JP5071843B2 - Fuel cell system with hydrogen / oxygen recovery mechanism - Google Patents

Fuel cell system with hydrogen / oxygen recovery mechanism Download PDF

Info

Publication number
JP5071843B2
JP5071843B2 JP2007090391A JP2007090391A JP5071843B2 JP 5071843 B2 JP5071843 B2 JP 5071843B2 JP 2007090391 A JP2007090391 A JP 2007090391A JP 2007090391 A JP2007090391 A JP 2007090391A JP 5071843 B2 JP5071843 B2 JP 5071843B2
Authority
JP
Japan
Prior art keywords
hydrogen
oxygen
fuel cell
path
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007090391A
Other languages
Japanese (ja)
Other versions
JP2008251312A (en
Inventor
知正 小田
美佳子 毛利
貞夫 谷川
哲 月岡
忠洋 百留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Japan Agency for Marine Earth Science and Technology
Original Assignee
Japan Steel Works Ltd
Japan Agency for Marine Earth Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Japan Agency for Marine Earth Science and Technology filed Critical Japan Steel Works Ltd
Priority to JP2007090391A priority Critical patent/JP5071843B2/en
Publication of JP2008251312A publication Critical patent/JP2008251312A/en
Application granted granted Critical
Publication of JP5071843B2 publication Critical patent/JP5071843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、水素と酸素との反応によって発電する燃料電池を有する、水素・酸素回収機構を備えた燃料電池システムに関するものである。   The present invention relates to a fuel cell system having a hydrogen / oxygen recovery mechanism having a fuel cell that generates power by reaction of hydrogen and oxygen.

水素と酸素との反応によって発電する燃料電池を備えた燃料電池システムは、クリーンに発電できるシステムとしての特徴を有している。この燃料電池では、一般的に燃料電池の特にアノード側で、水素の継続的な供給によって同スタック内に水分などの不純物が次第に蓄積されて発電効率が低下するため、この不純物を取り除く目的で、燃料電池の発電に必要な水素量以上の水素を供給するいわゆる”水素パージ”と呼ばれる行程が、定期的若しくは燃料電池セル電圧の低下をトリガとして実施される。この際には、カソード側に酸化剤を多く供給してパージを行うこともある。酸化剤には一般的に空気が使用されるため、開放系で使用される燃料電池システムではパージした酸化剤は大気への排気が可能である。ただし、水素はそのまま系外に放出すると危険性を伴うため、何らかの処理が必要となる。   A fuel cell system including a fuel cell that generates electricity by reaction of hydrogen and oxygen has a feature as a system that can generate electricity cleanly. In this fuel cell, in general, on the anode side of the fuel cell, impurities such as moisture are gradually accumulated in the stack due to continuous supply of hydrogen, and the power generation efficiency is lowered. A so-called “hydrogen purge” process for supplying more hydrogen than is necessary for power generation of the fuel cell is performed periodically or triggered by a decrease in the fuel cell voltage. At this time, a large amount of oxidant may be supplied to the cathode side for purging. Since air is generally used as the oxidant, the purged oxidant can be exhausted to the atmosphere in a fuel cell system used in an open system. However, if hydrogen is released out of the system as it is, there is a danger that some kind of treatment is required.

従来この種の装置としては、特許文献1で提案されているものがある。
該装置の概略を図7に基づいて説明する。燃料電池4に燃料電池のアノード側に水素を供給する水素供給流路32と、燃料電池で反応しなかった未反応水素を系外に排出する未反応水素排出流路33と未反応水素を電気化学的に酸化する電気化学反応器34とが接続されている。一方、燃料電池のカソード側には空気流路6と、カソード側で水素と空気が反応して排ガスを排出する排気管路8とが接続されている。
次に上記システムについて簡単に説明する。水素供給流路32から導入される水素と空気流路6から導入される空気によって燃料電池4は発電が行われる。燃料電池4で発電が行われなかった水素は、未反応水素排出流路33により系外に排出される。電気化学反応器34は、未反応水素排出流路33により供給された水素と、空気流路6から分岐された吸気空路36により供給された空気とを、直流電源34を用いて電気化学的に酸化する。34で酸化できなかったガスのうち、アノード側のガスは排気路34より、カソード側のガスは排気路33より系外へ排出する構成としている。
Conventionally, as this type of apparatus, there is one proposed in Patent Document 1.
An outline of the apparatus will be described with reference to FIG. A hydrogen supply channel 32 for supplying hydrogen to the fuel cell 4 on the anode side of the fuel cell, an unreacted hydrogen discharge channel 33 for discharging unreacted hydrogen that has not reacted in the fuel cell, and an unreacted hydrogen An electrochemical reactor 34 that chemically oxidizes is connected. On the other hand, on the cathode side of the fuel cell, an air flow path 6 and an exhaust pipe line 8 through which hydrogen and air react on the cathode side to discharge exhaust gas are connected.
Next, the system will be briefly described. The fuel cell 4 generates power by the hydrogen introduced from the hydrogen supply channel 32 and the air introduced from the air channel 6. Hydrogen that has not been generated by the fuel cell 4 is discharged out of the system through the unreacted hydrogen discharge passage 33. Electrochemical reactor 34, and hydrogen supplied by unreacted hydrogen discharge channel 33, and air supplied by an intake flying 36 which is branched from the air passage 6, electrochemical by using a DC power source 34 d Oxidize. Among the gases that could not be oxidized at 34, the anode side gas is discharged from the exhaust passage 34e , and the cathode side gas is discharged from the exhaust passage 33 to the outside of the system.

上記提案装置では、燃料電池から排出される水素を電気化学反応器によって大半を酸化処理できるため、系外に排出される水素量は極めて少量となり、問題のないレベルとなる。しかし、上記提案装置では、以下に示す問題点を有している。
1)電気化学反応器で電力を消費すること、電力を発生する場合でも電力の再利用が行われておらず、結果としてシステムの効率が下がることが懸念される。
2)電気化学反応器で酸化できなかったガスが、排気路により排出されている。
屋外のような開放空間では、ガスが蓄積されず問題とならないが、例えば船舶などのいわゆる閉鎖空間では空間内にガスが蓄積される。排気ガス中には極僅かであるが可燃性ガスが含まれており、安全性の点で問題となる。また、燃料ガスを発電に使用せずに外部へ排出するため、システムの効率が低下する。
3)電気化学反応器のカソード側の空気と燃料電池の発電用空気を共用しているため、これらの流量や圧力を調整するため、新たな制御機構や制御器が必要となり、結果としてシステムが複雑化し、効率が低下する。
4)電気化学反応器で電力を取り出すタイミングについて明記されておらず、例えば電気化学反応器に水素が無い状態で発電することも考えられ、その場合、反応器に使用している電極が劣化して発電不能になる。
5)電気化学反応器で反応する水素/空気量の調整がされておらず、水素量が多い/空気量が少ない場合、多量の水素が回収されずに外部へ放出することが予想される。
In the proposed apparatus, most of the hydrogen discharged from the fuel cell can be oxidized by the electrochemical reactor, so that the amount of hydrogen discharged out of the system is extremely small and at a level without any problem. However, the proposed device has the following problems.
1) Consumption of electric power in an electrochemical reactor, and even when electric power is generated, electric power is not reused. As a result, there is a concern that the efficiency of the system is lowered.
2) Gas that could not be oxidized in the electrochemical reactor is exhausted through the exhaust passage.
In an open space such as outdoors, there is no problem because gas is not accumulated, but in a so-called closed space such as a ship, gas is accumulated in the space. The exhaust gas contains a very small amount of combustible gas, which is a problem in terms of safety. Further, since the fuel gas is discharged outside without being used for power generation, the efficiency of the system is lowered.
3) Since the air on the cathode side of the electrochemical reactor and the power generation air of the fuel cell are shared, a new control mechanism and controller are required to adjust these flow rates and pressures. Complicated and reduced efficiency.
4) The timing for taking out the electric power in the electrochemical reactor is not specified. For example, it may be possible to generate power in the absence of hydrogen in the electrochemical reactor. In this case, the electrode used in the reactor deteriorates. Power generation becomes impossible.
5) The amount of hydrogen / air to be reacted in the electrochemical reactor is not adjusted, and when the amount of hydrogen is large / the amount of air is small, it is expected that a large amount of hydrogen is released without being recovered.

本発明は、上記事情を背景としてなされたものであり、排ガスを発生させることなく閉鎖系での使用を可能にし、さらには効率よく稼働させることができる水素・酸素回収機構を備えた燃料電池システムを提供することを目的とする。   The present invention has been made against the background of the above circumstances, and can be used in a closed system without generating exhaust gas, and further, a fuel cell system equipped with a hydrogen / oxygen recovery mechanism that can be operated efficiently The purpose is to provide.

すなわち、本発明の水素・酸素回収機構を備えた燃料電池システムのうち請求項1記載の発明は、水素と酸素の電気化学的な反応により発電する燃料電池のシステムであって、主燃料電池のアノード側に水素を供給する水素供給経路と、前記主燃料電池で反応しなかった未反応水素を排出する未反応水素排出経路と、前記主燃料電池のカソード側に酸素を供給する酸素供給経路と、前記主燃料電池で反応しなかった未反応酸素を酸素パージ以外に系外に放出することなく前記主燃料電池のカソード側に戻す酸素循環経路と、前記酸素循環経路を流通する酸素の少なくとも一部を前記酸素パージする酸素パージ経路と、該酸素パージ経路に介設されて該酸素パージ経路を流れる酸素を貯蓄する酸素バッファタンクと、前記未反応水素排出経路から導入される水素と前記酸素パージ経路から導入される酸素の電気化学的な反応により発電を行う水素回収燃料電池と、該水素回収燃料電池で回収されなかった水素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収水素ガス循環経路と、該未回収水素ガス循環経路に介設されて前記水素ガス中の不純物を取り除く水素側吸着フィルタと、前記水素回収燃料電池で回収されなかった酸素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収酸素ガス循環経路と、該未回収酸素ガス循環経路に介設されて前記酸素ガス中の不純物を取り除く酸素側吸着フィルタとを備えることを特徴とする。 That is, among the fuel cell systems provided with the hydrogen / oxygen recovery mechanism of the present invention, the invention described in claim 1 is a fuel cell system for generating power by an electrochemical reaction between hydrogen and oxygen, A hydrogen supply path for supplying hydrogen to the anode side, an unreacted hydrogen discharge path for discharging unreacted hydrogen that has not reacted in the main fuel cell, and an oxygen supply path for supplying oxygen to the cathode side of the main fuel cell; An oxygen circulation path for returning unreacted oxygen that has not reacted in the main fuel cell to the cathode side of the main fuel cell without releasing it outside the system other than oxygen purge; and at least one of oxygen flowing through the oxygen circulation path and oxygen purge path a part for the oxygen purge, the oxygen buffer tank for saving the oxygen flowing through oxygen purge path is interposed in the oxygen purge path, whether the unreacted hydrogen discharge pathway A hydrogen recovery fuel cell that generates electric power by an electrochemical reaction between hydrogen introduced and oxygen introduced from the oxygen purge path, and without releasing hydrogen gas not recovered by the hydrogen recovery fuel cell out of the system An unrecovered hydrogen gas circulation path that returns to the hydrogen recovery fuel cell, a hydrogen-side adsorption filter that is interposed in the unrecovered hydrogen gas circulation path to remove impurities in the hydrogen gas, and is not recovered by the hydrogen recovery fuel cell An unrecovered oxygen gas circulation path that returns the oxygen gas to the hydrogen recovery fuel cell without releasing it out of the system, and an oxygen-side adsorption filter that is interposed in the unrecovered oxygen gas circulation path to remove impurities in the oxygen gas It is characterized by providing.

請求項2記載の水素・酸素回収機構を備えた燃料電池システムの発明は、水素と酸素の電気化学的な反応により発電する燃料電池のシステムであって、主燃料電池のアノード側に水素を供給する水素供給経路と、前記主燃料電池で反応しなかった未反応水素を水素パージ以外に系外に放出することなく前記主燃料電池のアノード側に戻す水素循環経路と、該水素循環経路を流通する水素の少なくとも一部を前記水素パージする水素パージ経路と、前記主燃料電池のカソード側に酸素を供給する酸素供給経路と、前記主燃料電池で反応しなかった未反応酸素を酸素パージ以外に系外に放出することなく前記燃料電池のカソード側に戻す酸素循環経路と、該酸素循環経路を流通する酸素の少なくとも一部を前記酸素パージする酸素パージ経路と、該酸素パージ経路に介設されて該酸素パージ経路を流れる酸素を貯蓄する酸素バッファタンクと、前記水素パージ経路から導入された水素と前記酸素パージ経路から導入された酸素の電気化学的な反応により発電を行う水素回収燃料電池と、該水素回収燃料電池で回収されなかった水素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収水素ガス循環経路と、該未回収水素ガス循環経路に介設されて前記水素ガス中の不純物を取り除く水素側吸着フィルタと、前記水素回収燃料電池で回収されなかった酸素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収酸素ガス循環経路と、該未回収酸素ガス循環経路に介設されて前記酸素ガス中の不純物を取り除く酸素側吸着フィルタとを備えることを特徴とする。 The invention of a fuel cell system having a hydrogen / oxygen recovery mechanism according to claim 2 is a fuel cell system that generates electricity by an electrochemical reaction between hydrogen and oxygen, and supplies hydrogen to the anode side of the main fuel cell. A hydrogen supply path, a hydrogen circulation path for returning unreacted hydrogen that has not reacted in the main fuel cell to the anode side of the main fuel cell without being discharged outside the system other than hydrogen purge, and a circulation through the hydrogen circulation path A hydrogen purge path for purging at least a part of hydrogen to be purged, an oxygen supply path for supplying oxygen to the cathode side of the main fuel cell, and unreacted oxygen that has not reacted in the main fuel cell other than oxygen purge and oxygen circulation path for returning to the cathode side of the fuel cell without discharging out of the system, the oxygen purge path for the oxygen purge at least a portion of the oxygen flowing through the oxygen circulation path, An oxygen buffer tank that stores oxygen flowing through the oxygen purge path interposed in the oxygen purge path, and generates electricity by an electrochemical reaction between hydrogen introduced from the hydrogen purge path and oxygen introduced from the oxygen purge path A hydrogen-recovered fuel cell, an unrecovered hydrogen gas circulation path for returning the hydrogen gas not recovered by the hydrogen-recovered fuel cell to the hydrogen-recovered fuel cell without releasing it out of the system, and the unrecovered hydrogen gas circulation path And a hydrogen-side adsorption filter that removes impurities in the hydrogen gas, and an unrecovered oxygen gas that is returned to the hydrogen-recovered fuel cell without releasing oxygen gas that has not been recovered by the hydrogen-recovered fuel cell. A circulation path and an oxygen-side adsorption filter that is interposed in the unrecovered oxygen gas circulation path and removes impurities in the oxygen gas are provided.

請求項3記載の水素・酸素回収機構を備えた燃料電池システムの発明は、請求項1または2に記載の発明において、前記未反応水素排出経路または前記水素パージ経路に、これら経路を流れる未反応水素またパージ水素を貯蓄する水素バッファタンクが介設されていることを特徴とする。 The invention of the fuel cell system provided with the hydrogen / oxygen recovery mechanism according to claim 3 is the invention according to claim 1 or 2, wherein the unreacted hydrogen flowing through the unreacted hydrogen discharge path or the hydrogen purge path is unreacted. hydrogen or is characterized in that the hydrogen buffer tank for saving the purge hydrogen is interposed.

請求項4記載の水素・酸素回収機構を備えた燃料電池システムの発明は、請求項1〜3のいずれかに記載の発明において、前記未反応水素排出経路または前記水素パージ経路に、電磁弁並びに圧力センサーを備えており、該圧力センサー値の値がある一定値以上のときに前記水素回収燃料電池から電力を取り出すことを特徴とする。 Invention of a fuel cell system including a hydrogen-oxygen recovery mechanism according to claim 4, wherein, in the invention described in claim 1, the unreacted hydrogen discharge pathway or prior Kisui containing purge path, electromagnetic A valve and a pressure sensor are provided, and electric power is taken out from the hydrogen recovery fuel cell when the pressure sensor value is a certain value or more.

請求項5記載の水素・酸素回収機構を備えた燃料電池システムの発明は、請求項1〜4のいずれかに記載の発明において、前記水素回収燃料電池で発生した電力を、燃料電池システムの補機の電力として使用することを特徴とする。   The invention of the fuel cell system having the hydrogen / oxygen recovery mechanism according to claim 5 is the invention according to any one of claims 1 to 4, wherein the electric power generated in the hydrogen recovery fuel cell is supplemented to the fuel cell system. It is used as power for the machine.

本発明における燃料電池としては、例えば、固体高分子形燃料電池を用いることができ、一般的にアノード、カソード及び高分子電解質膜で構成されている。アノード側に水素を含んだガス、カソード側に酸素を含んだガスを供給することにより発電が行われる。一般的にアノード側には純水素・カソード側には空気が用いられることが多いが、本発明では閉鎖空間での利用も考慮に入れ、アノード側は純水素、カソード側は純酸素での供給とするのが望ましい。燃料電池の三層界面での反応において、アノード側では水素以外のガス成分、カソード側では酸素以外のガス成分は反応に寄与せず、これらの不純ガス成分は高分子電解質膜及びセパレータの流路に蓄積され、発電反応に対して悪影響を及ぼす。この影響を防ぐために、定常的若しくは間欠的に主燃料電池の発電に必要とする流量以上のガスを流し、そのガスと一緒に不純ガス成分を系外へ排出(パージ)する。これらのガスは、水素回収燃料電池に供給される。   As the fuel cell in the present invention, for example, a solid polymer fuel cell can be used, which is generally composed of an anode, a cathode, and a polymer electrolyte membrane. Electric power is generated by supplying a gas containing hydrogen to the anode side and a gas containing oxygen to the cathode side. In general, pure hydrogen is used on the anode side and air is often used on the cathode side. However, in the present invention, the use in a closed space is also taken into consideration, and the anode side is supplied with pure hydrogen and the cathode side is supplied with pure oxygen. Is desirable. In the reaction at the three-layer interface of the fuel cell, gas components other than hydrogen do not contribute to the reaction on the anode side, and gas components other than oxygen do not contribute to the reaction on the cathode side, and these impure gas components are flow paths of the polymer electrolyte membrane and the separator. It has an adverse effect on the power generation reaction. In order to prevent this influence, a gas at a flow rate higher than that required for power generation of the main fuel cell is flowed constantly or intermittently, and the impure gas components are discharged (purged) together with the gas. These gases are supplied to the hydrogen recovery fuel cell.

水素回収燃料電池では、主燃料電池のアノード側から排出された水素を多く含んだガス、カソード側から排出された酸素を多く含んだガスを使用して発電を行い、取り出した電力を燃料電池システムの補機(例えば、ポンプ、弁など)に再利用することができる。また、水素回収燃料電池では、その反応の機構上、全てのガスを回収できないので、回収できなかったガスのうち、不純物は吸着フィルタに吸着させ、残りのガス(水素・酸素)は再度循環させることで系外へのガス放出を無くすことができる。   In a hydrogen recovery fuel cell, power generation is performed using a gas containing a large amount of hydrogen discharged from the anode side of the main fuel cell and a gas containing a large amount of oxygen discharged from the cathode side, and the extracted power is used as a fuel cell system. It can be reused for other accessories (for example, pumps, valves, etc.). Further, in the hydrogen recovery fuel cell, not all gases can be recovered due to the reaction mechanism, so impurities out of the gases that could not be recovered are adsorbed on the adsorption filter and the remaining gases (hydrogen and oxygen) are circulated again. In this way, gas emission outside the system can be eliminated.

本発明の水素・酸素回収機構を備えた燃料電池システムによれば、水素と酸素の電気化学的な反応により発電する燃料電池のシステムであって、主燃料電池のアノード側に水素を供給する水素供給経路と、前記主燃料電池で反応しなかった未反応水素を排出する未反応水素排出経路と、前記主燃料電池のカソード側に酸素を供給する酸素供給経路と、前記主燃料電池で反応しなかった未反応酸素を酸素パージ以外に系外に放出することなく前記主燃料電池のカソード側に戻す酸素循環経路と、前記酸素循環経路を流通する酸素の少なくとも一部を前記酸素パージする酸素パージ経路と、該酸素パージ経路に介設されて該酸素パージ経路を流れる酸素を貯蓄する酸素バッファタンクと、前記未反応水素排出経路から導入される水素と前記酸素パージ経路から導入される酸素の電気化学的な反応により発電を行う水素回収燃料電池と、該水素回収燃料電池で回収されなかった水素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収水素ガス循環経路と、該未回収水素ガス循環経路に介設されて前記水素ガス中の不純物を取り除く水素側吸着フィルタと、前記水素回収燃料電池で回収されなかった酸素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収酸素ガス循環経路と、該未回収酸素ガス循環経路に介設されて前記酸素ガス中の不純物を取り除く酸素側吸着フィルタとを備え、また、他の形態として主燃料電池で反応しなかった未反応水素を水素パージ以外に系外に放出することなく前記主燃料電池のアノード側に戻す水素循環経路と、該水素循環経路を流通する水素の少なくとも一部を前記水素パージする水素パージ経路とを備え、該水素パージ経路が水素回収燃料電池に接続されているので、以下の効果が得られる。 According to the fuel cell system equipped with the hydrogen / oxygen recovery mechanism of the present invention, the fuel cell system generates power by electrochemical reaction between hydrogen and oxygen, and supplies hydrogen to the anode side of the main fuel cell. The main fuel cell reacts with a supply path, an unreacted hydrogen discharge path that discharges unreacted hydrogen that has not reacted in the main fuel cell, an oxygen supply path that supplies oxygen to the cathode side of the main fuel cell, and An oxygen circulation path for returning unreacted oxygen that has not been discharged to the cathode side of the main fuel cell without releasing it outside the system other than oxygen purge, and an oxygen purge for purging at least part of oxygen flowing through the oxygen circulation path A path, an oxygen buffer tank that is interposed in the oxygen purge path and stores oxygen flowing through the oxygen purge path, hydrogen introduced from the unreacted hydrogen discharge path, and the oxygen buffer A hydrogen recovery fuel cell that generates electricity by an electrochemical reaction of oxygen introduced from the di-path, and returns the hydrogen gas not recovered by the hydrogen recovery fuel cell to the hydrogen recovery fuel cell without releasing it out of the system An unrecovered hydrogen gas circulation path, a hydrogen-side adsorption filter that is interposed in the unrecovered hydrogen gas circulation path to remove impurities in the hydrogen gas, and oxygen gas that has not been recovered by the hydrogen recovery fuel cell is removed from the system. An unrecovered oxygen gas circulation path that returns to the hydrogen-recovered fuel cell without releasing, and an oxygen-side adsorption filter that is interposed in the unrecovered oxygen gas circulation path and removes impurities in the oxygen gas. and hydrogen circulation path for returning to the anode side of the main fuel cell without unreacted hydrogen that has not reacted with the main fuel cell as in the form released from the system in addition to hydrogen purge, the hydrogen circulation path At least part of the hydrogen flowing a hydrogen purge path for the hydrogen purge, the hydrogen purge passage is connected to the hydrogen recovery fuel cells, the following effects can be obtained.

1)未反応水素(若しくはパージ水素)流路中に水素回収燃料電池を設置し、水素回収燃料電池には、発生した電力を再利用する機構を設置したので、未反応水素を電力に変換でき、結果として高いシステム効率が得られる。また、電力の再利用を図るため、例えば主燃料電池の性能が安定せず未反応水素が多い(パージ動作が多くなる)場合でも、水素回収燃料電池で電力を生成するため、システムの効率低下につながらないという効果がある。
2)水素回収燃料電池で回収できなかったガスのうち、不純物は吸着フィルタに吸着させ、残りのガスは再度循環させることで系外へのガス放出を無くすようにしたので、安全なシステムが得られる。
3)水素回収燃料電池へ供給するガスは、主燃料電池で反応しなかった未反応ガスであり、主燃料電池の反応用ガスを使用しないため、複雑な機構を必要としない、結果として簡素化された高効率なシステムが得られる。
4)水素・酸素ガスの圧力を水素・酸素ライン中に設置した圧力センサーで検知し、その圧力をトリガーとして、水素回収燃料電池から電力を取り出すタイミングを決定する構成が可能であり、水素回収燃料電池から効率的に電気を取り出せる。
5)酸素ラインにバッファタンクを設置し、バッファタンクにある一定量、酸素を貯蓄することで常に酸素リッチな状態をつくり、水素回収燃料電池において水素を積極的に反応させる構成としたため、外部へ水素を放出しない安全なシステムが得られる。
1) A hydrogen recovery fuel cell is installed in the unreacted hydrogen (or purge hydrogen) flow path, and a mechanism for reusing the generated power is installed in the hydrogen recovery fuel cell, so that unreacted hydrogen can be converted into electric power. As a result, high system efficiency can be obtained. In addition, in order to reuse electric power, for example, even when the performance of the main fuel cell is not stable and there is a lot of unreacted hydrogen (the purge operation increases), the hydrogen recovery fuel cell generates electric power. There is an effect that it does not lead to.
2) Of the gases that could not be recovered by the hydrogen recovery fuel cell, impurities were adsorbed by the adsorption filter, and the remaining gas was circulated again to eliminate gas out of the system, so a safe system was obtained. It is done.
3) The gas supplied to the hydrogen recovery fuel cell is an unreacted gas that did not react in the main fuel cell, and does not use the main fuel cell reaction gas, so no complicated mechanism is required, resulting in simplification. Resulting in a highly efficient system.
4) It is possible to detect the pressure of the hydrogen / oxygen gas with a pressure sensor installed in the hydrogen / oxygen line, and use that pressure as a trigger to determine the timing for extracting power from the hydrogen-recovered fuel cell. Electricity can be efficiently extracted from the battery.
5) Since a buffer tank is installed in the oxygen line and a certain amount of oxygen is stored in the buffer tank, an oxygen-rich state is always created and hydrogen is actively reacted in the hydrogen recovery fuel cell. A safe system that does not release hydrogen is obtained.

以下、この発明の一実施形態を図1に基づいて説明する。
図1において、100はセルスタック型の主燃料電池、101/102/103は同スタックを構成しているアノード/カソード/高分子電解質膜を示す。該アノード101のガス入口側には主燃料電池100へ水素を供給する水素供給手段110が水素供給路111によって接続され、前記カソード10のガス入口側には主燃料電池100へ酸素を供給する酸素供給手段120が酸素供給路121で接続されている。
アノード101のガス出口側には、主燃料電池100において発電で消費されなかった水素が排出される未反応水素排出経路112が接続されており、該未反応水素排出経路112中には、水素ガス量を制御するための制御弁113、水素ガスの圧力が計測可能な圧力センサー117が設置されており、該未反応水素排出経路112の下流端は、水素回収燃料電池150におけるアノード151のガス入口側に接続されている。
An embodiment of the present invention will be described below with reference to FIG.
In FIG. 1, reference numeral 100 denotes a cell stack type main fuel cell, and 101/102/103 denotes an anode / cathode / polymer electrolyte membrane constituting the stack. Hydrogen supply means 110 for supplying hydrogen to the main fuel cell 100 to the gas inlet side of the anode 101 is connected by the hydrogen supply passage 111, to supply oxygen to the main fuel cell 100 to the gas inlet side of the cathode 10 2 An oxygen supply means 120 is connected by an oxygen supply path 121.
An unreacted hydrogen discharge path 112 through which hydrogen not consumed in power generation in the main fuel cell 100 is discharged is connected to the gas outlet side of the anode 101, and hydrogen gas is contained in the unreacted hydrogen discharge path 112. A control valve 113 for controlling the amount and a pressure sensor 117 capable of measuring the pressure of hydrogen gas are installed, and a downstream end of the unreacted hydrogen discharge path 112 is a gas inlet of the anode 151 in the hydrogen recovery fuel cell 150. Connected to the side.

一方、主燃料電池100のカソード10のガス出口側には、主燃料電池100において発電で消費されなかった酸素が排出される未反応酵素排出経路122が接続されており、該未反応酵素排出経路122中には、ガスを昇圧して再度、酸素供給経路121に戻すための循環ポンプ124が設置されている。該未反応酵素排出経路122は、循環ポンプ124の後段で酸素循環経路125と酸素パージ経路126に分岐されている。酸素循環経路の他端は、前記酸素供給路121に接続されている。
酸素パージ経路126中には、酸素ガス量を制御するための制御弁123、酸素ガスの圧力が計測可能な圧力センサー127が設置されており、該酸素パージ経路126の下流端は、酸素バッファタンク145、パージ酸素供給経路141を経由して、水素回収燃料電池15におけるカソード152のガス入口側につながっている。
On the other hand, the cathode 10 and second gas outlet side of the main fuel cell 100 is unreacted enzyme discharge path 122 oxygen not consumed in power generation in the main fuel cell 100 is discharged are connected, unreacted enzyme emissions A circulation pump 124 for increasing the pressure of the gas and returning it to the oxygen supply path 121 is installed in the path 122. The unreacted enzyme discharge path 122 is branched into an oxygen circulation path 125 and an oxygen purge path 126 after the circulation pump 124. The other end of the oxygen circulation path is connected to the oxygen supply path 121.
A control valve 123 for controlling the amount of oxygen gas and a pressure sensor 127 capable of measuring the pressure of the oxygen gas are installed in the oxygen purge path 126. The downstream end of the oxygen purge path 126 is an oxygen buffer tank. 145 via a purge oxygen supply path 141, is connected to the gas inlet side of the cathode 152 in the hydrogen recovery fuel cell 15 0.

水素回収燃料電池150は、アノード151/カソード152/高分子電解質膜153で構成されている。水素回収燃料電池150におけるアノード151のガス出口側には水素回収燃料電池150で回収されなかった水素が排出される未回収水素排出経路132が接続されており、未回収水素排出経路132中には、水素以外の不純物を吸着させる水素側吸着フィルタ133、水素を昇圧する水素循環ポンプ134が設置されている。また、カソード152のガス出口側には水素回収燃料電池150で回収されなかった酸素が排出される未回収酸素排出経路142が接続されており、未回収酸素排出経路142中には、酵素以外の不純物を吸着させる酸素側吸着フィルタ143、酸素ガスを昇圧する酸素循環ポンプ144が設置されている
水素回収燃料電池150において、水素/酸素反応により発生した電力のラインは、スイッチ161を通して蓄電装置162に接続され、さらにスイッチ163を通して燃料電池の補機(例えばポンプ、弁など)164につながっている。
The hydrogen recovery fuel cell 150 is composed of an anode 151 / a cathode 152 / a polymer electrolyte membrane 153. An unrecovered hydrogen discharge path 132 through which hydrogen not recovered by the hydrogen recovery fuel cell 150 is discharged is connected to the gas outlet side of the anode 151 in the hydrogen recovery fuel cell 150. A hydrogen-side adsorption filter 133 that adsorbs impurities other than hydrogen and a hydrogen circulation pump 134 that pressurizes hydrogen are installed. Further, an unrecovered oxygen discharge path 142 through which oxygen that has not been recovered by the hydrogen recovery fuel cell 150 is discharged is connected to the gas outlet side of the cathode 152. In the hydrogen recovery fuel cell 150 in which an oxygen-side adsorption filter 143 that adsorbs impurities and an oxygen circulation pump 144 that boosts oxygen gas are installed, the power line generated by the hydrogen / oxygen reaction is connected to the power storage device 162 through the switch 161. Further, it is connected to a fuel cell auxiliary machine (for example, a pump, a valve, etc.) 164 through a switch 163.

次に上記システムの動作について説明する。
主燃料電池100において、水素が水素供給手段110及び水素供給経路111を通してアノード側101に導入され、酸素が酸素供給手段120及び酸素供給経路121を通してカソード側102に導入されることにより、カソード102からアノード101に向かう電流が発生し、電力を取り出すことが可能となる。一般的に燃料電池では、水素/酸素以外の不純物は反応に寄与せず、発電に悪影響を及ぼす。一方、水素供給手段110および酸素供給手段120には少なからず不純物が含まれている。この不純物を系外へ排出するため、未反応水素排出経路112と酸素排出経路122が設置されている。
Next, the operation of the system will be described.
In the main fuel cell 100, hydrogen is introduced into the anode side 101 through the hydrogen supply means 110 and the hydrogen supply path 111, and oxygen is introduced into the cathode side 102 through the oxygen supply means 120 and the oxygen supply path 121, so that from the cathode 102. Current flowing toward the anode 101 is generated, and electric power can be taken out. In general, in a fuel cell, impurities other than hydrogen / oxygen do not contribute to the reaction and adversely affect power generation. On the other hand, the hydrogen supply means 110 and the oxygen supply means 120 contain not a few impurities. In order to discharge this impurity out of the system, an unreacted hydrogen discharge path 112 and an oxygen discharge path 122 are provided.

未反応水素排出経路112より放出された水素ガスは、制御弁113で制御された後、水素回収燃料電池150のアノード151側へ導入される。一方、未反応酸素排出経路122から分岐された酸素パージ経路126に放出された酸素ガスは、制御弁123で制御された後、酸素バッファタンク145で一度貯蓄される。貯蓄された後、パージ酸素供給経路141を通り水素回収燃料電池150のカソード152側へ導入される。なお、制御弁113、制御弁123は、例えば主燃料電池100の電圧やスタックを構成している各セルの電圧の設定値などにより開閉する機構が設けられている。例えば、図2に示すように、セル/スタックの電圧がV1まで低下すると制御弁113、123を開き、その後、電圧がV2まで上昇すると制御弁113、123を閉じる動作を行う。   The hydrogen gas released from the unreacted hydrogen discharge path 112 is controlled by the control valve 113 and then introduced to the anode 151 side of the hydrogen recovery fuel cell 150. On the other hand, the oxygen gas released to the oxygen purge path 126 branched from the unreacted oxygen discharge path 122 is controlled by the control valve 123 and then stored once in the oxygen buffer tank 145. After being stored, it passes through the purge oxygen supply path 141 and is introduced to the cathode 152 side of the hydrogen recovery fuel cell 150. The control valve 113 and the control valve 123 are provided with a mechanism that opens and closes depending on, for example, the voltage of the main fuel cell 100 or the set value of the voltage of each cell constituting the stack. For example, as shown in FIG. 2, the control valves 113 and 123 are opened when the cell / stack voltage drops to V1, and then the control valves 113 and 123 are closed when the voltage rises to V2.

水素回収燃料電池150では、導入された水素と酸素により発電が行われ、電力が発生する。電力は、図3に示すように、圧力センサ−117の値がある一定値P1になったとき、スイッチ161を閉じる(つなぐ)ことにより、蓄電装置162に蓄電することができ、圧力センサーが所定値以下に達したときにスイッチ161を開く(切る)。水素回収燃料電池150では、その反応の機構上、全てのガスを回収できないので、回収できなかったガスは、未回収水素排出経路132、未回収酸素排出経路142を通り、排出される。未回収水素は、未回収水素排出経路132中の水素側吸着フィルタ133において、不純物が除去された後、同経路中の循環ポンプ134で昇圧され、未反応水素排出経路112に戻る。未回収酸素は、未回収酸素排出経路142中の酸素側吸着フィルタ143において、不純物を除去された後、同経路中の循環ポンプ144で昇圧され、酸素バッファタンク145に戻されて、水素回収燃料電池150への導入に備えられる。したがって、システムからのガスの排出を行うことなく稼働させることができる。   In the hydrogen recovery fuel cell 150, electric power is generated by the introduced hydrogen and oxygen, and electric power is generated. As shown in FIG. 3, the electric power can be stored in the power storage device 162 by closing (connecting) the switch 161 when the value of the pressure sensor-117 reaches a certain constant value P1, and the pressure sensor is predetermined. The switch 161 is opened (turned off) when the value is below the value. The hydrogen recovery fuel cell 150 cannot recover all the gas due to the reaction mechanism, and thus the gas that could not be recovered is discharged through the unrecovered hydrogen discharge path 132 and the unrecovered oxygen discharge path 142. Unrecovered hydrogen is removed by the hydrogen-side adsorption filter 133 in the unrecovered hydrogen discharge path 132, and then boosted by the circulation pump 134 in the same path and returned to the unreacted hydrogen discharge path 112. Unrecovered oxygen is removed in the oxygen-side adsorption filter 143 in the unrecovered oxygen discharge path 142, and then boosted by the circulation pump 144 in the same path, returned to the oxygen buffer tank 145, and recovered as hydrogen recovery fuel. It is provided for introduction into the battery 150. Therefore, it can be operated without discharging the gas from the system.

(実施形態2)
以下、この発明の実施形態2を図4に基づいて説明する。なお、図4において図1と同一の符号は、特に断らない限り、図1で示す符号の構成要素と同一の構成要素を示すものである。
図4において、100はセルスタック型の燃料電池、110/120は燃料電池へ水素/酸素を供給する水素/酸素供給手段、111/121は燃料電池への水素/酸素供給経路、112は燃料電池において発電で消費されなかった水素が排出される未反応水素排出経路を示す。同経路中には、水素ガス量を制御するための制御弁113、水素ガスの圧力が計測可能な圧力センサー117が設置され、同経路は水素バッファタンク135、パージ水素供給経路131を経由して、水素回収燃料電池150のアノード151側につながっている。一方、122は燃料電池において発電で消費されなかった酸素が排出される未反応酸素排出経路であり、同経路中には、ガスを昇圧して再度供給経路121に戻すための循環ポンプ124が設置されている。同経路は、循環ポンプ124の後段で酸素循環経路125と酸素パージ経路126に分岐されており、酸素循環経路125の他端は、酸素供給路121に接続されている。酸素パージ経路126中には、酸素ガス量を制御するための制御弁123、酸素ガスの圧力が計測可能な圧力センサー127を設置しており、同経路は酸素バッファタンク145、パージ酸素供給経路141を経由して、水素回収燃料電池150のカソード152側につながっている。132/142は燃料電池150で回収できなかった水素/酸素が排出される未回収水素/酸素排出経路である。未回収水素排出経路132中には、水素以外の不純物を吸着させる吸着フィルタ133、水素ガスを昇圧する水素循環ポンプ134が設置され、未回収酸素排出経路142中には、酸素以外の不純物を吸着させる吸着フィルタ143、酸素ガスを昇圧する酸素循環ポンプ144が設置されている。水素回収燃料電池150において、水素/酸素反応により発生した電力のラインは、スイッチ161を通して蓄電装置162へつながり、更にスイッチ163を通して主燃料電池100の補機164につながっている。
(Embodiment 2)
The second embodiment of the present invention will be described below with reference to FIG. In FIG. 4, the same reference numerals as those in FIG. 1 denote the same constituent elements as those shown in FIG. 1 unless otherwise specified.
In FIG. 4, 100 is a cell stack type fuel cell, 110/120 is a hydrogen / oxygen supply means for supplying hydrogen / oxygen to the fuel cell, 111/121 is a hydrogen / oxygen supply path to the fuel cell, and 112 is a fuel cell. 2 shows an unreacted hydrogen discharge route through which hydrogen not consumed by power generation is discharged. A control valve 113 for controlling the amount of hydrogen gas and a pressure sensor 117 capable of measuring the pressure of the hydrogen gas are installed in the path, and the path passes through a hydrogen buffer tank 135 and a purge hydrogen supply path 131. The hydrogen recovery fuel cell 150 is connected to the anode 151 side. On the other hand, 122 is an unreacted oxygen discharge path through which oxygen that has not been consumed in power generation in the fuel cell is discharged. In this path, a circulation pump 124 for increasing the pressure of the gas and returning it to the supply path 121 is installed. Has been. This path is branched into an oxygen circulation path 125 and an oxygen purge path 126 after the circulation pump 124, and the other end of the oxygen circulation path 125 is connected to the oxygen supply path 121. A control valve 123 for controlling the amount of oxygen gas and a pressure sensor 127 capable of measuring the pressure of the oxygen gas are installed in the oxygen purge path 126. The path includes an oxygen buffer tank 145 and a purge oxygen supply path 141. To the cathode 152 side of the hydrogen recovery fuel cell 150. Reference numeral 132/142 denotes an unrecovered hydrogen / oxygen discharge path through which hydrogen / oxygen that could not be recovered by the fuel cell 150 is discharged. An adsorption filter 133 for adsorbing impurities other than hydrogen and a hydrogen circulation pump 134 for boosting hydrogen gas are installed in the unrecovered hydrogen discharge path 132, and impurities other than oxygen are adsorbed in the unrecovered oxygen discharge path 142. An adsorbing filter 143 to be used and an oxygen circulation pump 144 for increasing the pressure of oxygen gas are provided. In the hydrogen recovery fuel cell 150, the power line generated by the hydrogen / oxygen reaction is connected to the power storage device 162 through the switch 161 and further connected to the auxiliary device 164 of the main fuel cell 100 through the switch 163.

次に動作について説明する。主燃料電池100において、水素が水素供給手段110及び水素供給経路111を通してアノード側101に導入され、酸素が酵素供給手段120及び酸素供給経路121を通してカソード側102に導入されることにより、カソード102からアノード101に向かう電流が発生し、電力を取り出すことが可能となる。未反応水素排出経路112より放出された水素ガスは、水素バッファタンク135で一度貯蓄された後、パージ水素供給経路131を通り水素回収燃料電池150のアノード151側へ導入される。一方、未反応酸素排出経路122から分岐された酸素パージ経路126より放出された酸素ガスは、制御弁123で制御された後、酸素バッファタンク145で一度貯蓄される。貯蓄された後、パージ酸素供給経路141を通り水素回収燃料電池150のカソード152側へ導入される。なお、制御弁113、123は、前記実施形態2と同様に、例えば主燃料電池100のスタックの電圧やスタックを構成している各セルの電圧の設定値などにより開閉する機構を設けている(図2)。   Next, the operation will be described. In the main fuel cell 100, hydrogen is introduced into the anode side 101 through the hydrogen supply means 110 and the hydrogen supply path 111, and oxygen is introduced into the cathode side 102 through the enzyme supply means 120 and the oxygen supply path 121, so that from the cathode 102. Current flowing toward the anode 101 is generated, and electric power can be taken out. The hydrogen gas released from the unreacted hydrogen discharge path 112 is once stored in the hydrogen buffer tank 135 and then introduced to the anode 151 side of the hydrogen recovery fuel cell 150 through the purge hydrogen supply path 131. On the other hand, the oxygen gas released from the oxygen purge path 126 branched from the unreacted oxygen discharge path 122 is controlled by the control valve 123 and then stored once in the oxygen buffer tank 145. After being stored, it passes through the purge oxygen supply path 141 and is introduced to the cathode 152 side of the hydrogen recovery fuel cell 150. The control valves 113 and 123 are provided with a mechanism that opens and closes according to, for example, the voltage of the stack of the main fuel cell 100 or the set value of the voltage of each cell constituting the stack, as in the second embodiment (see FIG. Figure 2).

水素回収燃料電池150では、導入された水素と酸素により発電が行われ、電力が発生する。電力は、実施形態1と同様に、例えば図3のように、圧力センサー117の値がある一定値P1になった時、スイッチ161を閉じることにより、蓄電装置162に蓄電できる。水素回収燃料電池150では、その反応の機構上、全てのガスを回収できないので、回収できなかったガスは、未回収水素排出経路132、酸素排出経路142を通り、排出される。未回収水素は、未回収水素排出経路132中の水素側吸着フィルタ133において、不純物を除去した後、同経路中の循環ポンプ134で昇圧され、水素バッファタンク135に戻る。未回収酸素は、未回収酸素排出経路142中の酸素側吸着フィルタ143において、不純物を除去された後、同経路中の循環ポンプ144で昇圧され、酸素バッファタンク145に戻る。   In the hydrogen recovery fuel cell 150, electric power is generated by the introduced hydrogen and oxygen, and electric power is generated. As in the first embodiment, the power can be stored in the power storage device 162 by closing the switch 161 when the value of the pressure sensor 117 reaches a certain constant value P1, as shown in FIG. Since the hydrogen recovery fuel cell 150 cannot recover all the gas due to the reaction mechanism, the unrecoverable gas passes through the unrecovered hydrogen discharge path 132 and the oxygen discharge path 142 and is discharged. The unrecovered hydrogen is removed by the hydrogen-side adsorption filter 133 in the unrecovered hydrogen discharge path 132, and then the pressure is increased by the circulation pump 134 in the path, and returns to the hydrogen buffer tank 135. Unrecovered oxygen is removed by the oxygen-side adsorption filter 143 in the unrecovered oxygen discharge path 142, and then boosted by the circulation pump 144 in the same path and returned to the oxygen buffer tank 145.

(実施形態3)
以下、この発明の実施形態3を図5に基づいて説明する。なお、図5において図1と同一の符号は、特に断らない限り、図1で示す符号の構成要素と同一の構成要素を示すものである。
図5において、100は燃料電池スタック、110/120は燃料電池へ水素/酸素を供給する水素/酸素供給手段、111/121は燃料電池への水素/酸素供給経路、112/122は燃料電池において発電で消費されなかった水素/酸素が排出される未反応水素/酸素排出経路を示す。未反応水素排出経路112中には、ガスを昇圧して再度水素供給経路111に戻すための循環ポンプ114が設置されている。同経路は、循環ポンプ114の後段で水素循環経路115と水素パージ経路116に分岐されており、水素循環経路115の他端は、水素供給経路111に接続されている。
(Embodiment 3)
Embodiment 3 of the present invention will be described below with reference to FIG. In FIG. 5, the same reference numerals as those in FIG. 1 indicate the same constituent elements as those shown in FIG. 1 unless otherwise specified.
In FIG. 5, 100 is a fuel cell stack, 110/120 is a hydrogen / oxygen supply means for supplying hydrogen / oxygen to the fuel cell, 111/121 is a hydrogen / oxygen supply path to the fuel cell, and 112/122 is a fuel cell. An unreacted hydrogen / oxygen discharge path through which hydrogen / oxygen not consumed by power generation is discharged is shown. In the unreacted hydrogen discharge path 112, a circulation pump 114 for increasing the pressure of the gas and returning it to the hydrogen supply path 111 is installed. This path is branched into a hydrogen circulation path 115 and a hydrogen purge path 116 after the circulation pump 114, and the other end of the hydrogen circulation path 115 is connected to the hydrogen supply path 111.

水素パージ経路116中には、水素ガス量を制御するための制御弁113、水素ガスの圧力が計測可能な圧力センサー117を設置しており、同経路は水素回収装置150のアノード151側につながっている。未反応酸素排出経路122中には、ガスを昇圧して再度供給経路121に戻すための循環ポンプ124が設置されている。同経路は、循環ポンプ124の後段で酸素循環経路125と酸素パージ経路126に分岐されており、酸素循環経路125の他端は酸素供給路121に接続されている。酸素パージ経路126中には、酸素ガス量を制御するための制御弁123、酵素ガスの圧力が計測可能な圧力センサー127が設置されており、同経路は酸素バッファタンク145、パージ酸素供給経路141を経由して、水素回収燃料電池150のカソード152側につながっている。132/142は150で回収できなかった水素/酸素が排出される未回収水素/酸素排出経路である。未回収水素排出経路132中には、水素以外の不純物を吸着させる水素側吸着フィルタ133、水素ガスを昇圧する水素循環ポンプ134が設置されており、未回収酸素排出経路142中には、酸素以外の不純物を吸着させる酸素側吸着フィルタ143、酸素ガスを昇圧する酸素循環ポンプ144が設置されている。
水素回収燃料電池150において、水素/酸素反応により発生した電力のラインは、スイッチ161を通して蓄電装置162へつながり、更にスイッチ163を通して主燃料電池100の補機164につながっている。
In the hydrogen purge path 116, a control valve 113 for controlling the amount of hydrogen gas and a pressure sensor 117 capable of measuring the pressure of the hydrogen gas are installed, and this path is connected to the anode 151 side of the hydrogen recovery apparatus 150. ing. A circulation pump 124 for increasing the pressure of the gas and returning it to the supply path 121 is installed in the unreacted oxygen discharge path 122. This path is branched into an oxygen circulation path 125 and an oxygen purge path 126 after the circulation pump 124, and the other end of the oxygen circulation path 125 is connected to the oxygen supply path 121. In the oxygen purge path 126, a control valve 123 for controlling the amount of oxygen gas and a pressure sensor 127 capable of measuring the pressure of the enzyme gas are installed. The path includes an oxygen buffer tank 145 and a purge oxygen supply path 141. To the cathode 152 side of the hydrogen recovery fuel cell 150. 132/142 is an unrecovered hydrogen / oxygen discharge path through which hydrogen / oxygen that could not be recovered at 150 is discharged. A hydrogen side adsorption filter 133 that adsorbs impurities other than hydrogen and a hydrogen circulation pump 134 that pressurizes hydrogen gas are installed in the unrecovered hydrogen discharge path 132. An oxygen side adsorption filter 143 for adsorbing the impurities and an oxygen circulation pump 144 for increasing the pressure of the oxygen gas are installed.
In the hydrogen recovery fuel cell 150, the power line generated by the hydrogen / oxygen reaction is connected to the power storage device 162 through the switch 161 and further connected to the auxiliary device 164 of the main fuel cell 100 through the switch 163.

次に動作について説明する。主燃料電池100において、水素が水素供給手段110及び水素供給経路111を通してアノード側101に導入され、酸素が酵素供給手段120及び酸素供給経路121を通してカソード側102に導入されることにより、カソード102からアノード101に向かう電流が発生し、電力を取り出すことが可能となる。未反応水素排出経路112から分岐された水素パージ経路116に放出された水素ガスは、制御弁113で制御された後、水素回収燃料電池150のアノード151側へ導入される。一方、未反応酸素排出経路122から分岐された酸素パージ経路126に放出された酸素ガスは、制御弁123で制御された後、酸素バッファタンク145で一度貯蓄される。貯蓄された後、パージ酸素供給経路141を通り水素回収燃料電池150のカソード152側へ導入される。なお、制御弁113、123は、前記実施形態1と同様に、例えば主燃料電池100のスタック電圧やスタックを構成している各セルの電圧の設定値などにより開閉する機構を設けている(図2)。水素回収燃料電池150では、導入された水素と酸素により発電が行われ、電力が発生する。電力は、圧力センサー117の値がある一定値P1になった時、スイッチ161を閉じることにより、蓄電装置162に蓄電することできる(図3)。水素回収燃料電池150では、その反応の機構上、全てのガスを回収できないので、回収できなかったガスは、未回収水素排出経路132、未回収酸素排出経路142を通り、排出される。未回収水素は、未回収水素排出経路132中の水素側吸着フィルタ133において、不純物を除去された後、同経路中の循環ポンプ134で昇され、水素パージ経路116に戻る。未回収酸素は、未回収酸素排出経路142中の酸素側吸着フィルタ143において、不純物を除去された後、同経路中の循環ポンプ14で昇圧され、酸素バッファタンク145に戻る。 Next, the operation will be described. In the main fuel cell 100, hydrogen is introduced into the anode side 101 through the hydrogen supply means 110 and the hydrogen supply path 111, and oxygen is introduced into the cathode side 102 through the enzyme supply means 120 and the oxygen supply path 121, so that from the cathode 102. Current flowing toward the anode 101 is generated, and electric power can be taken out. The hydrogen gas released to the hydrogen purge path 116 branched from the unreacted hydrogen discharge path 112 is controlled by the control valve 113 and then introduced to the anode 151 side of the hydrogen recovery fuel cell 150. On the other hand, the oxygen gas released to the oxygen purge path 126 branched from the unreacted oxygen discharge path 122 is controlled by the control valve 123 and then stored once in the oxygen buffer tank 145. After being stored, it passes through the purge oxygen supply path 141 and is introduced to the cathode 152 side of the hydrogen recovery fuel cell 150. The control valves 113 and 123 are provided with a mechanism that opens and closes according to, for example, the stack voltage of the main fuel cell 100 or the set value of the voltage of each cell constituting the stack, as in the first embodiment (see FIG. 2). In the hydrogen recovery fuel cell 150, electric power is generated by the introduced hydrogen and oxygen, and electric power is generated. The electric power can be stored in the power storage device 162 by closing the switch 161 when the value of the pressure sensor 117 reaches a certain constant value P1 (FIG. 3). The hydrogen recovery fuel cell 150 cannot recover all the gas due to the reaction mechanism, and thus the gas that could not be recovered is discharged through the unrecovered hydrogen discharge path 132 and the unrecovered oxygen discharge path 142. Unrecovered hydrogen in the hydrogen-side adsorption filter 133 in the unrecovered hydrogen exhaust passage 132, after removing the impurities, is the boost in circulation pump 134 in the same path, back to the hydrogen purge path 116. Unrecovered oxygen, the oxygen side adsorption filter 143 in the unrecovered oxygen discharge path 142, after the removal of impurities, is pressurized by the circulation pump 1 4 4 in the path, the flow returns to the oxygen buffer tank 145.

以下、この発明の実施形態4を図6に基づいて説明する。なお、図6において図1、図4、5と同一の符号は、特に断らない限り、前記符号が各図で示す構成要素と同一の構成要素を示している。
図6において、100は燃料電池スタック、110/120は燃料電池へ水素/酸素を供給する水素/酸素供給手段、111/121は燃料電池への水素/酸素供経路、112/122は燃料電池において発電で消費されなかった水素/酸素が排出される未反応水素/酸素排出経路を示す。未反応水素排出経路112中には、ガスを昇圧して再度水素供給経路111に戻すための循環ポンプ114が設置されている。また、同経路は、循環ポンプ114の後段で水素循環経路115と水素パージ経路116に分岐されており、水素循環経路115の他端は、水素供給路111に接続されている。水素パージ経路116中には、水素ガス量を制御するための制御弁113、水素ガスの圧力が計測可能な圧力センサー117を設置しており、同経路は水素バッファタンク135、パージ水素供給経路131を経由して、水素回収装置150のアノード151側につながっている。未反応酸素排出経路122中には、ガスを昇圧して再度供給経路121に戻すための循環ポンプ124が設置されている。また、同経路は、循環ポンプ124の後段で酸素循環経路125と酸素パージ経路126に分岐されている。酸素パージ経路126中には、酸素ガス量を制御するための制御弁123を設置しており、同経路は酸素バッファタンク145、パージ酸素供給経路141を経由して、水素回収装置150のカソード152側につながっている。132/142は150で回収できなかった水素/酸素が排出される未回収水素/素排出経路である。132/142中には、水素/酸素以外の不純物を吸着させる吸着フィルタ133/143、水素/酸素ガスを昇圧する水素/酸素循環ポンプ134/144が設置されている。水素回収燃料電池150において、水素/酸素反応により発生した電力のラインは、スイッチ161を通して蓄電装置162へつながり、更にスイッチ163を通して燃料電池の補機164につながっている。
Embodiment 4 of the present invention will be described below with reference to FIG. In FIG. 6, the same reference numerals as those in FIGS. 1, 4, and 5 indicate the same constituent elements as those shown in the drawings unless otherwise specified.
In FIG. 6, 100 is a fuel cell stack, 110/120 is a hydrogen / oxygen supply means for supplying hydrogen / oxygen to the fuel cell, 111/121 is a hydrogen / oxygen supply path to the fuel cell, and 112/122 is a fuel cell. An unreacted hydrogen / oxygen discharge path through which hydrogen / oxygen not consumed by power generation is discharged is shown. In the unreacted hydrogen discharge path 112, a circulation pump 114 for increasing the pressure of the gas and returning it to the hydrogen supply path 111 is installed. Further, this path is branched into a hydrogen circulation path 115 and a hydrogen purge path 116 at a stage subsequent to the circulation pump 114, and the other end of the hydrogen circulation path 115 is connected to the hydrogen supply path 111. In the hydrogen purge path 116, a control valve 113 for controlling the amount of hydrogen gas and a pressure sensor 117 capable of measuring the pressure of the hydrogen gas are installed. The path includes a hydrogen buffer tank 135 and a purge hydrogen supply path 131. And is connected to the anode 151 side of the hydrogen recovery device 150. A circulation pump 124 for increasing the pressure of the gas and returning it to the supply path 121 is installed in the unreacted oxygen discharge path 122. In addition, this path is branched into an oxygen circulation path 125 and an oxygen purge path 126 after the circulation pump 124. A control valve 123 for controlling the amount of oxygen gas is installed in the oxygen purge path 126, and this path passes through the oxygen buffer tank 145 and the purge oxygen supply path 141, and the cathode 152 of the hydrogen recovery device 150. Connected to the side. 132/142 are unrecovered hydrogen / oxygen discharge path hydrogen / oxygen which could not be recovered in 150 is discharged. In 132/142, an adsorption filter 133/143 for adsorbing impurities other than hydrogen / oxygen and a hydrogen / oxygen circulation pump 134/144 for increasing the pressure of hydrogen / oxygen gas are installed. In the hydrogen recovery fuel cell 150, the power line generated by the hydrogen / oxygen reaction is connected to the power storage device 162 through the switch 161, and further connected to the fuel cell auxiliary device 164 through the switch 163.

次に動作について説明する。燃料電池スタック100において、水素が水素供給手段110及び水素供給経路111を通してアノード側101に、酸素が酸素供給手段120及び酸素供給経路121を通してカソード側102に導入されることにより、カソード102からアノード101に向かう電流が発生する。未反応水素排出経路112から分岐された水素パージ経路116より放出されたガスは、制御弁113で制御された後、水素バッファタンク135で一度貯蓄される。貯蓄された後、パージ水素供給経路131を通り、水素回収装置のアノード側151へ導入される。一方、未反応酸素排出経路122から分岐された酸素パージ経路126より放出されたガスは、制御弁123で制御された後、酸素バッファタンク145で一度貯蓄される。貯蓄された後、パージ酸素供給経路141を通り水素回収装置のカソード側152へ導入される。なお、制御弁113、123は、実施形態1と同様に、例えば燃料電池スタックの電圧やスタックを構成している各セルの電圧の設定値などにより開閉する機構を設けている(図2)。水素回収燃料電池150では、導入された水素と酸素により発電が行われ、電力が発生する。電力は、実施形態1と同様に、圧力センサー117の値がある一定値P1になった時、スイッチ161を開けることにより、蓄電装置162に蓄電することできる(図3)。水素回収燃料電池150では、その反応の機構上、全てのガスを回収できないので、回収できなかったガスは、未回収水素/酸素排出経路132/142を通り、排出される。未回収水素は、未回収水素排出経路132中の水素側吸着フィルタ133において、不純物を除去した後、同経路中の循環ポンプ134で昇圧され、水素バッファタンク135に戻る。未回収酸素は、未回収酸素排出経路142中の酸素側吸着フィルタ143において、不純物を除去された後、同経路中の循環ポンプ14で昇圧され、酸素バッファタンク145に戻る。
Next, the operation will be described. In the fuel cell stack 100, hydrogen is introduced into the anode side 101 through the hydrogen supply means 110 and the hydrogen supply path 111, and oxygen is introduced into the cathode side 102 through the oxygen supply means 120 and the oxygen supply path 121, so that the cathode 101 to the anode 101. The electric current which goes to is generated. The gas released from the hydrogen purge path 116 branched from the unreacted hydrogen discharge path 112 is once stored in the hydrogen buffer tank 135 after being controlled by the control valve 113. After being stored, it passes through the purge hydrogen supply path 131 and is introduced into the anode side 151 of the hydrogen recovery apparatus. On the other hand, the gas released from the oxygen purge path 126 branched from the unreacted oxygen discharge path 122 is controlled by the control valve 123 and then stored once in the oxygen buffer tank 145. After being stored, it passes through the purge oxygen supply path 141 and is introduced into the cathode side 152 of the hydrogen recovery device. As in the first embodiment, the control valves 113 and 123 are provided with a mechanism that opens and closes depending on, for example, the voltage of the fuel cell stack or the set value of the voltage of each cell constituting the stack (FIG. 2). In the hydrogen recovery fuel cell 150, electric power is generated by the introduced hydrogen and oxygen, and electric power is generated. As in the first embodiment, the electric power can be stored in the power storage device 162 by opening the switch 161 when the value of the pressure sensor 117 reaches a certain constant value P1 (FIG. 3). The hydrogen recovery fuel cell 150 cannot recover all the gas due to the reaction mechanism, and thus the unrecoverable gas passes through the unrecovered hydrogen / oxygen discharge path 132/142. The unrecovered hydrogen is removed by the hydrogen-side adsorption filter 133 in the unrecovered hydrogen discharge path 132, and then the pressure is increased by the circulation pump 134 in the path, and returns to the hydrogen buffer tank 135. Unrecovered oxygen, the oxygen side adsorption filter 143 in the unrecovered oxygen discharge path 142, after the removal of impurities, is pressurized by the circulation pump 1 4 4 in the path, the flow returns to the oxygen buffer tank 145.

本発明の実施形態1に係る燃料電池システムを示すフロー図である。It is a flowchart which shows the fuel cell system which concerns on Embodiment 1 of this invention. 同じく、セル/スタックの電圧と電磁弁の経時変化を表すグラフである。Similarly, it is a graph showing the time-dependent change of the voltage of a cell / stack and a solenoid valve. 同じく、圧力センサー117とスイッチ161の経時変化を表すグラフSimilarly, a graph showing changes with time of the pressure sensor 117 and the switch 161. 本発明の実施形態2に係る燃料電池システムを示すフロー図である。It is a flowchart which shows the fuel cell system which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る燃料電池システムを示すフロー図である。It is a flowchart which shows the fuel cell system which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る燃料電池システムを示すフロー図である。It is a flowchart which shows the fuel cell system which concerns on Embodiment 4 of this invention. 従来の燃料電池システムを示すフロー図である。It is a flowchart which shows the conventional fuel cell system.

符号の説明Explanation of symbols

100 主燃料電池
101 アノード
102 カソード
110 水素供給手段
111 水素供給路
112 未反応水素排出経路
113 制御弁
115 水素循環経路
117 圧力センサー
120 酸素供給手段
121 酸素供給路
122 未反応酸素排出経路
123 制御弁
125 酸素循環経路
126 酸素パージ経路
127 圧力センサー
131 パージ水素供給経路
132 未回収水素排出経路
133 水素側吸着フィルタ
135 水素バッファタンク
141 パージ酸素供給経路
142 未回収酸素排出経路
143 酸素側吸着フィルタ
145 酸素バッファタンク
150 水素回収燃料電池
151 アノード
152 カソード
162 蓄電装置
164 補機
DESCRIPTION OF SYMBOLS 100 Main fuel cell 101 Anode 102 Cathode 110 Hydrogen supply means 111 Hydrogen supply path 112 Unreacted hydrogen discharge path 113 Control valve 115 Hydrogen circulation path 117 Pressure sensor 120 Oxygen supply means 121 Oxygen supply path 122 Unreacted oxygen discharge path 123 Control valve 125 Oxygen circulation path 126 Oxygen purge path 127 Pressure sensor 131 Purge hydrogen supply path 132 Unrecovered hydrogen discharge path 133 Hydrogen side adsorption filter 135 Hydrogen buffer tank 141 Purge oxygen supply path 142 Unrecovered oxygen discharge path 143 Oxygen side adsorption filter 145 Oxygen buffer tank 150 Hydrogen Recovery Fuel Cell 151 Anode 152 Cathode 162 Power Storage Device 164 Auxiliary Equipment

Claims (5)

水素と酸素の電気化学的な反応により発電する燃料電池のシステムであって、主燃料電池のアノード側に水素を供給する水素供給経路と、前記主燃料電池で反応しなかった未反応水素を排出する未反応水素排出経路と、前記主燃料電池のカソード側に酸素を供給する酸素供給経路と、前記主燃料電池で反応しなかった未反応酸素を酸素パージ以外に系外に放出することなく前記主燃料電池のカソード側に戻す酸素循環経路と、前記酸素循環経路を流通する酸素の少なくとも一部を前記酸素パージする酸素パージ経路と、該酸素パージ経路に介設されて該酸素パージ経路を流れる酸素を貯蓄する酸素バッファタンクと、前記未反応水素排出経路から導入される水素と前記酸素パージ経路から導入される酸素の電気化学的な反応により発電を行う水素回収燃料電池と、該水素回収燃料電池で回収されなかった水素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収水素ガス循環経路と、該未回収水素ガス循環経路に介設されて前記水素ガス中の不純物を取り除く水素側吸着フィルタと、前記水素回収燃料電池で回収されなかった酸素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収酸素ガス循環経路と、該未回収酸素ガス循環経路に介設されて前記酸素ガス中の不純物を取り除く酸素側吸着フィルタとを備えることを特徴とする、水素・酸素回収機構を備えた燃料電池システム。 A fuel cell system that generates electricity by electrochemical reaction between hydrogen and oxygen, a hydrogen supply path for supplying hydrogen to the anode side of the main fuel cell, and discharging unreacted hydrogen that has not reacted in the main fuel cell An unreacted hydrogen discharge path, an oxygen supply path for supplying oxygen to the cathode side of the main fuel cell, and the unreacted oxygen that has not reacted in the main fuel cell without being discharged outside the system other than oxygen purge. flowing primary fuel and oxygen circulation path back to the cathode side of the cell, and oxygen purge path at least part of the oxygen flowing through the oxygen circulation path for the oxygen purge, it is interposed in the oxygen purge path oxygen purge path Power is generated by an electrochemical reaction between an oxygen buffer tank for storing oxygen, hydrogen introduced from the unreacted hydrogen discharge path, and oxygen introduced from the oxygen purge path. An unrecovered hydrogen gas circulation path, an unrecovered hydrogen gas circulation path for returning the hydrogen gas not recovered by the hydrogen recovery fuel cell to the hydrogen recovery fuel cell without releasing it outside the system, and an unrecovered hydrogen gas circulation path A hydrogen-side adsorption filter that removes impurities in the hydrogen gas, and an unrecovered oxygen gas circulation path that returns the oxygen gas that has not been recovered by the hydrogen recovery fuel cell to the hydrogen recovery fuel cell without releasing it out of the system And an oxygen-side adsorption filter that is interposed in the unrecovered oxygen gas circulation path and removes impurities in the oxygen gas, and a fuel cell system equipped with a hydrogen / oxygen recovery mechanism. 水素と酸素の電気化学的な反応により発電する燃料電池のシステムであって、主燃料電池のアノード側に水素を供給する水素供給経路と、前記主燃料電池で反応しなかった未反応水素を水素パージ以外に系外に放出することなく前記主燃料電池のアノード側に戻す水素循環経路と、該水素循環経路を流通する水素の少なくとも一部を前記水素パージする水素パージ経路と、前記主燃料電池のカソード側に酸素を供給する酸素供給経路と、前記主燃料電池で反応しなかった未反応酸素を酸素パージ以外に系外に放出することなく前記燃料電池のカソード側に戻す酸素循環経路と、該酸素循環経路を流通する酸素の少なくとも一部を前記酸素パージする酸素パージ経路と、該酸素パージ経路に介設されて該酸素パージ経路を流れる酸素を貯蓄する酸素バッファタンクと、前記水素パージ経路から導入された水素と前記酸素パージ経路から導入された酸素の電気化学的な反応により発電を行う水素回収燃料電池と、該水素回収燃料電池で回収されなかった水素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収水素ガス循環経路と、該未回収水素ガス循環経路に介設されて前記水素ガス中の不純物を取り除く水素側吸着フィルタと、前記水素回収燃料電池で回収されなかった酸素ガスを系外に放出することなく前記水素回収燃料電池に戻す未回収酸素ガス循環経路と、該未回収酸素ガス循環経路に介設されて前記酸素ガス中の不純物を取り除く酸素側吸着フィルタとを備えることを特徴とする、水素・酸素回収機構を備えた燃料電池システム。 A system for a fuel cell that generates electricity through an electrochemical reaction between hydrogen and oxygen, and the hydrogen supply path for supplying hydrogen to the anode side of the main fuel cell, unreacted hydrogen that has not reacted with said main fuel cell hydrogen and hydrogen circulation path for returning to the anode side of the main fuel cell without discharging out of the system in addition to purging, the hydrogen purge path for the hydrogen purging at least part of the hydrogen flowing through the hydrogen circulation path, the main fuel cell An oxygen supply path for supplying oxygen to the cathode side, and an oxygen circulation path for returning unreacted oxygen that has not reacted in the main fuel cell to the cathode side of the fuel cell without releasing it outside the system other than oxygen purge , to savings and oxygen purge path for the oxygen purge at least a portion of the oxygen flowing through the oxygen circulation path, the oxygen is interposed in the oxygen purge path through the oxygen purge path An unrecovered buffer tank, a hydrogen recovery fuel cell that generates electricity by an electrochemical reaction between hydrogen introduced from the hydrogen purge path and oxygen introduced from the oxygen purge path, and was not recovered by the hydrogen recovery fuel cell An unrecovered hydrogen gas circulation path that returns the hydrogen gas to the hydrogen recovery fuel cell without releasing it out of the system, and a hydrogen-side adsorption filter that is interposed in the unrecovered hydrogen gas circulation path to remove impurities in the hydrogen gas; A non-recovered oxygen gas circulation path for returning the oxygen gas not recovered by the hydrogen recovery fuel cell to the hydrogen recovery fuel cell without releasing it out of the system; and the oxygen gas interposed in the unrecovered oxygen gas circulation path A fuel cell system equipped with a hydrogen / oxygen recovery mechanism, comprising an oxygen-side adsorption filter that removes impurities in the gas. 前記未反応水素排出経路または前記水素パージ経路に、これら経路を流れる未反応水素またパージ水素を貯蓄する水素バッファタンクが介設されていることを特徴とする請求項1または2に記載の水素・酸素回収機構を備えた燃料電池システム。 Wherein the unreacted hydrogen discharge path or the hydrogen purge path, hydrogen according to claim 1 or 2 hydrogen buffer tank or unreacted hydrogen flowing through these paths to savings purge hydrogen is characterized in that it is interposed・ Fuel cell system with oxygen recovery mechanism. 前記未反応水素排出経路または前記水素パージ経路に、電磁弁並びに圧力センサーを備えており、該圧力センサー値の値がある一定値以上のときに前記水素回収燃料電池から電力を取り出すことを特徴とする請求項1〜3のいずれかに記載の水素・酸素回収機構を備えた燃料電池システム。 Wherein the unreacted hydrogen discharge pathway or prior Kisui containing purge path comprises a solenoid valve and a pressure sensor, that draw power from the hydrogen recovery fuel cell when more than a predetermined value with the value of the pressure sensor value A fuel cell system comprising the hydrogen / oxygen recovery mechanism according to any one of claims 1 to 3. 前記水素回収燃料電池で発生した電力を、燃料電池システムの補機の電力として使用することを特徴とする請求項1〜4のいずれかに記載の水素・酸素回収機構を備えた燃料電池システム。   5. The fuel cell system having a hydrogen / oxygen recovery mechanism according to claim 1, wherein electric power generated in the hydrogen recovery fuel cell is used as electric power for an auxiliary device of the fuel cell system.
JP2007090391A 2007-03-30 2007-03-30 Fuel cell system with hydrogen / oxygen recovery mechanism Expired - Fee Related JP5071843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090391A JP5071843B2 (en) 2007-03-30 2007-03-30 Fuel cell system with hydrogen / oxygen recovery mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090391A JP5071843B2 (en) 2007-03-30 2007-03-30 Fuel cell system with hydrogen / oxygen recovery mechanism

Publications (2)

Publication Number Publication Date
JP2008251312A JP2008251312A (en) 2008-10-16
JP5071843B2 true JP5071843B2 (en) 2012-11-14

Family

ID=39976023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090391A Expired - Fee Related JP5071843B2 (en) 2007-03-30 2007-03-30 Fuel cell system with hydrogen / oxygen recovery mechanism

Country Status (1)

Country Link
JP (1) JP5071843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160059254A (en) * 2014-11-18 2016-05-26 현대모비스 주식회사 Hydrogen supply control apparatus and Method for controlling the same
KR20170048115A (en) * 2015-10-26 2017-05-08 삼성전자주식회사 Electrochemical battery maintaining oxygen concentration by air recycling

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232167A (en) * 2009-03-03 2010-10-14 Japan Aerospace Exploration Agency Fuel cell system
KR100923448B1 (en) * 2009-05-27 2009-10-27 한국기계연구원 A closed loop type fuel cell system
KR100923447B1 (en) * 2009-05-27 2009-10-27 한국기계연구원 An open type fuel cell system
KR101044619B1 (en) 2010-05-27 2011-06-29 한국기계연구원 A closed loop type fuel cell system having a remover for unreacted matter
JP5411199B2 (en) * 2010-05-27 2014-02-12 コリア インスティチュート オブ マシナリー アンド マテリアルズ Open fuel cell system with unreacted substance removal function
KR101001589B1 (en) * 2010-06-18 2010-12-17 한국기계연구원 An open type fuel cell system having a remover for unreacted matter
KR20160039108A (en) * 2014-09-30 2016-04-08 현대중공업 주식회사 Fuel Cell System with Pure Oxygen Process
EP3614475A1 (en) 2018-08-20 2020-02-26 Siemens Aktiengesellschaft Method for treating hydrogen and oxygen-containing residual gases of fuel cells and residual gas treatment system
JP2023012261A (en) 2021-07-13 2023-01-25 本田技研工業株式会社 Fuel cell system and method of operating fuel cell system
CN114530619B (en) * 2022-04-22 2022-07-19 浙江海盐力源环保科技股份有限公司 Fuel cell tail gas hydrogen device that disappears

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859545A (en) * 1988-05-05 1989-08-22 International Fuel Cells Corporation Cathode flow control for fuel cell power plant
JP2001052727A (en) * 1999-08-04 2001-02-23 Mitsubishi Heavy Ind Ltd Power generating system by fuel cell
JP2001143732A (en) * 1999-11-12 2001-05-25 Toshiba Corp Solid polymer fuel cell power generating system and its operating method
JP2004185969A (en) * 2002-12-03 2004-07-02 Nissan Motor Co Ltd Fuel cell system
JP2005079006A (en) * 2003-09-02 2005-03-24 Nissan Motor Co Ltd Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160059254A (en) * 2014-11-18 2016-05-26 현대모비스 주식회사 Hydrogen supply control apparatus and Method for controlling the same
KR102283333B1 (en) * 2014-11-18 2021-07-29 현대모비스 주식회사 Hydrogen supply control apparatus and Method for controlling the same
KR20170048115A (en) * 2015-10-26 2017-05-08 삼성전자주식회사 Electrochemical battery maintaining oxygen concentration by air recycling
KR102506452B1 (en) * 2015-10-26 2023-03-07 삼성전자주식회사 Electrochemical battery maintaining oxygen concentration by air recycling

Also Published As

Publication number Publication date
JP2008251312A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5071843B2 (en) Fuel cell system with hydrogen / oxygen recovery mechanism
US8329020B2 (en) Method of shutting down water electrolysis system
JP2003243020A (en) Fuel cell system
JP4917796B2 (en) Fuel cell system
JP2007323954A (en) Fuel cell system, and control method thereof
JP5711010B2 (en) Method for stopping operation of fuel cell system
JP6409691B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2005032652A (en) Fuel cell system
US11177488B2 (en) System comprising a fuel-cell stack, and associated control method
JP2008004564A (en) Power generation shutdown method of fuel cell system
JP2001229951A (en) Fuel-cell system for moving object
JP7393450B2 (en) Regenerative fuel cell system
JP5250294B2 (en) Method for starting fuel cell system and fuel cell system
JP2007128902A (en) Hydrogen purge method at starting of fuel cell system
JPWO2018096713A1 (en) Regenerative fuel cell system and water electrolysis system
JP4564347B2 (en) Fuel cell system
JP2009146656A (en) Fuel cell system
JP2009117226A (en) Fuel cell system
JP2008021553A (en) Fuel cell electric power generation system
JP6023403B2 (en) Fuel cell system and its operation stop method
JP2010272253A (en) Fuel cell system
EP3916129A1 (en) A method and a device for operating pem fuel cell with co contaminated hydrogen gas
JP2006286472A (en) Fuel treating device, fuel cell generator, and its starting method
JP2008269898A (en) Fuel cell system and its control method
JP2007200625A (en) Fuel cell system and control method of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5071843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees