JP5071193B2 - SCR catalyst and nitrogen oxide purification method using the same - Google Patents

SCR catalyst and nitrogen oxide purification method using the same Download PDF

Info

Publication number
JP5071193B2
JP5071193B2 JP2008085546A JP2008085546A JP5071193B2 JP 5071193 B2 JP5071193 B2 JP 5071193B2 JP 2008085546 A JP2008085546 A JP 2008085546A JP 2008085546 A JP2008085546 A JP 2008085546A JP 5071193 B2 JP5071193 B2 JP 5071193B2
Authority
JP
Japan
Prior art keywords
zeolite
scr catalyst
suz
nitrogen oxide
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008085546A
Other languages
Japanese (ja)
Other versions
JP2009233620A (en
Inventor
吉田  智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008085546A priority Critical patent/JP5071193B2/en
Publication of JP2009233620A publication Critical patent/JP2009233620A/en
Application granted granted Critical
Publication of JP5071193B2 publication Critical patent/JP5071193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高性能なSCR触媒及びそれを用いた窒素酸化物の浄化方法に関するものである。   The present invention relates to a high-performance SCR catalyst and a nitrogen oxide purification method using the same.

ゼオライトは、炭化水素、アンモニア、尿素、有機アミン類等を還元剤とし窒素酸化物を浄化するSCR触媒(SCRとは選択的接触還元”Selective catalytic reduction”の略)として用いられることが広く知られている。   Zeolite is widely known to be used as an SCR catalyst that purifies nitrogen oxides using hydrocarbons, ammonia, urea, organic amines, etc. as a reducing agent (SCR is an abbreviation for “selective catalytic reduction”). ing.

しかし、従来報告されたゼオライトを用いたSCR触媒は、高温水蒸気雰囲気下での耐久処理(以下、「水熱耐久処理」という)後において、窒素酸化物還元性能が低下し十分な性能が維持できなかった。   However, the conventionally reported SCR catalyst using zeolite has a reduced nitrogen oxide reduction performance after a durability treatment in a high-temperature steam atmosphere (hereinafter referred to as “hydrothermal durability treatment”), and can maintain a sufficient performance. There wasn't.

一方、SUZ−4は、国際ゼオライト協会規定の構造コードSZRの代表物質として知られ(非特許文献1)、特許文献1により初めて報告されたゼオライトである。   On the other hand, SUZ-4 is known as a representative substance of the structure code SZR defined by the International Zeolite Association (Non-patent Document 1), and is a zeolite first reported by Patent Document 1.

これまで、Si/Alが5.1から6.0、つまりSiO/Alが10.2〜12.0のSUZ−4は、炭化水素を還元剤として用いたSCR触媒として報告されている(特許文献2)。またSiO/Alが6のSUZ−4は、排気ガス中の窒素酸化物を吸着してアンモニアに転化する層と、触媒内で転化されたアンモニアを吸着して排気ガス中の窒素酸化物に浄化する層の2層構造をしたシステムの脱硝触媒としての利用が報告されている(特許文献3)。 So far, SUZ-4 having Si / Al of 5.1 to 6.0, that is, SiO 2 / Al 2 O 3 of 10.2 to 12.0 has been reported as an SCR catalyst using hydrocarbon as a reducing agent. (Patent Document 2). Also, SUZ-4 with SiO 2 / Al 2 O 3 of 6 is a layer that adsorbs nitrogen oxides in the exhaust gas and converts it into ammonia, and adsorbs the ammonia converted in the catalyst and nitrogen in the exhaust gas. It has been reported that a system having a two-layer structure of a layer purified to oxide is used as a denitration catalyst (Patent Document 3).

しかし、SiO/Alが12より大きいSUZ−4ゼオライトは、SCR触媒として提案されたものはなかった。 However, SiO 2 / Al 2 O 3 is greater than 12 SUZ-4 zeolite, none of them have been proposed as SCR catalysts.

