JP5072511B2 - Lead-acid battery grid - Google Patents

Lead-acid battery grid Download PDF

Info

Publication number
JP5072511B2
JP5072511B2 JP2007246341A JP2007246341A JP5072511B2 JP 5072511 B2 JP5072511 B2 JP 5072511B2 JP 2007246341 A JP2007246341 A JP 2007246341A JP 2007246341 A JP2007246341 A JP 2007246341A JP 5072511 B2 JP5072511 B2 JP 5072511B2
Authority
JP
Japan
Prior art keywords
layer
plating
lattice
thickness
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007246341A
Other languages
Japanese (ja)
Other versions
JP2009076406A (en
Inventor
有一 赤阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007246341A priority Critical patent/JP5072511B2/en
Publication of JP2009076406A publication Critical patent/JP2009076406A/en
Application granted granted Critical
Publication of JP5072511B2 publication Critical patent/JP5072511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、Pb−Ca系合金格子にSb層を形成した鉛蓄電池用格子に関する。   The present invention relates to a lead-acid battery grid in which an Sb layer is formed on a Pb—Ca-based alloy grid.

以前は、鉛蓄電池には正極、負極、両極ともPb−Sb系合金格子に活物質ペーストを塗布充填して用いられていたが、Pb−Sb系合金は水素過電圧が低いため充電中に過充電となることが多く、電解液(水)が減少し易く定期的な補水が必要であった。補水を怠れば格子が空気中に露出して劣化し、最悪の場合、電池が突然使用できなくなることもあった。   Previously, Pb-Sb alloy grids were coated with an active material paste and filled with Pb-Sb alloy grids for lead-acid batteries, but Pb-Sb alloys were overcharged during charging due to their low hydrogen overvoltage. In many cases, the electrolyte solution (water) tends to decrease, and regular rehydration is necessary. If the water is not refilled, the grid will be exposed and deteriorated in the air. In the worst case, the battery may suddenly become unusable.

そこで、正極にPb−Sb系合金格子を用い、負極にPb−Ca系合金格子を用いた電池(ハイブリッド電池)が考案された。この電池は減液量をある程度抑えることはできたものの、使用中に次第と減液量が増えていくことが判った。この減液の原因は、正極から溶出したSbが負極に析出するからである。   Accordingly, a battery (hybrid battery) has been devised that uses a Pb—Sb alloy lattice for the positive electrode and a Pb—Ca alloy lattice for the negative electrode. Although this battery was able to reduce the amount of liquid reduction to some extent, it was found that the amount of liquid reduction gradually increased during use. The cause of this liquid reduction is that Sb eluted from the positive electrode is deposited on the negative electrode.

以上のような経緯で現在は正極、負極ともにPb−Ca系合金格子を用いたメンテナンスフリー(MF:Maintenance Free)の鉛蓄電池が登場した。これによりユーザーは補水を殆ど気にする必要がなくなった。   As described above, a maintenance-free (MF) lead-acid battery using a Pb—Ca alloy lattice for both the positive electrode and the negative electrode has appeared. This eliminates the need for users to worry about rehydration.

ところで、近年、カーナビゲーションシステムやAV機器といった車中の電子機器の増加により鉛蓄電池が深放電される機会が増加しており、この深放電サイクルが繰り返されると両極にPb−Ca系合金格子を用いたMF電池では、クラック等による活物質脱落により早期に容量が低下して寿命(早期容量低下、PCL:Premature Capacity Loss)となることが判ってきた。   By the way, in recent years, the opportunities for deep discharge of lead storage batteries have increased due to the increase in electronic devices in vehicles such as car navigation systems and AV equipment. When this deep discharge cycle is repeated, Pb-Ca alloy lattices are formed on both poles. In the used MF battery, it has been found that the capacity is reduced early due to the active material falling off due to cracks or the like, resulting in a life (early capacity drop, PCL: Preliminary Capacity Loss).

この改善策として、Pb−Ca系合金格子にSbを含ませた格子が提案されている。
例えば、Sb化合物を溶解させた硫酸水溶液中でPb或いは非Sb系鉛合金格子の表面にSbを電析させること(特許文献1)などである。
As an improvement measure, a lattice in which Sb is included in a Pb—Ca alloy lattice has been proposed.
For example, Sb is electrodeposited on the surface of a Pb or non-Sb lead alloy lattice in a sulfuric acid aqueous solution in which an Sb compound is dissolved (Patent Document 1).

なお、SbがPCLの防止に有効な理由は、充放電中に格子と活物質の界面に放電し難いSb含有腐食層が生成し、放電が界面以外の活物質で起き、その結果、格子と活物質の界面に不導体層が生成しないからだと考えられている(非特許文献1)。   The reason why Sb is effective in preventing PCL is that an Sb-containing corrosion layer that is difficult to discharge at the interface between the lattice and the active material is generated during charging and discharging, and discharge occurs in the active material other than the interface. This is thought to be because a nonconductive layer does not form at the interface of the active material (Non-patent Document 1).

しかしながら、特許文献1の方法は、硫酸水溶液中でめっきを行っており、格子を硫酸水溶液中に浸漬した瞬間に格子表面に硫酸鉛が生成してしまい、格子−めっき層間の密着性が乏しいものとなってしまう。
また、通常、めっき層は1.0μm程度の厚さで形成されており、めっき層がSbのみである場合、Sbめっき層は内部応力(引張り応力)が高いため、めっき層の厚さが厚いとクラックが入り易く、クラックが入ると、そこから格子腐食が進行し、めっき層の崩壊や活物質の脱落が起きるという問題があった。
However, in the method of Patent Document 1, plating is performed in an aqueous sulfuric acid solution, and lead sulfate is generated on the surface of the lattice at the moment when the lattice is immersed in the aqueous sulfuric acid solution, resulting in poor adhesion between the lattice and the plating layer. End up.
Further, the plating layer is usually formed with a thickness of about 1.0 μm, and when the plating layer is only Sb, the Sb plating layer has a high internal stress (tensile stress), and thus the plating layer is thick. There was a problem that cracks were likely to occur, and when cracks occurred, lattice corrosion proceeded from there, resulting in collapse of the plating layer and loss of the active material.

特開2005−122922JP-A-2005-122922 GS News Technical Report 第55巻 9−15頁 1996年6月GS News Technical Report Vol. 55, pages 9-15, June 1996

このようなことから本発明者等はPCLの防止について種々検討した。その結果Pb−Ca系合金格子の表面に薄いSb層を形成し、その上に所望の厚さになるまでSb層を積層させることにより、めっき層の崩壊や活物質の脱落が起きることがなく、PCLを防止し、充分に満足できる寿命特性を得ることができることを知見し、更に検討を重ねて本発明を完成させるに至った。
本発明は、めっき層の崩壊や活物質の脱落が起きることがない鉛蓄電池用格子の提供を目的とする。
For these reasons, the present inventors have made various studies on prevention of PCL. As a result, a thin Sb layer is formed on the surface of the Pb—Ca-based alloy lattice, and the Sb layer is laminated on the Pb—Ca-based alloy lattice until a desired thickness is obtained, thereby preventing the plating layer from collapsing and the active material from falling off. The inventors have found that it is possible to prevent PCL and obtain sufficiently satisfactory life characteristics, and have further studied to complete the present invention.
An object of this invention is to provide the grid | lattice for lead acid batteries in which the decay | disintegration of a plating layer and the dropping of an active material do not occur.

本発明は、Pb−Ca系合金格子の表面にSb層がめっき法により形成された鉛蓄電池用格子において、前記Sb層を多層積層させ、且つ、多層積層させたSb層の1層目の厚みを0.3μm未満としたことを特徴とする鉛蓄電池用格子である。   The present invention provides a lead-acid battery grid in which an Sb layer is formed by plating on the surface of a Pb—Ca-based alloy grid, and the Sb layer is laminated in multiple layers, and the thickness of the first layer of the multilayered Sb layers is as follows. Is a grid for a lead-acid battery, characterized by being less than 0.3 μm.

本発明の鉛蓄電池用格子は、Sb層を多層積層させ、1層目の厚みを0.3μm未満と薄く形成することで、Sb層にクラックが生じず、所望の厚さのSb層を形成することが可能である。格子にクラックの生じないSb層を形成することで、格子の腐食が進むことにより引き起こされるめっき層の崩壊や活物質の脱落が起き難いため、PCLを防止することが可能である。   The grid for the lead storage battery of the present invention is formed by multilayering Sb layers and forming the first layer as thin as less than 0.3 μm so that no cracks occur in the Sb layer and the Sb layer having a desired thickness is formed. Is possible. By forming an Sb layer that does not cause cracks in the lattice, it is difficult for the plating layer to collapse and the active material to fall off due to the progress of corrosion of the lattice, so that PCL can be prevented.

Sb層を多層積層してSb層の1層目の厚みを0.3μm未満に規定する理由は、0.3μm以上とするとめっき層は内部応力が高いため、めっき層の厚さが厚いとクラックが入り易く、クラックが入ると、そこから格子腐食が進行し、めっき層の崩壊や活物質の脱落が起きるためである。
しかし、Sb層の1層目の厚みを0.3μm未満としSb層を形成した後、2層目以降のSb層の厚みを0.3μm以上としSb層を形成しても、1層目にクラックが入っていないため、格子腐食によるめっき層の崩壊や活物質の脱落が起きることが無い。
なお、Sb層の総厚みは5μm以下が好適である。5μmを越えると、Sbを含む腐食層が厚くなり、それ自体が抵抗となるため鉛蓄電池の容量が低下するだけでなく、負極へのSb析出量が多くなり減液が多くなってしまう。
The reason for limiting the thickness of the first layer of the Sb layer to less than 0.3 μm by laminating the Sb layers is that if the thickness is 0.3 μm or more, the plating layer has high internal stress. This is because, when cracks are easily formed, lattice corrosion proceeds from there, and the plating layer collapses and the active material falls off.
However, even if the thickness of the first Sb layer is less than 0.3 μm and the Sb layer is formed, the thickness of the second and subsequent Sb layers is 0.3 μm or more and the Sb layer is formed. Since there are no cracks, the plating layer does not collapse and the active material does not fall off due to lattice corrosion.
The total thickness of the Sb layer is preferably 5 μm or less. When the thickness exceeds 5 μm, the corrosion layer containing Sb becomes thick and itself becomes a resistance, so that not only the capacity of the lead storage battery is reduced, but also the amount of Sb deposited on the negative electrode is increased and the liquid reduction is increased.

本発明において、Pb−Ca系合金格子には、Pb−Ca合金、Pb−Ca−Sn合金、Pb−Ca−Sn−Al合金などCaを適量含有する鉛合金が適用できる。特性改善のためにSn或いはAl以外の元素が含まれていても差し支えない。   In the present invention, a lead alloy containing an appropriate amount of Ca, such as a Pb—Ca alloy, a Pb—Ca—Sn alloy, or a Pb—Ca—Sn—Al alloy, can be applied to the Pb—Ca alloy lattice. An element other than Sn or Al may be included for improving the characteristics.

本発明において、Sb層の形成には電気めっき(電析)法、無電解めっき法など種々適用できるが、電気めっき(電析)法が、膜厚をコントロールし易いため有利である。   In the present invention, various methods such as an electroplating (electrodeposition) method and an electroless plating method can be applied to the formation of the Sb layer, but the electroplating (electrodeposition) method is advantageous because the film thickness can be easily controlled.

以下に、本発明を実施例により具体的に説明する。
Pb−0.1質量%Ca−0.5質量%Sn合金からなる鋳造格子に、1層目の厚みを0.10μm、2層目の厚みを0.20μmになるようSb層を2層積層させ電気めっきを行った。その後、直ちに多量の水で水洗し、乾燥させ、次いで前記電気めっき後の格子にPb、PbOと希硫酸からなる活物質ペーストを充填し、40±2℃、相対湿度95±3%の恒温恒湿槽内で22時間熟成させて正極未化成極板を作製した。
なお、本実施例においてSb層の1層目(1回目)と2層目(2回目)の積層は、所望のSb層の厚みとなったら電流を一端停止し、めっき液中で1〜2分放置し(通電を停止し反応が安定する間)、再度通電を開始した。
また、めっき液には三酸化二アンチモンを飽和量溶かした19%のホウフッ化水素酸液を用いた。対極にはSb板(150mm×30mm×0.2mmt)を用いた。
Hereinafter, the present invention will be specifically described by way of examples.
Two Sb layers are laminated on a cast lattice made of a Pb-0.1 mass% Ca-0.5 mass% Sn alloy so that the thickness of the first layer is 0.10 μm and the thickness of the second layer is 0.20 μm. Electroplating was performed. Thereafter, it is immediately washed with a large amount of water, dried, and then filled with an active material paste made of Pb, PbO and dilute sulfuric acid in the grid after electroplating, and kept at a constant temperature and constant temperature of 40 ± 2 ° C. and relative humidity of 95 ± 3%. A positive electrode non-formed electrode plate was prepared by aging in a wet tank for 22 hours.
In this embodiment, the first (first) and second (second) Sb layers are laminated once the current reaches the desired thickness, and the current is stopped once in the plating solution. It was left for a minute (while the current flow was stopped and the reaction was stabilized), and the current flow was started again.
Further, a 19% borohydrofluoric acid solution in which a saturated amount of diantimony trioxide was dissolved was used as the plating solution. An Sb plate (150 mm × 30 mm × 0.2 mmt) was used for the counter electrode.

次に、この正極未化成極板7枚と通常の方法で作製した負極未化成極板8枚とをポリエチレンセパレーターを挟んで交互に積層して極板群とし、この極板群を6つのセル室を備える電槽に収納し、それぞれを溶接した後、前記電槽に蓋を熱溶着し、前記蓋の注液口から比重1.25の希硫酸を注入し、電槽化成を行って80D26型の鉛蓄電池を作製した(本発明1)。
なお、前記Sb層の厚みは、予め“電流効率”を求めておき通電時間で制御した。
Next, the seven positive electrode unformed electrode plates and the eight negative electrode unformed electrode plates produced by a normal method are alternately stacked with a polyethylene separator interposed therebetween to form an electrode plate group. After storing each in a battery case equipped with a chamber and welding each, a lid is thermally welded to the battery case, and dilute sulfuric acid having a specific gravity of 1.25 is injected from the liquid injection port of the lid, and the battery case is formed to form 80D26. Type lead-acid battery was prepared (Invention 1).
The thickness of the Sb layer was controlled by energization time by obtaining “current efficiency” in advance.

電流効率は次のようにして求めた。
即ち、銅板(被めっき物、50mm×10mm×1mmt)をめっき液に浸漬し、陰極電流密度を0.5A/dmとして30分間卑に分極させたのち、Sbを電気めっきした。前記めっき液は、液温を約20±2℃とし、マグネチックスターラーで攪拌(300rpm)した。Sb層の色は通電開始から徐々に変化し最終的に黒色になった。
The current efficiency was determined as follows.
That is, a copper plate (to-be-plated object, 50 mm × 10 mm × 1 mmt) was immersed in a plating solution and polarized at a base current of 0.5 A / dm 2 for 30 minutes, and then Sb was electroplated. The plating solution was heated to about 20 ± 2 ° C. and stirred (300 rpm) with a magnetic stirrer. The color of the Sb layer gradually changed from the start of energization and finally became black.

めっき後、直ちに多量の水で水洗し、乾燥させ、得られた被めっき物を樹脂に埋め込み、樹脂が固まった後、垂直方向に切断し、エメリー紙により研磨し、研磨面をマイクロスコープにより観察してめっき層の厚みを各10箇所測定し、その平均値からめっきに要する理論電気量を算出し、これを実際の通電電流と通電時間で除して求めた。   Immediately after plating, rinse with a large amount of water and dry. The obtained object to be plated is embedded in the resin. After the resin hardens, cut vertically, polish with emery paper, and observe the polished surface with a microscope. Then, the thickness of the plating layer was measured at 10 locations, the theoretical amount of electricity required for plating was calculated from the average value, and this was obtained by dividing this by the actual energizing current and energizing time.

Sb層の2層目厚みを0.9μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明2)。 A positive electrode non-formed electrode plate was produced in the same manner as in Example 1 except that the thickness of the second layer of the Sb layer was 0.9 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (invention 2).

Sb層の2層目厚みを4.9μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明3)。 A positive electrode non-formed electrode plate was produced in the same manner as in Example 1 except that the thickness of the second layer of the Sb layer was 4.9 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (this invention 3).

Sb層の2層目厚みを5.4μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明4)。 A positive electrode unformed electrode plate was prepared in the same manner as in Example 1 except that the thickness of the second layer of the Sb layer was 5.4 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (invention 4).

Sb層の1層目を0.29μm、2層目を0.71μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明5)。 A positive electrode non-formed electrode plate was produced in the same manner as in Example 1 except that the first layer of the Sb layer was 0.29 μm and the second layer was 0.71 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (invention 5).

Sb層の1層目を0.29μm、2層目を4.71μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明6)。 A positive electrode unformed electrode plate was produced in the same manner as in Example 1 except that the first layer of the Sb layer was 0.29 μm and the second layer was 4.71 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (this invention 6).

Sb層の1層目を0.29μm、2層目を5.21μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明7)。 A positive electrode non-formed electrode plate was produced in the same manner as in Example 1 except that the first layer of the Sb layer was 0.29 μm and the second layer was 5.21 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (this invention 7).

Sb層の1層目を0.1μm、2層目を0.1μm、3層目を0.8μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明8)。
なお、Sb層の1層目(1回目)と2層目(2回目)、Sb層の3層目(3回目)の積層は、所望のSb層の厚みとなったら通電電流を一端停止し、めっき液中で1〜2分放置し(通電を停止し反応が安定する間)、再度通電を開始した。
A positive electrode unformed electrode plate was produced in the same manner as in Example 1 except that the first layer of the Sb layer was 0.1 μm, the second layer was 0.1 μm, and the third layer was 0.8 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (this invention 8).
The first layer (first time) and the second layer (second time) of the Sb layer and the third layer (third time) of the Sb layer are stopped once the energizing current is reached when the desired Sb layer thickness is reached. The plate was left in the plating solution for 1 to 2 minutes (while the energization was stopped and the reaction was stabilized), and the energization was started again.

Sb層の1層目を0.1μm、2層目を0.8μm、3層目を0.1μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明9)。
なお、Sb層の1層目(1回目)と2層目(2回目)、Sb層の3層目(3回目)の積層は、所望のSb層の厚みとなったら通電電流を一端停止し、めっき液中で1〜2分放置し(通電を停止し反応が安定する間)、再度通電を開始した。
A positive electrode non-formed electrode plate was produced in the same manner as in Example 1 except that the first layer of the Sb layer was 0.1 μm, the second layer was 0.8 μm, and the third layer was 0.1 μm. And the 80D26 type lead acid battery was produced by the method similar to Example 1 (this invention 9).
The first layer (first time) and the second layer (second time) of the Sb layer and the third layer (third time) of the Sb layer are stopped once the energizing current is reached when the desired Sb layer thickness is reached. The plate was left in the plating solution for 1 to 2 minutes (while the energization was stopped and the reaction was stabilized), and the energization was started again.

Sb層の1層目を0.1μm、2層目を2.0μm、3層目を2.9μmとした以外は実施例1と同様に正極未化成極板を作製した。そして、実施例1と同様の方法で80D26型の鉛蓄電池を作製した(本発明10)。
なお、Sb層の1層目(1回目)と2層目(2回目)、Sb層の3層目(3回目)の積層は、所望のSb層の厚みに必要な通電時間となったら電流を一端停止し、めっき液中で1〜2分放置し(通電を停止し反応が安定する間)、再度通電を開始した。
A positive electrode unformed electrode plate was produced in the same manner as in Example 1 except that the first layer of the Sb layer was 0.1 μm, the second layer was 2.0 μm, and the third layer was 2.9 μm. And 80D26 type lead acid battery was produced by the method similar to Example 1 (this invention 10).
The first layer (first time) and the second layer (second time) of the Sb layer, and the third layer (third time) of the Sb layer are stacked when the energization time required for the desired thickness of the Sb layer is reached. Was temporarily stopped and left in the plating solution for 1-2 minutes (while the energization was stopped and the reaction was stabilized), and the energization was started again.

[比較例1〜6]
Sb層の1層目の厚みを本発明規定値外、又は多層積層しなかった(Sb層を1層のみとした)他は本発明1〜10と同様に夫々の正極未化成極板を作製した。そして、実施例1〜10と同様の方法で80D26型の鉛蓄電池を作製した(比較例1〜6)。
[Comparative Examples 1-6]
The positive electrode non-formed electrode plates were prepared in the same manner as in the present inventions 1 to 10 except that the thickness of the first layer of the Sb layer was outside the specified value of the present invention or the multilayer was not laminated (only one Sb layer was used). did. And 80D26 type lead acid battery was produced by the same method as Examples 1-10 (comparative examples 1-6).

夫々作製しためっきを施した格子(本発明1〜10、比較例1〜6)の格子表面(めっき表面)を、走査型電子顕微鏡(SEM:JEOL製JSM−5310LV)にて観察を行った。比較例2以外の格子は全てにおいて表面にクラックが見られ、また、比較例1、2から1層目のSb層の厚みが0.3μm以上でクラックが発生することが確認された。   The lattice surfaces (plating surfaces) of the respective plated lattices (Inventions 1 to 10, Comparative Examples 1 to 6) prepared were observed with a scanning electron microscope (SEM: JSM-5310LV manufactured by JEOL). In all the lattices other than Comparative Example 2, cracks were observed on the surface, and it was confirmed that cracks occurred when the thickness of the first Sb layer from Comparative Examples 1 and 2 was 0.3 μm or more.

また、夫々作製しためっきを施した格子(本発明1〜10、比較例1〜6)について、粘着テープ(スコッチ製)によるめっきの剥離試験を行った。剥離試験は、格子にテープを貼り付け、2回指で強く押さえた後、一気に剥がす方法で行った。
その結果、いずれもめっきの剥離はなく、格子-めっき間の密着性が高いことが確認された。
Moreover, about the grating | lattice (this invention 1-10, comparative examples 1-6) which each produced plating, the peeling test of the plating by an adhesive tape (made by Scotch) was done. The peeling test was performed by a method in which a tape was applied to the lattice and pressed strongly with a finger twice, and then peeled off at once.
As a result, there was no peeling of the plating, and it was confirmed that the adhesion between the lattice and the plating was high.

[従来例1]
Pb−1.7質量%Sb合金の鋳造格子を用い、めっきをしないこと以外は本発明1と同様に正極未化成極板を作製し、本発明1と同様にして80D26型鉛蓄電池をそれぞれ作製した(従来例1)。
[Conventional example 1]
A Pb-1.7 mass% Sb alloy cast grid was used, and a positive electrode non-formed electrode plate was prepared in the same manner as in the present invention 1 except that plating was not performed. (Conventional example 1).

[従来例2]
Pb−0.1質量%Ca−0.5質量%Sn合金の鋳造格子を用い、めっきをしないこと以外本発明1と同様に正極未化成極板を作製し、本発明1と同様にして80D26型鉛蓄電池を作製した(従来例2)。
[Conventional example 2]
Using a cast lattice of Pb-0.1 mass% Ca-0.5 mass% Sn alloy, a positive electrode non-formed electrode plate was prepared in the same manner as in the present invention 1 except that no plating was performed. Type lead-acid battery was produced (conventional example 2).

[従来例3]
厚さ10.0mmのPb−0.1質量%Ca−0.5質量%Sn合金板材を冷間圧延して得た厚さ1.0mmの圧延シートを網目状にエキスパンド加工し、所定サイズに切断したエキスパンド格子を用い、めっきをしないこと以外は本発明1と同様に正極未化成極板を作製し、本発明1と同様にして80D26型鉛蓄電池を作製した(従来例3)。
[Conventional Example 3]
A rolled sheet having a thickness of 1.0 mm obtained by cold-rolling a Pb-0.1 mass% Ca-0.5 mass% Sn alloy sheet having a thickness of 10.0 mm is expanded into a mesh shape to obtain a predetermined size. Using the cut expanded grid, a positive electrode non-formed electrode plate was prepared in the same manner as in the present invention 1 except that plating was not performed, and an 80D26 type lead storage battery was manufactured in the same manner as in the present invention 1 (conventional example 3).

[従来例4]
厚さ10.0mmのPb−0.1質量%Ca−0.5質量%Sn合金板材と厚さ0.1mmのPb−5.0質量%Sn−5.0質量%Sb合金板を重ね合わせて冷間圧延して得た厚さ1.0mmの圧延シートを網目状にエキスパンド加工し、これを所定サイズに切断したエキスパンド格子を用い、めっきをしないこと以外は本発明1と同様に正極未化成極板を作製し、本発明1と同様にして80D26型鉛蓄電池を作製した(従来例4)。
[Conventional example 4]
A Pb-0.1 mass% Ca-0.5 mass% Sn alloy plate material having a thickness of 10.0 mm and a Pb-5.0 mass% Sn-5.0 mass% Sb alloy plate having a thickness of 0.1 mm are overlapped. A rolled sheet having a thickness of 1.0 mm obtained by cold rolling is expanded into a mesh shape, and an expanded lattice obtained by cutting the rolled sheet into a predetermined size is used. A conversion electrode plate was produced, and an 80D26 type lead-acid battery was produced in the same manner as in Invention 1 (Conventional Example 4).

得られた各々の鉛蓄電池(本発明1〜10、比較例1〜5、従来例1〜4)についてJISD5301重負荷寿命サイクル試験を行って、容量維持率および減液量の変化を調べた。なお、容量維持率は定格容量の50%以下となった時点で寿命とした。
サイクル寿命試験における容量維持率の変化を図1(横軸:サイクル数、縦軸:容量維持率)に、100サイクルまでの減液量の推移を図2(横軸:サイクル数、縦軸:減液量)にそれぞれ示した。また、図1、2から読み取った容量維持率の評価結果を表1に示した。
なお、容量維持率はサイクル数が300超過のものを優れる(○)、200〜300のものを普通(△)、200未満のものを劣る(×)、減液量は100サイクルで減液量が500g未満は優れる(○)、500〜700gは普通(△)、700g越えは劣る(×)と評価した。
また、減液量はJISD5301重負荷寿命サイクル試験の25サイクル毎に鉛蓄電池の重量を測定し、その変化量を計測したものである。そして、減液した分の補水をその都度行った。
A JIS D5301 heavy load life cycle test was conducted on each of the obtained lead storage batteries (Inventions 1 to 10, Comparative Examples 1 to 5, Conventional Examples 1 to 4), and changes in the capacity maintenance rate and the liquid reduction amount were examined. The capacity retention rate was regarded as the life when the capacity became 50% or less of the rated capacity.
The change in capacity retention rate in the cycle life test is shown in FIG. 1 (horizontal axis: number of cycles, vertical axis: capacity maintenance rate), and the amount of liquid reduction until 100 cycles is shown in FIG. 2 (horizontal axis: number of cycles, vertical axis: The amount of liquid reduction is shown respectively. Table 1 shows the evaluation results of the capacity retention rate read from FIGS.
In addition, the capacity maintenance rate is excellent when the number of cycles exceeds 300 (◯), normal between 200 and 300 (Δ), inferior when less than 200 (×), and the liquid reduction amount is 100 cycles. Of less than 500 g was evaluated as excellent (◯), 500 to 700 g was evaluated as normal (Δ), and exceeding 700 g was evaluated as inferior (×).
Further, the amount of liquid reduction is obtained by measuring the weight of the lead storage battery every 25 cycles of the JIS D5301 heavy load life cycle test and measuring the amount of change. And the water replenishment for the liquid reduction was performed each time.

表1および図1、2から明らかなように、本発明1〜10は何れも容量維持率が高く良好な重負荷サイクル特性を示した。また減液量も低かった。これは正極格子にSbが適量含まれていたことによる。また、本発明2、5、8、9の寿命は略同等であった。これは、寿命が1層1層の厚みではなく、総厚みに依存することを示唆している。本発明4、7はSb層の総厚みが5.0μm超過であり、減液量が若干多い結果となった。
なお、前述するように比較例1、2よりSb層を0.3μm未満とすることでクラックの無いSb層の作製が可能であることが確認され、1層目のSb層を0.3μm未満とした本発明1〜10は1層目にクラックが入っていないと考えられ、格子が露出することによる腐食の加速、めっき層の崩壊や活物質の脱落が起こらなかったため、PCLが起こらず長寿命であったと考えられる。
As apparent from Table 1 and FIGS. 1 and 2, each of the present inventions 1 to 10 has a high capacity retention rate and good heavy duty cycle characteristics. Moreover, the amount of liquid reduction was also low. This is because an appropriate amount of Sb was contained in the positive electrode lattice. Moreover, the lifetime of this invention 2, 5, 8, 9 was substantially equivalent. This suggests that the lifetime depends not on the thickness of each layer but on the total thickness. In the present inventions 4 and 7, the total thickness of the Sb layer exceeded 5.0 μm, and the amount of liquid reduction was slightly large.
As described above, it was confirmed from Comparative Examples 1 and 2 that an Sb layer having no crack could be produced by making the Sb layer less than 0.3 μm, and the first Sb layer was less than 0.3 μm. In the present invention 1 to 10, it is considered that there is no crack in the first layer, and since the acceleration of corrosion due to the exposure of the lattice, the collapse of the plating layer, and the loss of the active material did not occur, the PCL did not occur and was long It is thought that it was a lifetime.

比較例1、3〜6は300サイクルの前に突然寿命となった。これはめっき層の1層目にクラックの発生によるものだと思われる。クラックがあることにより、腐食が進行し、めっきの崩壊、活物質の脱落を引き起こしたものと考えられる。また、比較例2はSb層が薄いためクラックの発生は無いが、Sb層の厚みが薄いためサイクル寿命が短いものであった。
なお、比較例5は本発明4、7と同様にSb層の総厚みが5.0μm超過であり、減液量が若干多い結果となった。
Comparative Examples 1 and 3-6 suddenly reached the end of life before 300 cycles. This seems to be due to the occurrence of cracks in the first layer of the plating layer. It is thought that the corrosion progressed due to the presence of cracks, causing the collapse of the plating and the loss of the active material. In Comparative Example 2, since the Sb layer was thin, no crack was generated, but the cycle life was short because the Sb layer was thin.
In Comparative Example 5, as in the present inventions 4 and 7, the total thickness of the Sb layer exceeded 5.0 μm, and the amount of liquid reduction was slightly large.

従来例1は良好なサイクル特性を示すものの、Pb−Sb系合金格子を用いたため減液量が大きくなった。従来例2、3はPb−Ca系合金格子にSbが含まれていないため、従来例4はSb量が不足したためいずれも早期に寿命となった。   Although Conventional Example 1 showed good cycle characteristics, the amount of liquid reduction was large because a Pb—Sb alloy lattice was used. Since the conventional examples 2 and 3 do not contain Sb in the Pb—Ca-based alloy lattice, the prior art example 4 has a short life because the amount of Sb is insufficient.

上記実施例1〜10、比較例1〜5では、Pb−Ca系合金の鋳造格子にSb層を電気めっきにより形成した場合について説明したが、本発明はエキスパンド格子にSb層を無電解めっきなどで形成したものでも同様の効果が得られる。
また、本実施例ではSb層の多層積層は3層(3回)まで行った例を記載したが、同様の方法でSb層を3層(3回)以上形成し、所望の厚みとしても良い。
また、本実施例では鋳造格子にSb層を多層積層させたが、エキスパンド法やパンチングメタル法などにより作製したエキスパンド格子やパンチング格子についても同様に作製することが可能である。
また、本実施例ではSb層の積層は、めっき層を積層させる回数だけ電流の入切を行ったが、めっき層を積層させる回数だけめっき浴を用意し、順次めっき浴に格子を投入し、めっき層を形成しても良い。
また、本実施例ではSb層形成時の通電電流は同一としたが、通電電流を夫々変化させても良い。
In Examples 1 to 10 and Comparative Examples 1 to 5, the case where the Sb layer is formed on the cast lattice of the Pb—Ca alloy by electroplating has been described. However, the present invention is such that the Sb layer is electrolessly plated on the expanded lattice. The same effect can be obtained even when formed with the above.
In this embodiment, the Sb layer is laminated up to three layers (three times). However, the Sb layer may be formed three or more times (three times) by the same method to obtain a desired thickness. .
In this embodiment, the Sb layer is multilayered on the cast lattice. However, an expanded lattice or a punching lattice produced by an expanding method or a punching metal method can be similarly produced.
Further, in this example, the Sb layer was laminated by turning the current on and off as many times as the plating layer was laminated, but a plating bath was prepared as many times as the plating layer was laminated, and a grid was sequentially added to the plating bath. A plating layer may be formed.
In this embodiment, the energization current at the time of forming the Sb layer is the same, but the energization current may be changed.

本発明の鉛蓄電池のサイクル寿命試験における容量維持率の変化図である。It is a change figure of the capacity maintenance rate in the cycle life test of the lead acid battery of the present invention. 本発明の鉛蓄電池のサイクル寿命試験における減液量の図である。It is a figure of the amount of liquid reduction in the cycle life test of the lead acid battery of this invention.

Claims (1)

Pb−Ca系合金格子の表面にSb層がめっき法により形成された鉛蓄電池用格子において、前記Sb層を多層積層させ、且つ、多層積層させたSb層の1層目の厚みを0.3μm未満としたことを特徴とする鉛蓄電池用格子。   In a lead-acid battery grid in which an Sb layer is formed by plating on the surface of a Pb—Ca-based alloy grid, the Sb layer is multilayered, and the thickness of the multilayered Sb layer is 0.3 μm. Lattice for lead storage battery characterized by being less than.
JP2007246341A 2007-09-24 2007-09-24 Lead-acid battery grid Active JP5072511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246341A JP5072511B2 (en) 2007-09-24 2007-09-24 Lead-acid battery grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246341A JP5072511B2 (en) 2007-09-24 2007-09-24 Lead-acid battery grid

Publications (2)

Publication Number Publication Date
JP2009076406A JP2009076406A (en) 2009-04-09
JP5072511B2 true JP5072511B2 (en) 2012-11-14

Family

ID=40611177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246341A Active JP5072511B2 (en) 2007-09-24 2007-09-24 Lead-acid battery grid

Country Status (1)

Country Link
JP (1) JP5072511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993151A (en) * 2015-05-14 2015-10-21 浙江南都电源动力股份有限公司 Novel power lead acid battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147262A (en) * 1989-11-01 1991-06-24 Shin Kobe Electric Mach Co Ltd Collector for lead-acid battery
JPH10112324A (en) * 1996-10-08 1998-04-28 Japan Storage Battery Co Ltd Lead-acid battery
JP2005122922A (en) * 2003-10-14 2005-05-12 Japan Storage Battery Co Ltd Manufacturing method of grid for lead acid battery and lead acid battery
JP2006093047A (en) * 2004-09-27 2006-04-06 Furukawa Battery Co Ltd:The Lead acid battery

Also Published As

Publication number Publication date
JP2009076406A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
JP6176180B2 (en) Liquid lead acid battery and idling stop vehicle using liquid lead acid battery
JP5016306B2 (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP4148175B2 (en) Lead alloy and lead storage battery using the same
JP2006156371A (en) Negative electrode collector for lead-acid battery
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
JP2017059480A (en) Lead storage battery
JP6525167B2 (en) Lead storage battery
JP5050309B2 (en) Lead acid battery
JP2004158433A (en) Base plate for lead storage battery, and lead storage battery using the same
JP5072511B2 (en) Lead-acid battery grid
JP2006086039A (en) Lead-acid storage battery
JP5073403B2 (en) Lead-acid battery grid and lead-acid battery using the grid
JP4509660B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP4364054B2 (en) Lead acid battery
JP2006093047A (en) Lead acid battery
JP2008146960A (en) Lead-acid battery
JP2007265714A (en) Lead-acid storage battery
JP4610294B2 (en) Lead acid battery
JP4503358B2 (en) Lead acid battery
JP2004273305A (en) Lead-acid battery
JP2002319409A (en) Lead acid storage battery anode current collector and lead acid storage battery using the same
JP2012230838A (en) Positive electrode plate for lead-acid storage battery, lead-acid storage battery, and method for manufacturing positive electrode plate for lead-acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3