secondary battery (including a lithium ion secondary battery, which is a generic term for a battery using lithium ion reduction and lithium oxidation reaction), a nickel-hydride battery (nickel). Hydrogen battery), nickel cadmium battery, lead battery and the like.
[0006]
As one of the remaining capacity (remaining capacity) detection methods, a method has been proposed in which battery voltage is measured and the remaining capacity is estimated and detected. Specifically, it is used in lithium ion secondary batteries using carbon materials other than graphite as the negative electrode material, and the battery voltage with respect to the amount of discharged electricity is gently reduced. Has been detected. However, in the method of calculating the remaining amount from the battery voltage, it is difficult to accurately detect the remaining amount because the battery voltage differs depending on the flowing current even if the remaining amount is the same. Furthermore, it has been extremely difficult to detect the remaining capacity of a battery that has reached the end of its life and has deteriorated performance. Further, when the carbon material is a graphite-based carbon material, the battery voltage with respect to the amount of discharge electricity is flat, and it is not easy to apply the method of calculating the remaining capacity from the battery voltage.
[0007]
As another remaining capacity detection method, a method is also proposed in which the accumulated discharge electricity amount is stored and the remaining capacity is calculated by subtracting the accumulated discharge electricity amount from the charge electricity amount. However, with this method, it is necessary to always memorize the current value and the discharge time, and when adding and charging in a charged state that does not lead to a complete discharge, the error becomes large, the battery has deteriorated in performance due to near life. It was not possible to detect the remaining amount with high accuracy.
[0008]
Japanese Patent Laid-Open No. 4-2066 proposes a method for determining the capacity of a lead-acid battery based on the recovery characteristics of the battery voltage after pulse discharge, and Japanese Patent Laid-Open No. 4-136774 discloses a temporarily large current when the power is turned on. A method has been proposed in which the battery is discharged and the voltage drop is detected and compared with a preset battery voltage value. Furthermore, in Japanese Patent Application Laid-Open No. 11-16607, a secondary battery is measured by measuring a battery voltage when a predetermined current is applied to a secondary battery for a predetermined time, and collated with a pre-recorded battery voltage-remaining capacity correspondence table. A method for detecting the remaining capacity of a battery has been proposed. However, it has been difficult to detect the remaining capacity of a battery in which any of the above proposals has deteriorated to increase the internal resistance or decrease the storage capacity.
[0009]
Next, Japanese Patent Laid-Open No. 9-134742 proposes a method for measuring the internal impedance immediately before the end-of-discharge voltage by applying an alternating current to the storage battery with an impedance measuring instrument to determine deterioration. Since a measuring instrument for measuring impedance is required, the measuring device becomes large, and measurement cannot be performed while the secondary battery is used, which is not practical.
[0010]
Therefore, there is a strong demand for a method and apparatus for detecting a remaining amount with high accuracy that can be used for various types of secondary batteries, and that can also be used for batteries having deteriorated performance due to reduced storage capacity or increased internal resistance. . Furthermore, development of a method and apparatus for detecting battery life, that is, performance degradation, is also expected.
[0011]
[Problems to be solved by the invention]
The present invention solves the problem of low accuracy of detection of the remaining capacity (remaining capacity) of the conventional battery, raises detection accuracy, and can cope with a battery having deteriorated performance. It is an object to provide a detection method and apparatus, and various devices and machines to which the method and apparatus are applied.
[0012]
[Means and Actions for Solving the Problems]
In the method for detecting the deterioration state of the secondary battery, or the internal state represented by the storage capacity and the internal resistance,
First, after determining whether the secondary battery is normal or deteriorated, or what deterioration mode is in case of deterioration, what kind of deterioration the secondary battery is normal or deteriorated Accordingly, the present inventors have found that a highly accurate method for detecting the internal state of a secondary battery can be provided by calculating the amount of electricity stored and the internal resistance.
[0013]
In particular, according to a preferred embodiment of the present invention, a determination mode is created from characteristic data of a normal battery acquired in advance, and the internal resistance increases depending on whether or not the secondary battery is short-circuited according to the determination mode. In order to determine the degree of deterioration and calculate the amount of electricity stored in the battery according to the battery state (resting state, charging state, discharging state) High internal state can be detected.
Furthermore, by mounting a device in which the above-described highly accurate internal state detection method for a secondary battery according to the present invention is functionalized on a battery pack (module), equipment, or machine, the secondary battery and a device that uses the secondary battery as a power source・ Maximize machine performance.
[0014]
  The method for detecting the internal state of a secondary battery according to the present invention includes a battery voltage to be measured when a non-degraded (normal) secondary battery is charged / discharged at various temperatures and various currents, and a storage amount (dischargeable). Volume) or basic data of discharge amount in advance,
  Measure the voltage value or voltage value and current value of the secondary battery to be detected, compare with the basic data,
(A) The secondary battery to be detected is short-circuited.
(B) The storage capacity of the secondary battery to be detected (the amount of electricity that can be stored) has not decreased and the internal resistance has increased,
(C) The storage capacity of the secondary battery to be detected (the amount of electricity that can be stored) has decreased and the internal resistance has not increased,
(D) The storage capacity of the secondary battery to be detected is decreased and the internal resistance is increased, or
(E) The secondary battery to be detected is not deteriorated (normal),
To determine whether,
Or
  Measure the voltage value or voltage value and current value of the secondary battery to be detected, and compare it with the basic data.
  The secondary battery to be detected is at the end of discharge or short-circuited.
  The internal resistance of the storage capacity of the secondary battery to be detected has increased.
  The storage capacity of the secondary battery to be detected has decreased.
  Or
  The secondary battery to be detected is normal.
To determine which
  ThenThen, the amount of electricity stored or the remaining amount of electricity that can be used by the device is calculated by a method to be described later using these determination results.
  Here, a normal secondary battery refers to a battery that satisfies performance specifications such as the nominal capacity of a product (secondary battery). Here, the storage capacity is the amount of electricity that can be stored in the secondary battery, and corresponds to the nominal capacity of the product. In addition, the amount of electricity stored here represents the amount of electricity that can be discharged from that state.
[0015]
  The basic data is, for example, in advance a plurality ofnormalCharge and discharge at various currents at various temperatures of the secondary battery, and use averaged data obtained from the measured battery voltage and stored or discharged amount, or basic data obtained in advance by computer simulation. Can do. In computer simulation, for example, existing data such as specifications or design data, or basic data obtained with similar batteries with the same unit cell structure but different output current (size), output voltage (number of series), and shape, etc. Simulation is performed based on the data.
[0016]
  Next, the basic data is as shown below, for example:
(1)Measure the battery dischargeable capacity (charge amount) Q with respect to the normal battery open circuit voltage (open voltage) Voc, and the relationship between the open circuit voltage Voc (Q) or Q (Voc) with respect to the obtained charge amount Q Data or function expressions,
(2)Various discharge currents I at various temperatures T of a fully charged normal batterydBattery voltage atd, Pause the discharge, measure the open circuit voltage Voc, and obtain the battery voltage VdOpen circuit voltage Voc and discharge current IdOr battery temperature T relationship data or functionalized Vd(Voc, Id, T) or above(1)Battery voltage V calculated from the data or function equation of the relationship of the open circuit voltage Voc (Q) to the storage amount Q ofd(Q, Id, T) or Q (Vd, Id, T), data or function expression,
(3)Said(2)The internal resistance of the battery at RdRelational expression when Vd= Voc-Id× RdOr Rd= (Voc−Vd) / IdThe internal resistance data calculated fromd(Voc, Id, T) or Rd(Vd, Id, T) or above(1)Internal resistance R obtained from data or function expression of the relationship of the open circuit voltage Voc (Q) to the stored charge Q ofd(Q, Id, T) or Q (Rd, Id, T), data or function expression,
(4)A normal battery with zero charge is charged at a temperature T and charging current IcBattery voltage V when charging withc, Then suspend charging and measure the open circuit voltage Voc, the resulting battery voltage VcAnd open circuit voltage Voc and charging current IcAnd battery temperature T relationship data or functionalized Vc(Voc, Ic, T) or above(1)Battery voltage V calculated from the data or function equation of the relationship of the open circuit voltage Voc (Q) to the storage amount Q ofc(Q, Ic, T) or Q (Vc, Ic, T), data or function expression,
(5)Said(4)The internal resistance of the battery at RcRelational expression when Vc= Voc + Ic× RcOr Rc= (Vc−Voc) / IcThe internal resistance data calculated fromc(Voc, Ic, T) or above(1)Internal resistance R obtained from data or function expression of the relationship of the open circuit voltage Voc (Q) to the stored charge Q ofc(Q, Ic, T) or Q (Rc, Ic, T), data or function expression,
Above(1),(2),(3),(4),(5)Is at least one data or function expression selected from.
[0017]
The method for detecting the internal state of the secondary battery according to the present invention is based on the basic data or the function formula, and the secondary circuit's open circuit voltage, battery voltage, internal From the information selected from the resistors, the above-described secondary battery can be determined according to the determination mode.
[0018]
Furthermore, in the present invention, the transient characteristic of the battery voltage when the charging current or discharging current fluctuates is e.-t / τ(E is the base of natural logarithm, t is time, and τ is a time constant determined by battery impedance, etc.). Then, a reduction rate of the storage capacity (capacity that can be stored) is calculated, and the storage amount (capacity that can be discharged) can be obtained.
[0019]
In addition, according to the present invention, the amount of electricity stored when the minimum voltage (minimum operating voltage) necessary for the operation of the device powered by the secondary battery is reached is calculated, and the current consumption or power consumption of the device is calculated. From this, the remaining operating time can be determined. As a result, it is possible to prevent sudden operation stoppage of the device and to replace or charge the secondary battery when appropriate.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors acquired, as basic data, data or a functional expression of the relationship between the charged amount (or dischargeable capacity) and open circuit voltage (open voltage) of the normal secondary battery, and the charged amount and internal resistance. First, determine whether it is normal or deteriorated by measuring the battery voltage and current value of the secondary battery to be detected in use and comparing it with the data or function expression of the characteristics of the normal secondary battery. Based on this determination, the present inventors have found that the storage capacity and internal resistance are calculated, and the remaining discharge capacity (storage amount) of the battery can be calculated accurately.
[0021]
[Acquisition of basic data of normal secondary battery and functional expression]
The open circuit voltage of the secondary battery is proportional to the difference between the chemical potential of the negative electrode and the positive electrode, and the dischargeable capacity (capacity) is determined by the chemical potential of the negative electrode and the positive electrode at that time. That is, the chemical potential of each of the negative electrode and the positive electrode varies depending on the charged amount, and has a correlation with the charged amount. In other words, there is a correlation between the charged amount and the open circuit voltage. Further, the negative electrode and the positive electrode whose state changes depending on the amount of stored electricity also have different resistances at the time and different internal resistances. Therefore, there is a correlation between the internal resistance of the battery, the open circuit voltage, and the charged amount. Also, between battery voltage, current, open circuit voltage and internal resistance
[Battery voltage during discharge] = [Open circuit voltage]-[Discharge current] x [Internal resistance]
[Battery voltage during charging] = [Open circuit voltage] + [Charging current] x [Internal resistance]
Therefore, the present inventors have previously determined the correlation between the battery internal resistance and the storage amount, and the open circuit voltage and the storage amount, and the relationship between the battery voltage, current, open circuit voltage, and internal resistance. From the above, it was found that the dischargeable capacity (charged amount) can be calculated.
[0022]
(1) to (3) in FIG. 18 and (1) to (2) in FIG. 19 are an open circuit voltage, a charge voltage or a discharge voltage, an internal resistance and an open circuit voltage with respect to the charged amount of a normal secondary battery, The relationship between the battery voltage at two types of discharge currents and the discharge voltage at two types of battery temperatures is shown. Here, a normal secondary battery refers to a secondary battery that has been sold as a product and has been used and deteriorated, such as a decrease in capacity or an increase in internal resistance.
[0023]
(1) of FIG. 18 is a graph showing the relationship of the open circuit voltage Voc with respect to the storage amount Q, that is, 100 × Q / C%, when the nominal capacity C of the secondary battery or the storage capacity before deterioration is 100%. is there. Since the open circuit voltage of the secondary battery is almost independent of the temperature of the secondary battery and is determined by the amount of charge at that time, the open circuit voltage Voc of the battery with respect to the charge amount (or dischargeable capacity) Q of the battery is measured. Thus, data or a function expression of the relationship of the open circuit voltage Voc (Q) or Q (Voc) to the obtained storage amount Q is obtained. Actually, assuming that the open circuit voltage Voc is an n-order function of the stored charge Q, Voc (Q) = cn× Qn+ Cn-1× Qn-1+ Cn-2× Qn-2+ ... + c1× Q + c0  (However, n is a positive integer) Voc (Q) is compared with the amount of electricity (charged amount) Q that can be discharged at the actual measured open circuit voltage Voc. Using the technique, the function formula closest to the measurement data can be obtained.
[0024]
(2) in FIG. 18 shows the open circuit voltage Voc with respect to the charged amount when the nominal capacity of the secondary battery is 100% when the battery temperature is constant, and the charging voltage Vc, Discharge voltage VdIt is the graph which showed this relationship.
[0025]
(3) of FIG. 18 is a graph showing the relationship of the internal resistance R of the secondary battery with respect to the stored amount when the nominal capacity of the secondary battery or the storage capacity before deterioration is 100%. From the data shown in these graphs, the internal resistance of the battery during discharge is RdRelational expression when Vd= Voc-Id× RdOr Rd= (Voc−Vd) / IdThe internal resistance data calculated fromd(Voc, Id, T) or Rd(Vd, Id, T). Also, the internal resistance of the battery during charging is RcRelational expression when Vc= Voc + Ic× RcOr Rc= (Vc−Voc) / IcThe internal resistance data calculated fromc(Voc, Ic, T). Further, the internal resistance R is calculated from the data or function expression of the relationship of the open circuit voltage Voc (Q) to the charged amount Q obtained from these data or function expression and the data shown in (1) of FIG.d(Q, Id, T) or Q (Rd, Id, T) is obtained.
[0026]
(1) in FIG. 19 shows the discharge current value I with respect to the charged amount when the nominal capacity of the secondary battery is 100%.d= I1, i2Discharge voltage VdIt is the graph which showed this relationship. Depending on the magnitude of the discharge current, the internal resistance of the battery also changes, so the battery voltage also changes. Of course, even during charging, the internal resistance of the battery changes depending on the magnitude of the charging current, and thus the battery voltage also changes.
[0027]
(2) in FIG. 19 shows the battery temperature T = T with respect to the storage amount when the nominal capacity of the secondary battery or the storage capacity before deterioration is 100%.1, T2Open circuit voltage Voc and discharge voltage VdIt is the graph which showed this relationship. From this, the battery voltage V during dischargedAnd open circuit voltage Voc and discharge current IdOr battery temperature T relationship data or functionalized Vd(Voc, Id, T). Further, from these data or function expression and the data or function expression of the relationship of the open circuit voltage Voc (Q) with respect to the charged amount Q obtained from (1) of FIG.d(Q, Id, T) or Q (Vd, Id, T) is obtained. Of course, battery voltage V during chargingcAnd open circuit voltage Voc and charging current IcAnd battery temperature T relation data or functionalized Vc(Voc, Ic, T) is also obtained.
[0028]
The battery voltage and internal resistance are solidified higher than the solidification temperature of the electrolyte used in the secondary battery and lower than the boiling point of the solvent of the electrolyte, or higher than the glass transition temperature of the solidified electrolyte used in the secondary battery. In the range lower than the melting temperature of the electrolyte, it can be expressed as a continuous function with respect to the battery temperature, but the solidification temperature of the electrolytic solution and the boiling point of the solvent of the electrolytic solution, or the glass transition temperature of the solidified electrolyte and the melting temperature of the solidified electrolyte. It becomes discontinuous at the border. The reason for the discontinuity is that the ionic conductivity of the electrolytic solution or the solid electrolyte rapidly changes at the temperature of these boundaries.
[0029]
From the acquired data such as (1) to (3) in FIG. 18 and (1) to (2) in FIG. 19, the storage amount of the secondary battery is a function of the open circuit voltage, and the battery voltage is the storage amount, current, and battery. A function according to temperature and an internal resistance can also be expressed as a function depending on the amount of storage, current and battery temperature. The function expression to be obtained is assumed to be a function that can be expressed by, for example, an nth order (n is a positive integer) expression, and is obtained using a method such as Newton's method or least square method so that the difference from the data is minimized. it can.
[0030]
Further, (3) in FIG. 19 shows the open circuit voltage Voc and the discharge voltage V with respect to the charged amount when the nominal capacity of the secondary battery or the charged capacity before deterioration is 100%.d5 is a graph showing the relationship between the initial discharge stage I, the middle discharge stage II, and the final discharge stage III. By dividing in this way, it becomes possible to express the characteristics such as the open circuit voltage, the battery voltage, and the internal resistance with respect to the charged amount with a simplified function expression.
[0031]
[Determining whether the secondary battery is normal]
In the present embodiment, before calculating the amount of storage of the actual secondary battery, depending on whether the secondary battery is in a dormant state in which neither charging nor discharging is being performed, charging or discharging, Select a suitable judgment method, whether the secondary battery is short-circuited, the storage capacity is reduced, the internal resistance is increased, whether it is normal, or the normal battery characteristics acquired in advance Judge by comparison. Thereafter, the amount of stored electricity is calculated according to each determination.
[0032]
In the above determination, first, it is determined whether or not the battery is short-circuited, and then it is determined whether or not the storage capacity of the battery has decreased, or whether or not the internal resistance of the battery has increased. Next, in the detection method of the present embodiment, the internal state such as the storage amount, the storage capacity, the internal resistance, the capacity reduction coefficient, and the life is detected. FIG. 1 is an example of a flowchart showing a flow of detection of the internal state of the secondary battery. Further, in FIG. 1, if the battery is being charged, the full charge amount and the time required to complete the charge, and if it is connected to the device and in use, the amount of battery charge (remaining amount) that the device can use and the device A flowchart for calculating the operation time is also described. In FIG. 1, after the short circuit is determined, the increase in the internal resistance is determined and the decrease in the storage capacity is determined. However, after the short circuit determination, the decrease in the storage capacity is determined, and then the internal resistance is determined. It may be a flow for determining an increase in.
[0033]
Short circuit judgment
The criteria for determining that the secondary battery in use is short-circuited are:
(I) There is a decrease in open circuit voltage over time (elapsed time) during a pause when neither discharging nor charging is performed.
(Ii) The increase in battery voltage or open circuit voltage during charging is small compared to normal batteries.
(Iii) The open circuit voltage is significantly lower than that of a normal battery, and the decrease in battery voltage during discharge is significantly greater than that of a normal battery.
(iv) The internal resistance is significantly smaller than that of a normal battery.
One of them. FIG. 20 shows the change over time of the open circuit voltage Voc of the short-circuited battery and the non-short-circuited battery.
[0034]
Increased internal resistance
If it is determined that the internal resistance of the secondary battery being used has increased, it does not correspond to the case where it is determined that the short circuit, and
(I) Although the open circuit voltage is equivalent to that of a normal battery, the increase in battery voltage during charging is larger than that of a normal battery.
(Ii) The open circuit voltage is equivalent to that of a normal battery, but the battery voltage drop during discharge is larger than that of a normal battery.
(Iii) The internal resistance of the battery is larger than the internal resistance of a normal battery,
One of them.
[0035]
(1) in FIG. 21 is a graph of the internal resistance with respect to the storage amount Q, that is, 100 × Q / C%, assuming that the nominal capacity C of the secondary battery or the storage capacity before deterioration is 100%, and the internal resistance increased. The internal resistance (R ′ = a × R + b) of the battery is compared with the internal resistance (R) of a normal battery.
[0036]
(2) in FIG. 21 shows an increase in internal resistance (R ′ = a × Rd+ B) and normal (R = R)d) And battery voltage V with respect to the amount of electricity stored during dischargedIt is the graph which showed this relationship.
[0037]
(3) in FIG. 21 shows an increase in internal resistance (R ′ = a × Rc+ B) and normal (R = R)c) And battery voltage V with respect to charge amount% during chargingcIt is the graph which showed this relationship. The internal resistance can also be calculated from transient characteristics at the start of charging or discharging from the rest state.
[0038]
Reduced storage capacity
When determining that the storage capacity of the secondary battery being used is reduced, it does not fall under the case of the short circuit,
(I) The rise in battery voltage and open circuit voltage during charging is larger than those in normal batteries,
(Ii) The decrease in battery voltage and open circuit voltage during discharge is smaller than that during short circuit, but greater than those of normal batteries,
One of them.
[0039]
In the secondary battery used, the internal resistance does not increase, but the storage amount Q ′ = D × Q (Q: when the storage capacity C ′ is reduced to D times the storage capacity C of the normal battery The relationship between the amount of electricity stored in a normal battery) and the open circuit voltage Voc is as shown in (1) of FIG. However, the storage amount% here represents the storage amount Q when the nominal capacity C of the secondary battery or the storage capacity before deterioration is 100%, that is, equivalent to 100 × Q / C%.
[0040]
From the functional equation Voc (Q) of the open circuit voltage Voc with respect to the normal battery storage amount Q%, the open circuit voltage functional equation with respect to the storage amount Q ′ after capacity reduction can be expressed as Voc (Q ′ / D). Further, the battery voltage at the time of charging or discharging with respect to the charged amount is in the relationship of the graph of (2) in FIG. The battery voltage at the time of charging and the battery voltage at the time of discharging with respect to the storage amount Q ′ in the battery whose storage capacity is reduced from C to C ′ (C ′ = D × C) are V, respectively.c(Q '/ D, Ic, T), Vd(Q '/ D, Id, T).
[0041]
normal
When it can be determined that the used secondary battery is not deteriorated (normal), it is a case where none of the short circuit, the increase in internal resistance, or the decrease in the storage capacity is satisfied.
[0042]
[Calculation of storage capacity]
If it can be determined that the battery is a normal secondary battery, the amount of charge can be measured by measuring the open circuit voltage Voc of the secondary battery, or the charging current I or discharging current I, the battery voltage V, and the battery temperature. From Voc (Q), which is the relationship between Q and open circuit voltage Voc, or V (Q, I, T), which is the relationship between storage capacity Q and current value I during discharging or charging, battery temperature T, and battery voltage V The quantity Q can be calculated.
[0043]
For secondary batteries with reduced storage capacity, the change in open circuit voltage Voc before and after charging or discharging and the increase or decrease in the amount of storage at that time, or the battery voltage V during chargingcOr battery voltage V during dischargedBy calculating the capacity decrease coefficient D based on the change in power and the increase / decrease in the amount of electricity stored at that time, the amount of electricity stored at that time can be obtained.
[0044]
The storage capacity of a secondary battery with increased internal resistance but no decrease in storage capacity has an open circuit voltage equivalent to that of a normal battery. Therefore, the storage amount can be obtained by measuring the open circuit voltage. Further, the storage capacity can be obtained after measuring the current and battery voltage of the secondary battery and calculating the internal resistance.
[0045]
The amount of electricity stored in the secondary battery with the reduced storage capacity and the increased internal resistance can be obtained while calculating the capacity decrease coefficient D and the increased internal resistance R ′.
[0046]
[Calculation of internal resistance]
In a secondary battery with increased internal resistance, the increased resistance value R ′ is a function of the original normal resistance R as follows:
R ′ = a × R or R ′ = a × R + b,
Or R '= an× Rn+ An-1× Rn-1+ An-2× Rn-2+ ... + a1× R + a0  (N is a positive integer),
As a result, constants a, b, an, an-1, ‥‥, a1, a0And the increased internal resistance can be determined.
[0047]
[Calculation of rate of decrease in storage capacity]
For a secondary battery with a reduced storage capacity, the function Voc (Q '/ D) of the open circuit voltage with respect to the storage amount Q' after the decrease in capacity to D times as described above, when charging to the storage amount Q 'after the decrease in capacity Battery voltage Vc(Q '/ D, Ic, T) or battery voltage V during discharged(Q '/ D, Id, T) and the calculation of the amount of increase in the charged amount before and after the actual charge or the decrease in the charged amount before and after the actual charge, the capacity reduction coefficient D can be calculated. Then, the actual storage capacity Q ′ can also be obtained.
[0048]
[Remaining capacity (remaining capacity) that can be used with actual equipment and operating time]
For devices using secondary batteries as the power source, the minimum voltage at which the device operates is determined by each device, so the voltage of the secondary battery is equal to the minimum operating voltage of the device (the secondary battery voltage for operating the device). If it becomes lower than the necessary voltage), it cannot be used even if the amount of stored power that can be discharged remains. Here, the amount of electricity that can be used by the device is referred to as the remaining capacity (remaining amount). Therefore, the remaining amount of the secondary battery is an amount of electricity obtained by subtracting the amount of electricity stored when the battery voltage corresponds to the minimum operating voltage of the device from the current amount of electricity stored. FIG. 23 shows the open circuit voltage and the battery voltage at the time of discharge with respect to the storage amount% (relative to the nominal capacity or storage capacity C) of a normal battery. The storage amount at the time of use is Q, the minimum operating voltage V of the device.minQminThe amount of electricity stored in the secondary battery that can actually be used, that is, the remaining amount is [Q-Qmin]. FIG. 24 shows the relationship of the battery voltage with respect to the storage amount% of a battery whose storage capacity is reduced from C to C ′ (C ′ = D × C) and a normal battery. Battery temperature T, discharge current Id, Battery voltage VdWhen the charged amount of the battery with reduced capacity is Q ′, the charged amount Q of a normal battery is Q = Q ′ / D (D is a capacity drop coefficient). Also, the minimum operating voltage V of the equipmentminWhen the battery reaches a capacity of Q 'minThe storage capacity of the corresponding normal battery is Qmin= Q 'min/ D (D is the capacity reduction coefficient). Therefore, the relational expression V of the battery voltage during discharged= Vd(Q '/ D, Id, T) and Vmin= Vd(Q 'min/ D, Id, T), the stored energy Q 'and Q'minCan be calculated, and the remaining capacity of the battery with reduced storage capacity is [Q'-Q 'min].
[0049]
The operating time of the equipment can be expressed as the time obtained by dividing the remaining power by the current consumption of the equipment, or the time obtained by dividing the supply energy of the secondary battery until reaching the minimum operating voltage by the power consumption of the equipment. become.
[0050]
[Detection of internal state of each secondary battery usage]
Detection of internal state of secondary battery in hibernation
<Short-circuit judgment>
Measure the change in battery open circuit voltage Voc over time,
I. Decrease rate of Voc is a predetermined value v0Greater than -dVoc / dt> v0If> 0, determine that the battery is short-circuited,
II. Voc drop rate is 0 ≦ -dVoc / dt ≦ v0If it is, it is determined that the battery is not short-circuited.
FIG. 2 is an example in which a determination of a short circuit at the time of suspension of the secondary battery is made as a flowchart.
[0051]
Detection of the internal state of the secondary battery in the discharge operation from the rest state
The secondary battery is not charging or discharging, it is in a dormant state, and the open circuit voltage Voc of the battery0After measuring the aging of the open circuit voltage Voc0To current value I1X time t1Of electricity q1The battery voltage V and the open circuit voltage Voc after stopping1Is measured to determine whether the battery is normal or deteriorated. FIG. 25 (1) shows changes with time in battery voltage and current in the above operation. The discharge current is preferably a rectangular wave pulse current.
[0052]
FIG. 3 is a flowchart for determining whether the secondary battery is normal, the internal resistance is increasing, or the storage capacity is decreasing by applying a discharging operation to the secondary battery from the resting state. An example is shown. Case 1 (S310) in the flowchart of FIG. 3 has a storage capacity larger than the storage capacity of a normal battery acquired in advance, and this battery is also considered normal. In Case 2 (S316), the internal resistance is smaller than a normal battery acquired in advance but is not short-circuited, and this battery is also considered normal. The calculation of the internal resistance after determining the increase in internal resistance and the decrease in capacity is shown in FIGS. 4 and 5, respectively, and will be described later.
[0053]
<I. Judgment of short circuit>
Decrease rate of open circuit voltage Voc is a predetermined value v0Greater than, ie -dVoc / dt> v0When> 0, it is determined that the battery is short-circuited.
[0054]
<II. Determination of normal or increased internal resistance>
If it does not fall under the above short circuit of I, that is, the open circuit voltage drop rate is v0This determination is made when:
In the case of a battery in which the storage capacity has not decreased, from FIG. 18 (1), there is a one-to-one correspondence between the storage amount and the open circuit voltage, and if the open circuit voltage is known, the storage capacity can be determined. You can see the open circuit voltage.
In (1) of FIG. 25, the open circuit voltage Voc in the battery rest state.0After measuring the current value I1X time t1Of electricity q1Measure the battery voltage V until the discharge stops, and open circuit voltage Voc after the discharge stops1Was also measured. If this battery is a battery with no capacity reduction, open circuit voltage Voc0The amount of electricity stored at0= Q (Voc0)1The amount of electricity stored after discharging is Q0-q1, Open circuit voltage is Voc (Q0-q1) Should be. Here, the storage amount Q is expressed by a functional expression Q = Q (Voc) of the open circuit voltage Voc, and the open circuit voltage Voc is expressed by a relational expression Voc = Voc (Q) of the storage amount Q.
[0055]
Open circuit voltage Voc (Q0-q1) And measured value Voc1Difference of f0≤ [Voc (Q0-q1) −Voc1] ≦ f1 (f0<0 <f1), It can be determined that there is no reduction in the capacity of the battery because it can be regarded as substantially equivalent when it is within the variation range of the product characteristics. Also, assuming that the transient characteristics of the battery voltage at the beginning of discharge can be expressed by the following equation, the battery voltage V with respect to the measured discharge time t
Formula V = V1+ (Voc0−V1) × e-t / τ
(However, V1Is V when time t is extrapolated to infinity, and τ is a time constant determined by the internal resistance of the battery)
By open circuit voltage Voc0To discharge current I1While obtaining the time constant τ when starting discharge at V1Is calculated. (2) in FIG. 25 is V obtained from the above equation.1And the transient characteristics of the battery voltage.
[0056]
Furthermore, the internal resistance of the battery is R1Then,
Formula V1= Voc0−I1× R1, R1= (Voc0−V1) / I1
Internal resistance R obtained from1And the open circuit voltage Voc acquired in advance.0(Or charge amount Q0) And discharge current I1Of normal battery internal resistance to battery temperature Td(Voc0, I1, T) (or Rd(Q0, I1, T))
(I) Internal resistance R1And normal battery internal resistance Rd(Voc0, I1, T) (or Rd(Q0, I1, T)) is substantially equivalent, that is, r within the range of variation in the internal resistance of the product.1≦ [R1-Rd(Q0, I1, T)] ≦ r2 (r1<0 <r2), It is determined that the battery is normal.
(Ii) [R1-Rd(Q0, I1, T)] > r2 (0 <r2), It is determined that the internal resistance has increased.
[0057]
<III. Determination of capacity reduction>
When the short circuit of I above is not met, a normal battery is open circuit voltage Voc0Storage amount Q at the time of0In addition, the open circuit voltage Voc (Q0-q1) And Voc1Difference of [Voc (Q0-q1) -Voc1] > f1 (0 <f1), It is determined that the battery capacity has decreased.
[0058]
<Calculation of internal resistance when internal resistance increases>
When it is determined in (ii) of II. Above that the internal resistance has increased, the internal resistance R = R of the battery having a normal internal resistanced(Q, Id, T) to R '= a × Rd(Q, Id, T) + b (a and b are constants, Q is the amount of electricity stored, IdIs assumed to have increased to the discharge current and T is the battery temperature), the value of the increased internal resistance can be calculated by the following operation. A flowchart continuing from B in FIG. 3 is shown in FIG.
[0059]
Discharge at least twice from the rest state, ie open circuit voltage Voc0To current value I1X time t1Of electricity q1Then the open circuit voltage Voc1To current value I2X time t2Of electricity q2The battery voltage V and the open circuit voltage Voc after stopping2Measure. Assuming that the transient characteristics of the battery voltage at the beginning of discharge can be expressed by the following equation, the battery voltage V with respect to the measured discharge time t
Formula V = V1+ (Voc0−V1) × e-t / τ
(However, V1Is V when extrapolating time t to infinity, and τ is a time constant)
Open circuit voltage Voc0To discharge current I1While obtaining the time constant τ when starting discharge at V1Is calculated. The internal resistance of the battery at this time is R1As
V1= Voc0−I1× R1Or R1= (Voc0−V1) / I1
To R1Ask for. Similarly, V = V2+ (Voc1−V2) × e-t / τ
(However, V2Is V when extrapolating time t to infinity, and τ is a time constant)
By open circuit voltage Voc1To discharge current I2While obtaining the time constant τ when starting discharge at V2Is calculated. The internal resistance of the battery at this time is R2As
V2= Voc1−I2× R2Or R2= (Voc1−V2) / I2
To internal resistance R2Seeking
R1− [A × Rd(Q0, I1, T) + b] = 0 (Q0: Open circuit voltage Voc0Storage amount at the time of)
R2− [A × Rd(Q0-q1, I2, T) + b] = 0 (Q1= Q0-q1: Open circuit voltage Voc1Storage amount at the time of
Or Q1= Q (Voc1) R2− [A × Rd(Q1, I2, T) + b] = 0
To constants a and b and Q0Increased internal resistance Rd'= a × Rd(Q, Id, T) + b can be calculated.
[0060]
In the calculation of the internal resistance, in order to estimate the battery voltage when the discharge current fluctuates, the above-described equation using the time constant τ is used. However, this equation is an example, and another approximation equation can be used. It may be used and is not limited to this formula.
[0061]
<Calculation of reduction rate of storage capacity>
If it is determined in III. Above that the battery storage capacity is decreasing, the battery storage capacity is D times the normal battery storage capacity (D is a constant 0 <D <1). Assuming that the value of the storage capacity decreased by the following operation can be calculated. A flowchart continuing from C in FIG. 3 is shown in FIG. Case 2 (S334) in FIG. 5 is smaller than the internal resistance of a normal battery acquired in advance, but is not short-circuited, and it is determined that the internal resistance has not increased.
[0062]
In (1) of FIG. 25, the open circuit voltage Voc in the dormant state0The battery current value I1With quantity of electricity q1After discharge, the open circuit voltage is Voc1The open circuit voltage is Voc0If the battery is normal, Q0However, since the battery has a storage capacity that is D times lower,0'And. The relationship between the open circuit voltage and the stored charge amount Q of a normal battery Voc (Q), Q (Voc), a battery whose storage capacity is reduced by D times, the same charge as a normal battery if the stored amount is multiplied by 1 / D It can be regarded as a quantity.
Therefore, Voc0= Voc (Q0) = Voc (Q0'/ D), Q0= Q0'/ D = Q (Voc0).
In addition, quantity of electricity q1Q1'Then
Q1'= Q0'−q1
Voc1= Voc (Q0'/ D−q1/ D), Q0'/ D−q1/ D = Q (Voc1)
Q (Voc0) −q1/ D = Q (Voc1)
q1/ D = Q (Voc0) −Q (Voc1)
D = q1/ [Q (Voc0) −Q (Voc1))
Thus, the reduction constant D of the storage capacity can be obtained. At this time, the amount of electricity stored in the battery is Q (Voc1) × D.
[0063]
(I) Further, the R obtained in the above II.1To r1≦ [R1−Rd(Q0'/ D, I1, T)] ≦ r2 (r1<0 <r2), The battery has no increase in internal resistance, but it can be determined that the storage capacity has decreased.
(Ii) Also, the R calculated in II.1To [R1−Rd(Q0'/ D, I1, T)] > r2 (0 <r2), It can be determined that the storage capacity is decreasing and the internal resistance is increasing.
[0064]
In (2) of FIG. 25, the next second quantity of electricity q2Is not shown, but the open circuit voltage Voc0To current value I1X time t1Of electricity q1Then the open circuit voltage Voc1To current value I2X time t2Of electricity q2The battery voltage V and the open circuit voltage Voc after stopping2, And assuming that the transient characteristics of the battery voltage at the beginning of discharge can be expressed as
V = V1+ (Voc0−V1) × e-t / τ
(However, V1Is V when extrapolating time t to infinity, and τ is a time constant)
The internal resistance of the battery at this time is R1Then,
V1= Voc0−I1× R1, R1= (Voc0−V1) / I1
Similarly, V = V2+ (Voc1−V2) × e-t / τ
(However, V2Is V when extrapolating time t to infinity, and τ is a time constant)
The internal resistance of the battery at this time is R2Then,
Formula V2= Voc1−I2× R2, R2= (Voc1−V2) / I2
The internal resistance of the battery is Rd(Q, Id, T) to a × Rd(Q, Id, T) + b (a and b are constants)
R1− [A × Rd(Q0, I1, T) + b] = 0
R2− [A × Rd(Q1, I2, T) + b] = R2− [A × Rd(Q0−q1/ D, I2, T) + b] = 0,
(However, Q0= Q0'/ D, Q1= Q1'/ D, Q0', Q1'Open circuit voltage is Voc0, Voc1Is the amount of electricity stored at the time of
To constants a and b and D and Q0', And the internal resistance R after increasing the internal resistance of the battery with reduced storage capacity' = a × Rd(Q '/ D, Id, T) + b (Q ′ is the true amount of electricity stored when the capacity decreases).
[0065]
Detection of the internal state of the secondary battery during charging from hibernation
The secondary battery is not charging or discharging, it is in a dormant state, and the open circuit voltage Voc of the battery0After measuring the current value Ic1To start charging the battery voltage VcTo measure the current value Ic1X time t1× Electric charge q of charge / discharge efficiency Eff1Just charge the battery voltage is Vc1When it becomes, charge is stopped and the change over time of the open circuit voltage Voc is measured, and the stable open circuit voltage is1By doing so, the internal state of the secondary battery is detected. FIG. 26 (1) shows changes with time in battery voltage and current in the above operation. The charging current is preferably a rectangular wave pulse current.
[0066]
Open circuit voltage Voc after stopping charging1Is the open circuit voltage Voc after a predetermined time1Or can be calculated from an equation showing the transient characteristics. FIG. 6 is a flowchart of determining whether the secondary battery is normal, the internal resistance is increased, or the storage capacity is decreased by applying a charging operation to the secondary battery from the rest state. An example is shown. The calculation of the internal resistance after determining the increase in internal resistance and the decrease in capacity is shown in FIGS. 7 and 8, respectively, and will be described later.
In addition, although the method of detecting the internal state of the secondary battery by performing the charging operation from the resting state is described here, the internal state of the secondary battery is similarly detected by operating the resting pulse from the charging state. can do.
[0067]
<I. Judgment of short circuit>
(I) The relationship between the amount of charge stored in a normal battery and the open circuit voltage Voc (Q)0Storage amount Q at the time of0And the open circuit voltage Voc (Q0+ Q1) And Voc1Difference of [Voc (Q0+ Q1) −Voc1] > g1 (g1> Ii) (ii) relationship between the amount of charge, the charging current, the battery temperature, and the battery voltage of a normal battery Vc(Q, Ic, T)c(Q0+ Q1, Ic, T) −Vc1] > j1(J1> Iii) (iii) Relationship between the charged amount or open circuit voltage, charging current, battery temperature, and normal battery internal resistance Rc(Voc, Ic, T)c1−Rc(Voc1, Ic, T)] <z1(Z1<0, Rc1Is the battery voltage Vc1In the case of any of (i), (ii), and (iii) above, it is determined that the battery is short-circuited.
[0068]
<II. Normal, internal resistance increase judgment>
The relationship between the amount of charge stored in a normal battery and the open circuit voltage Voc (Q) to the open circuit voltage Voc0Storage amount Q at the time of0Open circuit voltage Voc (Q0+ Q1) And Voc1Difference of g0≤ [Voc (Q0+ Q1) −Voc1] ≦ g1 (g0<0 <g1), It is determined that the battery capacity has not decreased,
Furthermore, assuming that the transient characteristics of the battery voltage at the beginning of charging can be expressed by the following equation, the battery voltage V with respect to the measured charging time tcWhen
Formula Vc= V1− (V1−Voc0) × e-t / τ
(However, V1Is V when extrapolating time t to infinitycΤ is a time constant determined by the internal resistance of the battery)
By open circuit voltage Voc0To charging current Ic1While obtaining the time constant τ when charging started at1Is calculated. (2) in FIG. 26 is V obtained from the above equation.1And the transient characteristics of the battery voltage.
[0069]
Also, the internal resistance of the battery at this time is Rc1As
V1= Voc0+ Ic1× Rc1, Rc1= (V1−Voc0) / Ic1
Internal resistance R obtained fromc1Normal battery internal resistance Rc(Voc0, Ic1, T) or Rc(Q0, Ic1, T), the following determination is made.
(I) z1≦ [Rc1−Rc(Q0, Ic1, T)] ≦ z2 (z1<0 <z2)If it is,
Or j1≦ [Vc1-Vc(Q0+ Q1, Ic, T)] ≦ j2(J1<0 <j2), It is determined that the battery is normal.
The internal resistance and battery voltage expressed by the above inequality are due to the range of variation in the characteristics of the product (normal battery). This variation range (z1, Z2, J1, J2, G0, G1) Depends on the type of battery.
(Ii) [Rc1−Rc(Q0, Ic1, T)] > z2 (0 <z2)If it is,
Or j2<[Vc1−Vc(Q0+ Q1, Ic, T)] (0 <j2), It is determined that the internal resistance has increased.
[0070]
<III. Determining storage capacity drop>
The open circuit voltage Voc (Q0+ Q1) And Voc1Difference of [Voc (Q0+ Q1) −Voc1] <G0 (g0If <0), it is determined that the capacity of the battery has decreased.
[0071]
<Calculation of increased internal resistance>
II. After the determination of the increase in internal resistance in (ii), as an example, the internal resistance of the battery is R = Rc(Q, Ic, T) to R '= a × Rc(Q, Ic, T) + b (a and b are constants), the value of the increased internal resistance can be calculated by the following operation. A flowchart continuing from F in FIG. 6 is shown in FIG.
Charging at least twice from hibernation, ie open circuit voltage Voc0To current value Ic1X time t1Of electricity q1After charging, then open circuit voltage Voc1To current value Ic2X time t2Of electricity q2Battery voltage V until only charging and stopping chargingcAnd open circuit voltage Voc after stopping2And increase the internal resistance R ′ = a × R according to the following procedure.c(Q, Ic, T) + b can be calculated.
[0072]
Assuming that the transient characteristics of the battery voltage at the beginning of charging can be expressed as
Vc= V1− (V1−Voc0) × e-t / τ
(However, V1Is V when extrapolating time t to infinitycAnd τ is a time constant determined by the internal resistance of the battery)
By open circuit voltage Voc0To charging current Ic1While obtaining the time constant τ when charging started at1Can be calculated. The internal resistance of the battery at this time is Rc1Then,
V1= Voc0+ Ic1× Rc1, Rc1= (V1−Voc0) / Ic1
Similarly, on the second charge
Vc= V2− (V2−Voc1) × e-t / τ
(However, V2Is V when extrapolating time t to infinitycAnd τ is a time constant)
By open circuit voltage Voc1To charging current Ic2While obtaining the time constant τ when charging started at2The internal resistance of the battery is Rc2Then,
Formula V2= Voc1+ Ic2× Rc2, Rc2= (V2−Voc1) / Ic2
To internal resistance Rc2Can be requested.
[0073]
In addition, the internal resistance of the battery is Rc(Q, Ic, T) to a × Rc(Q, Ic, T) + b (a and b are constants)
Rc1− [A × Rc(Q0, Ic1, T) + b] = 0
Rc2− [A × Rc(Q0+ Q1, Ic2, T) + b] = 0,
Or Q1= Q (Voc1) Rc2− [A × Rc(Q1, Ic2, T) + b] = 0
By solving these equations, constants a and b are obtained, and the increased internal resistance Rc'= a × Rc(Q, Ic, T) + b can be calculated.
[0074]
In the calculation of the internal resistance, in order to estimate the battery voltage when the charging current fluctuates, the above-described equation using the time constant τ is used. It may be used and is not limited to this formula.
[0075]
(Calculation of storage capacity reduction factor)
III. When it is assumed that the storage capacity of the battery is D times the normal storage capacity of the battery (D is a constant 0 <D <1), Can be calculated. A flowchart continuing from G in FIG. 6 is shown in FIG. Case 2 (S434) in FIG. 8 is smaller than the internal resistance of a normal battery acquired in advance, but is not short-circuited, and it is determined that the internal resistance has not increased.
[0076]
In (1) of FIG. 26, the open circuit voltage Voc in the dormant state0The battery current value I1With quantity of electricity q1After charging, open circuit voltage is Voc1The open circuit voltage is Voc0If the battery is normal, Q0However, since the battery has a storage capacity that is D times lower,0'And. The relationship between the open circuit voltage and the stored charge amount Q of a normal battery Voc (Q), Q (Voc), a battery whose storage capacity is reduced by D times, the same charge as a normal battery if the stored amount is multiplied by 1 / D It can be regarded as a quantity.
Therefore, Voc0= Voc (Q0) = Voc (Q0'/ D), Q0= Q0'/ D = Q (Voc0).
In addition, quantity of electricity q1Q1'Then
Q1'= Q0'+ Q1
Voc1= Voc (Q0'/ D + q1/ D), Q0'/ D + q1/ D = Q (Voc1)
Q (Voc0) + Q1/ D = Q (Voc1)
q1/ D = Q (Voc1) −Q (Voc0)
D = q1/ [Q (Voc1) −Q (Voc0))
Thus, the reduction constant D of the storage capacity can be obtained. At this time, the amount of electricity stored in the battery is Q (Voc1) × D.
(A) Further, R obtained in the same manner as II.c1From
z1≦ [Rc1−Rc(Q0'/ D, Ic1, T)] ≦ z2(z1<0 <z2), The battery has no increase in internal resistance, but it can be determined that the storage capacity has decreased.
(B) Also, Rc1To [Rc1−Rc(Q0'/ D, Ic1, T)] > z2(0 <z2), It can be determined that the storage capacity is decreasing and the internal resistance is increasing.
[0077]
Next, in (2) of FIG. 26, the second quantity of electricity q2Although the pulse discharge is not shown, the open circuit voltage Voc1To current value Ic2X time t2Of electricity qc2Battery voltage V until only charging and stopping chargingcAnd open circuit voltage Voc after stopping2, And represents the transient characteristics of the battery voltage
Formula Vc= V2− (V2−Voc1) × e-t / τ
(However, V2Is V when extrapolating time t to infinity, and τ is a time constant)
By open circuit voltage Voc1To charging current Ic2While obtaining the time constant τ when charging started at2Can be calculated. The internal resistance of the battery at this time is Rc2Then,
V2= Voc1+ Ic2× Rc2, Rc2= (V2−Voc1) / Ic2
To internal resistance Rc2Can be requested.
[0078]
The internal resistance of the battery is Rc(Q × D, Ic, T) to a × Rc(Q × D, Ic, T) + b (a and b are constants), and can be expressed as
Rc1− [A × Rc(Q0'/ D, Ic1, T) + b] = 0
Rc2− [A × Rc(Q0'/ D + q1/ D, Ic2, T) + b] = 0,
Or Q1= Q1'/ D = Q (Voc1) Rc2− [A × Rc(Q1'/ D, Ic2, T) + b] = 0
By solving these equations, the constants a and b are obtained, and the internal resistance R after the increase of the internal resistance of the storage capacity decreasing batteryc'= a × Rc(Q '/ D, Ic, T) + b.
[0079]
Detection of the internal state of the secondary battery after charging
Recharge the secondary battery to the battery voltage VcEAfter the process is completed, the battery voltage is measured over time, the open circuit voltage Voc is determined, and the internal state of the secondary battery is detected. FIG. 27 shows changes over time in battery voltage during charging and open circuit voltage after charging.
[0080]
The determination of the open circuit voltage is performed as follows. Open circuit voltage VocEAnd Alternatively, the time t from the end of charging and the open circuit voltage Voc at that time are measured, and the open circuit voltage Voc at which the open circuit voltage Voc becomes a steady state is calculated as VocEAssuming that Voc is expressed as
Formula Voc = VocE+ (VcE−VocE) × e-t / τ
While calculating the time constant τ from the Voc values measured at multiple points, VocEIs calculated and determined.
[0081]
<Short-circuit judgment>
Change in open circuit voltage Voc over time, that is, Voc decrease rate-dVoc / dt is a predetermined value vcGreater than, ie -dVocE/ dt> vcIf> 0, it is determined as a short circuit. Also, the battery voltage V at the end of chargingcEIs that of a normal secondary battery (the lower limit for judgment is m0> 0 (previously included in basic data)cE<M0), It can be determined that the secondary battery is short-circuited. FIG. 9 is an example of a flowchart showing the flow of the above determination.
[0082]
[Determination at the end of constant current-constant voltage charging]
Charge with a constant current and a predetermined voltage VcLConstant voltage VcLThe internal state of the secondary battery is determined when the secondary battery is charged by the constant current-constant voltage charging method in which charging is terminated after a predetermined time has elapsed. When charging is completed normally without stopping the charging by the constant current-constant voltage charging method, the charged amount of the battery is in a fully charged state that is almost 100% of the charged capacity. The open circuit voltage of the secondary battery after full charge is VocEAt this time, the internal state of the secondary battery is determined as follows.
[0083]
<I. Short circuit judgment>
(I) Open circuit voltage Voc after the battery is fully chargedE-DVoc over timeE/ dt> vc> 0,
(Ii) Battery voltage at the end of charging is VcE<M0 (0 <m0)
(Iii) The battery voltage rise during constant current charging is that of a normal battery (s0: Lower limit value), dVc/ dt <s0(0 <s0)
(Iv) The battery temperature rise is normal (u0: Larger than the upper limit value), dT / dt> u0 (U0> 0)
If it is any of the above, it is determined that the battery is short-circuited.
The above vcIs the threshold for determining the presence or absence of a short circuit from the rate of decrease in open circuit voltage, m0Is a threshold value for determining the presence or absence of a short circuit from the battery voltage immediately before the end of charging, s0Is a threshold for judging the presence or absence of a short circuit from the rate of battery voltage rise in constant current charging before switching to constant voltage charging, u0Is a threshold value for determining the presence or absence of a short circuit from the temperature rise rate of the battery at the time of constant current charging before switching to constant voltage charging.
[0084]
<II. Judgment of increase in internal resistance>
Battery voltage rise rate dV during constant current chargingcThe open circuit voltage Voc after the full charge of the secondary battery to be detected is larger than the normal battery / dtEThat of a normal battery (k0: Lower limit value), 0 <VocE<K0Is determined that the internal resistance of the battery is increasing.
[0085]
<III. Judgment of low storage capacity>
Charging upper limit voltage V from specified battery voltagecLThe battery voltage rise rate dV in the constant current charging range is shorter than the normal battery time to reachcdV with normal / dtcn/ dt (upper limit is s1Larger) and dVc/ dt> s1> 0 and the open circuit voltage Voc after the fully charged secondary battery to be detectedEVoc with no more than normal batteryE≧ k0(K0When> 0), it is determined that the storage capacity of the battery is reduced.
[0086]
<IV. Judgment as normal>
Charging upper limit voltage V from specified battery voltagecLThe time to reach is substantially the same as that of a normal battery, or the battery voltage rise rate dV in the constant current charging rangecdV with normal / dtcnsubstantially equivalent to / dt, ie s0≦ dVc/ dt ≦ s1 (0 <s0<S1) And open circuit voltage Voc after full chargeEIs equal to or greater than that of a normal battery, ie k0≦ VocE (0 <k0), The battery is determined to be normal. The flowchart of FIG. 10 is an example showing the flow of the determination.
[0087]
[Judgment when charging by controlling battery voltage change or battery temperature change]
Charge the secondary battery with a constant current and detect the time change of the battery temperature and / or the battery voltage, that is, detect the temperature rise at the end of charging and / or the voltage drop at the end of charging to control charging Or in the case of the charge system to be terminated, the internal state of the secondary battery is determined as follows.
[0088]
<I. Judgment of short circuit>
(I) Open circuit voltage Voc after the battery is fully chargedE-DVoc over timeE/ dt> vc> 0,
(Ii) The battery temperature rise from the beginning of charging is larger than that of normal batteries, dT / dt> u0 (U0> 0)
(Iii) The battery voltage rise during constant current charging is smaller than that of normal batteries and dVc/ dt <s0 (0 <s0)
If it is any of the above, it is determined that the battery is short-circuited.
[0089]
<II. Determination of increase in internal resistance>
Battery voltage V in constant current charging rangecRising speed (dVc/ Dt) is greater than that of normal batteries, ie dVc/ dt> s1 (0 <s1) And the open circuit voltage Voc after the battery is fully chargedEIs less than that of a normal battery, ie 0 <VocE≦ k0 (0 <k0), It is determined that the internal resistance of the battery is increasing.
[0090]
<III. Judgment of decrease in storage capacity>
Battery voltage V in constant current charging rangecRising speed (dVc/ Dt) is greater than that of normal batteries, ie dVc/ dt> s1 (0 <s1) And the open circuit voltage Voc after the battery is fully chargedEIs larger than that of normal batteries, ie VocE> K0 (0 <k0), It is determined that the storage capacity of the battery has decreased.
[0091]
<IV. Judgment as normal>
Battery voltage V in constant current charging rangecRising speed (dVc/ Dt) is substantially equivalent to that of a normal battery, ie s0≦ dVc/ dt ≦ s1 (0 <s0<S1) And the open circuit voltage Voc after the battery is fully chargedEIs substantially equal to or greater than that of a normal battery, ie k0≦ VocE (0 <k0), The battery is determined to be normal. The flowchart in FIG. 11 is an example showing the flow of the determination.
[0092]
[Determination at the end of constant current charging]
When the open circuit voltage of the battery is below a certain value and charging is terminated after a predetermined time with constant current charging, the battery voltage is set to the predetermined upper limit voltage V.cLWhen the charging is terminated when the value reaches, the internal state of the secondary battery is determined as follows.
[0093]
<I. Judgment of short circuit>
(I) Open circuit voltage Voc after the battery is fully chargedE-DVoc over timeE/ dt> vc> Ii, (ii) the battery voltage at the end of charging is VcE<M0 (0 <m0)
(Iii) The battery voltage rise during constant current charging is smaller than that of normal batteries and dVc/ dt <s0 (0 <s0)
(Iv) The battery temperature rise is larger than that of normal batteries from the beginning of charging, and dT / dt> u0 (U0> 0)
If it is any of the above, it is determined that the battery is short-circuited.
[0094]
<II. Determination of increase in internal resistance>
Battery voltage V in constant current charging rangecRising speed (dVc/ Dt) Battery voltage rise rate of normal battery (s1) Greater than ie dVc/ dt> s1 (0 <s1) And the open circuit voltage Voc after the battery is fully chargedEIs less than that of a normal battery, ie 0 <VocE≦ k0 (0 <k0), It is determined that the internal resistance of the battery is increasing.
[0095]
<III. Judgment of decrease in storage capacity>
Battery voltage V in constant current charging rangecRising speed (dVc/ Dt) is greater than that of normal batteries, ie dVc/ dt> s1 (0 <s1) And the open circuit voltage Voc after the battery is fully chargedEIs higher than that of a normal battery, ie VocE> K0 (0 <k0), It is determined that the storage capacity of the battery has decreased.
[0096]
<IV. Judgment as normal>
Battery voltage V in constant current charging rangecRising speed (dVc/ Dt) is substantially equivalent to that of a normal battery, ie s0≦ dVc/ dt ≦ s1 (0 <s0<S1) And the open circuit voltage Voc after the battery is fully chargedEIs substantially equal to or greater than that of a normal battery, ie k0≦ VocE (0 <k0), The battery is determined to be normal. The flowchart in FIG. 12 is an example showing the flow of the determination.
[0097]
Detection of internal state of secondary battery in discharged state
<Short-circuit judgment>
The secondary battery is in a discharged state, and the discharge current Id0And battery voltage VdMeasure
(I) when the battery voltage is below a predetermined value, or
(Ii) Battery voltage VdDecrease speed is a predetermined value x1Greater than -dVd/ dt> x1 (0 <x1)time,
It is determined that the battery is at the end of discharge or shorted.
[0098]
When the battery voltage is higher than the specified value or battery voltage VdDecrease speed is a predetermined value x1Less than, that is, 0 <−dVd/ dt ≦ x1At this time, it is determined that the battery is normal or in a deterioration mode other than short circuit. The flowchart of FIG. 13 is an example showing the flow of the determination.
[0099]
[Detection of internal state of secondary battery from steady discharge state]
The secondary battery determined not to be a short circuit from the change in battery voltage over time at the time of discharge is in a substantially steady discharge state, the battery temperature is T, and the discharge current at that time is Id0Battery voltage is Vd0The steady-state discharge current I after discharging by the quantity of electricity qd1Battery voltage is Vd1When the secondary battery is normal, the battery voltage is Vd0Voc is the open circuit voltage0, Q0From the relationship between the characteristics of normal batteries acquired in advance, Voc0= Voc (Q0), Q0= Q (Voc0), Vd0= Vd(Id0, Q0, T), Vd1= Vd(Id1, Q0-q, T). Thus, the following determination can be made.
[0100]
<I. Determination of normality>
From the relationship between the storage amount, discharge current, battery temperature and battery voltage of a normal battery acquired in advance,
(I) y1≦ [Vd1−Vd(Q0−q, Id1, T)] ≦ y2(Y1<0 <y2) Or
(Ii) w1≤Q (Id1, Vd1, T) − [Q (Id0, Vd0, T) −q] ≦ w2(W1<0 <w2)time,
The secondary battery is determined to be normal.
[0101]
<II. Determination of increase in internal resistance>
From the relationship between the storage amount, discharge current, battery temperature and battery voltage of a normal battery acquired in advance,
(I) [Vd1−Vd(Q0−q, Id1, T)] > y2 (0 <y2) Or
(Ii) Q (Id1, Vd1, T) − [Q (Id0, Vd0, T) −q] > w2 (0 <w2)time,
It is determined that the internal resistance of the secondary battery is increasing.
[0102]
<III. Determining storage capacity drop>
From the relationship between the storage amount, discharge current, battery temperature and battery voltage of a normal battery acquired in advance,
(I) [Vd1−Vd(Q0−q, Id1, T)] <y1(Y1<0) or
(Ii) Q (Id1, Vd1, T) − [Q (Id0, Vd0, T) −q] <w1(W1When <0)
It determines with the electrical storage capacity of a secondary battery falling. The flowchart in FIG. 14 is an example showing the flow of the above various determinations.
Note that the various threshold values (v0, vc, f0, f1, r1, r2, g0, g1, j1, j2, z1, z2, m0, s0, s1, u0, x1, w1, w2, y1, y2) Differs depending on the type and model of the battery and is not determined uniformly, but is a value determined from an actual measurement value of a battery of the same type and the same type as the battery to be detected.
[0103]
[Detection of internal state of secondary battery during discharge fluctuation from steady discharge]
When the discharge current of the secondary battery in a substantially steady state discharge state fluctuates n (n is a positive integer, n = 1, 2, 3, 4,...) Times, The internal characteristics of the secondary battery are detected by measuring the transient characteristics of the battery voltage. (1) and (2) in FIG. 28 show changes over time in battery voltage and discharge current, respectively, when the discharge current varies four times during steady discharge as an example. The discharge fluctuation may occur intentionally, and the fluctuation discharge current in that case is preferably a rectangular wave pulse current. Furthermore, if the fluctuation does not affect the device operation, the fluctuation of the discharge may be a pause pulse in which the discharge current is zero.
[0104]
The discharge current in steady state is In0Battery voltage is Vd0When the discharge current In0In1Current value In1X time tn1Of electricity qnIf the battery voltage V at the time of fluctuation is measured at multiple points and the transient characteristics of the battery voltage V at the time of fluctuation in the discharge current can be expressed by the following equation, the discharge current will fluctuate. Battery voltage V vs. time t
Formula V = Vn1+ (Vn0−Vn1) × e-t / τ
(However, Vn1Is V when time t is extrapolated to infinity, and τ is a time constant determined by the internal resistance of the battery, etc., where n = 1, 2, 3, 4, ...)
To obtain the time constant τ when the discharge current fluctuatesn1Is used to detect the state of the secondary battery. V in (1) of FIG.11, Vtwenty one, V31, V41Shows the transient characteristics of the battery voltage when the discharge current fluctuates four times.n1+ (Vn0−Vn1) × e-t / τV when it can be expressed asn1It is the figure which showed the relationship with the voltage corresponded to (n = 1,2,3,4).
[0105]
<Calculation of internal resistance>
In the determination II. From the previous steady state discharge, it is determined that the internal resistance of the secondary battery is increased, and the internal resistance of the battery is, for example, Rd(Q, Id, T) to a × Rd(Q, Id, T) + b (a and b are constants), the procedure for calculating the internal resistance and the amount of stored electricity will be described below.
[0106]
When the discharge current fluctuates at least 3 times from the steady discharge, that is, the discharge current ITenBattery voltage V at steady dischargeTenWhen the discharge current is I11Changes to current value I11X time t11Discharge and battery voltage VTenFrom quantity of electricity q1Only discharged battery voltage V20And then the steady discharge current I20Itwenty oneChanges to current value Itwenty oneX time ttwenty oneDischarge and battery voltage V20From quantity of electricity q2Only discharged battery voltage V30And then the discharge current I of steady discharge30I31Changes to current value I31X time t31Is assumed to be discharged. At this time, the discharge current I of steady dischargen0In1Current value In1X time tn1Of electricity qnAssuming that the transient characteristics of the battery voltage at each discharge current change can be expressed by the following equation when discharged, the battery voltage value V with respect to the time t after the measured discharge current changes:
Formula V = Vn1+ (Vn0−Vn1) × e-t / τ
(However, Vn1Is V when time t is extrapolated to infinity, τ is a time constant, and n = 1, 2, 3, ...)
By the discharge current In0In1While obtaining the time constant τ whenn1Is calculated. Next, the discharge current In0At battery voltage Vn0Voc is the open circuit voltage of the batteryn0Vocn0= Vn0+ In0× Rd'(Qn0, In0, T) = Vn1+ In1× Rd'(Qn0, In1, T) (n = 1,2,3, ...) and the battery voltage is VTen, V20, V30QTen, Q20, Q30Then,
Q20= QTen−q1
Q30= Q20−q2= QTen−q1−q2And
VTen−V11= I11× Rd'(QTen, I11, T) −ITen× Rd'(QTen, ITen, T)
V20−Vtwenty one= Itwenty one× Rd'(Q20, Itwenty one, T) −I20× Rd'(Q20, I20, T)
V30−V31= I31× Rd'(Q30, I31, T) −I30× Rd'(Q30, I30, T)
Rd'(QTen, ITen, T) = a × Rd(QTen, ITen, T) + b (a and b are constants)
Rd'(QTen, I11, T) = a × Rd(QTen, I11, T) + b (a and b are constants)
Rd'(Q20, I20, T) = a × Rd(Q20, I20, T) + b (a and b are constants)
Rd'(Q20, Itwenty one, T) = a × Rd(Q20, Itwenty one, T) + b (a and b are constants)
Rd'(Q30, I30, T) = a × Rd(Q30, I30, T) + b (a and b are constants)
Rd'(Q30, I31, T) = a × Rd(Q30, I31, T) + b (a and b are constants)
By solving the above formula,Ten, Constants a and b can be obtained, and the current storage amount Q30The internal resistance R of a battery whose internal resistance has increased due to deteriorationd'(Q, I, T) can also be calculated.
[0107]
The flowchart of FIG. 15 and the accompanying FIG. 17 is an example showing the flow from the determination of the internal resistance increasing in FIG. 14 to the calculation of the internal resistance and the current charged amount.
[0108]
In the calculation of the internal resistance, in order to estimate the battery voltage when the discharge current fluctuates, the above-described equation using the time constant τ is used. However, this equation is an example, and another approximation equation can be used. It may be used and is not limited to this formula.
[0109]
<Calculation of decrease coefficient and internal resistance when storage capacity decreases>
If the storage capacity of the secondary battery is determined to have decreased in III. From the previous steady-state discharge, the storage capacity is changed from C to C ′ = D × C (D is a constant and 0 <D <1) and the internal resistance of the battery is Rd(Q, Id, T) to Rd'(Q, Id, T) = a × Rd(Q, Id, T) + b (a and b are constants), and the procedure for calculating the capacity reduction coefficient, the internal resistance, and the charged amount will be described below. Note that the storage amount Q calculated from the relationship between the normal battery discharge current and the battery voltage obtained in advance is actually reduced to Q ′ = D × Q based on the assumption of the decrease in the storage capacity. .
[0110]
When the discharge current fluctuates at least 4 times from the steady discharge, that is, the discharge current ITenBattery voltage V at steady dischargeTenWhen the discharge current is I11Current value I11X time t11Discharge and battery voltage VTenFrom quantity of electricity q1Only discharged battery voltage V20And then the steady discharge current I20Itwenty oneChanges to current value Itwenty oneX time ttwenty oneDischarge and battery voltage V20From quantity of electricity q2Only discharged battery voltage V30And then the discharge current I of steady discharge30I31Changes to current value I31X time t31Discharge and battery voltage V30From quantity of electricity qThreeOnly discharged battery voltage V40In addition, the discharge current I of steady discharge40I41Changes to current value I41X time t41Discharge current I of steady dischargen0In1Current value In1X time tn1Of electricity qnAssume that the battery has been discharged.
[0111]
Assuming that the transient characteristics of the battery voltage at each discharge current fluctuation can be expressed by the following equation, the battery voltage value V with respect to time t after the measured discharge current changes
Formula V = Vn1+ (Vn0−Vn1) × e-t / τ
(However, Vn1Is V when extrapolating time t to infinity, τ is a time constant, and n = 1, 2, 3, 4, ...)
By the discharge current In0In1While obtaining the time constant τ whenn1Can be calculated. Also, the discharge current In0At battery voltage Vn0Voc is the open circuit voltage of the batteryn0Vocn0= Vn0+ In0× Rd'(Qn0, In0, T) = Vn1+ In1× Rd'(Qn0, In1, T) (n = 1,2,3,4, ...) and the battery voltage is VTen, V20, V30, V40QTen, Q20, Q30, Q40Then,
Q = Q '/ D and Q20'= QTen'−q1, Q30'= Q20'−q2= QTen'−q1−q2, Q40'= Q30−qThree= QTen'−q1−q2−qThreeI.e.
QTen= QTen'/ D, Q20= (QTen'−q1) / D, Q30= (QTen'−q1−q2) / D, Q40= (QTen'−q1−q2−qThree) / D
VTen−V11= I11× Rd'(QTen, I11, T) −ITen× Rd'(QTen, ITen, T)
V20−Vtwenty one= Itwenty one× Rd'(Q20, Itwenty one, T) −I20× Rd'(Q20, I20, T)
V30−V31= I31× Rd'(Q30, I31, T) −I30× Rd'(Q30, I30, T)
V40−V41= I41× Rd'(Q40, I41, T) −I40× Rd'(Q40, I40, T)
Rd'(QTen, ITen, T) = a × Rd(QTen, ITen, T) + b (a and b are constants)
Rd'(QTen, I11, T) = a × Rd(QTen, I11, T) + b (a and b are constants)
Rd'(Q20, I20, T) = a × Rd(Q20, I20, T) + b (a and b are constants)
Rd'(Q20, Itwenty one, T) = a × Rd(Q20, Itwenty one, T) + b (a and b are constants)
Rd'(Q30, I30, T) = a × Rd(Q30, I30, T) + b (a and b are constants)
Rd'(Q30, I31, T) = a × Rd(Q30, I31, T) + b (a and b are constants)
Rd'(Q40, I40, T) = a × Rd(Q40, I40, T) + b (a and b are constants)
Rd'(Q40, I41, T) = a × Rd(Q40, I41, T) + b (a and b are constants)
By solving the above equation, constants a, b, D, QTen= QTen'/ D can be obtained, and the storage capacity and the internal resistance increased by D times due to deterioration can be calculated.
[0112]
The fluctuation current from the aforementioned steady discharge is the discharge current I.n1Is the steady-state current In0Greater than In1= In0+ ΔIdBy intentionally flowing so as to be, it is possible to detect a more accurate internal state of the secondary battery when desired. Also, the discharge current In1Is preferably less than or equal to the current value of 0.5 hour rate (2C) discharge.
[0113]
The flowchart of FIG. 16 and the accompanying FIG. 17 is an example showing a flow from the determination of the storage capacity in FIG. 14 to the calculation of the internal resistance and the current storage amount.
[0114]
Calculation of the amount of electricity stored in a secondary battery that is determined to be normal
The storage amount of the secondary battery determined to be normal in various states such as a rest state, a charged state, and a discharged state is calculated as follows.
<I. In hibernation mode>
Open circuit voltage Voc measured at rest0And the relationship Voc (Q) of the normal battery open circuit voltage Voc with respect to the storage amount Q acquired in advance, the expression Voc (Q0) = Voc0Or Q0= Q (Voc0) And storage capacity Q0Can be calculated.
[0115]
<II. When charging>
(I) Measure charging current, battery temperature, and battery voltage, and charge amount Q and charging current I acquired in advancecNormal battery voltage V vs. battery temperature TcRelationship Vc(Q, Ic, T) or Q (Vc, Ic, T) to obtain the storage amount Q,
(Ii) From the temporary suspension of charging, the time constant τ and Voc are measured from the above-described equation representing the transient characteristics of the battery voltage, and the storage amount at that time is calculated.
(Iii) Charging current IcEnd-of-charge voltage VcEOr open circuit voltage Voc after chargingEMeasured value, storage amount Q and charging current I acquired in advancecNormal battery voltage V vs. battery temperature TcFrom the relational equation, QEThen VcE= Vc(QE, Ic, T) or Q (VcE, Ic, T), or Voc (Q obtained from the expression Voc (Q) of the relationship of the open circuit voltage Voc of a normal battery to the storage amount Q acquired in advance.E) = VocEOr QE= Q (VocE)ESeeking
The storage amount can be calculated by any one of the methods (i), (ii), and (iii).
[0116]
<III. When discharging>
(I) Storage amount Q and discharge current I acquired in advancedNormal battery voltage V vs. battery temperature TdOf the relationship, Vd(Q, Id, T) or Q (Vd, Id, T) to calculate the storage amount Q,
(Ii) Calculated battery internal resistance RdAnd storage amount Q and discharge current I acquired in advancedQ (R) of the relationship between the internal resistance of a normal battery and the battery temperature Td, Id, T) to obtain the storage amount Q,
The charged amount can be calculated by any one of the methods (i) and (ii).
[0117]
Calculation of the amount of electricity stored at the end of charging and when charging a secondary battery with increased internal resistance
When it is determined that the internal resistance has increased without any short-circuiting or capacity reduction from the operation of charging and resting from the above-described resting state, the increased internal resistance R during chargingc'(Q, Ic, T), the relationship between the open circuit voltage during charging, battery voltage, charging current, and internal resistance is
Vc= Voc (Q) + Ic× Rc'(Q, Ic, T)
From this, it is possible to calculate the charged amount at the time of charging and at the end of charging.
[0118]
Calculation of the amount of electricity stored when discharging a secondary battery with increased internal resistance
When it is determined that the internal resistance is increasing without any short-circuit and no capacity reduction from the above-described operation of discharging and stopping from the pause or measurement of discharge fluctuation during steady discharge, the internal resistance R at the time of increased discharge is determined.d'(Q, Id, T) by the above method, the open circuit voltage Voc during discharge and the battery voltage Vd, Discharge current Id, Internal resistance Rd'(Q, Id, T)
Vd= Voc (Q) -Id× Rd'(Q, Id, T)
To the battery voltage V during dischargedAmount of charge Q and discharge current IdAnd battery temperature T function Vd= Vd'(Q, Id, T) and the battery voltage Vd, Discharge current IdFrom the measurement of the battery temperature T, the storage amount Q at the time of discharging can be calculated.
[0119]
Calculation of the amount of electricity stored when charging a secondary battery with reduced storage capacity and after the end of charging
When it is determined that the storage capacity has been reduced from the operation of charging and stopping from the above-described rest state, after calculating the storage capacity reduction coefficient D (0 <D <1), the storage amount is calculated as follows: To do.
<I. When the internal resistance has not increased>
The actual storage amount is obtained by multiplying the storage amount Q obtained as a normal battery by D times. The storage capacity at the end of charging (when fully charged) is assumed to be D times the nominal capacity of a normal battery.
<II. Increased internal resistance>
Increased internal resistance R during chargingc'(Q, Ic, T) by the above method, then open circuit voltage and battery voltage V V during charging.c, Charging current Ic, Internal resistance Rc'(Q, Ic, T)
Vc= Voc (Q) + Ic× Rc'(Q, Ic, T)
From this, the storage amount Q is calculated. Next, the storage amount Q ′ = D × Q obtained by multiplying the calculated Q by D is set as the actual storage amount. Further, the storage capacity C ′ at the end of charging (at the time of full charge) can be obtained by multiplying the storage capacity (or nominal capacity) C of a normal battery by D times.
[0120]
When the nominal capacity or the initial storage capacity of the secondary battery is C, the performance related to the storage capacity of the battery after deterioration can also be calculated as C ′ / C or 100 × C ′ / C [%]. Then, when the performance 100 × C ′ / C [%] related to the storage capacity of the battery after deterioration becomes less than 60% as an example, it is possible to determine that the secondary battery has a lifetime.
[0121]
Calculation of the amount of electricity stored when discharging a secondary battery with reduced storage capacity
When it is determined that the storage capacity has been reduced from the operation of discharging and stopping from the above-mentioned pause or the measurement of fluctuations in discharge during steady discharge,
<I. When the internal resistance has not increased>
The storage capacity reduction coefficient D is obtained, and the storage capacity is assumed to be D times the normal battery storage capacity.
<II. Increased internal resistance>
The storage capacity reduction factor D and the increased internal resistance during discharge are expressed as Rd'(Q, Id, T), and then the open circuit voltage Voc (Q) and battery voltage V during discharged, Discharge current Id, Internal resistance Rd'(Q, Id, T)d= Voc (Q) -Id× Rd'(Q, Id, T), the battery voltage V during dischargedApparent energy storage Q and discharge current IdAnd battery temperature T function Vd= Vd'(Q, Id, T) and the battery voltage Vd, Discharge current IdFrom the measurement of the battery temperature T, the apparent power storage amount Q can be calculated, and the power storage amount Q ′ = D × Q obtained by multiplying the apparent power storage amount Q by D can be calculated as the true power storage amount.
[0122]
Calculating the time until the end of charging
By obtaining the storage amount Q while the secondary battery is being charged by the above-described method, the time until the storage amount at the end of charging can be calculated.
[0123]
Calculation of the amount of charge (remaining amount) of secondary batteries that can be used by the device
After obtaining the charge amount Q when the secondary battery is being discharged by the above method, the lowest voltage V at which the device using the secondary battery as a power source operates.minCharge amount Q of the secondary battery whenminThe amount of electricity of the secondary battery that can be used by the equipment that uses the secondary battery as a power source, that is, the remaining amount (Q−Qmin) Can be calculated.
[0124]
Calculation of equipment operating time
The amount of electricity of the battery that the device can use, that is, the remaining amount (Q−Q)min) Is calculated, and when the average current consumption of the device is i and the average power consumption is p, the operation time h of the device using the secondary battery as a power source is given by
h = (Q−Qmin) / i or
h = (Vd+ Vmin) X (Q-Qmin) / 2 / p
Can be calculated.
[0125]
The average current consumption value or the average power consumption value is more preferably calculated from the device operation pattern and frequency of the device user.
[0126]
Secondary battery detection method applicable to internal state of secondary battery
The method for detecting the internal state of the secondary battery of the present invention described above can be applied to any secondary battery. Examples of the secondary battery include lithium (ion) batteries, nickel-hydride batteries, nickel -A cadmium battery, a nickel-zinc battery, a lead acid battery, etc. are mentioned. In addition, even for primary batteries, using the same product, obtain data in advance that measures the relationship between discharge electricity and open circuit voltage, and the relationship between discharge current, battery voltage, battery temperature, and discharge electricity. If this is the case, it is possible to calculate the amount of electricity stored during discharge or rest, and of course, it is also possible to calculate the approximate amount of electricity (remaining amount) of the primary battery that can be used by the device during use.
[0127]
[Internal state detection device for secondary battery]
An internal state detection device for a secondary battery according to the present invention includes at least means for detecting a voltage between terminals of the secondary battery, means for detecting a current (charge or discharge current) flowing through the secondary battery, and a secondary battery. Means for detecting the temperature of the battery, and means for storing basic data of the normal battery obtained in advance or a function expression obtained by formulating the basic data, and the basic data or basic data of the normal battery input in advance This is a device for detecting the internal state of the secondary battery from the function formula and the information obtained from the detection means.
[0128]
Moreover, it is preferable that the internal state detection apparatus of the secondary battery which concerns on this invention has a calculating means which processes the basic data and the information obtained from the said detection means. The calculation means includes the following (1) means for calculating the current storage amount of the secondary battery, (2) means for calculating the internal resistance of the secondary battery, and (3) the storage amount of the secondary battery that can be used by the device. (4) means for calculating the average current consumption value or average power consumption value, (5) means for calculating the time required for the end of charging, and (6) two after the end of charging. It is preferable to have one or more types of means selected from (1) to (6) of the means for calculating the storage amount of the secondary battery.
[0129]
Furthermore, the internal state detection device for a secondary battery according to the present invention preferably includes means for determining whether the secondary battery is normal or deteriorated, and the mode of deterioration.
[0130]
In addition, the internal state detection device for a secondary battery according to the present invention has means for outputting or displaying information obtained from the detection means and / or information regarding the internal state of the secondary battery. Is preferred.
[0131]
Configuration example of internal state detection device for secondary battery according to the present invention
FIG. 29 shows an example of the circuit configuration of the detection device for the internal state represented by the deterioration state, the storage capacity, the storage amount, and the internal resistance of the secondary battery according to the present invention. Basically, a terminal (2101) for connecting the secondary battery to the apparatus, a battery voltage detection unit (2102) for detecting the voltage between the terminals of the secondary battery, and a battery temperature detection unit (for detecting the temperature of the secondary battery) 2103), a sense resistor (2104) for detecting a charging or discharging current of the secondary battery, an amplifier (2105), a resistor 1 (2106) for adding a charging or discharging pulse current to the secondary battery, a resistance 2 (2107), transistor 1 (2108), transistor 2 (2109), and control unit (2110).
[0132]
Here, the terminal (2101) is a secondary battery to be subjected to the internal state detection method according to the present invention, or a battery pack or battery module (packaged by incorporating one or more secondary batteries). Secondary battery) and this apparatus can be easily and reliably electrically connected. The battery voltage detection unit (2102) detects the voltage between the positive and negative electrodes of the secondary battery with high input impedance, and this voltage information is output to the control unit (2110). The battery temperature detection unit (2103) detects the temperature of the detection target secondary battery using, for example, a thermistor or a thermocouple, and this temperature information is output to the control unit (2110). To detect the charging or discharging current of the secondary battery, the current / voltage conversion is performed by the sense resistor (2104) and the voltage signal is input to the amplifier (2105), and this voltage information is output to the control unit (2110). The pulse current adding unit including the resistor 1 (2106), the resistor 2 (2107), the transistor 1 (2108), and the transistor 2 (2109) has a value corresponding to the voltage signal wave from the control unit (2110), Current can be passed through the system including the secondary battery connected to (2101) and the sense resistor (2104). The voltage signal wave here is a rectangular wave, a stepped wave, a sawtooth wave, or a waveform obtained by combining two or more of these.
[0133]
The control unit (2110) has a memory inside or outside, and is connected to the terminal (2101). A data table of a normal secondary battery corresponding to the secondary battery or a functional expression Voc (Q) of an approximate curve, Vd(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T), are input in advance. Where Q is battery charge, Voc is battery open circuit voltage, T is battery temperature, IdIs the discharge current, VdIs the battery voltage during discharge, IcIs the charging current, VcIs the battery voltage when charging, RdIs the internal resistance of the battery during discharge, RcIs the internal resistance of the battery during charging.
[0134]
The present apparatus having the detection means for the temperature T, current I, and voltage V of the secondary battery connected to the terminal (2101) and the pulse current addition means performs the above-described detection procedure as described above. The internal state of the secondary battery can be detected. The device control unit captures the voltage, current and current change state of the secondary battery or battery pack and the frequency thereof as data, thereby enabling the device and the secondary battery or battery pack (one or more secondary batteries). It is also possible to grasp the user's device operation pattern and frequency in a device to which a device that is incorporated and packaged) is connected. Therefore, based on the grasped operation pattern and frequency, from the remaining amount of the secondary battery calculated based on the present invention, the average consumption current value necessary for calculating the operation time of the device to which the secondary battery is connected, By changing the value to match the current situation, it is possible to detect the remaining amount with higher accuracy. In addition, by providing the device with an information display function such as the calculated battery storage capacity, remaining battery capacity, battery storage capacity deterioration rate, battery life determination, or power consumption, the battery status is clearly shown to the user. Can be notified.
[0135]
The example of the configuration of the internal state detection device for the secondary battery according to the present invention described with reference to FIG. 29 can be connected to the secondary battery and perform a predetermined operation as a single device. Although the power supply for this apparatus required at this time is not shown, it can be taken in from a connected secondary battery via a regulator, for example, in addition to being supplied from the outside.
[0136]
FIG. 30 is a circuit configuration diagram showing an example in which the present device is combined with a secondary battery (2111) and built in a battery pack. The battery pack positive terminal (2112), negative terminal (2113), charging positive terminal (2114) (the negative terminal for charging also serves as the negative terminal), the battery voltage monitor output terminal (2115), and the connected device It has a communication function (2116). By having a communication function, the battery pack incorporating the internal state detection device for the secondary battery according to the present invention informs the connected device of internal state information such as the secondary battery or the amount of charge and the life of the battery pack. It becomes possible to obtain information on the occurrence of discharge or charging current fluctuation from the device side. If necessary, in combination with the operation described with reference to FIG. 29, the apparatus control unit may perform control for protection of overcharge (2117) and overdischarge (2118) of the secondary battery mounted on the battery pack. it can.
[0137]
In addition, the device can be built in a secondary battery or battery pack charger. In that case, the target secondary battery or battery pack is set, and the amount of charge stored in the battery is charged before or during charging. Can be recognized. As a result, the remaining time required for full charge can be grasped and notified to the outside as a display or information. Similarly, the battery deterioration state and life can be notified to the outside.
[0138]
Furthermore, this apparatus can also be incorporated in a device that uses a secondary battery. In this case, it becomes possible to know the internal state represented by the remaining amount and life of the secondary battery or battery pack to be connected with slight changes. In addition, the function of the device control unit can be incorporated in an existing control unit in the apparatus body, and a control unit dedicated to the internal state detection device of the secondary battery according to the present invention can be omitted.
[0139]
In addition, it is also effective to provide a detection signal waveform processing unit in series or in parallel between the control unit and each temperature T, current I, and voltage V detection means of the secondary battery in this apparatus. That is, for example, by providing a differentiator in parallel with the control unit at the output of each detection means for temperature T and current I, detecting a change in each information signal and notifying the control unit of the information, the control unit Since these fluctuations can be detected without constantly monitoring T and current I, the load on the control unit can be reduced. Further, for example, by providing an integrator in series between the voltage V detecting means and the control unit and performing part of the signal processing performed by the control unit in advance, the load on the control unit can be reduced.
[0140]
In the example of the internal state detection device of the secondary battery according to the present invention described above, the function table Voc (Q), V of the data table or approximate curve corresponding to the connected or integrated secondary battery.d(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T) must be input to the memory of the control unit in advance. That is, the function expression Voc (Q), V of the data table or approximate curved(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T) can only be applied to secondary batteries that have been input. However, this device can be adapted to various types of secondary batteries by providing the following functions as necessary. That is, in the device control unit, Voc (Q), Vc, which is a data table of characteristics of normal batteries of the same type and type as multiple types of secondary batteries or an approximate curve function formulad(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T) respectively. In addition, it is possible to provide means for selecting the type of secondary battery adapted to the present apparatus. The secondary battery type selection means here is, for example, switch input, input by wired or wireless electric signal or optical signal, etc., or when the applicable secondary battery or battery pack has a communication function with the outside. The device control unit can be provided with a communication function, and can be recognized from information from the secondary battery or the battery pack.
[0141]
In the previous embodiment, the terminal (2101) for connecting the secondary battery to the apparatus, the battery voltage detection unit (2102) for detecting the voltage between the terminals of the secondary battery, and the battery temperature detection unit for detecting the temperature of the secondary battery (2103), the description has been given in the case of one each of the sense resistor (2104) and the amplifier (2105) for detecting the charging or discharging current of the secondary battery, but the internal state detecting device for the secondary battery of the present invention is However, the present invention is not limited to this.
[0142]
Furthermore, another example of the apparatus according to the present invention will be described with reference to FIG. FIG. 31 shows an example of the circuit configuration of the detection device for the internal state of the secondary battery according to the present invention. Basically, terminals (2301a to 2301n) for connecting n secondary batteries to the apparatus, battery voltage detectors (2302a to 2302n) for detecting the voltage between the terminals of the n secondary batteries, n two secondary batteries. Battery temperature detector (2303a to 2303n) for detecting the temperature of the secondary battery, sense resistor (2304), amplifier (2305) for detecting the charging or discharging current of the secondary battery, and charging or discharging pulse for the secondary battery It consists of a resistor 1 (2306), a resistor 2 (2307), a transistor 1 (2308), a transistor 2 (2309), and a controller (2310) to which a current is added.
[0143]
Here, the n terminals (2301a to 2301n) can easily and reliably electrically connect the n secondary batteries to be detected and the apparatus. The n battery voltage detection units (2302a to 2302n) detect the voltage between the positive and negative terminals of the corresponding secondary battery with high input impedance, and the voltage information is output to the control unit (2310). . The n battery temperature detection units (2303a to 2303n) detect the temperatures of the n secondary batteries to be detected, and the temperature information is output to the control unit (2310). A sense resistor (2304), an amplifier (2305) for detecting a charging or discharging current of a secondary battery or a battery pack, a resistor 1 (2306) for adding a pulse current, a resistor 2 (2307), a transistor 1 (2308), the transistor 2 (2309), and the control unit (2310) are the same as those described with reference to FIG.
[0144]
The control unit (2310) has a memory inside or outside, and a data table or approximate curve of characteristics of normal batteries of the same type and type as the secondary batteries connected to the n terminals (2301a to 2301n). Voc (Q), Vd(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T) is input in advance. Where Q is battery charge, Voc is battery open circuit voltage, T is battery temperature, IdIs the discharge current, VdIs the battery voltage during discharge, IcIs the charging current, VcIs the battery voltage when charging, RdIs the internal resistance of the battery during discharge, RcIs the internal resistance of the battery during charging.
[0145]
The present device having the temperature T, current I, voltage V detection means and pulse current addition means of each secondary battery connected to n terminals (2301a to 2301n) is the same as that of the secondary battery already described. By performing the procedure of the procedure for detecting the internal state, it is possible to detect the internal state represented by the deterioration state, the storage capacity, the storage amount, and the internal resistance of each secondary battery.
[0146]
Here, in order to detect the temperatures of n secondary batteries to be detected, n battery temperature detection units (2303a to 2303n) are provided, but this is not always necessary. When the target n secondary batteries are installed in substantially the same environment, several battery temperature detection units can be provided to share this temperature information. In this example, n battery voltage detection units (2302a to 2302n) detect the voltage between the positive and negative terminals of the corresponding secondary battery, and output this voltage information to the control unit (2310). However, the outputs of the n battery voltage detectors are input to a line switch, for example, a multiplexer, and only the voltage information of any secondary battery or battery pack is sent to the controller (2310) according to the command of the controller (2310). 2310).
[0147]
Further, in this example, the explanation is given with an example in which n secondary batteries are connected in series, but n × m secondary batteries are connected in series and parallel, that is, n secondary batteries are connected in series. A case where one string is connected and m strings are connected in parallel can be dealt with by providing a detection unit for charging or discharging a secondary battery in each string. Also in this case, since the m current detection unit outputs are voltage signals that have been converted from current to voltage by the sense resistors, they are input to a line switch, for example, a multiplexer, and an arbitrary string is specified by a command from the control unit (2310). Only the current value information can be output to the control unit (2310).
[0148]
(Memory medium containing calculation program)
The detection device for the internal state of the secondary battery described above basically includes a detection means for the temperature T, current I, and voltage V of the secondary battery, and a pulse current addition means as necessary, and the corresponding secondary battery. Data table for characteristics of normal batteries of the same type and model as above, or function expression of approximate curve, Voc (Q), Vd(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T), (where Q is the battery charge, Voc is the open circuit voltage of the battery, T is the battery temperature, IdIs the discharge current, VdIs the battery voltage during discharge, IcIs the charging current, VcIs the battery voltage when charging, RdIs the internal resistance of the battery during discharge, RcIs characterized in that it has a function of calculating based on information on the measured temperature T, current I, and voltage V after acquiring in advance the internal resistance of the battery during charging. Therefore, in a device that already has hardware means essential for carrying out the present invention, a control program for carrying out the present invention and a corresponding secondary battery data table or function formula of an approximate curve, Voc (Q), Vd(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T), the present invention can be implemented. Therefore, a memory medium storing this control program is one of the embodiments of the present invention. This will be described in detail below.
[0149]
For example, a portable personal computer to which a secondary battery is connected generally has a main control unit that mainly controls the operation of the main body, and a sub-control unit that mainly controls communication with peripheral devices. In many cases, the sub-control unit monitors the voltage across terminals, the temperature of the secondary battery, the temperature of the secondary battery, and the state of the current flowing through the system to which the secondary battery is connected. is doing. In the sub-control unit for acquiring the monitoring information, the control program of the present invention and the corresponding secondary battery data table or approximate curve function formula, Voc (Q), Vd(Q, Id, T), Vc(Q, Ic, T), Rd(Q, Id, T), Rc(Q, Ic, T), the internal state of the secondary battery can be detected. Of course, you may input into a main control part. The portable personal computer does not have a pulse current adding means. However, when accessing a hard disk or various peripheral devices in use, for example, the device current consumption changes and the secondary battery discharge current changes. To do. The fluctuation of the discharge current at this time can be regarded as corresponding to the case where the discharge current is changed by the pulse current adding means for detecting the internal state of the secondary battery. Since access to the hard disk and various peripheral devices is performed according to commands from the main or sub-control unit, the sub-control unit or main control unit to which the control program of the present invention is input is preliminarily stored in the hard disk or various control units. It can be recognized that an event of access to a peripheral device occurs. Such a change in the discharge current of the secondary battery in the device connected to the secondary battery is not unique to the portable personal computer, for example, a change in standby and transmission in a mobile phone, a video camera Occurs during an optical zoom operation, a flash operation with a digital camera, or the like. Therefore, it is possible to detect fluctuations in the current consumption of such devices, detect fluctuations in the discharge current of the secondary battery, and detect the internal state represented by the secondary battery's deterioration state, storage capacity, storage amount, and internal resistance. It can be performed. Moreover, the information on the internal state of these secondary batteries can be displayed on the existing part of the device to which the present invention is applied.
[0150]
[Applied equipment of internal battery state detection method and apparatus]
As described above, the method for detecting the internal state of the secondary battery of the present invention is not limited to the type of the secondary battery, and the secondary battery is charged and discharged regardless of whether it is in a charged state or a discharged state. Even if the battery is in a dormant state, even if it is a battery that has deteriorated and caused a decrease in storage capacity or an increase in internal resistance, the amount of storage can be calculated with high accuracy. Can accurately determine the operating time of the equipment and know when the battery has reached the end of its life. Therefore, by installing the secondary battery internal state detection device using the secondary battery internal state detection method of the present invention in a device using the secondary battery as a power source, the secondary battery mounted in the device and the device is mounted. The battery performance can be maximized.
[0151]
Examples of the device that can maximize the performance by adding the internal state detection device of the secondary battery of the present invention include secondary phones such as mobile phones and information terminals, computers, electric vehicles, and hybrid vehicles having information communication functions. A vehicle powered by a battery. Battery pack (single packaged or packaged with a plurality of secondary batteries joined in series or in parallel) with the secondary battery internal state detection device of the present invention added An example is an application. The battery pack may have a communication function for exchanging information on the internal state of the secondary battery with the device.
[0152]
Other devices and systems whose functions are enhanced by adding the secondary battery internal state detection device of the present invention include machines and power storage systems that inspect whether manufactured secondary batteries are non-defective or defective. It is done.
[0153]
【Example】
Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited to these examples.
[Example of acquisition of basic data of secondary battery characteristics]
Data or formula of the relationship of the open circuit voltage Voc (Q) to the storage amount (or dischargeable capacity) Q of the secondary battery used in the present invention, and the battery temperature T of the secondary battery, the current I flowing in the connected system An example of a method for obtaining data or a function expression of the relationship between the battery voltage V (Q, I, T) and the internal resistance R (Q, I, T) with respect to the charged amount Q will be described with reference to FIGS. .
[0154]
FIG. 32 is a diagram showing the charge / discharge characteristics of a commercially available lithium ion secondary battery having a diameter of 17 mm and a height of 67 mm and a nominal capacity of 1300 mAh when charging and discharging are performed under the following conditions. Time and the vertical axis are battery voltages. In FIG. 32, the secondary battery is switched to constant voltage charging at a temperature of 25 ° C., a maximum charging voltage of 4.2 V, constant current charging at a charging current of 1 A, and reaching 4.2 V, and charging starts. The battery was charged using a constant current-constant voltage charging method in which charging was completed in 2.5 hours. After charging was completed, the battery was discharged after a pause. Discharge is an intermittent discharge operation in which the battery voltage is set in advance after a 15-minute discharge (a discharge of about 5% of the nominal electric capacity of the secondary battery) at a current of 0.2 C (5-hour rate). The process was repeated until the set cut-off voltage (2.75 V) was reached.
[0155]
FIG. 33 shows the relationship between the battery voltage during discharge, the battery voltage during discharge suspension, and the open circuit voltage with respect to the integrated discharge amount of the data during discharge obtained in FIG. In FIG. 33, the dotted line shows a trace of the battery voltage (open circuit voltage) at rest after intermittent discharge, and the solid line shows the battery voltage at the time of discharge. The part of) represents the point of time when the discharge is stopped and the operation is stopped. The integrated discharge amount represents the amount of electricity obtained by subtracting the amount of electricity that can be discharged (that is, the amount of stored electricity) from the storage capacity or nominal capacity of the secondary battery. Therefore, FIG. 33 shows the open circuit voltage Voc (dotted line curve) and the battery voltage V at the time of discharging with respect to the charged amount Q.dThis shows the relationship (solid curve). Furthermore, the discharge cut-off voltage was reached by performing the same measurement by changing the discharge rate other than the discharge rate (for example, 0.1C, 0.5C, 1.0C, 2.0C) and the amount of discharge in one intermittent operation. It was confirmed that there was no difference in the relationship of the open circuit voltage Voc to the charged amount Q, only with the charged amount at the time. In this example, from the curve obtained in this way, the open circuit voltage for any amount of stored electricity is read as discrete data, and a database (data table) of the relationship of the open circuit voltage Voc to the stored amount of charge Q is created. Alternatively, the work of obtaining the function equation Voc (Q) of the approximate curve was performed in advance.
[0156]
FIG. 34 shows a discharge at a temperature of 25 ° C. using the discharge current of the same lithium ion secondary battery as shown in FIG. 32 as a parameter (0.1 C, 0.2 C, 0.5 C, 1.0 C, 1.5 C, 2.0 C). It is a figure which shows a characteristic, a horizontal axis | shaft is integrated discharge amount and a vertical axis | shaft is a battery voltage. The integrated discharge amount represents the amount of electricity obtained by subtracting the amount of electricity that can be discharged (that is, the amount of stored electricity) from the storage capacity or nominal capacity of the secondary battery. In FIG. 34, before discharging at each current, the maximum charge voltage was 4.2 V at 25 ° C., and after reaching 4.2 V by constant current charge at 1 A, switching to constant voltage charge, After 2.5 hours from the start of charging, the battery was fully charged, and then discharge was started after a sufficient resting time.
[0157]
The curve at each discharge current is expressed as a function of the approximate curve. At various temperatures T (-20 ° C, -10 ° C, 0 ° C, 40 ° C, 50 ° C), which is the operating environment of equipment equipped with this secondary battery. The discharge data was acquired in the same way. From the curve obtained in this way, the battery voltage V and the internal resistance for any storage amount are read as discrete data, and the battery voltage V at the time of discharging against the storage amount Q is read.d, Internal resistance RdCreate a relational database (data table) or approximate function Vd(Q, Id, T), Rd(Q, Id, T) was done in advance.
[0158]
Table 1 shows, as an example of a data table of a commercially available lithium ion secondary battery having a size of 17 mm in diameter and 67 mm in height and a nominal capacity of 1300 mAh obtained by the above operation, an open circuit voltage with respect to the charged amount Q [Ah]. Voc and various constant currents I at battery temperature 25 ° CdBattery voltage V when discharging at (= 0.13A, 0.26A, 0.65A, 1.3A, 1.95A, 2.6A)dThe relationship of [V] was shown.
[0159]
[Table 1]
Figure 0005074648
[0160]
Open circuit voltage as a function of charge or accumulated discharge
Further, since the open circuit voltage Voc can be regarded as a function determined only by the charged amount Q, the open circuit voltage Voc can be expressed as a function of the charged amount Q as follows, for example, instead of the data table.
Voc (Q) = Pn× Qn+ Pn-1× Qn-1+ Pn-2× Qn-2+ ... + P1× Q1+ P0× Q0
Where PnTo P0Is a constant that varies depending on the type, model, nominal capacity, etc. of the secondary battery.
[0161]
An example in which the function expression of the approximate curve of the open circuit voltage Voc (Q) with respect to the storage amount Q is actually shown below. When the storage capacity (nominal capacity) of the secondary battery is C and the storage capacity at a certain point is Q, the accumulated discharge quantity can be expressed as (C−Q). In this example, the open circuit voltage Voc is assumed to be a 12th order polynomial of the cumulative discharge amount (C-Q), and the cumulative discharge is performed for a commercially available lithium ion secondary battery having a diameter of 17 mm and a height of 67 mm and a nominal capacity of 1300 mAh. Based on the acquired basic data regarding the quantity (C-Q) and the open circuit voltage Voc, a functional expression of the open circuit voltage Voc with respect to the charged quantity Q was calculated. Here, the value of C is the nominal capacity (1.3 Ah) of the secondary battery, and the possible range of the charged amount Q is 0 ≦ Q ≦ C. A functional expression of the open circuit voltage Voc with respect to the calculated storage amount Q is as follows.
[0162]
Voc (Q) = − 661.900042980173225 × (C−Q)12+ 4678.290484010105502 × (C-Q)11−14335.21335398782685 × (C−Q)Ten+24914.67028729754384 x (C-Q)9−26969.20124879933792 × (C−Q)8+1 878 6.9 384 720 675 8073 x (C-Q)7−8401.942857432433812 × (C−Q)6+ 2331.619009308063141 × (C-Q)Five−370.18004193870911 × (C−Q)Four+26.914989189437676 x (C-Q)Three+ 0.445460210498741 × (C−Q)2−0.883133725562348 × (C−Q) +4.188863096991684
[0163]
Internal resistance as a function of stored charge or accumulated discharge
Current I during discharge Id, Open circuit voltage Voc, battery voltage Vd, Internal resistance RdThe relationship with Vd= Voc-Id× RdAnd the charging current Ic, Open circuit voltage Voc, battery voltage Vc, Internal resistance RcThe relationship with Vc= Voc + Ic× RcIt can be expressed. Furthermore, the internal resistance is also a function of battery temperature. Therefore, the relationship between the battery voltage and the internal resistance with respect to the storage amount Q is V (Q, I, T) and R (Q, I, T) as a function of the storage amount Q, current I, and battery temperature T, respectively. It can be expressed as an approximate curve.
[0164]
When the battery temperature of the secondary battery is T, the discharge current is I, the storage capacity (nominal capacity) is C, and the storage capacity at a certain point is Q, the cumulative discharge can be expressed as (C-Q). Internal resistance R against stored charge QdThe relational expression of (Q, I, T) can be expressed as follows, for example, as an nth-order function expression related to the charged amount or discharged amount. The possible range of the charged amount Q is 0 ≦ Q ≦ C.
Rd(Q, I, T) = Fn× (C-Q)n+ Fn-1× (C-Q)n-1+ Fn-2× (C-Q)n-2+ ... + F1× (C-Q)1+ F0× (C-Q)0
Where FnTo F0For example, Fn= Gn(T) × Hn(I) or Fn= Gn(T) + HnIt can be expressed as a function expression of (I) and Gn(T) is a function of battery temperature T, Hn(I) is a function of the current I.
[0165]
Or FnTo F0Is
Fn= Kn m× Im+ Kn m-1× Im-1+ Kn m-2× Im-2+ ... + Kn 1× I1+ Kn 0× I0
Fn-1= Kn-1 m× Im+ Kn-1 m-1× Im-1+ Kn-1 m-2× Im-2+ ... + Kn-1 1× I1+ Kn-1 0× I0
......
F0= K0 m× Im+ K0 m-1× Im-1+ K0 m-2× Im-2+ ... + K0 1× I1+ K0 0× I0
And then Kn mTo Kn 0, Kn-1 mTo Kn-1 0... K0 mTo K0 0Can be expressed as a functional expression of T, respectively.
[0166]
As an example of obtaining the above functional formula, basic data of internal resistance against the accumulated discharge amount or stored amount, discharge current, and battery temperature for a commercially available lithium ion secondary battery with a diameter of 17 mm and a height of 67 mm and a nominal capacity of 1300 mAh. After getting RdAn example of the function expression of the approximate curve of (Q, I, T) is shown below. In this example, first the internal resistance RdIs expressed by a 12th order polynomial of the cumulative discharge amount (C-Q), and a functional equation was calculated so as to fit to the basic data of the internal resistance. The value of C is the nominal capacity (1.3 Ah) of the secondary battery. Calculated internal resistance R during dischargedThe function formula of (Q, I, T) is as follows.
Rd(Q, I, T) = F12× (C-Q)12+ F11× (C-Q)11+ FTen× (C-Q)Ten+ ... + F1× (C-Q)1+ F0× (C-Q)0
Where each coefficient F12To F0Can be expressed by a fifth-order polynomial of the current value I.
F12= K12 Five× IFive+ K12 Four× IFour+ K12 Three× IThree+ K12 2× I2+ K12 1× I1+ K12 0× I0
F11= K11 Five× IFive+ K11 Four× IFour+ K11 Three× IThree+ K11 2× I2+ K11 1× I1+ K11 0× I0
......
F0= K0 Five× IFive+ K0 Four× IFour+ K0 Three× IThree+ K0 2× I2+ K0 1× I1+ K0 0× I0
[0167]
K0 0To K12 FiveEach coefficient up to can be expressed by a fourth-order polynomial of the battery temperature T shown below.
K0 0= 0.0000003728422193 × TFour−0.0004690399886317 × TThree+ 0.219630909372119 × T2−45.393541420206056 × T + 3495
K1 0= -0.0000179118075830736 × TFour+ 0.019047317301656 × TThree−7.507153217164846 × T2+ 1295.900128065855824 × T−82320.66124016915274
K2 0= 0.0008393300954506 × TFour−0.925251141189932 × TThree+ 380.532287220051614 × T2−69147.14363160646462 × T + 4
KThree 0= −0.017185353004619 × TFour+ 19.234599304257944 × TThree−8046.433143414219558 × T2+ 1490563.733755752211 × T-103127364.48805916309
KFour 0= 0.169551698762352 × TFour−190.999908140883917 × TThree+ 80470.07880103871866 × T2−15024311.89118036628 × T + 1.048650819771948e + 9
KFive 0= -0.955959118340144 × TFour+ 1080.745597758554595 × TThree−457103.8624067021883 × T2+ 85709740.95309616626 × T−6.01059936858493e + 9
K6 0= 3.375841083746783 × TFour−3825.451933311166158 × TThree+ 1622083.712826749077 × T2−304991211.3940501213 × T + 2.145317715502894e + 10
K7 0= -7.810843719833634 × TFour+ 8866.183584053051163 × TThree−3766345.644136840012 × T2+ 709567942.1204522848 × T−5.0019223236648273e + 10
K8 0= 12.033631252687844 × TFour−13677.64824440043594 × TThree+ 5818483.242671614513 × T2−1.097858196917345e + 9 × T + 7.751905044076741e + 10
K9 0= -12.238187331253075 × TFour+ 13925.33526539518061 × TThree−5930710.459638201632 × T2+ 1.120421761057557e + 9 × T−7.921808331037033e + 10
KTen 0= 7.893435909900529 × TFour−8989.98957545310077 × TThree+ 3832542.024125073105 × T2-724796162.165166378 × T + 5.130331180844828e + 10
K11 0= -2.925896962983863 × TFour+ 3335.077681152527475 × TThree−142 3000.113370831124 × T2+ 269356095.2803371549 × T−1.908424205759282e + 10
K12 0= 0.474786593515207 × TFour−541.575826871208278 × TThree+ 231252.3383636772924 × T2−43807985.50071253628 × T + 3.1106470547152108e + 9
K0 1= 0.000002810514762 × TFour−0.002898202547079 × TThree+ 1.105541936798752 × T2−184.521855864246987 × T + 11343
K1 1= 0.000551705428643872 × TFour−0.618741510687609 × TThree+ 259.586933909031927 × T2−48283.85493898519053 × T + 3359573.6900693262
K2 1= −0.0195475060621 × TFour+ 22.088617721865582 × TThree−9341.226422357953197 × T2+ 1752157.602624612628 × T-122996540.8737580031
KThree 1= 0.325763020172631 × TFour−369.724916377202248 × TThree+ 157069.7521357303194 × T2−29601894.0842731744 × T + 2.088209856891993e + 9
KFour 1= -2.908705926352533 × TFour+ 3309.493716794020656 × TThree−1409607.063310474623 × T2 + 266370644.6106990278 × T-1.884257213245936e + 10
KFive 1= 15.522568640313624 × TFour−17689.339928652651 × TThree+ 7546667.398559059016 × T2−1.428474185012642e + 9 × T + 1.122224248948845e + 11
K6 1= -52.917599424765683 × TFour+ 60369.46012100671942 × TThree−25783514.46398825198 × T2+ 4.88600354697663e + 9 × T−3.46629897478479e + 11
K7 1= 119.343894918586244 × TFour−136256.5889387205825 × TThree + 58241129.37237557024 × T2−1.104580399434835e + 10 × T + 7.84285673315848e + 11
K8 1= -180.13279743136772 × TFour+ 205783.2935366885795 × TThree−88013024.84585164488 × T2+ 1.670262265534591e + 10 × T-1.186691748976397e + 12
K9 1= 179.977612805760856 × TFour−205704.7138883229345 × TThree+ 88022247.56138792634 × T2-1.671265663160231e + 10 × T + 1.188005733152792e + 12
KTen 1= −114.22103353999718 × TFour+ 130600.7620928548568 × TThree−55907464.3364872858 × T2+ 1.061943998671068e + 10 × T−7.551911324552615e + 11
K11 1= 41.695827710871889 × TFour−47691.58228996800608 × TThree+ 20422870.60793861002 × T2−3.880626435474761e + 9 × T + 2.760661086077543e + 11
K12 1= −6.666496484950264 × TFour + 7627.427708115624228 × TThree−3267274.46735554561 × T2+ 621019135.6699528694 × T−4.419293458561603e + 10
K0 2= -0.0000149877533689156 × TFour+ 0.016264765981062 × TThree−6.586433677933296 × T2+ 1179.630127694138537 × T-78854.88604895926256
K1 2= -0.001671225994427 x TFour+ 1.877401817058471 × TThree−789.07213084094451 × T2+ 147061.7484517464472 × T−10255014.040370674804
K2 2= 0.050857806024981 × TFour−57.421146649059438 × TThree+ 24263.23108479666916 × T2−4547478.023707655258 × T + 318979066.9375175238
KThree 2= -0.767138695737053 × TFour+ 869.501589442514955 × TThree−368895.5433750267257 × T2+ 69431079.11021871865 × T−4.891503969447994e + 9
KFour 2= 6.458605207522703 × TFour−7339.346130055530012 × TThree+ 3122145.968177304138 × T2−589259323.2726836204 × T + 4.163276005699007e + 10
KFive 2= -33.210693487729266 × TFour+ 37806.52151914418209 × TThree−16112231.32226052508 × T2+ 3.046667102485437e + 9 × T-2.156707719286414e + 11
K6 2= 110.41654910551955 × TFour−125855.3597195415496 × TThree+ 53705964.79313132912 × T2−1.0168738968952e + 10 × T + 7.208109075952678e + 11
K7 2= −244.609733706370236 × TFour+ 279071.9859447662602 × TThree−119200855.458073914 × T2+ 2.259145651305348e + 10 × T−1.602974000459222e + 12
K8 2= 364.280446611480329 × TFour−415899.7378741699504 × TThree+ 177773139.5446700454 × T2−3.37170978830763e + 10 × T + 2.394178279874176e + 12
K9 2= −360.133009104473672 × TFour+ 411398.5785509308916 × TThree−175950132.9841732085 × T2+ 3.339073499857018e + 10 × T−2.372399659849292e + 12
KTen 2= 226.571828904114568 × TFour−258946.2668825854489 × TThree+ 110800467.2156397104 × T2−2.103706218735303e + 10 × T + 1.495396594538536e + 12
K11 2= −82.097460356641946 × TFour + 93865.67427578115894 × TThree−40180264.4568978697 × T2+ 7.631883991534069e + 9 × T−5.427255754183317e + 11
K12 2= 13.041315019963541 × TFour−14915.89122739454251 × TThree+ 6387139.428232744336 × T2-1.213605887380284e + 9 × T + 8.633362065024582e + 10
K0 Three= 0.0000251678427397413 × TFour−0.027749417567646 × TThree+ 11.431003896028034 × T2−2085.159978444959506 × T + 142 128.8166474564059
K1 Three= 0.001751449385998 × TFour−1.965532828562073 × TThree+ 825.198818901071149 × T2−153608.5966555425257 × T + 10697382.97613775916
K2 Three= −0.045992909613442 × TFour+ 51.765049403509529 × TThree−21800.6951406261469 × T2+ 4071656.867690694518 × T-284551801.1211410761
KThree Three= 0.609139955562425 × TFour−687.607714664136665 × TThree+ 290488.4805661713472 × T2-544432601.20337542892 × T + 3.817251073175302e + 9
KFour Three= -4.654946445586634 × TFour+ 5267.515010680999694 × TThree−223 1088.309676257428 × T2+ 419202946.5956563354 × T−2.948124603910822e + 10
KFive Three= 22.286869517195672 × TFour−25270.05467747936928 × TThree+ 10725593.31009998918 × T2−2.019626285390959e + 9 × T + 1.423544581998099e + 11
K6 Three= −70.273845850297775 × TFour+ 79808.32413277083833 × TThree−33930159.44685647637 × T2+ 6.400054181017841e + 9 × T−4.51914538369342e + 11
K7 Three= 149.601386715460876 × TFour−170118.3903450048529 × TThree+ 72421280.32549875974 × T2−1.367911124421202e + 10 × T + 9.672544733460782e + 11
K8 Three= −216.080536475273817 × TFour+ 245972.965744795074 × TThree−104825836. 75099624693 × T2+ 1.982151737409837e + 10 × T−1.403160810753543e + 12
K9 Three= 208.528016714157587 × TFour−237582.0518041840696 × TThree+ 101339354.76017145813 × T2−1.917950228946529e + 10 × T + 1.358957382793612e + 12
KTen Three= −128.648630272366432 × TFour+ 146680.9468983050902 × TThree−62612523.06659654528 × T2+ 1.185900191909874e + 10 × T−8.409099766116382e + 11
K11 Three= 45.862214041144405 × TFour−52323.81826514477143 × TThree+ 22349358.16426483542 × T2−4.235780194080044e + 9 × T + 3.0005522361710247e + 11
K12 Three= -7.185307946068086 × TFour+ 8202.238421019834277 × TThree−3505436.076118038502 × T2+ 664747740.961967349 × T-4.719465114689993e + 10
K0 Four= -0.0000192255394011085 × TFour+ 0.021451855148696 × TThree−8.949177062086774 × T2+ 1654.341424624854653 × T-114347.8315392331278
K1 Four= −0.000816454884929378 × TFour+ 0.915963370235589 × TThree−384.394885101222144 × T2+ 71516.78036990862165 × T-4977237.941760426387
K2 Four= 0.018665516848548 × TFour−20.945499132537545 × TThree+ 8792.787151743495997 × T2−1636507.520356033929 × T + 113940643.510729596
KThree Four= -0.208551404290907 × TFour+ 234.064252746103051 × TThree−98280.91590542987979 × T2+ 18297020.93438888714 × T-1.274317674892173e + 9
KFour Four= 1.339574048511812 × TFour−1503.615180965887021 × TThree+ 631459.032932954724 × T2−117585216.0713095963 × T + 8.191520568488794e + 9
KFive Four= −5.41634189133107 × TFour+ 6080.279572206331977 × TThree−255 3905.465719996486 × T2+ 475671351.9166372418 × T−3.314607225791437e + 10
K6 Four= 14.554042749470186 × TFour−16340.35331930969369 × TThree+ 6864766.807159300894 × T2−1.278884505325829e + 9 × T + 8.91410026807912e + 10
K7 Four= −26.702810592234627 × TFour+ 29985.37313494967748 × TThree−12599908.78297643736 × T2+ 2.347923449255732e + 9 × T−1.637030338813723e + 11
K8 Four= 33.616003692593779 × TFour−37755.79519816931134 × TThree+ 15868689.48295781203 × T2−2.957814271722582e + 9 × T + 2.062859919415767e + 11
K9 Four= −28.549327238622432 × TFour+ 32071.84076537256988 × TThree−13482853.98914256319 × T2+ 2.513751298973701e + 9 × T-1.753644153967844e + 11
KTen Four= 15.615889964970963 × TFour−17546.34309475550617 × TThree+ 7378066.55368669983 × T2−1.375903085110361e + 9 × T + 9.601048284484978e + 10
K11 Four= -4.961400910069002 × TFour+ 5575.897482064596261 × TThree−2345115.56629166659 × T2 + 437428445.089415431 × T-3.053090860965102e + 10
K12 Four= 0.695014380923983 × TFour−781.253406883600064 × TThree+ 328646.8735752489884 × T2−61314347.82639360428 × T + 4.280426730538583e + 9
K0 Five= 0.0000055685857458958 × TFour−0.006269943903778 × TThree+ 2.640726168426087 × T2−493.072682310015125 × T + 34439.01298486242012
K1 Five= 0.000161459388938338 × TFour−0.181685886575457 × TThree+ 76.48491361543168 × T2-14275.91988238808517 × T + 996832.7974418463418
K2 Five= −0.003644982089995 × TFour+ 4.101798825788432 × TThree−1726.917806184043457 × T2+ 322373.2470881768968 × T−22513770.08513562009
KThree Five= 0.040176201294742 × TFour−45.2111990768366 × TThree+ 19035.3292236953348 × T2−3553687.279590429272 × T + 248205168.0678731203
KFour Five= −0.252724149200711 × TFour+ 284.364088978607867 × TThree−119717.74444384659 × T2+ 22349178.49348734319 × T−1.5609506067017e + 9
KFive Five= 0.99321211747314 x TFour−1117.34604256486864 × TThree+ 470334.9616640359164 × T2−87793226.38023105264 × T + 6.13128593721498e + 9
K6 Five= -2.577149995346287 × TFour+ 2898.568018064226635 × TThree−1219882.472908790689 × T2+ 227667403.1106119156 × T-1.5589763369995698e + 10
K7 Five= 4.546336695206962 × TFour−5112.045211581619696 × TThree+ 2150963.609311953653 × T2−401358455.5349878669 × T + 2.802150292308567e + 10
K8 Five= -5.493312202741592 x TFour+ 6175.273952080845447 × TThree−2597737.064942202996 × T2+ 484624717.2114210725 × T−3.382866307244066e + 10
K9 Five= 4.479715688077147 × TFour−5034.625069146578426 × TThree+ 2117431.804731178563 × T2-394939977.4744403362 × T + 2.756315841920568e + 10
KTen Five=-2.35745032434141 x TFour+ 2648.891592185625086 × TThree−1113825.013085700106 × T2+ 207708652.5919890404 × T-1.449351552776621e + 10
K11 Five= 0.722700953370907 × TFour−811.891530954773657 × TThree+ 341327.5026830868446 × T2−63640350.16188571602 × T + 4.439957102906778e + 9
K12 Five= -0.098012110608512 × TFour+ 110.090753050316849 × TThree−46276.03871921345126 × T2+ 8626818.395340621472 × T-601771718.735604167
[0168]
In the above equation, the constant terms e + 9, e + 10, e + 11, e + 12 are each x109, X10Ten, X1011, X1012Indicates.
In this example, the internal resistance RdThe function expression of the approximate curve of (Q, I, T) is a 12th-order polynomial of the stored charge Q, then each order coefficient is a fifth-order polynomial of the current value I, and each coefficient is 4 of the battery temperature T Although expressed in the order of the following polynomials, the present invention is not limited to the order and order of these polynomials. Further, the functional expression representing the basic data of the secondary battery is not limited to the n-th order polynomial.
[0169]
Rechargeable battery detection
Example 1
Three commercially available lithium ion secondary batteries having a diameter of 17 mm and a height of 67 mm and a nominal capacity of 1300 mAh were prepared, and using the judgment part of the flowchart of FIG. 3, it was confirmed that all three were normal. Next, after charging for 3 hours with the constant current-constant voltage charging method in which the current value during constant current charging was set to 0.7 C and the voltage during constant voltage charging was set to 4.2 V, all three were set to 0.2 C. Batteries with discharges of 20%, 50%, and 80% of the nominal capacity at currents of (260 mA), respectively, and the storage amounts of 80%, 50%, and 20%, respectively, were prepared as Sample 1, Sample 2, and Sample 3.
Moreover, various characteristics were acquired from the charge and discharge of a commercially available lithium ion secondary battery with a nominal capacity of 1300 mAh having a diameter of 17 mm and a height of 67 mm, which was confirmed to be normal as in the above sample, and the relationship between the storage amount Q and the open circuit voltage Voc. The basic data such as the data or functional expression Voc (Q) or Q (Voc) was obtained.
[0170]
For the three sample batteries prepared above, the open circuit voltage was first measured, and the storage amount was determined from the relationship Q (Voc) between the normal battery storage amount Q and the battery open circuit voltage Voc determined previously. Thereafter, the battery was discharged at a constant current of 0.2 C, the amount of discharge was measured, and the amount of electricity stored in each sample before discharge was confirmed.
[0171]
The open circuit voltage value measured for each battery, the charged amount (detected amount) and discharge amount detected by the method of the present invention, and the rate indicating the accuracy of detection [(detected amount−discharge amount) / nominal capacity × 100 ] (%) Is summarized in Table 2. From the results in Table 2, it was found that the ratio of the detected power storage amount and the actual discharge amount with respect to the nominal capacity value is less than 1%, and the detected amount and the actually measured value agree with very high accuracy.
[0172]
[Table 2]
Figure 0005074648
[0173]
(Example 2)
Three commercially available lithium ion secondary batteries with a diameter of 17 mm and a height of 67 mm and a nominal capacity of 1300 mAh are prepared. Samples 1, 2, and 3 are used, and all three are normal using the judgment part of the flowchart of FIG. I confirmed that there was.
Next, after discharging at a current of 0.2 C, constant current charging at a current of 0.2 C is performed, and the charge amount is calculated as 20%, 50%, 80% of the nominal capacity, calculated from the Coulomb efficiency of charge / discharge, respectively. When the value reached%, a pause pulse was applied, and the open circuit voltage was measured or calculated, and the amount of stored electricity was determined from the basic data of the normal battery determined in the previous Example 1 according to the flowchart of FIG. Thereafter, the battery was discharged at a constant current of 0.2 C, and the amount of discharge was measured and confirmed.
[0174]
The open circuit voltage value measured for each battery, the charged amount (detected amount) and discharge amount detected by the method of the present invention, and the rate indicating the accuracy of detection [(detected amount−discharge amount) / nominal capacity × 100 ] (%) Is summarized in Table 3. From the results of Table 3, it was found that the ratio of the detected power storage amount and the actual discharge amount to the nominal capacity value was less than 1%, which coincided with extremely high accuracy.
[0175]
[Table 3]
Figure 0005074648
[0176]
(Example 3)
Nine commercially available lithium ion secondary batteries having a diameter of 17 mm and a height of 67 mm and a nominal capacity of 1300 mAh were prepared and charged at a temperature of 25 ° C. with a charging current of 0.2 C. Thereafter, the batteries are divided into groups of three, and the following three conditions of battery temperature T and discharge current Id are: (1) 25 ° C., 1.0 C, (2) 0 ° C., 0.2 C, (3) 40 Discharge continues at ℃ and 0.5C, and when one of the three batteries of each group is discharged, 260mAh, 1 is 650mAh, 1 is 1040mAh, detection is performed according to the flowchart of FIG. It was determined that all nine were normal (S1006). Thereafter, the temperature T and discharge current I of the battery obtained by acquiring various characteristics of the normal battery of Example 1 were obtained.d, Battery voltage Vd, And energy storage Q relationship data or function formula Vd(Q, Id, T) or Q (Vd, Id, T), the amount of electricity stored in each sample was detected. Furthermore, discharge was performed under each condition, the discharge amount was measured, and the storage capacity before the start of detection of each sample before discharge was confirmed.
[0177]
The measured battery voltage value of each battery, the charged amount (detected amount) and discharge amount detected by the method of the present invention, and the rate indicating the accuracy of detection [(detected amount−discharge amount) / nominal capacity × 100] (%) Is summarized in Table 4. From the results in Table 4, it was found that the ratio of the detected power storage amount and the actual discharge amount to the nominal capacity value was less than 2%, and the detected amount and the actually measured value matched with extremely high accuracy.
[0178]
[Table 4]
Figure 0005074648
[0179]
Example 4
A commercially available lithium-ion secondary battery with a diameter of 17mm and a height of 67mm and a nominal capacity of 1300mAh is prepared. After charging at a maximum charge voltage of 4.2V, a charge current of 1A and a charge time of 2.5 hours, it is 20 minutes. The detection method of the present invention is performed by repeating a charge / discharge cycle of 200 times, in which discharge is performed at a constant current of 650 mA until the battery voltage reaches 2.75 V, and is stopped for 20 minutes after the discharge is completed, with a pause time provided. The sample was used to detect the internal state.
[0180]
The secondary battery of this sample was charged in the same manner as described above at a temperature of 25 ° C., and then started to discharge at a constant current of 0.5 C (650 mA). According to the flowcharts of FIGS. A discharge pulse current of 650 mA × 5 seconds is further superimposed on the constant discharge current to cause four fluctuations of discharge, and the capacity reduction coefficient, the increased internal resistance, and the charged amount are determined on the basis of the normal battery of the first embodiment. Battery temperature T and discharge current I obtained by acquiring characteristicsd, Battery voltage Vd, And energy storage Q relationship data or function formula Vd(Q, Id, T) or Q (Vd, Id, T), the amount of charge in the sample was detected. Thereafter, the battery was discharged at a constant current of 0.2 C (260 mA), the amount of discharge was measured, and the amount of electricity stored in the sample before discharge was confirmed.
[0181]
Table 5 shows the measured battery voltage values and discharge current values before and after the fluctuation. Where Vn0Is the battery voltage value before the nth fluctuation, Vn1Is the formula V = Vn1+ (Vn0−Vn1) × e-tBattery voltage value after fluctuation calculated from / τ, In0Is the discharge current value before the nth fluctuation, In1Means the discharge current value after the nth fluctuation.
[0182]
Storage amount (detection amount) and discharge amount detected by the method of the present invention, [(detection amount−discharge amount) / nominal capacity × 100] (%) as a rate indicating detection accuracy, capacity decrease coefficient D, increase Table 6 shows the coefficients a and b of the internal resistance. The increased internal resistance was calculated as R ′ = a × R + b where R is the normal internal resistance before the increase.
[0183]
From the results in Table 6, it was found that the sample battery had a reduced storage capacity and an increased internal resistance. In addition, it was found that the calculated amount of storage matches the actual amount of storage within an error range of about 3.5% of the nominal capacity, and the amount of stored power can be detected with high accuracy even in a secondary battery with degraded performance. Note that the number of fluctuations of the discharge current this time is the minimum number necessary for the calculation, but by increasing the number of fluctuations, it is possible to increase the calculation accuracy of the amount of stored electricity.
[0184]
[Table 5]
Figure 0005074648
[0185]
[Table 6]
Figure 0005074648
[0186]
(Example 5)
In this example, instead of the lithium ion battery used in Example 1, the internal state of the battery was detected in the same manner as in Example 1 for a commercially available nickel hydride secondary battery with AA size nominal capacity of 1550 mAh. did.
[0187]
Three commercially available AA size nickel hydride secondary batteries with a nominal capacity of 1550 mAh were prepared, and using the judgment part of the flowchart of FIG. 3, it was confirmed that all three were normal. Next, after charging with a constant current charge of 0.2 C for 7.5 hours, 20%, 50%, and 80% of the nominal capacity were discharged with a current of 0.2 C (310 mA), respectively. Batteries that would be%, 50%, and 20% were prepared as Sample 1, Sample 2, and Sample 3.
Also, various characteristics were obtained from the charge and discharge of a commercially available AA size nickel hydride secondary battery with a nominal capacity of 1550 mAh, which was confirmed to be normal as in the above sample, and the relationship between the storage amount Q and the open circuit voltage Voc was determined from the basic characteristics. Data or basic data such as Voc (Q) or Q (Voc) was obtained.
[0188]
The open circuit voltages of the three sample batteries prepared above were measured, and the storage amount was determined from the relationship Q (Voc) between the basic battery storage amount Q obtained earlier and the open circuit voltage Voc of the battery. Thereafter, the battery was discharged at a constant current of 0.2 C, the amount of discharge was measured, and the amount of electricity stored in each sample before discharge was confirmed.
[0189]
The open circuit voltage value measured for each sample battery, the charged amount (detected amount) and discharge amount detected by the method of the present invention, and the rate indicating the accuracy of detection [(detected amount−discharge amount) / nominal capacity × 100] (%) is summarized in Table 7. From the results in Table 7, the difference between the detected charged amount and the actual discharged amount, that is, the ratio of the error to the nominal capacity value is less than 1%, and in the nickel hydride battery as well as the lithium ion battery of Example 1, It was found that they matched with high accuracy.
[0190]
[Table 7]
Figure 0005074648
[0191]
(Example 6)
In this example, instead of the lithium ion battery used in Example 3, the detection method of the present invention was applied to a commercially available nickel hydride secondary battery with AA size nominal capacity of 1550 mAh by the same operation as Example 3. The applied result will be described.
[0192]
Nine commercially available nickel hydride secondary batteries of AA size with a nominal capacity of 1550 mAh were prepared and charged at a temperature of 25 ° C. with a charging current of 0.2 C for 7.5 hours. After that, the batteries are divided into groups of 3 and the next battery temperature T and discharge current Id(1) 25 ° C, 1.0C, (2) 0 ° C, 0.2C, (3) 40 ° C, 0.5C When the book is 310 mAh, the book is 775 mAh, and the book is 1240 mAh, the detection starts according to the flowchart of FIG. Id, Battery voltage Vd, And the amount of electricity stored Q, the amount of electricity stored in the sample battery was detected. Then, it discharged on each condition, measured the amount of discharge, and confirmed the amount of electrical storage before the detection start of a sample battery.
The measured battery voltage value of each battery, the charged amount (detected amount) and discharge amount detected by the method of the present invention, and the rate indicating the accuracy of detection [(detected amount−discharge amount) / nominal capacity × 100] (%) Is summarized in Table 8. From the results of Table 8, the difference between the detected storage amount and the actual discharge amount, that is, the ratio of the error to the nominal capacity value is less than 2%, and is very high in the nickel-metal hydride battery as in the lithium ion battery of Example 3. It was found that they matched with accuracy.
[0193]
[Table 8]
Figure 0005074648
[0194]
As described above, in the evaluation from Example 1 to Example 6, if the method for detecting the internal state of the secondary battery of the present invention is used, the accuracy is extremely high regardless of whether the secondary battery is in a normal state or a deteriorated state. Therefore, it is possible to detect the operation time of a device that uses a secondary battery as a power source with high accuracy. It has been found that it is possible to detect a decrease in capacity related to the lifetime. Moreover, it turned out that this invention is applicable also to various batteries.
[0195]
【The invention's effect】
According to the present invention, a method for detecting the internal state of a highly accurate secondary battery is provided. This facilitates power control of devices and devices that use the secondary battery as a power source, and makes it possible to easily know the operation time, the timing of charging, the timing of battery replacement, and the like. In addition, according to the present invention, the energy of the secondary battery can be used to the maximum, thereby extending the operating time of the device using the secondary battery as a power source. Therefore, the performance of the secondary battery can be maximized by adding the detection device for the internal state of the secondary battery according to the detection method of the present invention to the battery pack, the charger, and the device using the secondary battery as a power source. And the performance of the equipment can be maximized. In addition, it is possible to perform highly accurate shipment inspection by adding a detection device for the internal state of the secondary battery by the detection method of the present invention to an inspection machine that inspects non-defective / defective products before shipping the secondary battery. It becomes possible.
[Brief description of the drawings]
FIG. 1 is an example of a flowchart showing a flow of detection and application of an internal state of a secondary battery of the present invention.
FIG. 2 is an example in which a determination of a short circuit when the secondary battery is stopped is shown in a flowchart.
FIG. 3 is an example of a flowchart for determining whether the secondary battery is normal, the internal resistance is increasing, or the storage capacity is decreasing by applying a discharging operation to the secondary battery from the rest state. is there.
4 is an example of a flowchart for calculating an internal resistance after it is determined in FIG. 3 that the internal resistance has increased.
FIG. 5 is an example of an internal resistance calculation flowchart after determining that the capacity has decreased in FIG. 3;
FIG. 6 is an example of a flowchart for determining whether the secondary battery is normal, the internal resistance is increasing, or the storage capacity is decreasing by applying a charging operation to the secondary battery from the resting state. is there.
7 is an example of a flowchart for calculating the internal resistance after determining that the internal resistance has increased in FIG. 6;
FIG. 8 is an example of an internal resistance calculation flowchart after determining that the capacity has decreased in FIG. 6;
FIG. 9 is an example of a flowchart showing a flow of determining whether or not a secondary battery that has been charged is short-circuited.
FIG. 10 is an example of a flowchart for determining whether the secondary battery at the time of constant current-constant voltage charging is normal, whether the internal resistance is increasing, or whether the storage capacity is decreasing.
FIG. 11 is an example of a flowchart for determining whether a secondary battery charged by controlling battery voltage change or battery temperature change is normal, whether the internal resistance is increasing, or whether the storage capacity is decreasing. is there.
FIG. 12 is an example of a flowchart for determining whether the secondary battery at the time of constant current charging is normal, whether the internal resistance is increasing, or whether the storage capacity is decreasing.
FIG. 13 is an example of a flowchart for determining whether or not a secondary battery is short-circuited during discharge of the secondary battery.
FIG. 14 is an example of a flowchart for determining whether the secondary battery being discharged is normal, whether the internal resistance is increasing, or whether the storage capacity is decreasing.
FIG. 15 is an example of a flowchart for calculating the internal resistance and the current storage amount after determining that the internal resistance is increasing in FIG. 14;
FIG. 16 is an example of a flowchart for calculating the internal resistance and the current storage amount after determining that the storage capacity is decreasing in FIG. 14;
17 is a flowchart showing details of a discharging interrupt routine in FIGS. 15 and 16. FIG.
FIG. 18 is a graph showing an example of a relationship between an open circuit voltage, a charge voltage or a discharge voltage, an internal resistance, and an open circuit voltage with respect to a charged amount of a normal secondary battery.
FIGS. 19A and 19B show examples of the relationship between the battery voltage at the discharge current and the discharge voltage at the battery temperature, respectively, with respect to the charge amount of the normal secondary battery, and FIG. 4 is a graph showing the relationship between the open circuit voltage and the discharge voltage divided into an initial discharge stage I, a discharge middle stage II, and a discharge end stage III.
FIG. 20 is a graph showing an example of the change over time in the open circuit voltage of a short-circuited battery and a non-short-circuited battery.
FIG. 21 is a graph showing, as an example, the relationship between the internal resistance of a battery having an increased internal resistance and the internal resistance of a normal battery with respect to the storage amount of the secondary battery, and (2) is a graph showing the storage amount. On the other hand, a graph showing an example of the relationship between the secondary battery having an increased internal resistance and the battery voltage at the time of discharging a normal secondary battery, (3) shows the secondary having an increased internal resistance with respect to the amount of stored electricity. It is the graph which showed an example of the relationship of the battery voltage at the time of charge of a battery and a normal secondary battery.
FIG. 22 is a graph showing an example of the relationship between the amount of stored power and the open circuit voltage of a normal secondary battery and a secondary battery with a reduced storage capacity, and (2) shows a decrease in the storage capacity. It is the graph which showed an example of the relationship between the open circuit voltage with respect to the electrical storage amount of a secondary battery, and the battery voltage at the time of charge and discharge.
FIG. 23 is a graph showing the relationship between the amount of charge (remaining amount) of a secondary battery that can actually be used among the relationship between the open circuit voltage and the battery voltage during discharge with respect to the amount of charge of a normal battery. .
FIG. 24 shows the relationship between the storage amount (remaining amount) of a secondary battery that can actually be used in the battery voltage during discharge with respect to the storage amount of a battery having a reduced storage capacity and a normal battery. It is a graph.
FIG. 25 is a curve showing an example of the relationship between the battery voltage and current of the secondary battery over time when constant-current pulse discharge is performed from the resting state, and FIG. 6 is a curve showing the relationship between the transient characteristics of the battery voltage of the secondary battery during constant current pulse discharge and the extrapolated voltage obtained from the equation of the time constant.
FIG. 26 (1) is a curve showing an example of the relationship between the battery voltage and current of the secondary battery over time when constant-current pulse charging is performed from the hibernation state, and (2) is the graph from the hibernation state. 5 is a curve showing the relationship between the transient characteristic of the battery voltage of the secondary battery during constant current pulse charging and the extrapolated voltage obtained from the equation of the time constant.
FIG. 27 is a graph showing an example of the relationship between the battery voltage during charging and the change over time in the open circuit voltage after charging.
FIG. 28 is a curve showing an example of a relationship between a change in battery voltage over time and a change in discharge current over time when a constant current pulse discharge is further performed from a steady discharge state.
FIG. 29 is a circuit configuration diagram showing an example of an internal state detection device for a secondary battery according to the present invention.
FIG. 30 is a circuit configuration diagram showing an example in which the internal state detection device of FIG.
FIG. 31 is a circuit configuration diagram showing an example of an apparatus according to the present invention that is connected to n secondary batteries and detects the internal state of the secondary battery.
FIG. 32 is a graph showing changes in battery voltage over time when a commercially available lithium ion secondary battery with a nominal capacity of 1300 mAh is repeatedly discharged and stopped (rested) after constant current-constant voltage charging.
33 is a diagram showing the relationship between the battery voltage during discharge and the battery voltage during discharge stop (open circuit voltage) with respect to the integrated discharge amount of the data during discharge obtained in FIG. 32. FIG.
FIG. 34 is a diagram showing the relationship of the battery voltage with respect to the accumulated discharge amount when a commercially available lithium ion secondary battery charged to 100% and having a nominal capacity of 1300 mAh is discharged at different discharge currents.
[Explanation of symbols]
2101: Connection terminal, 2102: Battery voltage detection unit, 2103: Battery temperature detection unit, 2104: Sense resistor, 2105: Amplifier, 2106: Resistor 1, 2107: Resistor 2, 2108: Transistor 1, 2109: Transistor 2 2110: Control unit.

Claims (45)

二次電池の劣化状態、または蓄電容量、蓄電量および内部抵抗で代表される内部状態の検知方法であって、
正常な二次電池を各種温度下、各種電流で充放電したときの電池電圧、および蓄電量もしくは放電量のデータである基礎データを取得した上で、
検知対象二次電池の電圧値、または電圧値と電流値を計測し、該基礎データと比較して、
(a)検知対象二次電池が短絡している、
(b)検知対象二次電池の蓄電容量が低下しておらず内部抵抗が増加している、
(c)検知対象二次電池の蓄電容量が低下しており内部抵抗が増加していない、
(d)検知対象二次電池の蓄電容量が低下しかつ内部抵抗が増加している、
または
(e)検知対象二次電池は正常である、
のいずれにあたるかを判定した後に、蓄電量、または機器が使用可能な電気量である残量を算出する方法であり、
前記基礎データは、
(1)正常な電池の蓄電量Qに対する電池の開回路電圧Vocを計測して得られる、蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式、
(4)蓄電量がゼロの正常な電池の各種温度T下での各種充電電流Icで測定して得られた電池電圧Vcと充電を一時停止し測定して得られた開回路電圧Vocと前記充電電流Icおよび電池温度Tの関係のデータあるいは関数式化したVc(Voc,Ic,T)、またはこれらとさらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から算出される電池電圧Vc(Q,Ic,T)もしくはQ(Vc,Ic,T)の、データまたは関数式、
(5)前記(4)において電池の内部抵抗をRcとする時の関係式Vc=Voc+Ic×RcもしくはRc=(Vc−Voc)/Icから算出される内部抵抗のデータあるいはこのデータを関数式化したRc(Voc,Ic,T)、またはこれらとさらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から得られる内部抵抗Rc(Q,Ic,T)もしくはQ(Rc,Ic,T)の、データまたは関数式、
上記(1)、(4)および(5)から選択される少なくとも(5)を含む一つ以上のデータもしくは関数式であり、
検知対象二次電池が充電も放電もしていない、休止状態において、該電池の開回路電圧Voc0を計測した後、電流値Ic1で充電を開始し、電池電圧Vcを計測し、
電流値Ic1×時間t1×充放電効率Effの電気量q1だけ充電し電池電圧がVc1になった時、充電を停止し、充電を停止した後開回路電圧Vocの経時変化を計測して該閉回路電圧Vocが安定した後の開回路電圧をVoc1とし、もしくは、充電を停止してから所定の時間が経過した後の開回路電圧を計測しその値をVoc1とし、
I.(i)前記(1)の基礎データから正常な電池が開回路電圧Voc0の時の蓄電量Q0を求め、さらに前記(1)の基礎データから蓄電量Q0+q1の時の開回路電圧Voc(Q0+q1)を求め、この開回路電圧Voc(Q0+q1)と前記計測値Voc1との差が、
[Voc(Q0+q1)−Voc1]>g1 (g1>0)である時、
(ii)前記(4)の基礎データから求まる正常な電池の電池電圧Vc(Q0+q1,Ic,T)と前記電池電圧Vc1との差が[Vc(Q0+q1,Ic1,T)−Vc1]>j1(j1>0)である時、
(iii)前記(5)の基礎データから求まる正常な電池の内部抵抗Rc(Voc0,Ic,T)とRc1=(Vc1−Voc1)/Ic1で求まる検知対象二次電池の内部抵抗Rc1との差が[Rc1−Rc(Voc1,Ic1,T)]<z1(z1<0)である時、
上記(i)、(ii)、(iii)のいずれかの場合に、電池が短絡していると判定し、
一方、
II.上記I.に該当しない場合であって、前記開回路電圧Voc(Q0+q1)とVoc1の差が、g0≦[Voc(Q0+q1)−Voc1]≦g1 (g0<0<g1)である場合には、検知対象二次電池の容量低下はないと判定し、
さらに、計測した充電時間tに対する電池電圧Vcと、充電開始初期の電池電圧の過渡特性を表す式Vc=V1−(V1−Voc0)×e-t/τ(但し、V1は時間tを無限大に外挿した時のVcでτは時定数である)とによって、開回路電圧Voc0から充電電流Ic1で充電開始した時の時定数τを求めつつV1を算出し、
式V1=Voc0+Ic1×Rc1またはRc1=(V1−Voc0)/Ic1から求めた検知対象二次電池の内部抵抗Rc1と前記(5)の基礎データから求められる正常な電池の内部抵抗Rc(Voc0,Ic1,T)もしくはRc(Q0,Ic1,T)との差が、
(i) z1≦[Rc1−Rc(Q0,Ic1,T)]≦z2(z1<0<z2)である場合、もしくはj1≦[Vc1−Vc(Q0+q1,Ic,T)]≦j2(j1<0<j2)である場合に、検知対象二次電池は正常であると判定し、
(ii) [Rc1−Rc(Q0,Ic1,T)]>z2(0<z2)である場合、もしくはj2<[Vc1−Vc(Q0+q1,Ic,T)] (0<j2)である場合に、検知対象二次電池の内部抵抗が増大していると判定し、
III.前記開回路電圧Voc(Q0+q1)とVoc1の差が、[Voc(Q0+q1)−Voc1]<g0(g0<0)である場合には、電池の容量が低下していると判定し、
前記II.の(ii)において、内部抵抗が増大していると判定した場合、前記開回路電圧Voc1から電流値Ic2×時間t2の電気量q2だけ充電し充電を停止するまでの間の電池電圧Vcおよび停止後の開回路電圧Voc2を計測し、計測した充電時間tに対する電池電圧Vと、充電開始初期の電池電圧の過渡特性を表す式Vc=V2−(V2−Voc1)×e-t/τ(但し、V2は時間tを無限大に外挿した時のVcでτは時定数である)とによって、開回路電圧Voc1から充電電流Ic2で充電開始した時の時定数τを求めつつV2を算出し、
式V2=Voc1+Ic2×Rc2、Rc2=(V2−Voc1)/Ic2から検知対象二次電池の内部抵抗Rc2を求め、
検知対象二次電池の内部抵抗が正常な電池のRc(Q,Ic,T)からa×Rc(Q,Ic,T)+b(a,bは定数)に増加したと仮定して、
Rc1−[a×Rc(Q0,Ic1,T)+b]=0 と
Rc2−[a×Rc(Q0+q1,Ic2,T)+b]=0、もしくはQ1=Q(Voc1)を用いたRc2−[a×Rc(Q1,Ic2,T)+b]=0 と
から定数aおよびbを求め、増加した内部抵抗Rc'=a×Rc(Q,Ic,T)+bを算出した後、充電時の開回路電圧と電池電圧、充電電流、内部抵抗の関係の関係式Vc=Voc(Q)+Ic×Rc'(Q,Ic,T)から、充電終了時の蓄電容量C'を算出することを特徴とする二次電池の内部状態検知方法。
A method for detecting a deterioration state of a secondary battery or an internal state represented by a storage capacity, a storage amount and an internal resistance,
After obtaining basic data, which is data of the battery voltage and the amount of storage or discharge when a normal secondary battery is charged and discharged at various temperatures and at various currents,
Measure the voltage value or voltage value and current value of the secondary battery to be detected, and compare it with the basic data.
(A) The secondary battery to be detected is short-circuited.
(B) The storage capacity of the secondary battery to be detected has not decreased and the internal resistance has increased,
(C) The storage capacity of the secondary battery to be detected has decreased and the internal resistance has not increased,
(D) The storage capacity of the detection target secondary battery is reduced and the internal resistance is increased,
Or (e) the secondary battery to be detected is normal,
Is a method of calculating the remaining amount, which is the amount of electricity stored or the amount of electricity that can be used by the device, after determining which of
The basic data is
(1) Data or function expression of the relationship between the open circuit voltage Voc (Q) or Q (Voc) with respect to the charge amount Q, obtained by measuring the open circuit voltage Voc of the battery with respect to the charge amount Q of a normal battery,
(4) A battery voltage V c obtained by measuring various charging currents I c at various temperatures T of a normal battery with zero charge and an open circuit voltage Voc obtained by temporarily stopping charging and measuring. and the charge current I c and the battery temperature data or a function of the relationship between T formalized the V c (Voc, I c, T), or the open-circuit voltage Voc (Q) for the storage amount Q of the further above (1) Data or function expression of battery voltage V c (Q, I c , T) or Q (V c , I c , T) calculated from data or function expression of
(5) Internal resistance data calculated from the relational expression V c = Voc + I c × R c or R c = (V c −Voc) / I c when the internal resistance of the battery is R c in the above (4) Alternatively, R c (Voc, I c , T) obtained by functionalizing this data, or an internal value obtained from data or a functional expression of these and the relationship of the open circuit voltage Voc (Q) to the charged amount Q in (1) above. Data or functional expression of resistance R c (Q, I c , T) or Q (R c , I c , T),
One or more data or function expressions including at least (5) selected from (1), (4) and (5) above,
In the resting state where the secondary battery to be detected is neither charged nor discharged, after measuring the open circuit voltage Voc 0 of the battery, charging is started at the current value I c1 , the battery voltage V c is measured,
Current value I c1 × time t 1 × charge quantity 1 of charge Eff charge E 1 q When the battery voltage reaches V c1 , charging is stopped, and after charging is stopped, open circuit voltage Voc is measured over time Then, the open circuit voltage after the closed circuit voltage Voc is stabilized is Voc 1 , or the open circuit voltage after a predetermined time has elapsed after the charging is stopped and the value is Voc 1 ,
I. (i) the normal rechargeable battery from the basic data sought storage amount Q 0 when the open-circuit voltage Voc 0 of the (1), further an open circuit when the basic data storage amount Q 0 + q 1 of the (1) The voltage Voc (Q 0 + q 1 ) is obtained, and the difference between the open circuit voltage Voc (Q 0 + q 1 ) and the measured value Voc 1 is
When [Voc (Q 0 + q 1 ) −Voc 1 ]> g 1 (g 1 > 0),
(ii) The difference between the battery voltage V c (Q 0 + q 1 , I c , T) of a normal battery obtained from the basic data of (4) and the battery voltage V c1 is [V c (Q 0 + q 1 , I c1 , T) −V c1 ]> j 1 (j 1 > 0),
(iii) Normal battery internal resistance R c (Voc 0 , I c , T) obtained from the basic data of (5) and detection target secondary battery obtained from R c1 = (V c1 −Voc 1 ) / I c1 When the difference from the internal resistance R c1 is [R c1 −R c (Voc 1 , I c1 , T)] <z 1 (z 1 <0),
In any of the above (i), (ii), (iii), it is determined that the battery is short-circuited,
on the other hand,
II. I. above. The difference between the open circuit voltage Voc (Q 0 + q 1 ) and Voc 1 is g 0 ≦ [Voc (Q 0 + q 1 ) −Voc 1 ] ≦ g 1 (g 0 <0 < g 1 ), it is determined that there is no decrease in capacity of the secondary battery to be detected,
Furthermore, the battery voltage V c with respect to the measured charging time t and the expression V c = V 1 − (V 1 −Voc 0 ) × e −t / τ (where V 1 represents the transient characteristics of the battery voltage at the beginning of charging) by a is the time constant is τ at V c when extrapolating the time t to infinity), the V 1 while seeking constant τ time when the open-circuit voltage Voc 0 and start of charging at a charging current I c1 Calculate
Normal determined from basic data of the the formula V 1 = Voc 0 + I c1 × R c1 or R c1 = (V 1 -Voc 0 ) / I internal resistance of the detection target secondary batteries obtained from c1 R c1 (5) The difference between the internal resistance R c (Voc 0 , I c1 , T) or R c (Q 0 , I c1 , T)
(i) When z 1 ≦ [R c1 −R c (Q 0 , I c1 , T)] ≦ z 2 (z 1 <0 <z 2 ), or j 1 ≦ [V c1 −V c (Q 0 + q 1 , I c , T)] ≦ j 2 (j 1 <0 <j 2 ), it is determined that the secondary battery to be detected is normal,
(ii) When [R c1 −R c (Q 0 , I c1 , T)]> z 2 (0 <z 2 ), or j 2 <[V c1 −V c (Q 0 + q 1 , I c , T)] (0 <j 2 ), it is determined that the internal resistance of the secondary battery to be detected is increased,
III. When the difference between the open circuit voltage Voc (Q 0 + q 1 ) and Voc 1 is [Voc (Q 0 + q 1 ) −Voc 1 ] <g 0 (g 0 <0), the battery capacity decreases. It is determined that
When it is determined in (ii) of II. That the internal resistance is increased, the charging is stopped from the open circuit voltage Voc 1 by the amount of electricity q 2 of the current value I c2 × time t 2 and the charging is stopped. Measure the battery voltage V c and the open circuit voltage Voc 2 after the stop, and express the transient characteristics of the battery voltage V with respect to the measured charging time t and the battery voltage at the beginning of charging V c = V 2 − (V 2 −Voc 1 ) × e −t / τ (where V 2 is V c when time t is extrapolated to infinity, and τ is a time constant), from the open circuit voltage Voc 1 to the charging current I Calculate V 2 while obtaining the time constant τ when charging is started at c2 ,
Obtain the internal resistance R c2 of the secondary battery to be detected from the formula V 2 = Voc 1 + I c2 × R c2 , R c2 = (V 2 −Voc 1 ) / I c2 ,
Assume that the internal resistance of the secondary battery to be detected has increased from R c (Q, I c , T) of a normal battery to a × R c (Q, I c , T) + b (a and b are constants) And
R c1 − [a × R c (Q 0 , I c1 , T) + b] = 0
R c2 − [a × R c (Q 0 + q 1 , I c2 , T) + b] = 0, or R c2 − [a × R c (Q 1 , I c2 using Q 1 = Q (Voc 1 )) , T) + b] = 0 and the constants a and b are calculated, and the increased internal resistance R c ′ = a × R c (Q, I c , T) + b is calculated. The storage capacity C ′ at the end of charging is calculated from the relational expression V c = Voc (Q) + I c × R c ′ (Q, I c , T) of the relationship between voltage, charging current and internal resistance To detect the internal state of the secondary battery.
二次電池の劣化状態、または蓄電容量、蓄電量および内部抵抗で代表される内部状態の検知方法であって、
正常な二次電池を各種温度下、各種電流で充放電したときの電池電圧、および蓄電量もしくは放電量のデータである基礎データを取得した上で、
検知対象二次電池の電圧値、または電圧値と電流値を計測し、該基礎データと比較して、
(a)検知対象二次電池が短絡している、
(b)検知対象二次電池の蓄電容量が低下しておらず内部抵抗が増加している、
(c)検知対象二次電池の蓄電容量が低下しており内部抵抗が増加していない、
(d)検知対象二次電池の蓄電容量が低下しかつ内部抵抗が増加している、
または
(e)検知対象二次電池は正常である、
のいずれにあたるかを判定した後に、蓄電量、または機器が使用可能な電気量である残量を算出する方法であり、
前記基礎データは、
(1)正常な電池の蓄電量Qに対する電池の開回路電圧Vocを計測して得られる、蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式、
(3)満充電の正常な電池の各種温度T下での各種放電電流Idで測定して得られた電池電圧Vdと放電を一時停止し測定して得られた開回路電圧Vocと前記放電電流Idおよび電池温度Tの関係のデータあるいは関数式化したVd(Voc,Id,T)において電池の内部抵抗をRdとする時の関係式Vd=Voc−Id×RdもしくはRd=(Voc−Vd)/Idから算出される内部抵抗のデータ、またはこのデータを関数式化したRd(Voc,Id,T)もしくはRd(Vd,Id,T)、あるいはこれらと上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から得られる内部抵抗Rd(Q,Id,T)もしくはQ(Rd,Id,T)の、データまたは関数式、
上記(1)および(3)のデータもしくは関数式であり、
検知対象二次電池が充電も放電もしていない、休止状態にあり、
該電池の開回路電圧Voc0の経時変化を計測した後、開回路電圧Voc0から電流値I1×時間t1の電気量q1だけ放電し該放電を停止するまでの間の電池電圧Vおよび停止後の開回路電圧Voc1を計測し、
I.開回路電圧Voc0の低下速度が所定の値v0より大、すなわち-dVoc0/dt>v0>0である場合に、前記検知対象二次電池が短絡していると判定し、
II.上記I.に該当しない場合であって、前記(1)の基礎データから、正常な電池の開回路電圧がVoc0である時の蓄電量Q0=Q(Voc0)およびそれに次いで電気量q1を放電した後の開回路電圧Voc(Q0-q1)を求め、正常な電池の開回路電圧Voc(Q0-q1)と検知対象二次電池の開回路電圧Voc1との差が、製品特性のバラツキ範囲内のf0≦[Voc(Q0-q1)-Voc1]≦f1(f0<0<f1)である場合には、検知対象二次電池の容量低下はないと判定し、
かつ計測した放電時間tに対する電池電圧Vと、放電開始初期の電池電圧の過渡特性表す式V=V1+(Voc0−V1)×e-t/τ(但し、V1は時間tを無限大に外挿した時のVでτは時定数である)とによって、開回路電圧Voc0から放電電流I1で放電開始する時の時定数τを求めつつ、V1を算出し、
式V1=Voc0−I1×R1、またはR1=(Voc0−V1)/I1から求めた検知対象二次電池の内部抵抗R1と前記(3)の基礎データのRd(Voc,Id,T)もしくはRd(Q,Id,T)から求められる正常な電池の内部抵抗Rd(Voc0,I1,T)もしくはRd(Q0,I1,T)とを比較して、
(i)内部抵抗R1と正常な電池の内部抵抗Rd(Voc0,I1,T)もしくはRd(Q0,I1,T)が実質的に同等、すなわち製品の許容範囲のr1≦[R1-Rd(Q0,I1,T)]≦r2(r1<0<r2)である場合には、前記検知対象二次電池は正常であると判定し、
一方、
(ii)[R1−Rd(Q0,I1,T)]>r2(0<r2)である場合には、内部抵抗が増加していると判定し、さらに
III.上記I.に該当しない場合であって、前記開回路電圧Voc(Q0-q1)とVoc1の差が、[Voc(Q0-q1)-Voc1]>f1(0<f1)である場合には、前記検知対象二次電池の容量が低下していると判定し、
前記II.の(ii)において、検知対象二次電池の内部抵抗が増加していると判定した場合、前記開回路電圧Voc1からさらに電流値I2×時間t2=電気量q2の放電を行い該放電を停止するまでの間の電池電圧Vおよび停止後の開回路電圧Voc2を計測し、計測した放電時間tに対する電池電圧Vと、放電開始初期の電池電圧の過渡特性表す式V=V2+(Voc1−V2)×e-t/τ(但しV2は時間tを無限大に外挿した時のVでτは時定数である)とによって、開回路電圧Voc1から放電電流I2で放電開始する時の時定数τを求めつつ、V2を算出し、
式V2=Voc1−I2×R2、 R2=(Voc1−V2)/I2から検知対象二次電池の内部抵抗R2を求め、
検知対象二次電池の内部抵抗が正常な電池のRd(Q,Id,T)からa×Rd(Q,Id,T)+b(a,bは定数)に増加したと仮定して、
R1−[a×Rd(Q0,I1,T)+b]=0 と
R2−[a×Rd(Q0-q1,I2,T)+b]=0、もしくはQ1=Q0-q1=Q(Voc1)を用いたR2−[a×Rd(Q1,I2,T)+b]=0 と
から定数aおよびbを求め、増加した内部抵抗Rd'=a×Rd(Q,Id,T)+bを算出し、
短絡はなく容量低下もなく内部抵抗が増加していると判定した場合、増加した放電時の内部抵抗Rd'(Q,Id,T)を求めた後、放電時の開回路電圧と電池電圧、充電電流、内部抵抗の関係の関係式Vd=Voc(Q)−Id×Rd'(Q,Id,T)から、放電時の電池電圧を蓄電量Qと放電電流Idと電池温度Tの関数Vd=Vd(Q,Id,T)として表し、電池電圧Vd、放電電流Id、電池温度Tの計測から放電時の蓄電量Qを算出することを特徴とする二次電池の内部状態検知方法。
A method for detecting a deterioration state of a secondary battery or an internal state represented by a storage capacity, a storage amount and an internal resistance,
After obtaining basic data, which is data of the battery voltage and the amount of storage or discharge when a normal secondary battery is charged and discharged at various temperatures and at various currents,
Measure the voltage value or voltage value and current value of the secondary battery to be detected, and compare it with the basic data.
(A) The secondary battery to be detected is short-circuited.
(B) The storage capacity of the secondary battery to be detected has not decreased and the internal resistance has increased,
(C) The storage capacity of the secondary battery to be detected has decreased and the internal resistance has not increased,
(D) The storage capacity of the detection target secondary battery is reduced and the internal resistance is increased,
Or (e) the secondary battery to be detected is normal,
Is a method of calculating the remaining amount, which is the amount of electricity stored or the amount of electricity that can be used by the device, after determining which of
The basic data is
(1) Data or function expression of the relationship between the open circuit voltage Voc (Q) or Q (Voc) with respect to the charge amount Q, obtained by measuring the open circuit voltage Voc of the battery with respect to the charge amount Q of a normal battery,
(3) The battery voltage V d obtained by measuring various discharge currents I d under various temperatures T of a fully charged normal battery, the open circuit voltage Voc obtained by temporarily stopping the discharge, and the aforementioned Relational expression V d = Voc−I d × R when the internal resistance of the battery is R d in the relational data V d (Voc, I d , T) of the relation between the discharge current I d and the battery temperature T d or R d = (Voc−V d ) / I d Internal resistance data calculated from R d (Voc, I d , T) or R d (V d , I d , T), or the internal resistance R d (Q, I d , T) or Q (R d ) obtained from data or a function expression of the relationship between the open circuit voltage Voc (Q) and the storage amount Q in (1) above. , I d , T), data or function expression,
It is the data or function formula of (1) and (3) above,
The secondary battery to be detected is not charging or discharging, is in a dormant state,
After measuring the change over time of the open circuit voltage Voc 0 of the battery, the battery voltage V from when the open circuit voltage Voc 0 is discharged by the amount of electricity q 1 of the current value I 1 × time t 1 to stop the discharge. And measure the open circuit voltage Voc 1 after stopping,
I. When the decrease rate of the open circuit voltage Voc 0 is larger than the predetermined value v 0 , that is, when −dVoc 0 / dt> v 0 > 0, it is determined that the detection target secondary battery is short-circuited,
II. I. above. From the basic data in (1) above, the stored amount Q 0 = Q (Voc 0 ) when the open circuit voltage of a normal battery is Voc 0 and then the amount of electricity q 1 is discharged. calculating the open circuit voltage Voc (Q 0 -q 1) after the difference between the open-circuit voltage Voc 1 of the open-circuit voltage Voc (Q 0 -q 1) and the detection target secondary batteries of normal cells, products When f 0 ≦ [Voc (Q 0 -q 1 ) −Voc 1 ] ≦ f 1 (f 0 <0 <f 1 ) within the characteristic variation range, there is no decrease in capacity of the secondary battery to be detected. And
And the expression V = V 1 + (Voc 0 −V 1 ) × e −t / τ (where V 1 is the time t) V 1 when extrapolated to infinity and τ is a time constant), calculating V 1 while obtaining the time constant τ when starting discharge with the discharge current I 1 from the open circuit voltage Voc 0 ,
V 1 = Voc 0 −I 1 × R 1 , or R 1 = (Voc 0 −V 1 ) / I 1 , the internal resistance R 1 of the secondary battery to be detected and R of the basic data (3) Normal internal battery resistance R d (Voc 0 , I 1 , T) or R d (Q 0 , I 1 , T) obtained from d (Voc, I d , T) or R d (Q, I d , T) T)
(I) The internal resistance R 1 and the internal resistance R d (Voc 0 , I 1 , T) or R d (Q 0 , I 1 , T) of a normal battery are substantially equivalent, that is, the tolerance r of the product When 1 ≦ [R 1 −R d (Q 0 , I 1 , T)] ≦ r 2 (r 1 <0 <r 2 ), it is determined that the detection target secondary battery is normal,
on the other hand,
(Ii) If [R 1 −R d (Q 0 , I 1 , T)]> r 2 (0 <r 2 ), it is determined that the internal resistance has increased, and
III. And the difference between the open circuit voltage Voc (Q 0 -q 1 ) and Voc 1 is [Voc (Q 0 -q 1 ) −Voc 1 ]> f 1 (0 <f 1 ) If there is, it is determined that the capacity of the detection target secondary battery has decreased,
When it is determined in (ii) of II. That the internal resistance of the secondary battery to be detected is increased, the current value I 2 × time t 2 = discharge of electric quantity q 2 further from the open circuit voltage Voc 1 The battery voltage V until the discharge is stopped and the open circuit voltage Voc 2 after the stop are measured, and the battery voltage V with respect to the measured discharge time t and the equation V representing the transient characteristics of the battery voltage at the beginning of discharge = V 2 + (Voc 1 -V 2) × e -t / τ by a (where V 2 is the time constant in tau is V when extrapolating the time t to infinity), open-circuit voltage Voc 1 While calculating the time constant τ when starting discharge with the discharge current I 2 from V 2 ,
Obtain the internal resistance R 2 of the secondary battery to be detected from the formula V 2 = Voc 1 −I 2 × R 2 , R 2 = (Voc 1 −V 2 ) / I 2 ,
Assume that the internal resistance of the secondary battery to be detected has increased from R d (Q, I d , T) of a normal battery to a × R d (Q, I d , T) + b (a and b are constants). And
R 1 − [a × R d (Q 0 , I 1 , T) + b] = 0
R 2 − [a × R d (Q 0 −q 1 , I 2 , T) + b] = 0, or R 2 − [a × R using Q 1 = Q 0 −q 1 = Q (Voc 1 ) d (Q 1 , I 2 , T) + b] = 0 and the constants a and b are obtained, and the increased internal resistance R d ′ = a × R d (Q, I d , T) + b is calculated,
If it is determined that the internal resistance has increased without a short circuit and no capacity reduction, the internal resistance R d ′ (Q, I d , T) at the time of increased discharge is obtained, and then the open circuit voltage and battery at the time of discharge are determined. From the relational expression V d = Voc (Q) −I d × R d ′ (Q, I d , T), the battery voltage at the time of discharge is stored as Q and the discharge current I d And a function V d = V d (Q, I d , T) of the battery temperature T, and the storage amount Q at the time of discharge is calculated from the measurement of the battery voltage V d , the discharge current I d , and the battery temperature T A method for detecting the internal state of the secondary battery.
二次電池の劣化状態、または蓄電容量、蓄電量および内部抵抗で代表される内部状態の検知方法であって、
正常な二次電池を各種温度下、各種電流で充放電したときの電池電圧、および蓄電量もしくは放電量のデータである基礎データを取得した上で、
検知対象二次電池の電圧値、または電圧値と電流値を計測し、該基礎データと比較して、
検知対象二次電池が放電末期にあるか短絡している、
検知対象二次電池の蓄電容量内部抵抗が増加している、
検知対象二次電池の蓄電容量が低下している、
または
検知対象二次電池は正常である、
のいずれにあたるかを判定した後に、蓄電量、または機器が使用可能な電気量である残量を算出する方法であり、
前記基礎データは、
(1)正常な電池の蓄電量Qに対する電池の開回路電圧Vocを計測して得られる、蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式、
(2)満充電の正常な電池の各種温度T下での各種放電電流Idで測定して得られた電池電圧Vdと放電を一時停止し測定して得られた開回路電圧Vocと前記放電電流Idおよび電池温度Tの関係のデータあるいは関数式化したVd(Voc,Id,T)、またはこれらと上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から算出される電池電圧Vd(Q,Id,T)もしくはQ(Vd,Id,T)の、データまたは関数式、
上記(1)および(2)のデータもしくは関数式であり、
検知対象二次電池が放電状態にある時に、放電電流Id0と電池電圧Vdを計測し、電池電圧が所定の値未満である時あるいは電池電圧V d の低下速度が所定の値x 1 より大きい、すなわち−dV d /dt>x 1 (0<x 1 )の時、電池が放電末期にあるかあるいは短絡していると判定し、電池電圧が所定の値以上である時あるいは電池電圧Vdの低下速度が所定の値x1以下、すなわち0<−dV/dt≦x1の時、検知対象二次電池が正常であるかあるいは短絡以外の劣化モードにあると判定し、
検知対象二次電池が正常であるかあるいは短絡以外の劣化モードにあると判定した場合、検知対象二次電池が放電状態にあり、実質的に定常状態にある時に、放電電流Id0と電池電圧Vdを計測し、その後、電気量qだけ放電した後に定常状態の放電電流Id1で電池電圧はVd1になっている場合、前記(2)の基礎データと前記(1)の基礎データとから、電池電圧がVd0のときの正常な電池の蓄電量をQ0とするとき、電池電圧Vd0=Vd(Q0,Id0,T)あるいは蓄電量Q0=Q(Vd0,Id0,T)、並びに電池電流がId1のときの正常な電池の電池電圧Vd1=Vd(Q0-q,Id1,T)および蓄電量Q0-q=Q(Vd1,Id1,T)を求め、
I.(i) y1≦[Vd1−Vd(Q0 -q,Id1,T)]≦y2(y1<0<y2)の時、もしくは(ii) w1≦Q(Vd1,Id1,T)−[Q(Vd0,Id0,T)−q]≦w2(w1<0<w2)の時、検知対象二次電池は正常であると判定する、
II.(i) [Vd1−Vd(Q0-q,Id1,T)]>y2(0<y2)の時、もしくは(ii) Q(Vd1,Id1,T)−[Q(Vd0,Id0,T)−q]>w2(0<w2)の時、検知対象二次電池の内部抵抗は増加していると判定する、
III.(i) [Vd1−Vd(Q0-q,Id1,T)]<y1(y1<0)の時、もしくは(ii) Q(Vd1,Id1,T)−[Q(Vd0,Id0,T)−q]<w1(w1<0)の時、二次電池の蓄電容量は低下していると判定し、
実質的に定常状態の放電状態にある検知対象二次電池の放電電流がIn0で電池電圧がVn0である時、放電電流がIn1に変動して電流値In1×時間tn1の電気量qnだけ放電した後、定常電流In0での放電に戻るというようにn(nは正の整数で、n=1,2,3,4,…)回変動した場合、変動時の電池電圧Vを複数点計測し、放電電流が変動してからの時間tに対する電池電圧値Vと、放電電流変動時の電池電圧Vの過渡特性を表す式V=Vn1 +(Vn0−Vn1)×e-t/τ(但しVn1は時間tを無限大に外挿した時のVでτは時定数で、n=1,2,3,4,…である)によって、放電電流変動時の時定数τを求めつつVn1を算出し、
検知対象二次電池の放電電流が少なくとも3回以上変動する時、すなわち放電電流I10の定常放電で電池電圧V10の時、放電電流がI11に変化し電流値I11×時間t11の電気量q1だけ放電し、電池電圧V10から電池電圧V20になり、次いで定常放電の放電電流I20がI21に変化し電流値I21×時間t21の電気量q2だけ放電し、電池電圧V20から電池電圧V30になり、次に定常放電の放電電流I30がI31に変化し電流値I31×時間t31の電気量q3だけ放電をした時、定常放電の放電電流In0がIn1に変動し電流値In1×時間tn1の電気量qn放電した場合であって、前記II.で、二次電池の内部抵抗が増加していると判定した場合、
電池の内部抵抗がRd(Q,Id,T)からa×Rd(Q,Id,T)+b(a,bは定数)に増加したと仮定し、計測した放電電流が変化してからの時間tに対する電池電圧値Vと、各放電電流変化時の電池電圧の過渡特性を表す式V=Vn1+(Vn0−Vn1)×e-t/τ(但しVn1は時間tを無限大に外挿した時のVでτは時定数で、n=1,2,3,…である)によって、放電電流In0がIn1に変動した時の時定数τを求めつつVn1を算出し、放電電流In0で電池電圧Vn0の時、蓄電量Qn0を有する電池の開回路電圧Vocn0を、Vocn0=Vn0+In0×Rd'(Qn0,In0,T)=Vn1+In1×Rd'(Qn0,In1,T)(n=1,2,3,…)と表し、
電池電圧がV10、V20、V30の時の蓄電量をそれぞれQ10、Q20、Q30として、Q20=Q10−q1 Q30=Q20−q2=Q10−q1−q2V10−V11=I11×Rd'(Q10,I11,T)−I10×Rd'(Q10,I10,T)V20−V21=I21×Rd'(Q20,I21,T)−I20×Rd'(Q20,I20,T)V30−V31=I31×Rd'(Q30,I31,T)−I30×Rd'(Q30,I30,T)Rd'(Q10,I10,T)= a×Rd(Q10,I10,T)+b(a,bは定数)Rd'(Q20,I20,T)= a×Rd(Q20,I20,T)+b(a,bは定数)Rd'(Q30,I30,T)= a×Rd(Q30,I30,T)+b(a,bは定数)上記式から定数a、b、Q10を求め、劣化して内部抵抗が増加した電池の内部抵抗Rd'(Q,I,T)および現在の蓄電量を求め、
短絡はなく内部抵抗が増加していると判定した場合、増加した放電時の内部抵抗Rd'(Q,Id,T)を求めた後、放電時の開回路電圧と電池電圧、充電電流、内部抵抗の関係の関係式Vd=Voc(Q)−Id×Rd'(Q,Id,T)から、放電時の電池電圧を蓄電量Qと放電電流Idと電池温度Tの関数Vd=Vd(Q,Id,T)として表し、電池電圧Vd、放電電流Id、電池温度Tの計測から放電時の蓄電量Qを算出することを特徴とする二次電池の内部状態検知方法。
A method for detecting a deterioration state of a secondary battery or an internal state represented by a storage capacity, a storage amount and an internal resistance,
After obtaining basic data, which is data of the battery voltage and the amount of storage or discharge when a normal secondary battery is charged and discharged at various temperatures and at various currents,
Measure the voltage value or voltage value and current value of the secondary battery to be detected, and compare it with the basic data.
The secondary battery to be detected is at the end of discharge or short-circuited.
The internal resistance of the storage capacity of the secondary battery to be detected has increased.
The storage capacity of the secondary battery to be detected has decreased .
Or The secondary battery to be detected is normal.
Is a method of calculating the remaining amount, which is the amount of electricity stored or the amount of electricity that can be used by the device, after determining which of
The basic data is
(1) Data or function expression of the relationship between the open circuit voltage Voc (Q) or Q (Voc) with respect to the charge amount Q, obtained by measuring the open circuit voltage Voc of the battery with respect to the charge amount Q of a normal battery,
(2) The battery voltage V d obtained by measuring various discharge currents I d at various temperatures T of a fully charged normal battery, the open circuit voltage Voc obtained by temporarily stopping the discharge, and the aforementioned Data on the relationship between the discharge current I d and the battery temperature T or the functional expression V d (Voc, I d , T), or the relationship between these and the open circuit voltage Voc (Q) with respect to the storage amount Q in (1) above Data or function expression of battery voltage V d (Q, I d , T) or Q (V d , I d , T) calculated from data or function expression,
It is the data or function formula of (1) and (2) above,
When the detection target secondary battery is in a discharging state, the discharging current I d0 and the battery voltage V d is measured, from the value x 1 decreases the rate of a predetermined time or the battery voltage V d the battery voltage is less than the predetermined value When it is large, that is, −dV d / dt> x 1 (0 <x 1 ), it is determined that the battery is at the end of discharge or short-circuited, and when the battery voltage is equal to or higher than a predetermined value or the battery voltage V When the decrease rate of d is a predetermined value x 1 or less, that is, 0 <−dV / dt ≦ x 1 , it is determined that the secondary battery to be detected is normal or in a deterioration mode other than short circuit,
When it is determined that the secondary battery to be detected is normal or in a deterioration mode other than a short circuit , the discharge current I d0 and the battery voltage when the secondary battery to be detected is in a discharged state and in a substantially steady state. When V d is measured and then the battery voltage is V d1 with the discharge current I d1 in a steady state after discharging only the electric quantity q, the basic data of (2) and the basic data of (1) From the above, when the storage amount of a normal battery when the battery voltage is V d0 is Q 0 , the battery voltage V d0 = V d (Q 0 , I d0 , T) or the storage amount Q 0 = Q (V d0 , I d0, T), as well as the battery voltage of the normal rechargeable battery when the battery current I d1 V d1 = V d ( Q 0 -q, I d1, T) and the storage amount Q 0 -q = Q (V d1 , I d1 , T)
I. (i) y 1 ≦ [V d1 −V d (Q 0 −q , I d1 , T)] ≦ y 2 (y 1 <0 <y 2 ) or (ii) w 1 ≦ Q (V d1 , I d1 , T) − [Q (V d0 , I d0 , T) −q] ≦ w 2 (w 1 <0 <w 2 ), it is determined that the detection target secondary battery is normal.
II. (i) When [V d1 −V d (Q 0 -q, I d1 , T)]> y 2 (0 <y 2 ), or (ii) Q (V d1 , I d1 , T) − [Q When (V d0 , I d0 , T) −q]> w 2 (0 <w 2 ), it is determined that the internal resistance of the detection target secondary battery has increased.
III. (I) [V d1 −V d (Q 0 −q, I d1 , T)] <y 1 (y 1 <0) or (ii) Q (V d1 , I d1 , T) − When [Q (V d0 , I d0 , T) −q] <w 1 (w 1 <0), it is determined that the storage capacity of the secondary battery is reduced,
Substantially when the discharge current battery voltage I n0 of the detection target secondary battery in a discharged state of the normal state is V n0, discharge current electric current value I n1 × time t n1 varies to I n1 If the battery fluctuates n (n is a positive integer, n = 1, 2, 3, 4,...) Times, such as returning to discharge with a steady current I n0 after discharging by the amount q n , the battery at the time of fluctuation The voltage V is measured at multiple points, and the battery voltage value V with respect to time t after the discharge current fluctuates, and the expression V = V n1 + (V n0 −V n1) representing the transient characteristics of the battery voltage V when the discharge current fluctuates ) × e -t / τ (where V n1 is V when time t is extrapolated to infinity, τ is the time constant, and n = 1, 2, 3, 4,...) Calculate V n1 while obtaining the time constant τ of time,
When the discharge current of the secondary battery to be detected fluctuates at least three times, that is, when the discharge current I 10 is steady discharge and the battery voltage V 10 , the discharge current changes to I 11 and the current value I 11 × time t 11 Discharge by the amount of electricity q 1 and change from the battery voltage V 10 to the battery voltage V 20 , then the discharge current I 20 of steady discharge changes to I 21 and discharges by the amount of electricity q 2 of the current value I 21 × time t 21 consists battery voltage V 20 to the battery voltage V 30, then when the discharge current I 30 of the steady discharging is discharged by electricity quantity q 3 of a current value I 31 × time t 31 changes to I 31, steady discharge When the discharge current In 0 is changed to In 1 and the amount of electricity q n is discharged at the current value In 1 × time t n1 , and it is determined in II that the internal resistance of the secondary battery has increased. ,
Assuming that the internal resistance of the battery has increased from R d (Q, I d , T) to a x R d (Q, I d , T) + b (a and b are constants), the measured discharge current changes. V = V n1 + (V n0 −V n1 ) × e −t / τ (where V n1 is the time) V is the time constant when t is extrapolated to infinity, and τ is the time constant, and n = 1, 2, 3, ...), so that the time constant τ when the discharge current In 0 changes to In 1 is calculated. When V n1 is calculated and the battery voltage V n0 is the discharge current I n0 , the open circuit voltage Voc n0 of the battery having the charged amount Q n0 is expressed as Voc n0 = V n0 + I n0 × R d ′ (Q n0 , I n0 , T) = V n1 + I n1 × R d ′ (Q n0 , I n1 , T) (n = 1, 2, 3,...)
Q 20 = Q 10 −q 1 , Q 30 = Q 20 −q 2 = Q 10 −q, where Q 10 , Q 20 , and Q 30 are the storage amounts when the battery voltage is V 10 , V 20 , and V 30 , respectively. 1 −q 2 V 10 −V 11 = I 11 × R d '(Q 10 , I 11 , T) −I 10 × R d ' (Q 10 , I 10 , T) V 20 −V 21 = I 21 × R d ′ (Q 20 , I 21 , T) −I 20 × R d ′ (Q 20 , I 20 , T) V 30 −V 31 = I 31 × R d ′ (Q 30 , I 31 , T) − I 30 × R d ′ (Q 30 , I 30 , T) R d ′ (Q 10 , I 10 , T) = a × R d (Q 10 , I 10 , T) + b (a and b are constants) R d ′ (Q 20 , I 20 , T) = a × R d (Q 20 , I 20 , T) + b (a and b are constants) R d ′ (Q 30 , I 30 , T) = a × R d (Q 30 , I 30 , T) + b (a and b are constants) The constants a, b and Q 10 are obtained from the above formula, and the internal resistance R d ′ (Q, I, T) and current storage amount
If it is determined that there is no short circuit and the internal resistance is increasing, after obtaining the increased internal resistance R d ′ (Q, I d , T) during discharging, the open circuit voltage, battery voltage, and charging current during discharging From the relational expression V d = Voc (Q) −I d × R d ′ (Q, I d , T), the battery voltage at the time of discharge is determined as the storage amount Q, the discharge current I d and the battery temperature T. V d = V d (Q, I d , T), and the secondary battery is characterized in that the storage amount Q during discharge is calculated from the measurement of the battery voltage V d , the discharge current I d , and the battery temperature T. Battery internal state detection method.
二次電池の劣化状態、または蓄電容量、蓄電量および内部抵抗で代表される内部状態の検知方法であって、
正常な二次電池を各種温度下、各種電流で充放電したときの電池電圧、および蓄電量もしくは放電量のデータである基礎データを取得した上で、
検知対象二次電池の電圧値、または電圧値と電流値を計測し、該基礎データと比較して、
(a)検知対象二次電池が短絡している、
(b)検知対象二次電池の蓄電容量が低下しておらず内部抵抗が増加している、
(c)検知対象二次電池の蓄電容量が低下しており内部抵抗が増加していない、
(d)検知対象二次電池の蓄電容量が低下しかつ内部抵抗が増加している、
または
(e)検知対象二次電池は正常である、
のいずれにあたるかを判定した後に、蓄電量、または機器が使用可能な電気量である残量を算出する方法であり、
前記基礎データは、
(1)正常な電池の蓄電量Qに対する電池の開回路電圧Vocを計測して得られる、蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式、
(4)蓄電量がゼロの正常な電池の各種温度T下での各種充電電流Icで測定して得られた電池電圧Vcと充電を一時停止し測定して得られた開回路電圧Vocと前記充電電流Icおよび電池温度Tの関係のデータあるいは関数式化したVc(Voc,Ic,T)、またはこれらとさらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から算出される電池電圧Vc(Q,Ic,T)もしくはQ(Vc,Ic,T)の、データまたは関数式、
(5)前記(4)において電池の内部抵抗をRcとする時の関係式Vc=Voc+Ic×RcもしくはRc=(Vc−Voc)/Icから算出される内部抵抗のデータあるいはこのデータを関数式化したRc(Voc,Ic,T)、またはこれらとさらに上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から得られる内部抵抗Rc(Q,Ic,T)もしくはQ(Rc,Ic,T)の、データまたは関数式、
上記(1)、(4)および(5)から選択される少なくとも(1)及び(5)を含む二つ以上のデータもしくは関数式であり、
検知対象二次電池が充電も放電もしていない、休止状態において、該電池の開回路電圧Voc0を計測した後、電流値Ic1で充電を開始し、電池電圧Vcを計測し、
電流値Ic1×時間t1×充放電効率Effの電気量q1だけ充電し電池電圧がVc1になった時、充電を停止し、充電を停止した後開回路電圧Vocの経時変化を計測して該閉回路電圧Vocが安定した後の開回路電圧をVoc1とし、もしくは、充電を停止してから所定の時間が経過した後の開回路電圧を計測しその値をVoc1とし、
I.(i)前記(1)の基礎データから正常な電池が開回路電圧Voc0の時の蓄電量Q0を求め、さらに前記(1)の基礎データから蓄電量Q0+q1の時の開回路電圧Voc(Q0+q1)を求め、この開回路電圧Voc(Q0+q1)と前記計測値Voc1との差が、
[Voc(Q0+q1)−Voc1]>g1 (g1>0)である時、
(ii)前記(4)の基礎データから求まる正常な電池の電池電圧Vc(Q0+q1,Ic,T)と前記電池電圧Vc1との差が[Vc(Q0+q1,Ic1,T)−Vc1]>j1(j1>0)である時、
(iii)前記(5)の基礎データから求まる正常な電池の内部抵抗Rc(Voc0,Ic,T)とRc1=(Vc1−Voc1)/Ic1で求まる検知対象二次電池の内部抵抗Rc1との差が[Rc1−Rc(Voc1,Ic1,T)]<z1(z1<0)である時、
上記(i)、(ii)、(iii)のいずれかの場合に、電池が短絡していると判定し、
一方、
II.上記I.に該当しない場合であって、前記開回路電圧Voc(Q0+q1)とVoc1の差が、g0≦[Voc(Q0+q1)−Voc1]≦g1 (g0<0<g1)である場合には、検知対象二次電池の容量低下はないと判定し、
さらに、計測した充電時間tに対する電池電圧Vcと、充電開始初期の電池電圧の過渡特性を表す式Vc=V1−(V1−Voc0)×e-t/τ(但し、V1は時間tを無限大に外挿した時のVcでτは時定数である)によって、開回路電圧Voc0から充電電流Ic1で充電開始した時の時定数τを求めつつV1を算出し、
式V1=Voc0+Ic1×Rc1またはRc1=(V1−Voc0)/Ic1から求めた検知対象二次電池の内部抵抗Rc1と前記(5)の基礎データから求められる正常な電池の内部抵抗Rc(Voc0,Ic1,T)もしくはRc(Q0,Ic1,T)との差が、
(i) z1≦[Rc1−Rc(Q0,Ic1,T)]≦z2(z1<0<z2)である場合、もしくはj1≦[Vc1−Vc(Q0+q1,Ic,T)]≦j2(j1<0<j2)である場合に、検知対象二次電池は正常であると判定し、
(ii) [Rc1−Rc(Q0,Ic1,T)]>z2(0<z2)である場合、もしくはj2<[Vc1−Vc(Q0+q1,Ic,T)] (0<j2)である場合に、検知対象二次電池の内部抵抗が増加していると判定し、
III.上記I.に該当しない場合であって、前記開回路電圧Voc(Q0+q1)とVoc1の差が、[Voc(Q0+q1)−Voc1]<g0 (g0<0)である場合には、電池の容量が低下していると判定し、
前記III.において、蓄電容量が低下していると判定した場合、
検知対象二次電池の蓄電容量C'が正常な電池の蓄電容量CのD倍になったと仮定し、検知対象二次電池の蓄電量Q0'をQ0'=Q0×D(但し、Q0は正常な電池の蓄電量、Dは定数で0<D<1)と置き、開回路電圧Voc0に対応する正常な電池の蓄電量Q0および検知対象二次電池の蓄電量Q0'=Q0×D、開回路電圧Voc1に対応する正常な電池の蓄電量Q1および検知対象二次電池の蓄電量Q1'=Q0'+q1=Q1×D、並びに前記(1)の基礎データから得られる下記の式
Voc(Q0)=Voc(Q0'/D)=Voc0および
Voc(Q1)=Voc(Q1'/D)=Voc(Q0'/D+q1/D)=Voc1から定数D、および検知対象二次電池の蓄電量Q1'=Q0'+q1=Q1×Dを求め、さらに前記II.と同様にして求められるRc1と前記基礎データから求めた正常な電池の内部抵抗Rc(Q0'/D,Ic1,T)との差がz1≦[Rc1−Rc(Q0'/D,Ic1,T)]≦z2(z1<0<z2)である場合には、検知対象二次電池は内部抵抗の増加はないが蓄電容量が低下していると判定し、一方、
(ii)前記の差が[Rc1−Rc(Q0'/D,Ic1,T)]>z2(0<z2)である場合には、蓄電容量が低下しかつ内部抵抗も増加していると判定し、かつ
前記開回路電圧Voc1から電流値Ic2×時間t2の電気量qc2だけ充電し、充電を停止するまでの間の電池電圧Vcおよび停止後の開回路電圧Voc2を計測し、
計測した充電時間tに対する電池電圧Vc
式Vc=V2−(V2−Voc1)×e-t/τ(但しV2は時間tを無限大に外挿した時のVでτは時定数である)
によって、開回路電圧Voc1から充電電流Ic2で充電開始した時の時定数τを求めつつV2を算出し、
式V2=Voc1 +Ic2×Rc2、Rc2=(V2−Voc1)/Ic2から検知対象二次電池の内部抵抗Rc2を求め、
検知対象二次電池の内部抵抗が正常な電池の内部抵抗Rc(Q0'/D,Ic,T)からa×Rc(Q0'/D,Ic,T)+b(a,bは定数)に増加したと仮定して、
Rc1−[a×Rc(Q0'/D,Ic1,T)+b]=0 とRc2−[a×Rc(Q0'/D +q1/D,Ic2,T)+b]=0、もしくはQ1=Q1'/D=Q(Voc1)を用いたRc2−[a×Rd(Q1'/D,Ic2,T)+b]=0 とから定数aおよびbを求め、検知対象二次電池の内部抵抗増加後の内部抵抗Rc'=a×Rc(Q'/D,Ic,T)+bを求め、
蓄電容量が低下していると判定し、蓄電容量低下係数D(0<D<1)を求めて
I.内部抵抗は増加していないと判定した場合、
充電終了時の蓄電容量は正常な電池の公称容量のD倍であるとし、
II.内部抵抗が増加していると判定した場合、
開回路電圧と充電時の電池電圧Vc、充電電流Ic、内部抵抗Rc'(Q,Ic,T)の関係の関係式Vc=Voc(Q)+Ic×Rc'(Q,Ic,T)から、求めた充電終了時の蓄電量QをD倍した蓄電量を蓄電容量C'として算出することを特徴とする二次電池の内部状態検知方法。
A method for detecting a deterioration state of a secondary battery or an internal state represented by a storage capacity, a storage amount and an internal resistance,
After obtaining basic data, which is data of the battery voltage and the amount of storage or discharge when a normal secondary battery is charged and discharged at various temperatures and at various currents,
Measure the voltage value or voltage value and current value of the secondary battery to be detected, and compare it with the basic data.
(A) The secondary battery to be detected is short-circuited.
(B) The storage capacity of the secondary battery to be detected has not decreased and the internal resistance has increased,
(C) The storage capacity of the secondary battery to be detected has decreased and the internal resistance has not increased,
(D) The storage capacity of the detection target secondary battery is reduced and the internal resistance is increased,
Or (e) the secondary battery to be detected is normal,
Is a method of calculating the remaining amount, which is the amount of electricity stored or the amount of electricity that can be used by the device, after determining which of
The basic data is
(1) Data or function expression of the relationship between the open circuit voltage Voc (Q) or Q (Voc) with respect to the charge amount Q, obtained by measuring the open circuit voltage Voc of the battery with respect to the charge amount Q of a normal battery,
(4) A battery voltage V c obtained by measuring various charging currents I c at various temperatures T of a normal battery with zero charge and an open circuit voltage Voc obtained by temporarily stopping charging and measuring. and the charge current I c and the battery temperature data or a function of the relationship between T formalized the V c (Voc, I c, T), or the open-circuit voltage Voc (Q) for the storage amount Q of the further above (1) Data or function expression of battery voltage V c (Q, I c , T) or Q (V c , I c , T) calculated from data or function expression of
(5) Internal resistance data calculated from the relational expression V c = Voc + I c × R c or R c = (V c −Voc) / I c when the internal resistance of the battery is R c in the above (4) Alternatively, R c (Voc, I c , T) obtained by functionalizing this data, or an internal value obtained from data or a functional expression of these and the relationship of the open circuit voltage Voc (Q) to the charged amount Q in (1) above. Data or functional expression of resistance R c (Q, I c , T) or Q (R c , I c , T),
Two or more data or function expressions including at least (1) and (5) selected from the above (1), (4) and (5),
In the resting state where the secondary battery to be detected is neither charged nor discharged, after measuring the open circuit voltage Voc 0 of the battery, charging is started at the current value I c1 , the battery voltage V c is measured,
Current value I c1 × time t 1 × charge quantity 1 of charge Eff charge E 1 q When the battery voltage reaches V c1 , charging is stopped, and after charging is stopped, open circuit voltage Voc is measured over time Then, the open circuit voltage after the closed circuit voltage Voc is stabilized is Voc 1 , or the open circuit voltage after a predetermined time has elapsed after the charging is stopped and the value is Voc 1 ,
I. (i) the normal rechargeable battery from the basic data sought storage amount Q 0 when the open-circuit voltage Voc 0 of the (1), further an open circuit when the basic data storage amount Q 0 + q 1 of the (1) The voltage Voc (Q 0 + q 1 ) is obtained, and the difference between the open circuit voltage Voc (Q 0 + q 1 ) and the measured value Voc 1 is
When [Voc (Q 0 + q 1 ) −Voc 1 ]> g 1 (g 1 > 0),
(ii) The difference between the battery voltage V c (Q 0 + q 1 , I c , T) of a normal battery obtained from the basic data of (4) and the battery voltage V c1 is [V c (Q 0 + q 1 , I c1 , T) −V c1 ]> j 1 (j 1 > 0),
(iii) Normal battery internal resistance R c (Voc 0 , I c , T) obtained from the basic data of (5) and detection target secondary battery obtained from R c1 = (V c1 −Voc 1 ) / I c1 When the difference from the internal resistance R c1 is [R c1 −R c (Voc 1 , I c1 , T)] <z 1 (z 1 <0),
In any of the above (i), (ii), (iii), it is determined that the battery is short-circuited,
on the other hand,
II. I. above. The difference between the open circuit voltage Voc (Q 0 + q 1 ) and Voc 1 is g 0 ≦ [Voc (Q 0 + q 1 ) −Voc 1 ] ≦ g 1 (g 0 <0 < g 1 ), it is determined that there is no decrease in capacity of the secondary battery to be detected,
Furthermore, the battery voltage V c with respect to the measured charging time t and the expression V c = V 1 − (V 1 −Voc 0 ) × e −t / τ (where V 1 represents the transient characteristics of the battery voltage at the beginning of charging) V c when extrapolating time t to infinity and τ is a time constant), V 1 is calculated while obtaining the time constant τ when charging is started with the charging current I c1 from the open circuit voltage Voc 0 And
Normal determined from basic data of the the formula V 1 = Voc 0 + I c1 × R c1 or R c1 = (V 1 -Voc 0 ) / I internal resistance of the detection target secondary batteries obtained from c1 R c1 (5) The difference between the internal resistance R c (Voc 0 , I c1 , T) or R c (Q 0 , I c1 , T)
(i) When z 1 ≦ [R c1 −R c (Q 0 , I c1 , T)] ≦ z 2 (z 1 <0 <z 2 ), or j 1 ≦ [V c1 −V c (Q 0 + q 1 , I c , T)] ≦ j 2 (j 1 <0 <j 2 ), it is determined that the secondary battery to be detected is normal,
(ii) When [R c1 −R c (Q 0 , I c1 , T)]> z 2 (0 <z 2 ), or j 2 <[V c1 −V c (Q 0 + q 1 , I c , T)] (0 <j 2 ), it is determined that the internal resistance of the secondary battery to be detected has increased,
III. I. above. When the difference between the open circuit voltage Voc (Q 0 + q 1 ) and Voc 1 is [Voc (Q 0 + q 1 ) −Voc 1 ] <g 0 (g 0 <0) Determines that the battery capacity is low,
If it is determined in III. That the storage capacity is reduced,
Assuming that the storage capacity C ′ of the secondary battery to be detected is D times the storage capacity C of the normal battery, the storage amount Q 0 ′ of the secondary battery to be detected is Q 0 ′ = Q 0 × D (where Q 0 is the storage amount of the normal rechargeable battery, D is placed 0 <D <1) and a constant, the storage amount of the storage amount Q 0 and the detection target secondary battery of the normal rechargeable battery corresponding to the open-circuit voltage Voc 0 Q 0 '= Q 0 × D, storage amount Q 1 of a normal battery corresponding to the open circuit voltage Voc 1 and storage amount Q 1 ' = Q 0 '+ q 1 = Q 1 × D of the secondary battery to be detected, and ( The following formula obtained from the basic data of 1)
Voc (Q 0 ) = Voc (Q 0 '/ D) = Voc 0 and
Voc (Q 1 ) = Voc (Q 1 ′ / D) = Voc (Q 0 ′ / D + q 1 / D) = Voc 1 to constant D, and storage amount Q 1 ′ = Q 0 ′ + q of the secondary battery to be detected 1 = Q 1 × D is obtained, and further, R c1 obtained in the same manner as in the above II. And normal battery internal resistance R c (Q 0 ′ / D, I c1 , T) obtained from the basic data When the difference is z 1 ≦ [R c1 −R c (Q 0 ′ / D, I c1 , T)] ≦ z 2 (z 1 <0 <z 2 ), the secondary battery to be detected has an internal resistance. Is determined that the storage capacity has decreased,
(ii) When the difference is [R c1 −R c (Q 0 ′ / D, I c1 , T)]> z 2 (0 <z 2 ), the storage capacity decreases and the internal resistance also decreases. increased and a determination is made, and the charging by electricity quantity q c2 of the current value I c2 × time t 2 from the open-circuit voltage Voc 1, opening after the battery voltage V c and stopping until stopping charging Measure the circuit voltage Voc 2 ,
Battery voltage V c with respect to measured charging time t and expression V c = V 2 − (V 2 −Voc 1 ) × e −t / τ (where V 2 is V when time t is extrapolated to infinity τ Is a time constant)
By calculating V 2 while obtaining the time constant τ when charging is started at the charging current I c2 from the open circuit voltage Voc 1 ,
Obtain the internal resistance R c2 of the secondary battery to be detected from the formula V 2 = Voc 1 + I c2 × R c2 , R c2 = (V 2 −Voc 1 ) / I c2 ,
From the internal resistance R c (Q 0 '/ D, I c , T) of the battery whose detection target secondary battery has a normal internal resistance to a × R c (Q 0 ' / D, I c , T) + b (a, Assuming that b is a constant)
R c1 − [a × R c (Q 0 '/ D, I c1 , T) + b] = 0 and R c2 − [a × R c (Q 0 ' / D + q 1 / D, I c2 , T) + b ] = 0, or Q 1 = Q 1 '/ D = Q (Voc 1 ) and R c2 − [a × R d (Q 1 ' / D, I c2 , T) + b] = 0 And b, and the internal resistance R c ′ = a × R c (Q ′ / D, I c , T) + b after increasing the internal resistance of the secondary battery to be detected is determined,
When it is determined that the storage capacity has decreased and the storage capacity decrease coefficient D (0 <D <1) is determined, I. When it is determined that the internal resistance has not increased,
Assume that the storage capacity at the end of charging is D times the nominal capacity of a normal battery,
II. If it is determined that the internal resistance has increased,
Relational expression V c = Voc (Q) + I c × R c ′ (Q) of open circuit voltage and battery voltage V c during charging, charging current I c , internal resistance R c ′ (Q, I c , T) , I c , T), a storage amount obtained by multiplying the determined storage amount Q at the end of charging by D is calculated as a storage capacity C ′.
二次電池の劣化状態、または蓄電容量、蓄電量および内部抵抗で代表される内部状態の検知方法であって、
正常な二次電池を各種温度下、各種電流で充放電したときの電池電圧、および蓄電量もしくは放電量のデータである基礎データを取得した上で、
検知対象二次電池の電圧値、または電圧値と電流値を計測し、該基礎データと比較して、
(a)検知対象二次電池が短絡している、
(b)検知対象二次電池の蓄電容量が低下しておらず内部抵抗が増加している、
(c)検知対象二次電池の蓄電容量が低下しており内部抵抗が増加していない、
(d)検知対象二次電池の蓄電容量が低下しかつ内部抵抗が増加している、
または
(e)検知対象二次電池は正常である、
のいずれにあたるかを判定した後に、蓄電量、または機器が使用可能な電気量である残量を算出する方法であり、
前記基礎データは、
(1)正常な電池の蓄電量Qに対する電池の開回路電圧Vocを計測して得られる、蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式、
(3)満充電の正常な電池の各種温度T下での各種放電電流Idで測定して得られた電池電圧Vdと放電を一時停止し測定して得られた開回路電圧Vocと前記放電電流Idおよび電池温度Tの関係のデータあるいは関数式化したVd(Voc,Id,T)において電池の内部抵抗をRdとする時の関係式Vd=Voc−Id×RdもしくはRd=(Voc−Vd)/Idから算出される内部抵抗のデータ、またはこのデータを関数式化したRd(Voc,Id,T)もしくはRd(Vd,Id,T)、あるいはこれらと上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から得られる内部抵抗Rd(Q,Id,T)もしくはQ(Rd,Id,T)の、データまたは関数式、
上記(1)および(3)のデータもしくは関数式であり、
検知対象二次電池が充電も放電もしていない、休止状態にあり、
該電池の開回路電圧Voc0の経時変化を計測した後、開回路電圧Voc0から電流値I1×時間t1の電気量q1だけ放電し該放電を停止するまでの間の電池電圧Vおよび停止後の開回路電圧Voc1を計測し、
I.開回路電圧Voc0の低下速度が所定の値v0より大、すなわち-dVoc0/dt>v0>0である場合に、前記検知対象二次電池が短絡していると判定し、
II.上記I.に該当しない場合であって、前記(1)の基礎データから、正常な電池の開回路電圧がVoc0である時の蓄電量Q0=Q(Voc0)およびそれに次いで電気量q1を放電した後の開回路電圧Voc(Q0-q1)を求め、正常な電池の開回路電圧Voc(Q0-q1)と検知対象二次電池の開回路電圧Voc1との差が、製品特性のバラツキ範囲内のf0≦[Voc(Q0-q1)-Voc1]≦f1(f0<0<f1)である場合には、検知対象二次電池の容量低下はないと判定し、かつ計測した放電時間tに対する電池電圧Vと、放電開始初期の電池電圧の過渡特性を表す式V=V1+(Voc0−V1)×e-t/τ(但し、V1は時間tを無限大に外挿した時のVでτは時定数である)とによって、開回路電圧Voc0から放電電流I1で放電開始する時の時定数τを求めつつ、V1を算出し、式V1=Voc0−I1×R1、またはR1=(Voc0−V1)/I1から求めた検知対象二次電池の内部抵抗R1と前記(3)の基礎データのRd(Voc,Id,T)もしくはRd(Q,Id,T)から求められる正常な電池の内部抵抗Rd(Voc0,I1,T)もしくはRd(Q0,I1,T)とを比較して、
(i)内部抵抗R1と正常な電池の内部抵抗Rd(Voc0,I1,T)もしくはRd(Q0,I1,T)が実質的に同等、すなわち製品の許容範囲のr1≦[R1-Rd(Q0,I1,T)]≦r2(r1<0<r2)である場合には、前記検知対象二次電池は正常であると判定し、
一方、
(ii)[R1−Rd(Q0,I1,T)]>r2(0<r2)である場合には、内部抵抗が増加していると判定し、さらに
III.上記I.に該当しない場合であって、前記開回路電圧Voc(Q0-q1)とVoc1の差が、[Voc(Q0-q1)-Voc1]>f1(0<f1)である場合には、前記検知対象二次電池の容量が低下していると判定し、
前記III.において、検知対象電池の蓄電容量が低下していると判定した場合、
検知対象二次電池の蓄電容量Cが正常な電池の蓄電容量CのD倍になったと仮定し、検知対象二次電池の蓄電量Q0'をQ0'=Q0×D(但し、Q0は正常な電池の蓄電量、Dは定数で0<D<1)と置き、開回路電圧Voc0に対応する正常な電池の蓄電量Q0および検知対象二次電池の蓄電量Q0'=Q0×D、開回路電圧Voc1に対応する正常な電池の蓄電量Q1および検知対象二次電池の蓄電量Q1'=Q0'−q1=Q1×D、並びに前記(1)の基礎データから得られる下記の式
Voc(Q0)=Voc(Q0'/D)=Voc0および
Voc(Q1)=Voc(Q1'/D)=Voc(Q0'/D−q1/D)=Voc1から定数D、および検知対象二次電池の蓄電量Q1'=Q0'−q1=Q1×Dを求め、さらに(i)前記II.で求めた前記R1と前記前記(3)の基礎データから求めた内部抵抗Rd(Q0'/D,I1,T)との差がr1≦[R1−Rd(Q0'/D,I1,T)]≦r2(r1<0<r2)である場合には、検知対象二次電池は内部抵抗の増加はないが蓄電容量が低下していると判定し、(ii)前記の差が[R1−Rd(Q0'/D,I1,T)]>r2(0<r2)である場合には、前記検知対象二次電池は蓄電容量が低下しかつ内部抵抗も増加していると判定し、かつ前記開回路電圧Voc0から電流値I1×時間t1の電気量q1の放電に次いで開回路電圧Voc1から電流値I2×時間t2の電気量q2だけ放電し該放電を停止するまでの間の電池電圧Vおよび停止後の開回路電圧Voc2を計測し、計測した放電時間tに対する電池電圧Vと、放電開始初期の電池電圧の過渡特性を表す式V=V2+(Voc1−V2)×e-t/τ(但し、V2は時間tを無限大に外挿した時のV、τは時定数である)とによって、開回路電圧Voc1から放電電流I2で放電開始する時の時定数τを求めつつV2を算出し、
式V2=Voc1−I2×R2、R2=(Voc1−V2)/I2から検知対象二次電池の内部抵抗R2を求め、
検知対象二次電池の内部抵抗が正常な電池のRd(Q,Id,T)からa×Rd(Q,Id,T)+b(a,bは定数)に増加したと仮定して、
R1−[a×Rd(Q0,I1,T)+b]=0 と
R2−[a×Rd(Q1,I2,T)+b]=R2−[a×Rd(Q0−q1/D,I2,T)+b]=0(但し、Q0=Q0'/D, Q1=Q1'/Dであり、Q0',Q1'はそれぞれ開回路電圧がVoc0,Voc1の時の蓄電量である)と
から定数aおよびbを求め、検知対象二次電池の内部抵抗増加後の内部抵抗
R'=a×Rd(Q'/D,Id,T)+b(Q'は容量低下時の真の蓄電量)
の関係を求め、
I. 蓄電容量が低下し内部抵抗は増加していないと判定した場合、
蓄電容量低下係数Dを求め、蓄電容量は正常な電池の蓄電量のD倍であるとし、
II. 蓄電容量が低下し内部抵抗が増加していると判定した場合
蓄電容量低下係数Dおよび増加した放電時の内部抵抗を関数式Rd'(Q,Id,T)として求めた後、放電時の開回路電圧Voc(Q)と電池電圧Vd、放電電流Id、内部抵抗Rd'(Q,Id,T)の関係の関係式Vd=Voc(Q)−Id×Rd'(Q,Id,T)から、放電時の電池電圧を見かけの蓄電量Qと放電電流Idと電池温度Tの関数Vd=Vd(Q,Id,T)として表し、電池電圧Vd、放電電流Id、電池温度Tの計測から見かけの蓄電量Qを算出し、見かけの蓄電量QをD倍した蓄電量Q'=D×Qを真の蓄電量として算出することを特徴とする二次電池の内部状態検知方法。
A method for detecting a deterioration state of a secondary battery or an internal state represented by a storage capacity, a storage amount and an internal resistance,
After obtaining basic data, which is data of the battery voltage and the amount of storage or discharge when a normal secondary battery is charged and discharged at various temperatures and at various currents,
Measure the voltage value or voltage value and current value of the secondary battery to be detected, and compare it with the basic data.
(A) The secondary battery to be detected is short-circuited.
(B) The storage capacity of the secondary battery to be detected has not decreased and the internal resistance has increased,
(C) The storage capacity of the secondary battery to be detected has decreased and the internal resistance has not increased,
(D) The storage capacity of the detection target secondary battery is reduced and the internal resistance is increased,
Or (e) the secondary battery to be detected is normal,
Is a method of calculating the remaining amount, which is the amount of electricity stored or the amount of electricity that can be used by the device, after determining which of
The basic data is
(1) Data or function expression of the relationship between the open circuit voltage Voc (Q) or Q (Voc) with respect to the charge amount Q, obtained by measuring the open circuit voltage Voc of the battery with respect to the charge amount Q of a normal battery,
(3) The battery voltage V d obtained by measuring various discharge currents I d under various temperatures T of a fully charged normal battery, the open circuit voltage Voc obtained by temporarily stopping the discharge, and the aforementioned Relational expression V d = Voc−I d × R when the internal resistance of the battery is R d in the relational data V d (Voc, I d , T) of the relation between the discharge current I d and the battery temperature T d or R d = (Voc−V d ) / I d Internal resistance data calculated from R d (Voc, I d , T) or R d (V d , I d , T), or the internal resistance R d (Q, I d , T) or Q (R d ) obtained from data or a function expression of the relationship between the open circuit voltage Voc (Q) and the storage amount Q in (1) above. , I d , T), data or function expression,
It is the data or function formula of (1) and (3) above,
The secondary battery to be detected is not charging or discharging, is in a dormant state,
After measuring the change over time of the open circuit voltage Voc 0 of the battery, the battery voltage V from when the open circuit voltage Voc 0 is discharged by the amount of electricity q 1 of the current value I 1 × time t 1 to stop the discharge. And measure the open circuit voltage Voc 1 after stopping,
I. When the decrease rate of the open circuit voltage Voc 0 is larger than the predetermined value v 0 , that is, when −dVoc 0 / dt> v 0 > 0, it is determined that the detection target secondary battery is short-circuited,
II. I. above. From the basic data in (1) above, the stored amount Q 0 = Q (Voc 0 ) when the open circuit voltage of a normal battery is Voc 0 and then the amount of electricity q 1 is discharged. calculating the open circuit voltage Voc (Q 0 -q 1) after the difference between the open-circuit voltage Voc 1 of the open-circuit voltage Voc (Q 0 -q 1) and the detection target secondary batteries of normal cells, products When f 0 ≦ [Voc (Q 0 -q 1 ) −Voc 1 ] ≦ f 1 (f 0 <0 <f 1 ) within the characteristic variation range, there is no decrease in capacity of the secondary battery to be detected. V = V 1 + (Voc 0 −V 1 ) × e −t / τ (where V is a voltage voltage transient characteristic of the battery voltage V with respect to the measured discharge time t and the initial stage of discharge. by 1 the time t τ in V when extrapolated to infinity is a time constant) and, while seeking the time constant τ when starting discharge at a discharging current I 1 from the open-circuit voltage Voc 0, V 1 calculating the equation V 1 = Voc 0 -I 1 × R 1 or R 1 = (Voc 0 -V 1 ), The internal resistance R 1 of the detection target secondary batteries obtained from I 1 (3) R d of the basic data of a normal determined from (Voc, I d, T) or R d (Q, I d, T) Compare the internal resistance R d (Voc 0 , I 1 , T) or R d (Q 0 , I 1 , T) of the battery,
(I) The internal resistance R 1 and the internal resistance R d (Voc 0 , I 1 , T) or R d (Q 0 , I 1 , T) of a normal battery are substantially equivalent, that is, the tolerance r of the product When 1 ≦ [R 1 −R d (Q 0 , I 1 , T)] ≦ r 2 (r 1 <0 <r 2 ), it is determined that the detection target secondary battery is normal,
on the other hand,
(Ii) If [R 1 −R d (Q 0 , I 1 , T)]> r 2 (0 <r 2 ), it is determined that the internal resistance has increased, and
III. And the difference between the open circuit voltage Voc (Q 0 -q 1 ) and Voc 1 is [Voc (Q 0 -q 1 ) −Voc 1 ]> f 1 (0 <f 1 ) If there is, it is determined that the capacity of the detection target secondary battery has decreased,
When it is determined in III. That the storage capacity of the detection target battery is reduced,
Assuming that the storage capacity C of the secondary battery to be detected is D times the storage capacity C of a normal battery, the storage amount Q 0 ′ of the secondary battery to be detected is Q 0 ′ = Q 0 × D (where Q 0 storage amount of the normal rechargeable battery, D 0 is a constant <D <1) and placed storage amount of the storage amount Q 0 and the detection target secondary battery of the normal rechargeable battery corresponding to the open-circuit voltage Voc 0 Q 0 ' = Q 0 × D, the normal battery charge amount Q 1 corresponding to the open circuit voltage Voc 1 and the charge amount Q 1 ′ = Q 0 ′ −q 1 = Q 1 × D of the secondary battery to be detected, and ( The following formula obtained from the basic data of 1)
Voc (Q 0 ) = Voc (Q 0 '/ D) = Voc 0 and
Voc (Q 1 ) = Voc (Q 1 ′ / D) = Voc (Q 0 ′ / D−q 1 / D) = Voc 1 to constant D, and storage amount Q 1 ′ = Q 0 of the secondary battery to be detected '−q 1 = Q 1 × D is obtained, and (i) the internal resistance R d (Q 0 ′ / D, I 1 obtained from the R 1 obtained in II. And the basic data of (3). , T) if r 1 ≦ [R 1 −R d (Q 0 '/ D, I 1 , T)] ≦ r 2 (r 1 <0 <r 2 ), It is determined that the secondary battery has no increase in internal resistance but the storage capacity is reduced, and (ii) the difference is [R 1 −R d (Q 0 ′ / D, I 1 , T)]> r 2 When (0 <r 2 ), the secondary battery to be detected is determined to have a reduced storage capacity and an increased internal resistance, and the current value I 1 × time from the open circuit voltage Voc 0 open the electrical quantity discharged and then open circuit voltage Voc 1 of q 1 of t 1 after the battery voltage V and stopping until the stop discharging by the discharge by an electrical quantity q 2 of a current value I 2 × time t 2 Measure circuit voltage Voc 2 and measure discharge A formula representing the transient characteristics of the battery voltage V with respect to time t and the battery voltage at the beginning of discharge V = V 2 + (Voc 1 −V 2 ) × e −t / τ (where V 2 makes time t infinite. V and τ when extrapolated are time constants), and V 2 is calculated while obtaining the time constant τ when starting discharge with the discharge current I 2 from the open circuit voltage Voc 1 .
The internal resistance R 2 of the secondary battery to be detected is calculated from the formula V 2 = Voc 1 −I 2 × R 2 , R 2 = (Voc 1 −V 2 ) / I 2 ,
Assume that the internal resistance of the secondary battery to be detected has increased from R d (Q, I d , T) of a normal battery to a × R d (Q, I d , T) + b (a and b are constants). And
R 1 − [a × R d (Q 0 , I 1 , T) + b] = 0
R 2 − [a × R d (Q 1 , I 2 , T) + b] = R 2 − [a × R d (Q 0 −q 1 / D, I 2 , T) + b] = 0 (Q 0 = Q 0 '/ D, Q 1 = Q 1 ' / D, and Q 0 'and Q 1 ' are the amounts of electricity stored when the open circuit voltages are Voc 0 and Voc 1 , respectively) The internal resistance after increasing the internal resistance of the secondary battery to be detected
R ′ = a × R d (Q ′ / D, I d , T) + b (Q ′ is the true amount of electricity stored when the capacity decreases)
Seeking a relationship
I. If it is determined that the storage capacity has decreased and the internal resistance has not increased,
The storage capacity decrease coefficient D is obtained, and the storage capacity is assumed to be D times the normal battery storage capacity.
II. When it is determined that the storage capacity has decreased and the internal resistance has increased After calculating the storage capacity decrease coefficient D and the increased internal resistance at the time of discharge as a function equation R d ′ (Q, I d , T), Relationship between the open circuit voltage Voc (Q) during discharge and the battery voltage V d , discharge current I d , internal resistance R d ′ (Q, I d , T) V d = Voc (Q) −I d × From R d ′ (Q, I d , T), the battery voltage during discharge is expressed as a function V d = V d (Q, I d , T) of the apparent charge amount Q, discharge current I d, and battery temperature T Calculate the apparent charge amount Q from the measurement of the battery voltage V d , discharge current I d , and battery temperature T, and calculate the charge amount Q '= D × Q, which is the apparent charge amount Q multiplied by D, as the true charge amount A method for detecting the internal state of a secondary battery.
二次電池の劣化状態、または蓄電容量、蓄電量および内部抵抗で代表される内部状態の検知方法であって、
正常な二次電池を各種温度下、各種電流で充放電したときの電池電圧、および蓄電量もしくは放電量のデータである基礎データを取得した上で、
検知対象二次電池の電圧値、または電圧値と電流値を計測し、該基礎データと比較して、
検知対象二次電池が放電末期にあるか短絡している、
検知対象二次電池の蓄電容量内部抵抗が増加している、
検知対象二次電池の蓄電容量が低下している、
または
検知対象二次電池は正常である、
のいずれにあたるかを判定した後に、蓄電量、または機器が使用可能な電気量である残量を算出する方法であり、
前記基礎データは、
(1)正常な電池の蓄電量Qに対する電池の開回路電圧Vocを計測して得られる、蓄電量Qに対する開回路電圧Voc(Q)もしくはQ(Voc)の関係のデータまたは関数式、
(2)満充電の正常な電池の各種温度T下での各種放電電流Idで測定して得られた電池電圧Vdと放電を一時停止し測定して得られた開回路電圧Vocと前記放電電流Idおよび電池温度Tの関係のデータあるいは関数式化したVd(Voc,Id,T)、またはこれらと上記(1)の蓄電量Qに対する開回路電圧Voc(Q)の関係のデータもしくは関数式から算出される電池電圧Vd(Q,Id,T)もしくはQ(Vd,Id,T)の、データまたは関数式、
上記(1)および(2)のデータもしくは関数式であり、
検知対象二次電池が放電状態にある時に、放電電流Id0と電池電圧Vdを計測し、電池電圧が所定の値未満である時あるいは電池電圧V d の低下速度が所定の値x 1 より大きい、すなわち−dV d /dt>x 1 (0<x 1 )の時、電池が放電末期にあるかあるいは短絡していると判定し、電池電圧が所定の値以上である時あるいは電池電圧Vdの低下速度が所定の値x1以下、すなわち0<−dV/dt≦x1の時、検知対象二次電池が正常であるかあるいは短絡以外の劣化モードにあると判定し、
検知対象二次電池が正常であるかあるいは短絡以外の劣化モードにあると判定した場合、検知対象二次電池が放電状態にあり、実質的に定常状態にある時に、放電電流Id0と電池電圧Vdを計測し、その後、電気量qだけ放電した後に定常状態の放電電流Id1で電池電圧はVd1になっている場合、前記(2)の基礎データと前記(1)の基礎データとから、電池電圧がVd0のときの正常な電池の蓄電量をQ0とするとき、電池電圧Vd0=Vd(Q0,Id0,T)あるいは蓄電量Q0=Q(Vd0,Id0,T)、並びに電池電流がId1のときの正常な電池の電池電圧Vd1=Vd(Q0-q,Id1,T)および蓄電量Q0-q=Q(Vd1,Id1,T)を求め、
I.(i) y1≦[Vd1−Vd(Q0 -q,Id1,T)]≦y2(y1<0<y2)の時、もしくは(ii) w1≦Q(Vd1,Id1,T)−[Q(Vd0,Id0,T)−q]≦w2(w1<0<w2)の時、検知対象二次電池は正常であると判定する、
II.(i) [Vd1−Vd(Q0-q,Id1,T)]>y2(0<y2)の時、もしくは(ii) Q(Vd1,Id1,T)−[Q(Vd0,Id0,T)−q]>w2(0<w2)の時、検知対象二次電池の内部抵抗は増加していると判定する、
III.(i) [Vd1−Vd(Q0-q,Id1,T)]<y1(y1<0)の時、もしくは(ii) Q(Vd1,Id1,T)−[Q(Vd0,Id0,T)−q]<w1(w1<0)の時、二次電池の蓄電容量は低下していると判定し、
実質的に定常状態の放電状態にある検知対象二次電池の放電電流がIn0で電池電圧がVn0である時、放電電流がIn1に変動して電流値In1×時間tn1の電気量qnだけ放電した後、定常電流In0での放電に戻るというようにn(nは正の整数で、n=1,2,3,4,…)回変動した場合、変動時の電池電圧Vを複数点計測し、放電電流が変動してからの時間tに対する電池電圧値Vと、放電電流変動時の電池電圧Vの過渡特性を表す式V=Vn1 +(Vn0−Vn1)×e-t/τ
(但しVn1は時間tを無限大に外挿した時のVでτは時定数で、n=1,2,3,4,…である)によって、放電電流変動時の時定数τを求めつつVn1を算出し、
放電電流が、放電電流I10の定常放電で電池電圧V10の時、放電電流がI11に変動し電流値I11×時間t11の電気量q1だけ放電し、電池電圧V10から電池電圧V20になり、次いで定常放電の放電電流I20がI21に変化し電流値I21×時間t21の電気量q2だけ放電し、電池電圧V20から電池電圧V30になり、次に定常放電の放電電流I30がI31に変化し電流値I31×時間t31の電気量q3だけ放電し、電池電圧V30から電池電圧V40になり、さらに定常放電の放電電流I40がI41に変化し電流値I41×時間t41の電気量q4だけ放電した時、定常放電の放電電流In0がIn1に変動し電流値In1×時間tn1の電気量qn放電するというように少なくとも4回以上変動した場合であって、前記III.で、検知対象二次電池の蓄電容量が低下していると判定した場合、
蓄電容量はCからC'=D×C(Dは定数で0<D<1)に低下したと仮定して、蓄電量を正常な電池の蓄電量Qから蓄電量Q'=D×Qに低下していると表し、さらに電池の内部抵抗もRd(Q,Id,T)からRd'(Q,Id,T)=a×Rd(Q,Id,T)+b(a,bは定数)に増加したと仮定し、計測した放電電流が変化してからの時間tに対する電池電圧値Vと、各放電電流変動時の電池電圧の過渡特性を表す式V =Vn1+(Vn0−Vn1)×e-t/τ(但しVn1は時間tを無限大に外挿した時のVでτは時定数で、n=1,2,3,4,…である)によって、放電電流In0がIn1に変動した時の時定数τを求めつつVn1を算出し、放電電流In0で電池電圧Vn0の時、蓄電量Qn0を有する電池の開回路電圧をVocn0として、Vocn0=Vn0+In0×Rd'(Qn0,In0,T)=Vn1+In1×Rd'(Qn0,In1,T)(n=1,2,3,4,…)と表し、
電池電圧がV10、V20、V30、V40の時の蓄電量をそれぞれQ10、Q20、Q30、Q40として、Q=Q'/D
Q20'= Q10'−q1、Q30'=Q20'−q2=Q10'−q1−q2、Q40'=Q30'−q3= Q10'−q1−q2−q3すなわち、Q10=Q10'/D、Q20=(Q10'−q1)/D、Q30=(Q10'−q1−q2)/D、Q40=(Q10'−q1−q2−q3)/Dを用いた下記の式、V10−V11=I11×Rd'(Q10,I11,T)−I10×Rd'(Q10,I10,T)V20−V21=I21×Rd'(Q20,I21,T)−I20×Rd'(Q20,I20,T)V30−V31=I31×Rd'(Q30,I31,T)−I30×Rd'(Q30,I30,T)V40−V41=I41×Rd'(Q40,I41,T)−I40×Rd'(Q40,I40,T)Rd'(Q10,I10,T)=a×Rd(Q10,I10,T)+b(a,bは定数)Rd'(Q20,I20,T)=a×Rd(Q20,I20,T)+b(a,bは定数)Rd'(Q30,I30,T)=a×Rd(Q30,I30,T)+b(a,bは定数)Rd'(Q40,I40,T)=a×Rd(Q40,I40,T)+b(a,bは定数)から定数a、b、D、Q10=Q10'/Dを求め、劣化してD倍になった蓄電容量および増加した内部抵抗を求め、
I蓄電容量が低下していると判定した場合、
蓄電容量低下係数Dを求め、蓄電容量は正常な電池の蓄電量のD倍であるとし、
II.内部抵抗が増加していると判定した場合
蓄電容量低下係数Dおよび増加した放電時の内部抵抗を関数式Rd'(Q,Id,T)として求めた後、放電時の開回路電圧Voc(Q)と電池電圧Vd、放電電流Id、内部抵抗Rd'(Q,Id,T)の関係の関係式Vd=Voc(Q)−Id×Rd'(Q,Id,T)から、放電時の電池電圧を見かけの蓄電量Qと放電電流Idと電池温度Tの関数Vd=Vd(Q,Id,T)として表し、電池電圧Vd、放電電流Id、電池温度Tの計測から見かけの蓄電量Qを算出し、見かけの蓄電量QをD倍した蓄電量Q'=D×Qを真の蓄電量として算出することを特徴とする二次電池の内部状態検知方法。
A method for detecting a deterioration state of a secondary battery or an internal state represented by a storage capacity, a storage amount and an internal resistance,
After obtaining basic data, which is data of the battery voltage and the amount of storage or discharge when a normal secondary battery is charged and discharged at various temperatures and at various currents,
Measure the voltage value or voltage value and current value of the secondary battery to be detected, and compare it with the basic data.
The secondary battery to be detected is at the end of discharge or short-circuited.
The internal resistance of the storage capacity of the secondary battery to be detected has increased.
The storage capacity of the secondary battery to be detected has decreased .
Or The secondary battery to be detected is normal.
Is a method of calculating the remaining amount, which is the amount of electricity stored or the amount of electricity that can be used by the device, after determining which of
The basic data is
(1) Data or function expression of the relationship between the open circuit voltage Voc (Q) or Q (Voc) with respect to the charge amount Q, obtained by measuring the open circuit voltage Voc of the battery with respect to the charge amount Q of a normal battery,
(2) The battery voltage V d obtained by measuring various discharge currents I d at various temperatures T of a fully charged normal battery, the open circuit voltage Voc obtained by temporarily stopping the discharge, and the aforementioned Data on the relationship between the discharge current I d and the battery temperature T or the functional expression V d (Voc, I d , T), or the relationship between these and the open circuit voltage Voc (Q) with respect to the storage amount Q in (1) above Data or function expression of battery voltage V d (Q, I d , T) or Q (V d , I d , T) calculated from data or function expression,
It is the data or function formula of (1) and (2) above,
When the detection target secondary battery is in a discharging state, the discharging current I d0 and the battery voltage V d is measured, from the value x 1 decreases the rate of a predetermined time or the battery voltage V d the battery voltage is less than the predetermined value When it is large, that is, −dV d / dt> x 1 (0 <x 1 ), it is determined that the battery is at the end of discharge or short-circuited, and when the battery voltage is equal to or higher than a predetermined value or the battery voltage V When the decrease rate of d is a predetermined value x 1 or less, that is, 0 <−dV / dt ≦ x 1 , it is determined that the secondary battery to be detected is normal or in a deterioration mode other than short circuit,
When it is determined that the secondary battery to be detected is normal or in a deterioration mode other than a short circuit , the discharge current I d0 and the battery voltage when the secondary battery to be detected is in a discharged state and in a substantially steady state. When V d is measured and then the battery voltage is V d1 with the discharge current I d1 in a steady state after discharging only the electric quantity q, the basic data of (2) and the basic data of (1) From the above, when the storage amount of a normal battery when the battery voltage is V d0 is Q 0 , the battery voltage V d0 = V d (Q 0 , I d0 , T) or the storage amount Q 0 = Q (V d0 , I d0, T), as well as the battery voltage of the normal rechargeable battery when the battery current I d1 V d1 = V d ( Q 0 -q, I d1, T) and the storage amount Q 0 -q = Q (V d1 , I d1 , T)
I. (i) y 1 ≦ [V d1 −V d (Q 0 −q , I d1 , T)] ≦ y 2 (y 1 <0 <y 2 ) or (ii) w 1 ≦ Q (V d1 , I d1 , T) − [Q (V d0 , I d0 , T) −q] ≦ w 2 (w 1 <0 <w 2 ), it is determined that the detection target secondary battery is normal.
II. (i) When [V d1 −V d (Q 0 -q, I d1 , T)]> y 2 (0 <y 2 ), or (ii) Q (V d1 , I d1 , T) − [Q When (V d0 , I d0 , T) −q]> w 2 (0 <w 2 ), it is determined that the internal resistance of the detection target secondary battery has increased.
III. (I) [V d1 −V d (Q 0 −q, I d1 , T)] <y 1 (y 1 <0) or (ii) Q (V d1 , I d1 , T) − When [Q (V d0 , I d0 , T) −q] <w 1 (w 1 <0), it is determined that the storage capacity of the secondary battery is reduced,
Substantially when the discharge current battery voltage I n0 of the detection target secondary battery in a discharged state of the normal state is V n0, discharge current electric current value I n1 × time t n1 varies to I n1 If the battery fluctuates n (n is a positive integer, n = 1, 2, 3, 4,...) Times, such as returning to discharge with a steady current I n0 after discharging by the amount q n , the battery at the time of fluctuation The voltage V is measured at multiple points, and the battery voltage value V with respect to time t after the discharge current fluctuates, and the expression V = V n1 + (V n0 −V n1) representing the transient characteristics of the battery voltage V when the discharge current fluctuates ) × e -t / τ
(However, V n1 is V when time t is extrapolated to infinity, and τ is a time constant, where n = 1, 2, 3, 4,...) V n1 while calculating
When the discharge current is a steady discharge of the discharge current I 10 and the battery voltage V 10 , the discharge current fluctuates to I 11 and discharges by the amount of electricity q 1 of the current value I 11 × time t 11 and the battery voltage V 10 It becomes the voltage V 20, then the discharge current I 20 of the steady discharging is discharged by electricity quantity q 2 of a current value I 21 × time t 21 changed to I 21, made from the battery voltage V 20 to the battery voltage V 30, the following discharging current I 30 of the steady discharging is discharged by electricity quantity q 3 of a current value I 31 × time t 31 changed to I 31 in consists battery voltage V 30 to the battery voltage V 40, further steady discharge of the discharge current I when 40 is discharged by electricity quantity q 4 of a current value I 41 × time t 41 changed to I 41, electricity quantity q of a current value discharging current I n0 steady discharge is varied to I n1 I n1 × time t n1 n When it has changed at least four times, such as discharging, and when it is determined in III. that the storage capacity of the secondary battery to be detected is reduced,
Assuming that the storage capacity has decreased from C to C '= D x C (D is a constant, 0 <D <1), the storage amount is changed from the normal battery storage amount Q to the storage amount Q' = D × Q. In addition, the internal resistance of the battery is also reduced from R d (Q, I d , T) to R d ′ (Q, I d , T) = a × R d (Q, I d , T) + b ( Assuming that a and b have increased to a constant), the battery voltage value V with respect to time t after the measured discharge current changes, and the equation V = V n1 representing the transient characteristics of the battery voltage at each discharge current fluctuation + (V n0 −V n1 ) × e −t / τ (where V n1 is V when time t is extrapolated to infinity, τ is a time constant, and n = 1, 2, 3, 4,. by some), the discharge current I n0 calculates the V n1 while seeking time constant τ when the change in the I n1, discharge when a current I n0 of the battery voltage V n0, open circuit of the battery with a storage amount Q n0 the voltage is Voc n0, Voc n0 = V n0 + I n0 × R d '(Q n0, I n0, T) = V n1 + I n1 × R d' (Q n0, I n1, T) (n = 1,2 , 3,4, ...)
Q = Q '/ D, where Q 10 , Q 20 , Q 30 , and Q 40 are the storage amounts when the battery voltage is V 10 , V 20 , V 30 , and V 40 , respectively.
Q 20 '= Q 10 ' −q 1 , Q 30 '= Q 20 ' −q 2 = Q 10 '−q 1 −q 2 , Q 40 ' = Q 30 '−q 3 = Q 10 ' −q 1 − q 2 −q 3 ie Q 10 = Q 10 '/ D, Q 20 = (Q 10 ' −q 1 ) / D, Q 30 = (Q 10 '−q 1 −q 2 ) / D, Q 40 = The following formula using (Q 10 '−q 1 −q 2 −q 3 ) / D, V 10 −V 11 = I 11 × R d ′ (Q 10 , I 11 , T) −I 10 × R d '(Q 10 , I 10 , T) V 20 −V 21 = I 21 × R d ' (Q 20 , I 21 , T) −I 20 × R d '(Q 20 , I 20 , T) V 30 − V 31 = I 31 × R d '(Q 30 , I 31 , T) −I 30 × R d ' (Q 30 , I 30 , T) V 40 −V 41 = I 41 × R d '(Q 40 , I 41 , T) −I 40 × R d ′ (Q 40 , I 40 , T) R d ′ (Q 10 , I 10 , T) = a × R d (Q 10 , I 10 , T) + b (a , b are constants) R d ′ (Q 20 , I 20 , T) = a × R d (Q 20 , I 20 , T) + b (a and b are constants) R d ′ (Q 30 , I 30 , T ) = A × R d (Q 30 , I 30 , T) + b (a and b are constants) R d ′ (Q 40 , I 40 , T) = a × R d (Q 40 , I 40 , T) + b (a, b are constants) from the constant a, b, D, obtains the Q 10 = Q 10 '/ D , the deteriorated internal resistance that storage capacity and increased becomes D times by Because,
If it is determined that the I storage capacity has decreased,
The storage capacity decrease coefficient D is obtained, and the storage capacity is assumed to be D times the normal battery storage capacity.
II. When it is determined that the internal resistance has increased After calculating the storage capacity reduction coefficient D and the increased internal resistance as a function equation R d ′ (Q, I d , T), open circuit during discharge voltage Voc (Q) and the battery voltage V d, the discharge current I d, the internal resistance R d '(Q, I d , T) equation V d = Voc relationship (Q) -I d × R d ' (Q , I d , T), the battery voltage during discharge is expressed as a function V d = V d (Q, I d , T) of the apparent storage amount Q, discharge current I d, and battery temperature T, and the battery voltage V d The apparent charge amount Q is calculated from the measurement of the discharge current I d and the battery temperature T, and the charge amount Q ′ = D × Q obtained by multiplying the apparent charge amount Q by D is calculated as the true charge amount. To detect the internal state of the secondary battery.
前記放電電流In1は定常電流In0より大でIn1=In0+ΔIdと成るような電流ΔIdをさらに意図的に流すことを特徴とする請求項3または6のいずれか1項記載の二次電池の内部状態検知方法。7. The discharge current I n1 is larger than the steady-state current I n0 and a current ΔI d such that I n1 = I n0 + ΔI d is further intentionally flowed. A method for detecting the internal state of a secondary battery. 前記放電電流In1は、0.5時間率(2C)放電の電流値以下であることを特徴とする請求項7に記載の二次電池の内部状態検知方法。The method for detecting an internal state of a secondary battery according to claim 7, wherein the discharge current In1 is equal to or less than a current value of 0.5 hour rate (2C) discharge. 二次電池の充電中に蓄電量Qを求めた後に、さらには充電終了時の蓄電量に至るまでの時間を算出することを特徴とする請求項1または4に記載の二次電池の内部状態検知方法。  5. The internal state of the secondary battery according to claim 1, further comprising: calculating a storage amount Q during charging of the secondary battery, and further calculating a time until reaching the storage amount at the end of charging. Detection method. 二次電池の放電中に蓄電量Qを求めた後に、二次電池を電源に使用している機器の駆動最低電圧Vminになったときの二次電池の蓄電量Qminを算出した後、機器が使用できる電池の電気量すなわち残量(Q−Qmin)を算出することを特徴とする請求項2、3、5、6のいずれか1項記載の二次電池の内部状態検知方法。After calculating the storage amount Q during discharge of the secondary battery, after calculating the storage amount Q min of the secondary battery when the driving minimum voltage V min of the device using the secondary battery as a power source, The method for detecting the internal state of a secondary battery according to any one of claims 2, 3, 5, and 6, wherein the amount of electricity of the battery that can be used by the device, that is, the remaining amount (Q- Qmin ) is calculated. 機器が使用できる電池の電気量すなわち残量(Q−Qmin)を算出の後、機器の平均消費電流をi、平均消費電力をpとする時、機器の作動時間hを式h=(Q−Qmin)/i、もしくはh=(Vd+Vmin)×(Q−Qmin)/2/pで算出することを特徴とする請求項10に記載の二次電池の内部状態検知方法。After calculating the amount of electricity of the battery that can be used by the device, that is, the remaining amount (Q−Q min ), when the average current consumption of the device is i and the average power consumption is p, the operation time h of the device is expressed by the equation h = (Q -Q min) / i or h = (V d + V min ) × (Q-Q min) / internal state detection method of the secondary battery according to claim 10, characterized in that calculated by 2 / p,. 前記平均消費電流の値もしくは平均消費電力の値が、機器使用者の機器操作パターンおよび頻度から算出された値であることを特徴とする請求項11に記載の二次電池の内部状態検知方法。  The method for detecting the internal state of a secondary battery according to claim 11, wherein the average current consumption value or the average power consumption value is a value calculated from a device operation pattern and frequency of a device user. 求められた二次電池の充電終了時の蓄電量をC'とし、二次電池の公称容量もしくは使用初期の蓄電容量をCとした場合、劣化後の電池の蓄電容量に関する性能をC'/Cもしくは100×C'/C〔%〕として算出することを特徴とする請求項1または4に記載の二次電池の内部状態検知方法。  When C ′ is the storage amount at the end of charging of the obtained secondary battery and C is the storage capacity of the secondary battery or the initial storage capacity, the performance related to the storage capacity of the deteriorated battery is C ′ / C. Or it calculates as 100 * C '/ C [%], The internal state detection method of the secondary battery of Claim 1 or 4 characterized by the above-mentioned. 劣化後の電池の蓄電容量に関する性能100×C'/C〔%〕が60%未満になった時、二次電池が寿命であると判定することを特徴とする請求項13に記載の二次電池の内部状態検知方法。  14. The secondary battery according to claim 13, wherein when the performance 100 × C ′ / C [%] related to the storage capacity of the battery after deterioration becomes less than 60%, the secondary battery is determined to have a lifetime. Battery internal state detection method. 前記基礎データが、予め、複数個の正常な二次電池の各種温度下、各種電流での充放電を行い、計測された電池電圧、および蓄電量もしくは放電量から得られる平均化したデータであることを特徴とする請求項1〜14のいずれか1項に記載の二次電池の内部状態検知方法。  The basic data is previously averaged data obtained by charging and discharging at various currents under various temperatures of a plurality of normal secondary batteries, and obtained from the measured battery voltage and the amount of stored electricity or the amount of discharge. The method for detecting an internal state of a secondary battery according to any one of claims 1 to 14. 前記基礎データが、予めコンピュータシミュレーションにより得られた基礎データであることを特徴とする請求項1〜14のいずれか1項に記載の二次電池の内部状態検知方法。  The method for detecting the internal state of a secondary battery according to claim 1, wherein the basic data is basic data obtained in advance by computer simulation. 前記基礎データが、前記平均化したデータから成る基礎データ、または前記平均化したデータからなる基礎データと設計仕様、を元にコンピュータシミュレーションにより得られた基礎データであることを特徴とする請求項16に記載の二次電池の内部状態検知方法。  The basic data is basic data composed of the averaged data, or basic data obtained by computer simulation based on basic data composed of the averaged data and a design specification. The internal state detection method of the secondary battery as described in 2. 先ず、検知対象電池が短絡しているか否かを判定し、次に該電池の蓄電容量が低下しているか否か、または該電池の内部抵抗が増加しているか否かを判定することを特徴とする請求項1〜17のいずれか1項に記載の二次電池の内部状態検知方法。  First, it is determined whether or not the battery to be detected is short-circuited, and then it is determined whether or not the storage capacity of the battery has decreased or whether the internal resistance of the battery has increased. The internal state detection method for a secondary battery according to any one of claims 1 to 17. 二次電池の内部状態を検知する装置において、請求項1〜18のいずれかに記載の検知方法を使用したことを特徴とする二次電池の内部状態検知装置。  An apparatus for detecting an internal state of a secondary battery, wherein the detection method according to any one of claims 1 to 18 is used. 二次電池の端子間電圧を検出する手段と、二次電池を流れる充電または放電電流を検出する手段と、二次電池の温度を検出する手段と、予め求めた正常な電池の基礎データもしくは基礎データを数式化した関数式を記憶する手段とを有し、
予め入力した正常な電池の基礎データもしくは該基礎データの関数式と、上記検出手段から得られる情報から、二次電池の内部状態を検知することを特徴とする請求項19に記載の二次電池の内部状態検知装置。
Means for detecting the voltage across the terminals of the secondary battery, means for detecting the charging or discharging current flowing through the secondary battery, means for detecting the temperature of the secondary battery, and basic data or basic data of the normal battery obtained in advance. Means for storing a function expression obtained by formulating data,
20. The secondary battery according to claim 19, wherein the internal state of the secondary battery is detected from basic data of normal battery input in advance or a function expression of the basic data and information obtained from the detection means. Internal state detection device.
前記二次電池を流れる電流を意図的に変動させる手段を有することを特徴とする請求項20に記載の二次電池の内部状態検知装置。  21. The internal state detection device for a secondary battery according to claim 20, further comprising means for intentionally changing a current flowing through the secondary battery. 前記変動手段が、前記二次電池を流れる電流に所定のパルス電流を付加する手段であることを特徴とする請求項21に記載の二次電池の内部状態検知装置。  The internal state detection device for a secondary battery according to claim 21, wherein the changing means is means for adding a predetermined pulse current to the current flowing through the secondary battery. 前記前記二次電池を流れる電流の変動を検知する手段を有することを特徴とする請求項20に記載の二次電池の内部状態検知装置。  21. The internal state detection device for a secondary battery according to claim 20, further comprising means for detecting a change in a current flowing through the secondary battery. 前記各検出手段から得られた出力信号波形を処理する、検出信号の波形処理手段を有することを特徴とする請求項20に記載の二次電池の内部状態検知装置。  21. The internal state detection device for a secondary battery according to claim 20, further comprising detection signal waveform processing means for processing an output signal waveform obtained from each of the detection means. 前記基礎データと前記各検出手段から得られた情報を加工する演算手段を有することを特徴とする請求項20に記載の二次電池の内部状態検知装置。  21. The internal state detection device for a secondary battery according to claim 20, further comprising a calculation unit that processes the basic data and information obtained from each of the detection units. 前記演算手段が、
(1)二次電池の現蓄電量および二次電池の内部抵抗の少なくとも一方を算出する手段、
(2)機器が使用できる二次電池の蓄電量である残量および平均消費電流もしくは平均消費電力の値の少なくとも一方を算出する手段、並びに
(3)充電終了までに要する時間および充電終了後の二次電池の蓄電量の少なくとも一方を算出する手段、
の(1)〜(3)から選択される一種類以上の手段を有していることを特徴とする請求項25に記載の二次電池の内部状態検知装置。
The computing means is
(1) means for calculating at least one of the current storage amount of the secondary battery and the internal resistance of the secondary battery;
(2) Means for calculating at least one of the remaining amount and the average current consumption or the average power consumption, which is the amount of power stored in the secondary battery that can be used by the device, and (3) the time required for the end of charging and after the end of charging Means for calculating at least one of the storage amount of the secondary battery;
26. The internal state detection device for a secondary battery according to claim 25, comprising one or more means selected from (1) to (3).
二次電池が正常であるか劣化しているか、および劣化している場合にはその劣化のモードを判定する手段を有することを特徴とする請求項20に記載の二次電池の内部状態検知装置。  21. The internal state detection device for a secondary battery according to claim 20, further comprising means for determining whether the secondary battery is normal or deteriorated, and if the secondary battery is deteriorated, the deterioration mode. . 前記検出手段から得られる情報および前記二次電池の内部状態に関する情報の少なくとも一方を出力する手段を有することを特徴とする請求項20に記載の二次電池の内部状態検知装置。  21. The internal state detection device for a secondary battery according to claim 20, further comprising means for outputting at least one of information obtained from the detection unit and information about the internal state of the secondary battery. 前記検出手段から得られる情報および前記二次電池の内部状態に関する情報の少なくとも一方を表示する手段を有することを特徴とする請求項28に記載の二次電池の内部状態検知装置。  29. The internal state detection device for a secondary battery according to claim 28, further comprising means for displaying at least one of information obtained from the detection unit and information about the internal state of the secondary battery. 請求項19〜29のいずれかに記載の装置を付加した1個以上の二次電池からなることを特徴とする電池パック。  A battery pack comprising one or more secondary batteries to which the device according to any one of claims 19 to 29 is added. 請求項19〜29のいずれかに記載の装置を付加した1個以上の二次電池からなることを特徴とする電池モジュール。  A battery module comprising one or more secondary batteries to which the device according to any one of claims 19 to 29 is added. 前記電池パックを電源に使用する機器との通信手段を有していることを特徴とする請求項30に記載の電池パック。  31. The battery pack according to claim 30, further comprising means for communicating with a device that uses the battery pack as a power source. 前記電池モジュールを電源に使用する機器との通信手段を有していることを特徴とする請求項31に記載の電池モジュール。  32. The battery module according to claim 31, further comprising means for communicating with a device that uses the battery module as a power source. 請求項19〜29のいずれかに記載の二次電池の内部状態検知装置を有することを特徴とする機器。  An apparatus comprising the secondary battery internal state detection device according to any one of claims 19 to 29. 請求項19〜29のいずれかに記載の二次電池の内部状態検知装置を有することを特徴とする機械。  A machine comprising the internal state detection device for a secondary battery according to any one of claims 19 to 29. 情報通信機能を有することを特徴とする請求項34に記載の機器。  The apparatus according to claim 34, having an information communication function. 情報通信機能を有することを特徴とする請求項35に記載の機械。  36. The machine according to claim 35, having an information communication function. 携帯電話もしくは携帯端末であることを特徴とする請求項36に記載の機器。  The device according to claim 36, wherein the device is a mobile phone or a mobile terminal. コンピュータであることを特徴とする請求項34に記載の機器。  35. The device of claim 34, wherein the device is a computer. 乗り物であることを特徴とする請求項35に記載の機械。  36. The machine according to claim 35, wherein the machine is a vehicle. 二次電池を充電する充電器であることを特徴とする請求項34に記載の機器。  The device according to claim 34, wherein the device is a charger for charging a secondary battery. 製造された二次電池が良品であるか不良品であるか検査する機器であることを特徴とする請求項34に記載の機器。  35. The device according to claim 34, wherein the device is a device for inspecting whether the manufactured secondary battery is a good product or a defective product. 請求項19〜29のいずれかに記載の装置を有することを特徴とする電力貯蔵システム。  A power storage system comprising the device according to any one of claims 19 to 29. 二次電池の内部状態を検知するためのプログラムにおいて、請求項1〜18のいずれかに記載の検知方法を盛り込んだプログラムであることを特徴とする二次電池の内部状態検知プログラム。  A program for detecting an internal state of a secondary battery, wherein the program includes the detection method according to any one of claims 1 to 18. 請求項44記載の二次電池の内部状態を検知するためのプログラムを収めたメモリ媒体。  The memory medium which stored the program for detecting the internal state of the secondary battery of Claim 44.
JP2001152874A 2000-05-23 2001-05-22 Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program Expired - Fee Related JP5074648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152874A JP5074648B2 (en) 2000-05-23 2001-05-22 Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-151521 2000-05-23
JP2000151521 2000-05-23
JP2000151521 2000-05-23
JP2001152874A JP5074648B2 (en) 2000-05-23 2001-05-22 Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011152958A Division JP5202698B2 (en) 2000-05-23 2011-07-11 Circuit for detecting internal state of secondary battery and battery pack, device, machine and system having the circuit

Publications (3)

Publication Number Publication Date
JP2002050410A JP2002050410A (en) 2002-02-15
JP2002050410A5 JP2002050410A5 (en) 2008-07-03
JP5074648B2 true JP5074648B2 (en) 2012-11-14

Family

ID=26592398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152874A Expired - Fee Related JP5074648B2 (en) 2000-05-23 2001-05-22 Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program

Country Status (1)

Country Link
JP (1) JP5074648B2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP4078018B2 (en) * 2000-07-12 2008-04-23 富士通株式会社 Electronic device and power consumption measurement support device
JP3869676B2 (en) * 2000-12-08 2007-01-17 矢崎総業株式会社 Method and apparatus for estimating open circuit voltage of vehicle battery
JP4039556B2 (en) * 2002-07-12 2008-01-30 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Electronic device, monitoring apparatus and method, recording medium, and program
US7190171B2 (en) 2002-10-11 2007-03-13 Canon Kabushiki Kaisha Detecting method and detecting apparatus for detecting internal of rechargeable battery, rechargeable battery pack having said detecting apparatus therein, apparatus having said detecting apparatus therein, program in which said detecting method is incorporated, and medium in which said program is stored
JP4016881B2 (en) * 2002-11-27 2007-12-05 富士電機デバイステクノロジー株式会社 Battery level measuring device
JP4764971B2 (en) * 2002-11-27 2011-09-07 富士電機株式会社 Battery level measuring device
AU2003292646A1 (en) 2003-01-08 2004-08-10 Nikon Corporation Electronic apparatus and its operation controllig method
JP2004301784A (en) * 2003-03-31 2004-10-28 Yazaki Corp Dischargeable capacity estimating method and device for battery
JP4286198B2 (en) * 2004-09-01 2009-06-24 オリンパス株式会社 Foot switch and output system
JP4634107B2 (en) * 2004-09-15 2011-02-16 株式会社やまびこ Battery floodlight
JP4739040B2 (en) 2005-02-18 2011-08-03 パナソニック株式会社 Secondary battery internal short-circuit detection device, secondary battery internal short-circuit detection method, secondary battery pack and electronic device
JP5090763B2 (en) * 2007-03-22 2012-12-05 ヤマハ発動機株式会社 Secondary battery charger
US8120325B2 (en) * 2007-08-10 2012-02-21 Sony Ericsson Mobile Communications Ab Battery short circuit monitoring
JP5418871B2 (en) * 2007-10-25 2014-02-19 日立工機株式会社 Charger
JP5313616B2 (en) * 2008-10-08 2013-10-09 株式会社マキタ Battery pack for electric tools and electric tools
JP5656415B2 (en) * 2009-03-26 2015-01-21 プライムアースEvエナジー株式会社 Secondary battery state determination device and control device
JP2011135656A (en) 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Battery system, vehicle with the same, and method for detecting internal short circuit in the battery system
JP2011135657A (en) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Battery system and vehicle with the same, and method for detecting current limit state of the battery system
KR101057542B1 (en) 2010-01-26 2011-08-17 에스비리모티브 주식회사 Battery Management System and Its Driving Method
JP5626756B2 (en) * 2010-01-28 2014-11-19 株式会社Nttファシリティーズ Lithium ion battery management method and management apparatus
CN102207541B (en) * 2010-03-31 2013-11-20 新德科技股份有限公司 Method for measuring direct current internal resistance, full charge capacity and remaining power of battery pack
KR101154064B1 (en) * 2010-08-31 2012-06-11 엘지엔시스(주) Device and method for monitoring power supplay
CN103149488A (en) * 2011-12-06 2013-06-12 哈尔滨智木科技有限公司 Battery defect test method and battery defect test device
KR101877309B1 (en) * 2012-01-27 2018-07-12 에스케이이노베이션 주식회사 Method of test battery and equipments for the method
KR101877304B1 (en) * 2012-01-27 2018-07-12 에스케이이노베이션 주식회사 Method of test battery and equipments for the method
CN105377619B (en) * 2013-06-14 2017-09-15 微空间株式会社 Motor drive control device
JP6376777B2 (en) * 2013-07-30 2018-08-22 住友重機械工業株式会社 Work machine
EP3040733B1 (en) * 2013-08-30 2020-12-16 NGK Insulators, Ltd. Device, method, and program for specifying abnormality-occurrence area of secondary battery system
JP6607161B2 (en) * 2016-09-15 2019-11-20 トヨタ自動車株式会社 In-vehicle battery system control method
JP6729714B2 (en) 2016-11-07 2020-07-29 日産自動車株式会社 Short circuit detector
WO2018211824A1 (en) * 2017-05-17 2018-11-22 日立オートモティブシステムズ株式会社 Battery control device and vehicle system
US11462777B2 (en) 2017-10-04 2022-10-04 Envision Aesc Japan Ltd. Battery pack inspection method and inspection device for anomaly detection via voltage comparison over time
JPWO2019235481A1 (en) 2018-06-05 2021-07-08 本田技研工業株式会社 Internal resistance estimation method and rechargeable battery charging device
CN109065975A (en) * 2018-07-12 2018-12-21 国网四川省电力公司阿坝供电公司 A kind of direct current system management system and its control method
CN111707944B (en) * 2020-08-11 2023-01-13 天津市捷威动力工业有限公司 Method for estimating discharge cut-off monomer pressure difference of ternary lithium ion battery pack
CN112666476B (en) * 2020-12-09 2024-02-23 北京车和家信息技术有限公司 Method, device and equipment for detecting connection state of battery connecting piece
KR20220105026A (en) * 2021-01-19 2022-07-26 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery system
JP7432064B2 (en) 2021-09-08 2024-02-15 寧徳時代新能源科技股▲分▼有限公司 Method for charging power batteries and battery management system
CN116661543B (en) * 2023-07-28 2023-10-20 常州满旺半导体科技有限公司 Intelligent regulation system and method based on low-power consumption voltage source

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040951A1 (en) * 1997-03-12 1998-09-17 Us Nanocorp. Method for determining state-of-health using an intelligent system

Also Published As

Publication number Publication date
JP2002050410A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP5074648B2 (en) Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program
JP5202698B2 (en) Circuit for detecting internal state of secondary battery and battery pack, device, machine and system having the circuit
JP4332321B2 (en) Internal information detection method of secondary battery, internal information detection device, internal information detection program, and medium containing the program
US7190171B2 (en) Detecting method and detecting apparatus for detecting internal of rechargeable battery, rechargeable battery pack having said detecting apparatus therein, apparatus having said detecting apparatus therein, program in which said detecting method is incorporated, and medium in which said program is stored
US5672951A (en) Determination and control of battery state
JP5515524B2 (en) Secondary battery deterioration state determination system and secondary battery deterioration state determination method
KR101500547B1 (en) Apparatus and method for balancing of battery cell&#39;s charging capacity
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
US20220082630A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
JP4401734B2 (en) Secondary battery internal resistance detection method, internal resistance detection device, internal resistance detection program, and medium containing the program
CN113075558B (en) Battery SOC estimation method, device and system
JP2010008133A (en) Portable charger, and deterioration diagnosis method of secondary battery used therefor
JP3478069B2 (en) Method for detecting remaining capacity of lithium ion secondary battery
JPH04274776A (en) Detecting device of lifetime of ni-cd storage battery
CN114814614A (en) Method for predicting lithium ion battery capacity

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080516

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees