JP5070664B2 - Alkaline manganese battery - Google Patents

Alkaline manganese battery Download PDF

Info

Publication number
JP5070664B2
JP5070664B2 JP2001192209A JP2001192209A JP5070664B2 JP 5070664 B2 JP5070664 B2 JP 5070664B2 JP 2001192209 A JP2001192209 A JP 2001192209A JP 2001192209 A JP2001192209 A JP 2001192209A JP 5070664 B2 JP5070664 B2 JP 5070664B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode terminal
battery
alkaline manganese
manganese battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001192209A
Other languages
Japanese (ja)
Other versions
JP2003007263A (en
Inventor
秀敏 田中
琢司 小川
吉郎 原田
勝博 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2001192209A priority Critical patent/JP5070664B2/en
Publication of JP2003007263A publication Critical patent/JP2003007263A/en
Application granted granted Critical
Publication of JP5070664B2 publication Critical patent/JP5070664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリマンガン電池に関し、特に封口部に含まれる負極端子の改良に関するものである。
【0002】
【従来の技術】
図1は、アルカリマンガン電池の負極端子部分の内部構造を示している。
図示のように、アルカリマンガン電池1は、正極端子を兼ねる有底円筒の正極缶2と、正極缶内に配置された中空円筒状の正極合剤3と、筒状のセパレータ4を介して前記正極合剤3の中空部に集電体6と共に充填されたゲル状の亜鉛負極5とで構成され、これら正極合剤3や亜鉛負極5を正極缶2内に収納した後、ガスケット7を介在してその開口部に負極端子8を含む封口部を挿入し、その開口部端を内側に屈曲させることにより密閉構造としている。
【0003】
また、アルカリマンガン電池のような密閉構造の場合、外部ショートや逆挿入等、電池の誤使用が有った時、内部ガスの発生や発熱による異常な内圧上昇により、漏液や最悪の場合には電池破裂を招く危険性がある。このため、誤使用時にも電池が破裂しないよう、薄肉部を設けたガスケット7および負極端子8の縁部に異常内圧を逃がすガス抜孔9を設けて安全機構としている。
【0004】
【発明が解決しようとする課題】
ところが、従来のアルカリマンガン電池は、漏液や破裂に影響する負極端子8の封口耐圧は、例えば、電池サイズがLR20形の場合で約3.2MPaと低いため、何等かの原因で負極端子8のガス抜孔9が塞がれた場合、電池内部で大量のガス発生が有ると破裂する可能性があった。
【0005】
本発明は、このような従来電池の欠点を改善し、封口耐圧を向上して電池異常時の破裂の危険性を低下した安全性の高いアルカリマンガン電池を提供することを目的としている。
【0006】
【課題を解決するための手段】
電池の封口耐圧を向上する方策として、正極缶の加締め部の強度を上げる方法、電池開口径を小さくする方法、或いは負極端子の強度を上げる方法等が有効である。本発明では、負極端子の強度アップによる封口耐圧の向上策を提案するものである。
【0007】
すなわち、請求項1に記載の本発明は、プレス成形されたカップ形状の負極端子を含む封口部で筒状正極缶の開口部を密閉した筒型アルカリマンガン電池において、前記負極端子材として、板厚が0.5〜1.0mm、且つ、抗張力が370〜550N/mm2ニッケルメッキ鋼板を用いたことを特徴としている。
【0008】
また、請求項2に記載の本発明は、プレス成形されたカップ形状の負極端子を含む封口部で筒状正極缶の開口部を密閉した筒型アルカリマンガン電池において、前記負極端子材として、板厚が0.5〜1.0mm、且つ、抗張力が370〜550N/mm 2 、且つ、硬度が130〜190Hvのニッケルメッキ鋼板を用いたことを特徴としている。
【0009】
アルカリマンガン電池の負極端子材の板厚、抗張力、および硬度をそれぞれ前記請求項1〜請求項3に記載の範囲内に特定することにより、正極缶開口部の加締め時に変形しない強度の優れた負極端子が実現でき、封口耐圧が向上する。
ここで、 負極端子材の板厚の上限を1mm、抗張力の上限を550N/mm2 、硬度の上限を190Hvとしたのは、上記上限値を越えると、プレス成形にてカップ形状の負極端子を作製できなくなるためである。
【0010】
【発明の実施の形態】
本発明は、負極端子材の板厚、抗張力(耐力)、および硬度をそれぞれ前記請求項1〜請求項3に記載の範囲内に特定することにより、アルカリマンガン電池における封口耐圧の向上を図るものである。以下、図1を参考にしてアルカリマンガン電池の実施例を説明する。
【0011】
[実施例]
本実施例のアルカリマンガン電池1の作製要領は以下の通りである。
先ず、正極活物質としての電解二酸化マンガン91.2重量%に人造黒鉛5.68重量%と保液材としてのポリアクリル酸0.05%を添加して混合する。
次に、この混合合剤96.93重量%に対して約40%の水酸化カリウム水溶液3.07重量%を加えて良く混合し、ローラコンパクタで圧延して180〜1000μmの幅で篩ったものを正極合剤3とする。これを所定の大きさの円筒リング状に成形し、この成形体をニッケルメッキ鋼板の正極缶2に嵌合する。
次いで、これにビニロン繊維不織布から成る円筒状セパレータ4を挿入し、その内側に所定量の電解液と共に、亜鉛合金粉末200重量部にゲル化剤としてのポリアリル酸を1.1重量部、ポリアクリル酸ナトリウムを36.7重量部、水56.5重量部、酸化亜鉛5.9重量部を組成としたゲル状負極5を充填する。
最後に、ニッケルメッキ鋼板よりプレス成形した負極端子8とガスケット9および集電体6を組み合わせた封口部を挿入し、正極缶2の開口部を内側に屈曲させることにより密閉し、アルカリマンガン電池を作製した。尚、本実施例で作製した電池のサイズはLR20形である。
【0012】
(従来例)
上記構成のアルカリマンガン電池において、負極端子材として、厚さ0.4mm、抗張力350N/mm2、硬度(ビッカース硬度)99Hvの鋼板を用いた。
参考例1)
上記従来例において、負極端子材として厚さ0.5mmの鋼板を用いた。
参考例2)
上記従来例において、負極端子材として厚さ1.0mmの鋼板を用いた。
(比較例1)
上記従来例において、厚さ1.1mmの鋼板を用いたが、同様の負極端子にはプレス成形できなかった。
参考例3)
上記従来例において、負極端子材として抗張力が370N/mm2の鋼板を用いた。
参考例4)
上記従来例において、負極端子材として抗張力が550N/mm2の鋼板を用いた。
(比較例2)
上記従来例において、抗張力が560N/mm2の鋼板を用いたが、同様の負極端子にはプレス成形できなかった。
参考例5)
上記従来例において、負極端子材として硬度が130Hvの鋼板を用いた。
参考例6)
上記従来例において、負極端子材として硬度が190Hvの鋼板を用いた。
(比較例3)
上記従来例において、硬度が200Hvの鋼板を用いたが、同様の負極端子にはプレス成形できなかった。
(実施例
上記従来例において、負極端子材として厚さが0.5mm、抗張力が550N/mm2、硬度が190Hvの鋼板を用いた。
(実施例
上記従来例において、負極端子材として厚さが0.8mm、抗張力が550N/mm2、硬度が190Hvの鋼板を用いた。
(実施例
上記従来例において、負極端子材として厚さが1.0mm、抗張力が550N/mm2、硬度が190Hvの鋼板を用いた。
【0013】
上記従来例および比較例によるアルカリマンガン電池の封口耐圧値と、各電池を4個直列接続にて10時間の短絡試験を実施し、その一週間後の電池破裂数を調査し、その結果を表1に示した。
【0014】
【表1】

Figure 0005070664
【0015】
表1から明らかなように、実施例1〜に示す本発明のアルカリマンガン電池および参考例1〜6に示すアルカリマンガン電池は、従来のアルカリマンガン電池に比べて封口耐圧が向上しており、これに伴って電池の破裂数が減少していることが判る。特に、負極端子材の板厚、抗張力、および硬度を所定範囲内に特定した実施例にあっては、封口耐圧の大幅な改善が見られ、電池の破裂を完全に無くすことができた。
尚、比較例1〜3については、負極端子のプレス成形が不能で、電池が作製で
きなかった例である。
【0016】
【発明の効果】
以上説明したように、本発明によれば、負極端子材の板厚、抗張力、および硬度をそれぞれ請求項1〜請求項3に記載の範囲内に特定することにより、負極端子の強度が向上し、封口耐圧を大幅に改善することができる。これにより、電池の誤使用があっても、内圧上昇による電池破裂を招かない安全性に優れるアルカリマンガン電池を提供できる。
【図面の簡単な説明】
【図1】アルカリマンガン電池の負極端子の内部構造を示す要部断面図である。
【符号の説明】
1 アルカリマンガン電池
2 正極缶
8 負極端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline manganese battery, and more particularly to improvement of a negative electrode terminal included in a sealing portion.
[0002]
[Prior art]
FIG. 1 shows the internal structure of the negative electrode terminal portion of the alkaline manganese battery.
As shown in the drawing, the alkaline manganese battery 1 includes a bottomed cylindrical positive electrode can 2 that also serves as a positive electrode terminal, a hollow cylindrical positive electrode mixture 3 disposed in the positive electrode can, and a cylindrical separator 4. It is composed of a gel-like zinc negative electrode 5 filled in the hollow portion of the positive electrode mixture 3 together with the current collector 6. After the positive electrode mixture 3 and the zinc negative electrode 5 are accommodated in the positive electrode can 2, the gasket 7 is interposed. A sealing portion including the negative electrode terminal 8 is inserted into the opening, and the end of the opening is bent inward to form a sealed structure.
[0003]
Also, in the case of a sealed structure such as an alkaline manganese battery, if the battery is misused, such as when it is externally shorted or reversely inserted, due to abnormal internal pressure generation due to generation of internal gas or heat generation, leakage or worst case There is a risk of battery explosion. For this reason, in order to prevent the battery from rupturing even when used incorrectly, a safety mechanism is provided by providing a gasket 7 having a thin wall portion and a gas vent hole 9 for releasing an abnormal internal pressure at the edge of the negative electrode terminal 8.
[0004]
[Problems to be solved by the invention]
However, in the conventional alkaline manganese battery, the sealing pressure resistance of the negative electrode terminal 8 that affects leakage and rupture is, for example, as low as about 3.2 MPa when the battery size is the LR20 type. When the gas vent hole 9 is closed, there is a possibility of explosion if a large amount of gas is generated inside the battery.
[0005]
An object of the present invention is to provide a highly safe alkaline manganese battery in which the drawbacks of the conventional battery are improved, the sealing pressure resistance is improved, and the risk of explosion when the battery is abnormal is reduced.
[0006]
[Means for Solving the Problems]
Effective measures for improving the sealing pressure resistance of the battery include a method of increasing the strength of the crimped portion of the positive electrode can, a method of reducing the battery opening diameter, and a method of increasing the strength of the negative electrode terminal. The present invention proposes a measure for improving the sealing pressure resistance by increasing the strength of the negative electrode terminal.
[0007]
That is, the present invention is defined in claim 1, in cylindrical alkaline-manganese battery was sealed the opening of the cylindrical cathode can with a sealing unit comprising a negative terminal of a cup shape is press-formed, as the negative electrode Kozai, plate A nickel-plated steel sheet having a thickness of 0.5 to 1.0 mm and a tensile strength of 370 to 550 N / mm 2 is used .
[0008]
Further, the invention of claim 2, in cylindrical alkaline-manganese battery was sealed the opening of the cylindrical cathode can with a sealing unit comprising a negative terminal of a cup shape is press-formed, as the negative electrode Kozai, plate A nickel-plated steel sheet having a thickness of 0.5 to 1.0 mm , a tensile strength of 370 to 550 N / mm 2 , and a hardness of 130 to 190 Hv is used .
[0009]
By specifying the plate thickness, tensile strength, and hardness of the negative electrode terminal material of the alkaline manganese battery within the ranges of claims 1 to 3, the strength of the positive electrode can opening that is not deformed when caulking is excellent. A negative electrode terminal can be realized and the sealing pressure resistance is improved.
Here, the upper limit of the thickness of the negative electrode terminal material is 1 mm, the upper limit of the tensile strength is 550 N / mm 2 , and the upper limit of the hardness is 190 Hv. It is because it becomes impossible to produce.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention aims to improve the sealing withstand voltage in alkaline manganese batteries by specifying the thickness, tensile strength (proof strength), and hardness of the negative electrode terminal material within the ranges of claims 1 to 3, respectively. It is. Hereinafter, an embodiment of an alkaline manganese battery will be described with reference to FIG.
[0011]
[Example]
The preparation procedure of the alkaline manganese battery 1 of the present example is as follows.
First, 5.68% by weight of artificial graphite and 0.05% of polyacrylic acid as a liquid retaining material are added to and mixed with 91.2% by weight of electrolytic manganese dioxide as a positive electrode active material.
Next, about 40% potassium hydroxide aqueous solution (3.07% by weight) was added to 96.93% by weight of this mixture and mixed well, rolled with a roller compactor and sieved to a width of 180 to 1000 μm. This is designated as positive electrode mixture 3. This is formed into a cylindrical ring shape of a predetermined size, and this formed body is fitted to the positive electrode can 2 of a nickel-plated steel plate.
Next, a cylindrical separator 4 made of vinylon fiber non-woven fabric is inserted into this, along with a predetermined amount of electrolyte, 200 parts by weight of zinc alloy powder, 1.1 parts by weight of polyallylic acid as a gelling agent, and polyacrylic The gelled negative electrode 5 composed of 36.7 parts by weight of sodium acid, 56.5 parts by weight of water, and 5.9 parts by weight of zinc oxide is filled.
Finally, a sealing portion formed by combining the negative electrode terminal 8, the gasket 9 and the current collector 6 press-formed from a nickel-plated steel plate is inserted, and the opening of the positive electrode can 2 is bent inward to seal the alkaline manganese battery. Produced. Note that the size of the battery manufactured in this example is the LR20 type.
[0012]
(Conventional example)
In the alkaline manganese battery having the above configuration, a steel plate having a thickness of 0.4 mm, a tensile strength of 350 N / mm 2 and a hardness (Vickers hardness) of 99 Hv was used as the negative electrode terminal material.
( Reference Example 1)
In the above conventional example, a steel plate having a thickness of 0.5 mm was used as the negative electrode terminal material.
( Reference Example 2)
In the above conventional example, a steel plate having a thickness of 1.0 mm was used as the negative electrode terminal material.
(Comparative Example 1)
In the above conventional example, a steel plate having a thickness of 1.1 mm was used, but the same negative electrode terminal could not be press-formed.
( Reference Example 3)
In the above conventional example, a steel plate having a tensile strength of 370 N / mm 2 was used as the negative electrode terminal material.
( Reference Example 4)
In the above conventional example, a steel plate having a tensile strength of 550 N / mm 2 was used as the negative electrode terminal material.
(Comparative Example 2)
In the above conventional example, a steel plate having a tensile strength of 560 N / mm 2 was used, but the same negative electrode terminal could not be press-formed.
( Reference Example 5)
In the above conventional example, a steel plate having a hardness of 130 Hv was used as the negative electrode terminal material.
( Reference Example 6)
In the above conventional example, a steel plate having a hardness of 190 Hv was used as the negative electrode terminal material.
(Comparative Example 3)
In the conventional example described above, a steel plate having a hardness of 200 Hv was used, but the same negative electrode terminal could not be press-formed.
(Example 1 )
In the conventional example, a steel plate having a thickness of 0.5 mm, a tensile strength of 550 N / mm 2 , and a hardness of 190 Hv was used as the negative electrode terminal material.
(Example 2 )
In the above conventional example, a steel plate having a thickness of 0.8 mm, a tensile strength of 550 N / mm 2 and a hardness of 190 Hv was used as the negative electrode terminal material.
(Example 3 )
In the above conventional example, a steel plate having a thickness of 1.0 mm, a tensile strength of 550 N / mm 2 and a hardness of 190 Hv was used as the negative electrode terminal material.
[0013]
The sealing pressure resistance value of the alkaline manganese battery according to the above conventional example and the comparative example, and a short circuit test for 10 hours with four batteries connected in series, the number of battery ruptures after one week was investigated, and the results are shown. It was shown in 1.
[0014]
[Table 1]
Figure 0005070664
[0015]
As is clear from Table 1, the alkaline manganese batteries of the present invention shown in Examples 1 to 3 and the alkaline manganese batteries shown in Reference Examples 1 to 6 have improved sealing pressure resistance compared to conventional alkaline manganese batteries, Along with this, it can be seen that the number of battery ruptures has decreased. In particular, in Examples 1 to 3 in which the plate thickness, tensile strength, and hardness of the negative electrode terminal material were specified within a predetermined range, a significant improvement in the sealing pressure resistance was seen, and the battery burst could be completely eliminated. It was.
Comparative Examples 1 to 3 are examples in which the negative electrode terminal could not be press-molded and the battery could not be manufactured.
[0016]
【Effect of the invention】
As described above, according to the present invention, the strength of the negative electrode terminal is improved by specifying the thickness, tensile strength, and hardness of the negative electrode terminal material within the ranges of claims 1 to 3, respectively. The sealing pressure resistance can be greatly improved. Thereby, even if the battery is misused, it is possible to provide an alkaline manganese battery excellent in safety that does not cause battery explosion due to an increase in internal pressure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing an internal structure of a negative electrode terminal of an alkaline manganese battery.
[Explanation of symbols]
1 Alkaline manganese battery 2 Positive electrode can 8 Negative electrode terminal

Claims (2)

プレス成形されたカップ形状の負極端子を含む封口部で筒状正極缶の開口部を密閉した筒型アルカリマンガン電池において、
前記負極端子材として、板厚が0.5〜1.0mm、且つ、抗張力が370〜550N/mm2ニッケルメッキ鋼板を用いたことを特徴とするアルカリマンガン電池。
In the cylindrical alkaline manganese battery in which the opening of the cylindrical positive electrode can is sealed with a sealing portion including a cup-shaped negative electrode terminal formed by pressing ,
A nickel-plated steel sheet having a plate thickness of 0.5 to 1.0 mm and a tensile strength of 370 to 550 N / mm 2 is used as the negative electrode terminal material.
プレス成形されたカップ形状の負極端子を含む封口部で筒状正極缶の開口部を密閉した筒型アルカリマンガン電池において、
前記負極端子材として、板厚が0.5〜1.0mm、且つ、抗張力が370〜550N/mm 2 、且つ、硬度が130〜190Hvのニッケルメッキ鋼板を用いたことを特徴とするアルカリマンガン電池。
In the cylindrical alkaline manganese battery in which the opening of the cylindrical positive electrode can is sealed with a sealing portion including a cup-shaped negative electrode terminal formed by pressing ,
An alkaline manganese battery using a nickel-plated steel sheet having a plate thickness of 0.5 to 1.0 mm , a tensile strength of 370 to 550 N / mm 2 , and a hardness of 130 to 190 Hv as the negative electrode terminal material. .
JP2001192209A 2001-06-26 2001-06-26 Alkaline manganese battery Expired - Lifetime JP5070664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192209A JP5070664B2 (en) 2001-06-26 2001-06-26 Alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192209A JP5070664B2 (en) 2001-06-26 2001-06-26 Alkaline manganese battery

Publications (2)

Publication Number Publication Date
JP2003007263A JP2003007263A (en) 2003-01-10
JP5070664B2 true JP5070664B2 (en) 2012-11-14

Family

ID=19030695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192209A Expired - Lifetime JP5070664B2 (en) 2001-06-26 2001-06-26 Alkaline manganese battery

Country Status (1)

Country Link
JP (1) JP5070664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885436B2 (en) * 2004-10-04 2012-02-29 東洋鋼鈑株式会社 Steel plate for battery bottom plate, surface-treated steel plate for battery bottom plate, battery using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670357B2 (en) * 1995-09-18 2005-07-13 東芝電池株式会社 Cylindrical battery

Also Published As

Publication number Publication date
JP2003007263A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
JP4259890B2 (en) Sealed storage battery
EP1959023A1 (en) Alkaline dry battery
WO2012042743A1 (en) Alkaline secondary battery
GB2109622A (en) Air-depolarized button cells
US20090263710A1 (en) Aa alkaline battery
JP2009087729A (en) Closed battery
JP4243148B2 (en) Sealed storage battery
EP1611623B1 (en) Zinc/air cell
US20090181299A1 (en) Aa alkaline battery
JP5070664B2 (en) Alkaline manganese battery
EP1142043B1 (en) Electrochemical cell closure
EP1629550B1 (en) Zinc/air cell assembly
EP3561904A1 (en) Alkaline secondary battery
JP4562984B2 (en) Sealed alkaline primary battery
CN209133640U (en) Deep discharge resistant alkaline battery
JP2002373711A (en) Button type air-zinc battery and its method of manufacture
JP2006202637A (en) Alkaline battery
JP2001068121A (en) Cylindrical alkaline battery
JP2008004428A (en) Alkaline dry battery
JP3670357B2 (en) Cylindrical battery
JP4292431B2 (en) Cylindrical alkaline battery
WO2010140295A1 (en) Alkaline dry battery
JP2007200682A (en) Coin battery
CN214280048U (en) Battery with a battery cell
JP3596954B2 (en) Method of manufacturing prismatic battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term