特許第2771269号(請求項1、明細書2頁3欄30行)Patent No. 2771269 (Claim 1, Specification, page 2, column 3, line 30) 米国特許6936562B2号(明細書7頁3欄1〜5行、請求項1)US Pat. No. 6,936,562 B2 (Specification, page 7, column 3, lines 1 to 5, claim 1) 特開2006−314989(製造例22、実施例6〜10)JP-A-2006-314989 (Production Example 22, Examples 6 to 10) ATLAS OF ZEOLITE FRAMEWORK TYPES,6th reviced edition,Elsevier(2007)(326頁)ATLAS OF ZEOLITE FRAMEWORK TYPES, 6th revised edition, Elsevier (2007) (page 326)

本発明は、水熱耐久処理後においても窒素酸化物還元性能が高いSUZ−4ゼオライトからなるSCR触媒及びそれを用いた窒素酸化物の浄化方法を提供するものである。   The present invention provides an SCR catalyst comprising SUZ-4 zeolite having high nitrogen oxide reduction performance even after hydrothermal durability treatment, and a method for purifying nitrogen oxide using the SCR catalyst.

本発明者は、水熱耐久処理後におけるSCR触媒の窒素酸化物還元性能について鋭意検討を重ねた結果、SiO/Alのモル比が12.0より大きいSUZ−4ゼオライトを含んでなるSCR触媒が、水熱耐久処理後においても窒素酸化物還元性能が高いことを見出し、本発明を完成するに至ったものである。 As a result of intensive studies on the nitrogen oxide reduction performance of the SCR catalyst after hydrothermal durability treatment, the present inventor has included SUZ-4 zeolite having a SiO 2 / Al 2 O 3 molar ratio of greater than 12.0. The present SCR catalyst has been found to have high nitrogen oxide reduction performance even after hydrothermal durability treatment, and the present invention has been completed.

本発明のSCR触媒用SUZ−4ゼオライトは、SiO/Alのモル比が12.0より大きいことが必須である。その理由は12.0以下では水熱耐久処理による窒素酸化物還元性能の低下が大きいからである。特に、SiO/Alのモル比は13.0以上が好ましい。 In the SCR catalyst SUZ-4 zeolite of the present invention, it is essential that the molar ratio of SiO 2 / Al 2 O 3 is larger than 12.0. The reason is that at 12.0 or less, the reduction in nitrogen oxide reduction performance by hydrothermal durability treatment is large. In particular, the molar ratio of SiO 2 / Al 2 O 3 is preferably 13.0 or more.

また、SiO/Alのモル比は16.0以下であることが好ましい。その理由は16.0より大きいとSUZ−4ゼオライトを得ることが困難で、且つ初期の窒素酸化物還元性能が低いからである。 Further, the molar ratio of SiO 2 / Al 2 O 3 is preferably 16.0 or less. The reason is that if it is larger than 16.0, it is difficult to obtain SUZ-4 zeolite and the initial nitrogen oxide reduction performance is low.

本発明のSCR触媒を構成するSiO/Alが12.0より大きいSUZ−4ゼオライトの交換可能なカチオンの種類については特に制限はないが、少なくともプロトンが全カチオンに対して50モル%以上含まれていることが好ましい。その理由は50モル%より少ないと酸量が小さく、初期の窒素酸化物還元性能が低いからである。プロトン以外の共存カチオンとしては、ナトリウム、カリウムなどが例示できるが、水熱耐久処理による窒素酸化物還元性能低下抑制の面から、カリウムであることが好ましい。最も好ましいカチオンの組み合わせとしては、プロトンが70〜99.9モル%、カリウムが0.1〜30モル%である。このとき初期の窒素酸化物還元性能及び水熱耐久処理後の窒素酸化物還元性能の何れもが高くなる。 There is no particular limitation on the type of exchangeable cation of the SUZ-4 zeolite having SiO 2 / Al 2 O 3 of more than 12.0 constituting the SCR catalyst of the present invention, but at least protons are 50 mol relative to all cations. % Or more is preferable. The reason is that if it is less than 50 mol%, the acid amount is small and the initial nitrogen oxide reduction performance is low. Examples of coexisting cations other than protons include sodium and potassium, but potassium is preferred from the viewpoint of suppressing the reduction in nitrogen oxide reduction performance by hydrothermal durability treatment. The most preferred cation combination is 70 to 99.9 mol% proton and 0.1 to 30 mol% potassium. At this time, both the initial nitrogen oxide reduction performance and the nitrogen oxide reduction performance after the hydrothermal durability treatment are enhanced.

更に、鉄及び/又は銅を担持すると、初期の窒素酸化物還元性能及び水熱耐久処理後の窒素酸化物還元性能の何れも更に高くなるので、好ましい。   Furthermore, it is preferable to support iron and / or copper because both the initial nitrogen oxide reduction performance and the nitrogen oxide reduction performance after the hydrothermal durability treatment are further enhanced.

鉄及び/又は銅の担持量は限定されないが、0.1〜10重量%、特に1〜7重量%の範囲が好ましい。   The amount of iron and / or copper supported is not limited, but is preferably in the range of 0.1 to 10% by weight, particularly 1 to 7% by weight.

本発明のSCR触媒は、シリカ、アルミナ及び粘土鉱物等のバインダーと混合し成形して使用することもできる。成形する際に用いられる粘土鉱物として、カオリン、アタパルガイト、ベントナイト、アロフェン、セピオライトが例示できる。   The SCR catalyst of the present invention can be used after being mixed with a binder such as silica, alumina and clay mineral. Examples of clay minerals used for molding include kaolin, attapulgite, bentonite, allophane, and sepiolite.

本発明のSCR触媒は、窒素酸化物を含む該排ガスを接触させることにより、排ガス浄化することができる。   The SCR catalyst of the present invention can be purified by contacting the exhaust gas containing nitrogen oxides.

本発明で浄化される窒素酸化物は、例えば一酸化窒素、二酸化窒素、三酸化二窒素、四酸化二窒素、一酸化二窒素、及びそれらの混合物が例示される。好ましくは一酸化窒素、二酸化窒素、一酸化二窒素である。ここで本発明が処理可能な排ガスの窒素酸化物濃度は限定されるものではない。   Examples of nitrogen oxides purified by the present invention include nitric oxide, nitrogen dioxide, dinitrogen trioxide, dinitrogen tetroxide, dinitrogen monoxide, and mixtures thereof. Nitric oxide, nitrogen dioxide, and dinitrogen monoxide are preferred. Here, the nitrogen oxide concentration of the exhaust gas that can be treated by the present invention is not limited.

また該排ガスには窒素酸化物以外の成分が含まれていてもよく、例えば炭化水素、一酸化炭素、二酸化炭素、水素、窒素、酸素、硫黄酸化物、水が含まれていても良い。具体的には、本発明の方法では、ディーゼル自動車、ガソリン自動車、ボイラー、ガスタービン等の排ガスから窒素酸化物を浄化することができる。   The exhaust gas may contain components other than nitrogen oxides, and may contain, for example, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, nitrogen, oxygen, sulfur oxides, and water. Specifically, in the method of the present invention, nitrogen oxides can be purified from exhaust gas from diesel vehicles, gasoline vehicles, boilers, gas turbines and the like.

本発明のSCR触媒は還元剤の存在下で窒素酸化物を浄化するものである。還元剤としては該排ガス中に含まれる炭化水素、一酸化炭素、水素等を還元剤として利用することができ、更に適当な還元剤を排ガスに添加して共存させて用いられる。排ガスに添加される還元剤は特に限定されないが、アンモニア、尿素、有機アミン類、炭化水素、アルコール類、ケトン類、一酸化炭素、水素等が挙げられ、特に窒素酸化物の浄化効率をより高めるためには、特にアンモニア、尿素、有機アミン類が好ましい。   The SCR catalyst of the present invention purifies nitrogen oxides in the presence of a reducing agent. As the reducing agent, hydrocarbons, carbon monoxide, hydrogen and the like contained in the exhaust gas can be used as the reducing agent, and further, an appropriate reducing agent is added to the exhaust gas and used together. The reducing agent added to the exhaust gas is not particularly limited, and examples thereof include ammonia, urea, organic amines, hydrocarbons, alcohols, ketones, carbon monoxide, hydrogen, and the like, particularly improving the purification efficiency of nitrogen oxides. For this purpose, ammonia, urea and organic amines are particularly preferred.

これらの還元剤の添加方法は特に限定されず、還元成分をガス状で直接添加する方法、水溶液などの液状を噴霧し気化させる方法、噴霧熱分解させる方法等を採用することができる。これらの還元剤の添加量は、十分に窒素酸化物が浄化できるように任意に設定することができる。   The method of adding these reducing agents is not particularly limited, and a method of directly adding the reducing component in a gaseous state, a method of spraying and vaporizing a liquid such as an aqueous solution, a method of spraying pyrolysis, and the like can be employed. The addition amount of these reducing agents can be arbitrarily set so that nitrogen oxides can be sufficiently purified.

本発明の窒素酸化物の浄化方法において、SCR触媒と排ガスを接触させる際の空間速度は特に制限されないが、好ましい空間速度は体積基準で500〜50万hr−1、更に好ましくは2000〜30万hr−1である。 In the method for purifying nitrogen oxides of the present invention, the space velocity when the SCR catalyst and the exhaust gas are contacted is not particularly limited, but the preferred space velocity is 500 to 500,000 hr −1 , more preferably 2000 to 300,000 on a volume basis. hr- 1 .

本発明のSCR触媒を構成するSiO/Alが12.0より大きいSUZ−4ゼオライトの製造法は特に限定されるものではなく、通常、シリカ源、アルミ源、アルカリおよびSDA、水の存在下、水熱合成によって製造することができる。 The production method of SUZ-4 zeolite having SiO 2 / Al 2 O 3 larger than 12.0 constituting the SCR catalyst of the present invention is not particularly limited, and is usually silica source, aluminum source, alkali and SDA, water Can be produced by hydrothermal synthesis.

シリカ源としては、シリカゾル、ヒュームドシリカ、沈降法シリカ、シリカアルミナゲル、テトラエトキシランなどが例示でき、アルミ源としては、水酸化アルミニウム、擬ベーマイト、アルミナゾル、シリカアルミナゲル、アルミニウムイソプロポキシドなどが例示できる。アルカリおよびSDAとしては、水酸化ナトリウム、水酸化カリウム、水酸化テトラエチルアンモニウム、キヌクリジンなどが例示できる。   Examples of the silica source include silica sol, fumed silica, precipitated silica, silica alumina gel, and tetraethoxylane. Examples of the aluminum source include aluminum hydroxide, pseudoboehmite, alumina sol, silica alumina gel, aluminum isopropoxide, and the like. Can be illustrated. Examples of the alkali and SDA include sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, quinuclidine and the like.

水熱合成により得られたSUZ−4ゼオライトは、焼成及び/またはイオン交換により適宜修飾し、SCR触媒を構成するSiO/Alが12.0より大きいSUZ−4ゼオライトとする。有機SDAの除去等のための焼成は、400〜800℃、0.5〜12時間、酸素を含むガス流れ等の条件が例示できる。 The SUZ-4 zeolite obtained by hydrothermal synthesis is appropriately modified by calcination and / or ion exchange to make SUZ-4 zeolite with SiO 2 / Al 2 O 3 constituting the SCR catalyst larger than 12.0. Firing for removal of organic SDA can be exemplified by conditions such as a gas flow containing oxygen at 400 to 800 ° C. for 0.5 to 12 hours.

交換カチオンの一部又は全部をプロトンとするには、水熱合成後の未焼成SUZ−4または焼成後の焼成SUZ−4をアンモニウムイオン含有溶液と25〜200℃で接触させ、その後、300〜800℃、0.5〜12時間の熱処理により脱アンモニウムすることが例示できる。   In order to use part or all of the exchange cations as protons, the unfired SUZ-4 after hydrothermal synthesis or the fired SUZ-4 after firing is brought into contact with an ammonium ion-containing solution at 25 to 200 ° C., and then 300 to For example, deammonium can be exemplified by heat treatment at 800 ° C. for 0.5 to 12 hours.

鉄や銅の活性金属を担持する方法としては、イオン交換法、含浸担持法などが例示できる。   Examples of the method for supporting an active metal such as iron or copper include an ion exchange method and an impregnation supporting method.

本発明のSiO/Alが12.0より大きいSUZ−4ゼオライトを含んでなるSCR用触媒は、水熱耐久処理後においても窒素酸化物還元性能が高く維持される。 The catalyst for SCR comprising the SUZ-4 zeolite having SiO 2 / Al 2 O 3 of greater than 12.0 of the present invention maintains a high nitrogen oxide reduction performance even after hydrothermal durability treatment.

以下の実施例により本発明を具体的に説明するが、本発明はこれら実施例により何等限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

(窒素酸化物浄化試験方法)
実施例、比較例で示したゼオライト粉末をプレス成形後、破砕して12〜20メッシュに整粒した。整粒した粉末1.5ccを常圧固定床流通式反応管に充填した。触媒層に表1の組成のガスを1500cc/minで流通させながら、200℃の温度で定常的な窒素酸化物の除去率を測定した。
(Nitrogen oxide purification test method)
The zeolite powders shown in Examples and Comparative Examples were pressed and then crushed and sized to 12 to 20 mesh. 1.5 cc of the sized powder was filled into a normal pressure fixed bed flow type reaction tube. While the gas having the composition shown in Table 1 was passed through the catalyst layer at 1500 cc / min, a steady nitrogen oxide removal rate was measured at a temperature of 200 ° C.

Figure 0005071193
Figure 0005071193

(水熱耐久処理方法)
実施例、比較例で示したゼオライト粉末をプレス成形後、破砕して12〜20メッシュに整粒した。整粒した粉末3ccを常圧固定床流通式反応管に充填した。ゼオライト層に水10vol%、空気バランスのガスを流通させながら、700℃、20時間保持した。
(Hydrothermal durability treatment method)
The zeolite powders shown in Examples and Comparative Examples were pressed and then crushed and sized to 12 to 20 mesh. 3 cc of the sized powder was filled into a normal pressure fixed bed flow type reaction tube. The zeolite layer was maintained at 700 ° C. for 20 hours while circulating 10 vol% of water and gas of air balance.

実施例1
シリカゾル(スノーテックス40;日産化学製)、水酸化アルミニウム(C−300GT;住友化学製)、水酸化テトラエチルアンモニウム35%水溶液、水酸化カリウム48%水溶液、水を用い、37SiO:Al:8.0KO:3.1TEAOH:777HOとなるように反応混合物250gを調製した。反応混合物をオートクレーブ中、150℃で120時間、回転下で水熱合成により結晶化した。結晶化後のスラリーは、洗浄し、110℃で乾燥し、更に600℃で空気中焼成した。
Example 1
Silica sol (Snowtex 40, manufactured by Nissan Chemical), aluminum hydroxide (C-300GT; manufactured by Sumitomo Chemical), using tetraethylammonium 35% aqueous hydroxide, potassium 48% aqueous hydroxide, water, 37SiO 2: Al 2 O 3 : 8.0K 2 O: 3.1TEAOH: the reaction mixture 250g such that the 777H 2 O was prepared. The reaction mixture was crystallized by hydrothermal synthesis in an autoclave at 150 ° C. for 120 hours under rotation. The slurry after crystallization was washed, dried at 110 ° C., and further fired at 600 ° C. in the air.

更に、焼成粉末6g−有姿を2mol/Lの塩化アンモニウム水溶液240mlに加え、オートクレーブ中、175℃で一晩、静置下で水熱イオン交換をした。イオン交換は、洗浄後、上記操作を再度繰り返した。水熱イオン交換後のスラリーは、洗浄し、110℃で乾燥し、500℃で空気中焼成した。   Further, 6 g of the calcined powder-solid was added to 240 ml of a 2 mol / L ammonium chloride aqueous solution, and hydrothermal ion exchange was performed in an autoclave at 175 ° C. overnight. In the ion exchange, the above operation was repeated again after washing. The slurry after hydrothermal ion exchange was washed, dried at 110 ° C., and calcined in air at 500 ° C.

得られた粉末はX線回折においてSUZ−4ゼオライトに対応するX線ピークが観測された(図1)。   In the obtained powder, an X-ray peak corresponding to SUZ-4 zeolite was observed in X-ray diffraction (FIG. 1).

得られたプロトン、カリウム混合タイプのSUZ−4ゼオライトを硝酸及びフッ酸の混合水溶液に溶解させ、ICP発光分光分析したところ、SiO/Al=14.2、KO/Al=0.04であった(カリウム4%、プロトン96%に相当)。 The obtained proton-potassium mixed type SUZ-4 zeolite was dissolved in a mixed aqueous solution of nitric acid and hydrofluoric acid and analyzed by ICP emission spectroscopy. As a result, SiO 2 / Al 2 O 3 = 14.2, K 2 O / Al 2 O 3 = 0.04 (corresponding to 4% potassium and 96% proton).

実施例2
実施例1において、イオン交換温度を80℃とした以外は同様の処理をし、SiO/Al=13.7、KO/Al=0.23のSUZ−4ゼオライトを得た(カリウム23%、プロトン77%に相当)。
Example 2
In Example 1, the same treatment was carried out except that the ion exchange temperature was set to 80 ° C., and SUZ-4 zeolite having SiO 2 / Al 2 O 3 = 13.7 and K 2 O / Al 2 O 3 = 0.23. (Corresponding to 23% potassium, 77% proton).

実施例3
実施例1において、反応混合物組成を33SiO:Al:7.4KO:2.7TEAOH:766HO、イオン交換温度を80℃とした以外は同様の処理をし、SiO/Al=13.1、KO/Al=0.22のSUZ−4ゼオライトを得た(カリウム22%、プロトン78%に相当)。
Example 3
In Example 1, the reaction mixture composition the 33SiO 2: Al 2 O 3: 7.4K 2 O: 2.7TEAOH: 766H 2 O, except for using 80 ° C. The ion exchange temperature similar processing, SiO 2 / A SUZ-4 zeolite with Al 2 O 3 = 13.1 and K 2 O / Al 2 O 3 = 0.22 was obtained (corresponding to 22% potassium and 78% protons).

実施例4
実施例1のSUZ−4ゼオライトに鉄担持量が3重量%になるように精秤されたFe(NO・9水和物の水溶液を用いて、鉄を含浸担持した。これを500で空気焼成し、Fe3%を担持したSiO/Al=14.2のSUZ−4ゼオライトを得た(カリウム4%、プロトン96%に相当)。
Example 4
Using an aqueous solution of accurately weighed by the Fe (NO 3) 3 · 9 hydrate as the supported amount of iron is 3 wt% to SUZ-4 zeolite of Example 1 was impregnated supporting iron. This was calcined with air to obtain a SUZ-4 zeolite of SiO 2 / Al 2 O 3 = 14.2 supporting Fe 3% (corresponding to 4% potassium and 96% proton).

(比較例1)
実施例1において、反応混合物組成を23SiO:Al:5.9KO:1.9TEAOH:790HOとした以外は同様の処理をし、SiO/Al=10.9、KO/Al=0.06のSUZ−4ゼオライトを得た(カリウム6%、プロトン94%に相当)。
(Comparative Example 1)
In Example 1, the reaction mixture composition the 23SiO 2: Al 2 O 3: 5.9K 2 O: 1.9TEAOH: except that the 790H 2 O is a similar process, SiO 2 / Al 2 O 3 = 10. 9, K 2 O / Al 2 O 3 = 0.06 SUZ-4 zeolite was obtained (corresponding to 6% potassium and 94% proton).

(比較例2)
実施例1において、反応混合物組成を27SiO:Al:6.4KO:2.2TEAOH:768HOとした以外は同様の処理をし、SiO/Al=12.0、KO/Al=0.05のSUZ−4ゼオライトを得た(カリウム5%、プロトン95%に相当)。
(Comparative Example 2)
In Example 1, the same treatment was carried out except that the reaction mixture composition was 27SiO 2 : Al 2 O 3 : 6.4K 2 O: 2.2TEAOH: 768H 2 O, and SiO 2 / Al 2 O 3 = 12. A SUZ-4 zeolite with 0, K 2 O / Al 2 O 3 = 0.05 was obtained (corresponding to 5% potassium, 95% proton).

(比較例3)
SiO/Al=29のHタイプY型ゼオライト(東ソー製HSZ−371HOA)を用いた。
(Comparative Example 3)
SiO 2 / Al 2 O 3 = 29 H-type Y zeolite (Tosoh HSZ-371HOA) was used.

(窒素酸化物浄化試験結果)
実施例1〜4及び比較例1〜3で得られたゼオライト触媒の水熱耐久処理前後の窒素酸化物浄化試験結果を表2に示した。SUZ−4ゼオライトを用いたSCR触媒は、比較の既存触媒と比べて、高い窒素酸化物浄化性能を示した。
(Nitrogen oxide purification test results)
Table 2 shows the results of the nitrogen oxide purification test before and after the hydrothermal durability treatment of the zeolite catalysts obtained in Examples 1 to 4 and Comparative Examples 1 to 3. The SCR catalyst using SUZ-4 zeolite showed higher nitrogen oxide purification performance than the comparative existing catalyst.

Figure 0005071193
Figure 0005071193

実施例1で得られたゼオライト粉末のX線回折図である。2 is an X-ray diffraction pattern of the zeolite powder obtained in Example 1. FIG.

Claims (5)

SiO/Al (モル比)が12.0より大きいSUZ−4ゼオライトを含んでなるSCR触媒。 SCR catalyst comprising SUZ-4 zeolite having a SiO 2 / Al 2 O 3 (molar ratio) greater than 12.0. SUZ−4ゼオライトの交換可能なカチオンの内、70〜99.9モル%がプロトンであり、30〜0.1モル%がカリウムである請求項1記載のSCR触媒。 The SCR catalyst according to claim 1, wherein 70 to 99.9 mol% of protons and 30 to 0.1 mol% of exchangeable cations of SUZ-4 zeolite are protons. 鉄及び/又は銅を0.1〜10重量%担持した請求項1又は請求項2記載のSCR触媒。 The SCR catalyst according to claim 1 or 2, wherein 0.1 to 10% by weight of iron and / or copper is supported. 請求項1〜3のいずれか1項記載のSCR触媒を用いた窒素酸化物の浄化方法。 A method for purifying nitrogen oxides using the SCR catalyst according to any one of claims 1 to 3 . アンモニア、尿素、有機アミン類から選ばれた少なくとも1種のガスを還元剤として使用することを特徴とする請求項4記載の窒素酸化物の浄化方法。 5. The method for purifying nitrogen oxides according to claim 4, wherein at least one gas selected from ammonia, urea, and organic amines is used as a reducing agent.
JP2008085546A 2008-03-28 2008-03-28 SCR catalyst and nitrogen oxide purification method using the same Active JP5071193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085546A JP5071193B2 (en) 2008-03-28 2008-03-28 SCR catalyst and nitrogen oxide purification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085546A JP5071193B2 (en) 2008-03-28 2008-03-28 SCR catalyst and nitrogen oxide purification method using the same

Publications (2)

Publication Number Publication Date
JP2009233620A JP2009233620A (en) 2009-10-15
JP5071193B2 true JP5071193B2 (en) 2012-11-14

Family

ID=41248264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085546A Active JP5071193B2 (en) 2008-03-28 2008-03-28 SCR catalyst and nitrogen oxide purification method using the same

Country Status (1)

Country Link
JP (1) JP5071193B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241407B (en) * 2011-04-29 2013-04-17 大连理工大学 Preparation method of SUZ-4 molecular sieve
CN102249257A (en) * 2011-05-13 2011-11-23 大连理工大学 Method for recycling crystallization mother liquor from SUZ-4 molecular sieve production for producing SUZ-4 molecular sieve
WO2013014081A1 (en) 2011-07-22 2013-01-31 Haldor Topsøe A/S Catalyst for the conversion of oxygenates to olefins and a process for preparing said catalyst
CN109704364B (en) * 2019-02-21 2021-01-01 太原理工大学 Synthetic method for regulating morphology of SUZ-4 molecular sieve
CN113856648B (en) * 2021-09-30 2024-04-09 南通大学 Urea adhesive adsorption material for defluorination and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172828B2 (en) * 1996-07-24 2008-10-29 株式会社明電舎 NOx removal agent and method for removing nitrogen oxides in exhaust gas
JP2006314989A (en) * 2005-04-11 2006-11-24 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide and catalyst structure
US20090084090A1 (en) * 2005-04-11 2009-04-02 Tadao Nakatsuji Catalyst and Catalyst Structure for Reduction of Nitrogen Oxides, and Method for Catalytic Reduction of Nitrogen Oxides
JP5076192B2 (en) * 2007-01-12 2012-11-21 国立大学法人 岡山大学 Catalyst and method for purifying nitrogen oxides in diesel engine exhaust gas using unburned carbon

Also Published As

Publication number Publication date
JP2009233620A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5082361B2 (en) Β-type zeolite for SCR catalyst and method for purifying nitrogen oxides using the same
JP5895510B2 (en) Chabazite-type zeolite and method for producing the same, low-silica zeolite supporting copper, nitrogen oxide reduction and removal catalyst containing the zeolite, and nitrogen oxide reduction and removal method using the catalyst
JP5169779B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JP4992214B2 (en) Nitrogen oxide purification catalyst comprising β-type zeolite and nitrogen oxide purification method using the same
JP6070230B2 (en) AFX type silicoaluminophosphate, method for producing the same, and nitrogen oxide reduction method using the same
BR112014026909B1 (en) METHOD AND SYSTEM FOR PURIFICATION OF EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
JP6951343B2 (en) Methods for Direct Synthesis of Iron-Containing AEI Zeolite Catalysts
JP5071193B2 (en) SCR catalyst and nitrogen oxide purification method using the same
JP2019512376A (en) Process for removing nitrous oxide from off-gas in the presence of a catalyst comprising Fe-AEI zeolitic material essentially free of alkali metals
JP6987766B2 (en) A method for removing nitrogen oxides from exhaust gas by selective catalytic reduction in the presence of an SCR catalyst containing an FE-AEI zeolite material that is essentially free of alkali metals.
JP6943861B2 (en) Hydrothermal stability Iron-containing AEI zeolite SCR catalyst
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JP5309936B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JPH04363143A (en) Catalyst for decomposition of nitrous oxide and method for purifying exhaust gas containing nitrous oxide
JP2008080195A (en) Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite
JP5387269B2 (en) Hydrocarbon adsorbent in automobile exhaust gas comprising SUZ-4 zeolite and method for adsorbing and removing hydrocarbons
JP2605956B2 (en) Exhaust gas purification catalyst
CN105289625A (en) Catalytic material for removing nitrogen oxides and preparation method thereof
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3110921B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
WO2013069713A1 (en) Catalyst for removing nitrogen oxide contained in combustion exhaust gas, and method for removing nitrogen oxide using said catalyst
JP2015205243A (en) NOx selective reduction catalyst and NOx purification method using the same
JP6070229B2 (en) SAV type silicoaluminophosphate, method for producing the same, and nitrogen oxide reduction method using the same
JP5625735B2 (en) High heat resistant water SCR catalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R151 Written notification of patent or utility model registration

Ref document number: 5071193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3