JP5066887B2 - Water quality evaluation method and apparatus - Google Patents

Water quality evaluation method and apparatus Download PDF

Info

Publication number
JP5066887B2
JP5066887B2 JP2006283872A JP2006283872A JP5066887B2 JP 5066887 B2 JP5066887 B2 JP 5066887B2 JP 2006283872 A JP2006283872 A JP 2006283872A JP 2006283872 A JP2006283872 A JP 2006283872A JP 5066887 B2 JP5066887 B2 JP 5066887B2
Authority
JP
Japan
Prior art keywords
light
substrate
reflected light
storage chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006283872A
Other languages
Japanese (ja)
Other versions
JP2008101982A (en
Inventor
哲夫 水庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006283872A priority Critical patent/JP5066887B2/en
Publication of JP2008101982A publication Critical patent/JP2008101982A/en
Application granted granted Critical
Publication of JP5066887B2 publication Critical patent/JP5066887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、超純水などの水質を評価する装置と、この装置を用いた水質評価方法に係り、特に電子デバイス基板に検水を接触させると共に、この電子デバイス基板の表面性状を測定して水質を評価する水質評価装置及び水質評価方法に関する。   The present invention relates to an apparatus for evaluating water quality, such as ultrapure water, and a water quality evaluation method using the apparatus, and in particular, the test water is brought into contact with the electronic device substrate and the surface property of the electronic device substrate is measured. The present invention relates to a water quality evaluation apparatus and a water quality evaluation method for evaluating water quality.

半導体や液晶等の電子デバイスの製造工程に超純水が大量に使用されている。超純水中の不純物濃度は電子デバイス基板に影響を与えるため、超純水中の不純物を検知する必要がある。   A large amount of ultrapure water is used in the manufacturing process of electronic devices such as semiconductors and liquid crystals. Since the impurity concentration in the ultrapure water affects the electronic device substrate, it is necessary to detect the impurity in the ultrapure water.

超純水中の不純物濃度を検出する水質評価方法として、特開2001−208748、特開2001−228138、特開2001−237289には、半導体基板(ウエハ)を容器内に収容し、超純水を該容器に通水して超純水中の不純物をウエハに付着させ、その後、半導体基板の表面性状を測定し、超純水の水質を評価する方法が記載されている。   As a water quality evaluation method for detecting the impurity concentration in ultrapure water, Japanese Patent Application Laid-Open No. 2001-208748, Japanese Patent Application Laid-Open No. 2001-228138, and Japanese Patent Application Laid-Open No. 2001-237289 disclose that a semiconductor substrate (wafer) is accommodated in a container and ultrapure water is used. Is passed through the container to allow impurities in the ultrapure water to adhere to the wafer, and then the surface properties of the semiconductor substrate are measured to evaluate the quality of the ultrapure water.

上記のうち特開2001−208748では、通水後、ウエハを容器から取り出して乾燥し、ウエハ表面の微粒子数をウエハパーティクルカウンタで測定し、水質評価を行っている。また、特開2001−228138では、同様に容器から取り出して乾燥したウエハ表面の鉄濃度を全反射蛍光X線分析装置で測定し、水質を評価している。   Of the above, Japanese Patent Application Laid-Open No. 2001-208748 takes out the wafer from the container after drying, dries it, measures the number of fine particles on the wafer surface with a wafer particle counter, and evaluates the water quality. Japanese Patent Laid-Open No. 2001-228138 similarly evaluates the water quality by measuring the iron concentration on the wafer surface taken out from the container and dried with a total reflection X-ray fluorescence spectrometer.

これらの方法では、容器外にウエハを取り出すところから、ウエハ汚染による測定誤差が大きくなるおそれがある。また、全反射蛍光X線分析装置は装置が大掛りでコスト高である。   In these methods, since the wafer is taken out of the container, measurement errors due to wafer contamination may increase. In addition, the total reflection X-ray fluorescence analyzer is large and expensive.

特開2001−237289号では、容器内でウエハを高速回転させて乾燥させた後、全反射蛍光X線分析装置で測定するようにしており、ウエハ汚染による誤差は解消されるが、全反射蛍光X線分析装置が大掛りでコスト高である。また、容器を高速回転させる機構が必要であり、容器コストも高くつく。
特開2001−208748号公報 特開2001−228138号公報 特開2001−237289号公報
In Japanese Patent Laid-Open No. 2001-237289, a wafer is rotated at high speed in a container and dried, and then measured with a total reflection X-ray fluorescence analyzer. Error due to wafer contamination is eliminated, but total reflection fluorescence is eliminated. X-ray analyzers are large and expensive. Further, a mechanism for rotating the container at a high speed is required, and the container cost is high.
JP 2001-208748 A JP 2001-228138 A JP 2001-237289 A

本発明は、上記従来の問題点を解決し、比較的簡易な装置構成でありながら超純水などの水質を精度よく評価することができる水質評価装置及び方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a water quality evaluation apparatus and method capable of accurately evaluating the quality of water such as ultrapure water while having a relatively simple apparatus configuration.

請求項1の水質評価装置は、電子デバイス基板を収容する収容室を有すると共に、該収容室に検水を流通させるための流入口及び流出口を有する容器と、該収容室内に収容された電子デバイス基板に向けて光を照射する光照射手段と、該電子デバイス基板からの反射光又は散乱光を受光してその強度を検出する受光手段とを備えてなり、該光照射手段の光の照射端及び受光手段の光の受光端は、それぞれ該収容室内に露呈しており、該容器は、該収容室を有した底盤と、該収容室を閉鎖する上蓋とを有しており、該収容室は、該底盤の上面から凹陥した円形の窪みよりなり、該上蓋の中央に、該収容室内に検水を流入させるための前記流入口が設けられ、該収容室の底面の中央に、該収容室内から検水を流出させるための前記流出口が設けられており、該光照射手段は、該容器の外部に配置された照射光源と、該照射光源から照射された光を該収容室内に導くための照射光導入部材とを備えており、該照射光導入部材は、該上蓋の上面から所定角度にて該収容室内の基板の上面の中央付近に向って差し込まれ、その先端面は、該収容室内に露出しており、該照射光導入部材の該先端面が前記光の照射端となっており、該流入口回りに該光照射手段と180°反対側に、該容器の外部に配置された反射光吸収器と、該収容室内の基板からの反射光を該収容室内から該反射光吸収器に導く反射光導出部材とを備えた反射光トラップ、又は、該容器の外部に配置された反射光受光素子と、該収容室内の基板からの反射光を該収容室内から該反射光受光素子に導く反射光導出部材と、該反射光受光素子が検知した反射光の強度を記録する反射光強度記録演算器とを備えた反射光受光手段が配置されており、該反射光導出部材は、その軸心が該収容室内の基板からの反射光の光軸と一致するように、該上蓋の上面から所定角度にて該収容室内の基板の上面の中央付近に向って差し込まれ、その先端面は、該収容室内に露出しており、該反射光導出部材の該先端面が反射光の受光端となっており、該流入口回りに該光照射手段から90°位置をずらして、該容器の外部に配置された散乱光受光素子と、該収容室内の基板からの散乱光を該収容室内から該散乱光受光素子に導く散乱光導出部材と、該散乱光受光素子が検知した散乱光の強度を記録する散乱光強度記録演算器とを備えた散乱光受光手段が配置されており、該散乱光導出部材は、その軸心が該収容室内の基板からの散乱光の光軸と一致するように、該上蓋の上面から所定角度にて該収容室内の基板の上面の中央付近に向って差し込まれ、その先端面は、該収容室内に露出しており、該散乱光導出部材の該先端面が散乱光の受光端となっていることを特徴とするものである。 The water quality evaluation apparatus according to claim 1 has a storage chamber for storing an electronic device substrate, a container having an inlet and an outlet for circulating test water in the storage chamber, and an electron stored in the storage chamber. a light irradiating means for irradiating light to the device substrate, and receives the reflected light or scattered light from the electronic device substrate Ri name and a light receiving means for detecting the intensity of light of the light emitting means The irradiation end and the light receiving end of the light receiving means are respectively exposed in the storage chamber, and the container has a bottom plate having the storage chamber and an upper lid for closing the storage chamber, The storage chamber is formed of a circular recess recessed from the upper surface of the bottom plate, and the inflow port for allowing the test water to flow into the storage chamber is provided at the center of the upper lid, and at the center of the bottom surface of the storage chamber, The outlet for allowing the test water to flow out of the storage chamber is provided. The light irradiation means includes an irradiation light source disposed outside the container, and an irradiation light introducing member for guiding the light irradiated from the irradiation light source into the storage chamber. The introduction member is inserted from the upper surface of the upper lid toward the center of the upper surface of the substrate in the accommodation chamber at a predetermined angle, and the front end surface thereof is exposed in the accommodation chamber, and the irradiation light introduction member The front end surface is an irradiation end of the light, a reflected light absorber disposed outside the container on the opposite side of the light irradiation means 180 ° around the inflow port, and a substrate from the substrate in the storage chamber A reflected light trap having a reflected light deriving member for guiding reflected light from the accommodation chamber to the reflected light absorber, or a reflected light receiving element arranged outside the container, and reflection from a substrate in the accommodation chamber A reflected light deriving member for guiding light from the accommodation chamber to the reflected light receiving element; and the reflected light Reflected light receiving means including a reflected light intensity recording calculator for recording the intensity of reflected light detected by the light receiving element is disposed, and the reflected light deriving member has an axis centered from the substrate in the accommodating chamber. It is inserted from the upper surface of the upper lid toward the center of the upper surface of the substrate in the storage chamber at a predetermined angle so as to coincide with the optical axis of the reflected light, and its tip surface is exposed in the storage chamber. The front end surface of the reflected light deriving member is a light receiving end of reflected light, and the scattered light receiving element disposed outside the container by shifting the position around the inflow port by 90 ° from the light irradiation means. A scattered light deriving member that guides scattered light from the substrate in the accommodation chamber to the scattered light receiving element from the accommodation chamber, and a scattered light intensity recording calculator that records the intensity of the scattered light detected by the scattered light receiving element; Scattered light receiving means comprising: is disposed, and the scattered light deriving member is Inserted from the top surface of the upper lid toward the center of the top surface of the substrate in the storage chamber toward the center of the top surface of the substrate in the storage chamber so that its axis coincides with the optical axis of the scattered light from the substrate in the storage chamber, Is exposed in the storage chamber, and the front end surface of the scattered light deriving member is a light receiving end of the scattered light .

請求項の水質評価装置は、請求項1において、前記受光手段の受光信号強度又はその変化を経時的に記録する記録手段を備えたことを特徴とするものである。 Water quality according to claim 2 is characterized in that it comprises Oite to claim 1, the light-receiving signal intensity or recording means for recorded over time the change of the light receiving means.

請求項の水質評価装置は、請求項1又は2において、前記受光手段の受光信号強度又はその変化が所定値に達したときに警報信号を発生する警報手段を備えたことを特徴とするものである。 Water evaluation device according to claim 3, in claim 1 or 2, which is characterized in that the light-receiving signal intensity or the change of the light receiving means including an alarm means for generating an alarm signal when it reaches a predetermined value It is.

請求項の水質評価装置は、請求項1ないしのいずれか1項において、前記光照射手段は特定波長の光を照射するものであり、前記受光手段はこの特定波長の光の強度を検知するものであることを特徴とするものである。 A water quality evaluation apparatus according to a fourth aspect of the present invention is the water quality evaluation apparatus according to any one of the first to third aspects, wherein the light irradiating means emits light of a specific wavelength, and the light receiving means detects the intensity of the light of the specific wavelength. It is what is characterized by.

請求項の水質評価方法は、請求項1ないし4のいずれか1項に記載の水質評価装置を用いて超純水の水質を評価する水質評価方法であって、水質評価装置の前記収容室内に電子デバイス基板を収容し、前記流入口及び流出口を介して該収容室内に超純水よりなる検水を連続的に流通させると共に、該収容室内の該電子デバイス基板に前記光照射手段で光を照射し、該電子デバイス基板からの反射光又は散乱光の強度を前記反射光受光手段又は散乱光受光手段で検知して水質評価を行うことを特徴とするものである。 Water evaluation method according to claim 5, meet water quality evaluation method for evaluating the quality of ultra pure water using the water quality evaluation apparatus according to any one of claims 1 to 4, the housing of the water quality evaluation device housing the electronic device substrate in the room, the inlet and through the outlet causes a continuous flow of test water consisting of ultra-pure water into the housing chamber, said light irradiating means to the housing chamber of the electronic device substrate And the water quality is evaluated by detecting the intensity of reflected light or scattered light from the electronic device substrate with the reflected light receiving means or scattered light receiving means .

請求項の水質評価方法は、請求項において、電子デバイス基板として、シリコンウエハ、シリコンウエハの表面にシリコン酸化膜、アルミニウム薄膜又は銅薄膜が形成された基板、ガラス基板、GaAsウエハ、又はサファイアウエハを用いることを特徴とするものである。 The water quality evaluation method according to claim 6 is the electronic device substrate according to claim 5, wherein the electronic device substrate is a silicon wafer, a substrate in which a silicon oxide film, an aluminum thin film or a copper thin film is formed on the surface of the silicon wafer, a glass substrate, a GaAs wafer, or sapphire. A wafer is used.

本発明の水質評価方法及び装置では、容器内の電子デバイス基板に向けて光を照射し、その反射光又は散乱光の強度を検出し、水質評価を行う。超純水などの検水中の微粒子が電子デバイス基板の表面に付着すると、反射光強度が低下し、散乱光強度が増大するので、反射光強度又は散乱光強度から検水中の不純物濃度を検出し、水質評価を行うことができる。   In the water quality evaluation method and apparatus of the present invention, light is irradiated toward the electronic device substrate in the container, the intensity of the reflected light or scattered light is detected, and the water quality is evaluated. If fine particles in the test water such as ultrapure water adhere to the surface of the electronic device substrate, the reflected light intensity decreases and the scattered light intensity increases, so the impurity concentration in the test water is detected from the reflected light intensity or scattered light intensity. Water quality can be evaluated.

本発明では、電子デバイス基板を容器内に収容したまま測定を行うため、汚染による誤差は生じることがない。また、光の照射手段と受光手段は、全反射蛍光X線分析装置に比べて構成が簡易であり、低コストである。さらに、通水した状態で、又は容器内に水を存在させた状態で測定するので、容器内の電子デバイス基板を高速回転させる機構も不要であり、容器コストも低い。   In the present invention, since the measurement is performed while the electronic device substrate is accommodated in the container, an error due to contamination does not occur. Further, the light irradiation means and the light receiving means have a simpler configuration and lower cost than the total reflection X-ray fluorescence analyzer. Furthermore, since the measurement is performed in a state where water has passed through or in a state where water is present in the container, a mechanism for rotating the electronic device substrate in the container at a high speed is unnecessary, and the container cost is low.

本発明では、光照射手段の光照射端及び受光手段の受光端を収容室内に露呈させるようにしているので、照射する光電子デバイス基板に直接、正確に照射できる。 In the present invention, since so as to expose the light receiving end of light irradiation end and the light receiving unit of the light irradiation means in the housing chamber, directly light irradiated on the electronic device substrate, Ru can be accurately irradiated.

本発明では、受光手段によって検知される受光信号の強度又は変化を経時的に記録し、水質の経時的な変化を確認できるようにしてもよい。   In the present invention, the intensity or change of the received light signal detected by the light receiving means may be recorded with time so that the change in water quality with time can be confirmed.

また、この受光信号の強度又は変化の経時的な変化が予め設定した所定値に達したときに警報信号を発し、超純水などの水質の低下を知ることができるようにしてもよい。   In addition, an alarm signal may be issued when the temporal change in the intensity or change of the received light signal reaches a predetermined value set in advance so that the deterioration of water quality such as ultrapure water can be known.

なお、測定用の光は紫外光、可視光のいずれでもよい。光として特定波長のものを用いることにより、測定精度を高くすることが可能である。   Note that the measurement light may be either ultraviolet light or visible light. By using light having a specific wavelength, it is possible to increase measurement accuracy.

以下に、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

第1図は実施の形態に係る水質評価装置の縦断面図、第2図はこの水質評価装置の基板保持容器の上面図、第3図はこの基板保持容器の底盤の斜視図、第4図はこの水質評価装置を用いた水質評価方法を示す概略的な系統図である。   1 is a longitudinal sectional view of a water quality evaluation apparatus according to an embodiment, FIG. 2 is a top view of a substrate holding container of the water quality evaluation apparatus, FIG. 3 is a perspective view of a bottom plate of the substrate holding container, FIG. These are the schematic system diagrams which show the water quality evaluation method using this water quality evaluation apparatus.

[電子デバイス基板W]
本発明の水質評価方法で用いられる電子デバイス基板(以下、単に基板と称することがある。)Wとしては、シリコンウエハや、シリコンウエハの表面にシリコン酸化膜、アルミニウム薄膜又は銅薄膜が形成された基板、ガラス基板、GaAsウエハ、又はサファイアウエハなどが挙げられる。ただし、これらは一例であり、本発明では、これ以外の電子デバイス基板を用いることもできる。
[Electronic device substrate W]
As an electronic device substrate (hereinafter, simply referred to as a substrate) W used in the water quality evaluation method of the present invention, a silicon wafer, a silicon oxide film, an aluminum thin film, or a copper thin film is formed on the surface of the silicon wafer. Examples include a substrate, a glass substrate, a GaAs wafer, and a sapphire wafer. However, these are only examples, and other electronic device substrates may be used in the present invention.

[水質評価装置10]
この実施の形態における水質評価装置10は、基板Wの収容室12aを有した底盤12と、この収容室12aを閉鎖する上蓋13とからなる基板保持容器11を備えている。該収容室12aは、底盤12の上面から凹陥した円形の窪みよりなる。
[Water quality evaluation apparatus 10]
The water quality evaluation apparatus 10 in this embodiment includes a substrate holding container 11 including a bottom plate 12 having a storage chamber 12a for a substrate W and an upper lid 13 for closing the storage chamber 12a. The storage chamber 12 a is formed of a circular depression that is recessed from the upper surface of the bottom plate 12.

この実施の形態では、該基板保持容器11は、光を透過しない材質、例えば金属製のものとなっている。   In this embodiment, the substrate holding container 11 is made of a material that does not transmit light, for example, metal.

上蓋13の中央付近には、該収容室12a内に検水(超純水)を流入させるための流入口14が設けられており、収容室12aの底面の中央付近には、該収容室12a内から検水を流出させるための流出口15が設けられている。この流入口14に給水管16が接続され、流出口15に排水管17が接続されている。   Near the center of the upper lid 13, an inlet 14 is provided for allowing test water (ultra pure water) to flow into the storage chamber 12a. Near the center of the bottom surface of the storage chamber 12a, the storage chamber 12a is provided. An outlet 15 is provided for allowing the test water to flow out from the inside. A water supply pipe 16 is connected to the inlet 14, and a drain pipe 17 is connected to the outlet 15.

符号12bは、底盤12の下面から下方へ立設された脚を示している。なお、この脚12bは、基板保持容器11を略水平面上に配置したときに該基板保持容器11を略水平に支持するよう構成されている。   Reference numeral 12b denotes a leg erected downward from the lower surface of the bottom board 12. The legs 12b are configured to support the substrate holding container 11 substantially horizontally when the substrate holding container 11 is disposed on a substantially horizontal plane.

この実施の形態では、上蓋13に、収容室12a内に収容された基板Wに向けて光を照射する光照射装置30と、該基板Wからの反射光を吸収する反射光トラップ40と、該基板Wからの散乱光を受光する散乱光受光装置50とが設けられている。   In this embodiment, the light irradiation device 30 that irradiates light toward the substrate W accommodated in the accommodation chamber 12a, the reflected light trap 40 that absorbs the reflected light from the substrate W, A scattered light receiving device 50 that receives scattered light from the substrate W is provided.

該光照射装置30は、基板保持容器11の外部に配置された照射光源31と、該照射光源31から照射された光を収容室12a内に導くための照射光導入部材32と、該照射光源31に電力を供給するための電源33とを備えている。この実施の形態では、該照射光源31としてレーザー光源を用いている。該照射光導入部材32は、中空管や、ガラス又は透明樹脂製の棒状体等よりなる。この照射光導入部材32は、上蓋13の上面から所定角度にて収容室12a内の基板Wの上面の中央付近に向って差し込まれ、その先端面(光の照射端)は、収容室12a内に露出している。照射光源31からの光は、照射光導入部材32内を通って、収容室12a内の基板Wの上面の中央付近に照射される。   The light irradiation device 30 includes an irradiation light source 31 arranged outside the substrate holding container 11, an irradiation light introducing member 32 for guiding light irradiated from the irradiation light source 31 into the storage chamber 12a, and the irradiation light source. And a power source 33 for supplying power to 31. In this embodiment, a laser light source is used as the irradiation light source 31. The irradiation light introducing member 32 is made of a hollow tube, a rod-shaped body made of glass or transparent resin, or the like. The irradiation light introducing member 32 is inserted from the upper surface of the upper lid 13 at a predetermined angle toward the vicinity of the center of the upper surface of the substrate W in the accommodation chamber 12a, and its tip surface (light irradiation end) is located in the accommodation chamber 12a. Is exposed. Light from the irradiation light source 31 passes through the irradiation light introducing member 32 and is irradiated near the center of the upper surface of the substrate W in the storage chamber 12a.

反射光トラップ40は、流入口14回りに光照射装置30と180°反対側に配置されている。この反射光トラップ40は、基板保持容器11の外部に配置された反射光吸収器41と、基板Wからの反射光を収容室12a内から該反射光吸収器41に導く反射光導出部材42とを備えている。該反射光導出部材42も中空管やガラス又は透明樹脂製の棒状体等よりなり、その軸心が基板Wからの反射光の光軸と一致するように、上蓋13の上面から所定角度にて収容室12a内の基板Wの上面の中央付近に向って差し込まれ、その先端面(受光端)は収容室12a内に露出している。   The reflected light trap 40 is arranged around the inflow port 14 on the side opposite to the light irradiation device 30 by 180 °. The reflected light trap 40 includes a reflected light absorber 41 disposed outside the substrate holding container 11, a reflected light deriving member 42 that guides reflected light from the substrate W to the reflected light absorber 41 from within the storage chamber 12 a. It has. The reflected light deriving member 42 is also made of a hollow tube, glass, a transparent resin rod-like body, or the like, and is arranged at a predetermined angle from the upper surface of the upper lid 13 so that its axis coincides with the optical axis of reflected light from the substrate W. Then, it is inserted toward the vicinity of the center of the upper surface of the substrate W in the storage chamber 12a, and its front end surface (light receiving end) is exposed in the storage chamber 12a.

散乱光受光装置50は、流入口14回りに光照射装置30から90°位置をずらして配置されている。この散乱光受光装置50は、基板保持容器11の外部に配置された散乱光受光素子(図示略)と、基板Wからの散乱光を収容室12a内から該散乱光受光素子に導く散乱光導出部材51と、該散乱光受光素子が検知した散乱光の強度を経時的に記録する散乱光強度記録演算器52とを備えている。該散乱光導出部材51も中空管やガラス又は透明樹脂製の棒状体等よりなり、その軸心が基板Wからの散乱光の光軸と一致するように、上蓋13の上面から所定角度にて収容室12a内の基板Wの上面の中央付近に向って差し込まれ、その先端面(受光端)は収容室12a内に露出している。   The scattered light receiving device 50 is arranged around the inflow port 14 at a position shifted by 90 ° from the light irradiation device 30. The scattered light receiving device 50 includes a scattered light receiving element (not shown) arranged outside the substrate holding container 11 and a scattered light derivation that guides scattered light from the substrate W from the storage chamber 12a to the scattered light receiving element. A member 51 and a scattered light intensity recording calculator 52 that records the intensity of the scattered light detected by the scattered light receiving element over time are provided. The scattered light deriving member 51 is also made of a hollow tube, glass, a transparent resin rod-like body, or the like, and is arranged at a predetermined angle from the upper surface of the upper lid 13 so that its axis coincides with the optical axis of the scattered light from the substrate W. Then, it is inserted toward the vicinity of the center of the upper surface of the substrate W in the storage chamber 12a, and its front end surface (light receiving end) is exposed in the storage chamber 12a.

この実施の形態では、水質評価装置10には、この散乱光受光装置50により検知された散乱光の強度又はこの強度変化が所定値以上となったときに警報信号を発生する警報装置(図示略)が設けられている。   In this embodiment, the water quality evaluation apparatus 10 includes an alarm device (not shown) that generates an alarm signal when the intensity of the scattered light detected by the scattered light receiving device 50 or the intensity change exceeds a predetermined value. ) Is provided.

なお、本発明においては、照射光源31からの照射光は紫外光、可視光のいずれでもよい。また、照射光源31から特定波長の光を照射するようにしてもよい。この場合、照射光源31自体が特定波長の光を発光するものであってもよく、分光器やフィルタを介して、該照射光源31からの照射光のうち特定波長の光のみを基板Wに照射するよう構成してもよい。あるいは、散乱光受光装置50が特定波長の光の強度を検知するよう構成されてもよい。このように特定波長の光を測定に用いることにより、測定精度を高くすることができる。   In the present invention, the irradiation light from the irradiation light source 31 may be either ultraviolet light or visible light. Alternatively, the light source 31 may emit light having a specific wavelength. In this case, the irradiation light source 31 itself may emit light of a specific wavelength, and the substrate W is irradiated with only light of a specific wavelength out of the irradiation light from the irradiation light source 31 via a spectroscope or a filter. You may comprise. Alternatively, the scattered light receiving device 50 may be configured to detect the intensity of light of a specific wavelength. By using light of a specific wavelength for measurement in this way, the measurement accuracy can be increased.

前記底盤12の円形の収容室12aの内径は保持すべき基板Wの直径よりも充分に大である。収容室12aの底面上には、基板Wの保持手段として、円周方向に等間隔に複数(この実施の形態では3条)の放射状畝24が隆設されている。各放射状畝24は収容室12aの半径方向に延在している。   The inner diameter of the circular storage chamber 12a of the bottom plate 12 is sufficiently larger than the diameter of the substrate W to be held. On the bottom surface of the storage chamber 12a, a plurality (three in this embodiment) of radial ridges 24 are provided at equal intervals in the circumferential direction as means for holding the substrate W. Each radial ridge 24 extends in the radial direction of the storage chamber 12a.

基板Wは、収容室12aの中央に同心状に、板面を上に向けて、これらの放射状畝24の上に略水平に保持される。各畝24の外端部上には基板Wの周縁部が載置される段26を有する階段形の支持台25が設けられている。段26の段差は基板Wの厚さに対応している。また、各畝24の延在方向途中部には基板Wの半径方向の途中の下面を支持する支持部27が突設されている。   The substrate W is held substantially horizontally on these radial rods 24 concentrically in the center of the storage chamber 12a with the plate surface facing upward. A step-shaped support base 25 having a step 26 on which the peripheral edge of the substrate W is placed is provided on the outer end portion of each ridge 24. The level difference of the level 26 corresponds to the thickness of the substrate W. In addition, a support portion 27 that supports the lower surface of the substrate W in the radial direction is provided in the middle of the extending direction of each flange 24.

底盤12の上面からは、上蓋13の位置決め用の複数の突起23が突設されている。これらの突起23は、収容室12aの周方向に略等間隔に配置されている。上蓋13の下面には、これらの突起23が係合する凹部(図示略)が設けられている。符号28bは、該上蓋13を底盤12に固定するためのボルト28aが螺じ込まれるボルト孔を示している。   A plurality of protrusions 23 for positioning the upper lid 13 protrude from the upper surface of the bottom plate 12. These protrusions 23 are arranged at substantially equal intervals in the circumferential direction of the storage chamber 12a. The lower surface of the upper lid 13 is provided with a recess (not shown) with which the protrusions 23 are engaged. Reference numeral 28b denotes a bolt hole into which a bolt 28a for fixing the upper lid 13 to the bottom board 12 is screwed.

この収容室12a内に基板Wを収容して該収容室12a内に流入口14から検水を流入させると、該流入口14から基板Wの中央に検水が供給され、この基板W上を、その中央から外周側へ向って放射状に略一定流速にて検水が流れる。これにより、該基板Wの表面全体に略均一に検水を接触させることができる。   When the substrate W is accommodated in the storage chamber 12a and the test water is introduced into the storage chamber 12a from the inflow port 14, the test water is supplied from the inflow port 14 to the center of the substrate W. The test water flows radially from the center toward the outer peripheral side at a substantially constant flow rate. Thereby, the test water can be brought into contact with the entire surface of the substrate W substantially uniformly.

前記給水管16の下流側の外周面には雄ねじ16aが形成されており、流入口14の内周面にはこの雄ねじ16aが螺合する雌ねじ(図示略)が形成されている。この雄ねじ16aがシール材(図示略)を介して流入口14内に螺じ込まれることにより、給水管16が流入口14に接続されている。また、排水管17の上流側の外周面には雄ねじ17aが形成されており、流出口15の内周面にはこの雄ねじ17aが螺合する雌ねじ(図示略)が形成されている。この雄ねじ17aがシール材(図示略)を介して流出口15内に螺じ込まれることにより、排水管17が流出口15に接続されている。   A male screw 16 a is formed on the outer peripheral surface on the downstream side of the water supply pipe 16, and a female screw (not shown) is formed on the inner peripheral surface of the inlet 14 to which the male screw 16 a is screwed. The water supply pipe 16 is connected to the inflow port 14 by the male screw 16a being screwed into the inflow port 14 through a sealing material (not shown). A male screw 17 a is formed on the outer peripheral surface on the upstream side of the drain pipe 17, and a female screw (not shown) on which the male screw 17 a is screwed is formed on the inner peripheral surface of the outlet 15. The male pipe 17a is screwed into the outlet 15 via a sealing material (not shown), so that the drain pipe 17 is connected to the outlet 15.

以下、このように、一方に設けられた雄ねじが、他方に設けられた雌ねじに螺じ込まれることにより両者が接続されることを、螺じ込みによる接続と称する。このように螺じ込みにより接続を行うことにより、接続部の気密性が良好なものとなる。   Hereinafter, the connection between the male screw provided on one side and the female screw provided on the other side so as to be connected to each other is referred to as connection by screwing. Thus, by connecting by screwing, the airtightness of a connection part becomes favorable.

給水管16の上流側は、導入管18と導出管19とに二叉に分岐している。なお、この実施の形態では、該給水管16、導入管18及び導出管19は一連のT字管よりなり、該導入管18と導出管19とは各々の軸心線が略一直線状となるように互いに反対方向に延在しており、給水管16はこれらと略直交方向に延在している。ただし、導入管18と導出管19とは二叉に分岐していれば、一直線状でなくともよい。   The upstream side of the water supply pipe 16 is bifurcated into an introduction pipe 18 and a lead-out pipe 19. In this embodiment, the water supply pipe 16, the introduction pipe 18 and the lead-out pipe 19 are made of a series of T-shaped pipes, and the axial axes of the introduction pipe 18 and the lead-out pipe 19 are substantially straight. Thus, the water supply pipes 16 extend in a direction substantially orthogonal thereto. However, the introduction pipe 18 and the lead-out pipe 19 do not have to be in a straight line as long as they are bifurcated.

これらの導入管18と導出管19の先端側にそれぞれ開閉バルブ20,21が接続されている。この実施の形態では、該開閉バルブ20,21として、閉鎖時の気密性が良好なボールバルブを用いている。導入管18及び導出管19と開閉バルブ20,21との接続はそれぞれ螺じ込みにより行われている。符号18aは、導入管18の先端外周に形成され、シール材(図示略)を介して開閉バルブ20の下流側接続口(符号略)に螺じ込まれた雄ねじを示し、符号19aは、導出管19の先端外周に形成され、シール材(図示略)を介して開閉バルブ21の上流側接続口(符号略)に螺じ込まれた雄ねじを示している。   Opening / closing valves 20 and 21 are connected to the leading ends of the introduction pipe 18 and the lead-out pipe 19, respectively. In this embodiment, ball valves with good airtightness when closed are used as the opening and closing valves 20 and 21. The introduction pipe 18 and the lead-out pipe 19 are connected to the on-off valves 20 and 21 by screwing. Reference numeral 18a denotes a male screw formed on the outer periphery of the leading end of the introduction pipe 18 and screwed into a downstream connection port (not shown) of the opening / closing valve 20 via a sealing material (not shown). A male screw formed on the outer periphery of the distal end of the tube 19 and screwed into an upstream connection port (reference numeral omitted) of the on-off valve 21 via a sealing material (not shown) is shown.

ユースポイントの手前で、超純水供給用配管1から開閉バルブ2を介して水質評価装置10に検水を供給するためのサンプリングチューブ3が分岐している。このサンプリングチューブ3がチューブ継手4に外嵌及びバンド留め等によって接続されている。このサンプリングチューブ3及びチューブ継手4により検水供給用配管が構成されている。導入管18の開閉バルブ20の上流側接続口(符号略)に、このチューブ継手4が螺じ込みにより接続されている。符号4aは、該チューブ継手4の先端外周に形成され、開閉バルブ20の該上流側接続口に螺じ込まれた雄ねじを示している。   Before the use point, a sampling tube 3 for supplying test water from the ultrapure water supply pipe 1 to the water quality evaluation apparatus 10 via the opening / closing valve 2 is branched. This sampling tube 3 is connected to the tube joint 4 by external fitting, band fastening or the like. The sampling tube 3 and the tube joint 4 constitute a test water supply pipe. The tube joint 4 is screwed into the upstream connection port (reference numeral omitted) of the open / close valve 20 of the introduction pipe 18. Reference numeral 4 a denotes a male screw formed on the outer periphery of the distal end of the tube joint 4 and screwed into the upstream connection port of the opening / closing valve 20.

排水管17の下流側にも、開閉バルブ22が接続されている。この実施の形態では、この開閉バルブ22もボールバルブとなっている。この排水管17と開閉バルブ22との接続も螺じ込みにより行われている。符号17bは、排水管17の下流端外周に形成され、開閉バルブ22の上流側接続口(符号略)に螺じ込まれた雄ねじを示している。   An open / close valve 22 is also connected to the downstream side of the drain pipe 17. In this embodiment, the opening / closing valve 22 is also a ball valve. The drain pipe 17 and the open / close valve 22 are also connected by screwing. Reference numeral 17 b denotes a male screw formed on the outer periphery of the downstream end of the drain pipe 17 and screwed into the upstream connection port (reference numeral omitted) of the opening / closing valve 22.

なお、この排水管17は、流出口15から下方へ延出した後、途中から略直角に折れ曲がるL字管よりなるが、配水管17の形状はこれに限定されない。   The drain pipe 17 is an L-shaped pipe that extends downward from the outlet 15 and then bends at a substantially right angle from the middle. However, the shape of the water pipe 17 is not limited thereto.

前記導出管19の開閉バルブ21の下流側及び排水管17の開閉バルブ22の下流側には、それぞれ、該導出管19及び排水管17からの流出水を排水系に導く排水用配管5,6が接続されている。この実施の形態では、これらの配管5,6の開閉バルブ21,22への接続も螺じ込みにより行われている。符号5a,6aは、それぞれ、該配管5,6の上流端外周に形成され、該開閉バルブ21,22の下流側接続口(符号略)に螺じ込まれた雄ねじを示している。   On the downstream side of the opening / closing valve 21 of the outlet pipe 19 and the downstream side of the opening / closing valve 22 of the drain pipe 17, drain pipes 5 and 6 for guiding the effluent water from the outlet pipe 19 and drain pipe 17 to the drainage system, respectively. Is connected. In this embodiment, the pipes 5 and 6 are also connected to the open / close valves 21 and 22 by screwing. Reference numerals 5 a and 6 a indicate male threads formed on the outer circumferences of the upstream ends of the pipes 5 and 6 and screwed into the downstream connection ports (not shown) of the on-off valves 21 and 22, respectively.

ただし、これらの配管5,6は排水側であるので、各配管5,6と各バルブ21,22との接続についてはさほど気密性を考慮する必要はない。従って、各配管5,6と各バルブ21,22との接続は、螺じ込みによるものでなくてもよい。他の箇所における接続も、必ずしも螺じ込みによるものでなくてもよいが、給水側では、気密性の高い螺じ込み式であることが好ましい。   However, since these pipes 5 and 6 are on the drain side, it is not necessary to consider the airtightness of the connections between the pipes 5 and 6 and the valves 21 and 22. Therefore, the connection between the pipes 5 and 6 and the valves 21 and 22 may not be by screwing. The connection at other locations may not necessarily be by screwing, but on the water supply side, it is preferably a screwing type with high airtightness.

かかる構成の水質評価装置10を用いた超純水の水質評価手順について次に説明する。   Next, a procedure for evaluating the quality of ultrapure water using the water quality evaluation apparatus 10 having such a configuration will be described.

まず、収容室12a内に基板Wを配置し、上蓋13を底盤12に被せてボルト28aで固定し、収容室12aを閉鎖する。   First, the board | substrate W is arrange | positioned in the storage chamber 12a, the upper cover 13 is covered on the bottom board 12, it fixes with the volt | bolt 28a, and the storage chamber 12a is closed.

次いで、サンプリングチューブ3の開閉バルブ2と導入管18及び導出管19の各開閉バルブ20,21を開として該導入管18、導出管19及び各開閉バルブ20,21内に検水を流し、これらを清浄化する。   Next, the open / close valve 2 of the sampling tube 3, the open / close valves 20 and 21 of the introduction pipe 18 and the discharge pipe 19 are opened, and water is supplied into the introduction pipe 18, the discharge pipe 19 and the open / close valves 20 and 21, respectively. To clean.

次に、排水管17の開閉バルブ22を開として検水を収容室12a内に通水し、基板Wに検水を接触させる。   Next, the open / close valve 22 of the drain pipe 17 is opened to pass the test water into the storage chamber 12 a, and the test water is brought into contact with the substrate W.

この際、導入管18側の開閉バルブ20を一定開度とした状態にて、導出管19側の開閉バルブ21の開度を調節することにより、検水の流速を調節する。なお、導入管18側の開閉バルブ20の開度を調節することにより検水の流速を調節することも考えられるが、このようにすると、バルブ操作の際に各部の摩擦等によりバルブ構成材料が検水中に溶出したり、微粒子が検水中に混入するおそれがある。これに対し、導出管19側の開閉バルブ21の開度を調節して検水の流速を調節した場合には、仮に開閉バルブ21から検水に構成材料の溶出や微粒子の混入が生じても、この開閉バルブ21は給水管16よりも下流側に位置しているので、収容室12a内への供給水が汚染されることがない。   At this time, the flow rate of the test water is adjusted by adjusting the opening degree of the opening / closing valve 21 on the outlet pipe 19 side while keeping the opening / closing valve 20 on the introduction pipe 18 side at a constant opening degree. Although it is conceivable to adjust the flow rate of the test water by adjusting the opening degree of the open / close valve 20 on the introduction pipe 18 side, the valve constituent material is caused by friction of each part during the valve operation. There is a risk of elution in the test water or fine particles mixed into the test water. On the other hand, if the flow rate of the test water is adjusted by adjusting the opening degree of the open / close valve 21 on the outlet pipe 19 side, even if elution of constituent materials or mixing of fine particles occurs in the test water from the open / close valve 21. Since the opening / closing valve 21 is located on the downstream side of the water supply pipe 16, the supply water into the storage chamber 12a is not contaminated.

このように収容室12a内に通水した状態で、光照射装置30から収容室12a内の基板Wに向けて光を照射すると共に、散乱光受光装置50により該基板Wからの散乱光の強度を検出し、この検出値を散乱光強度記録演算器52により経時的に記録する。   In this way, light is irradiated from the light irradiation device 30 toward the substrate W in the storage chamber 12a in a state where water has passed through the storage chamber 12a, and the intensity of the scattered light from the substrate W by the scattered light receiving device 50. And the detected value is recorded over time by the scattered light intensity recording calculator 52.

検水中の不純物が基板Wの表面に付着すると、その付着量が多くなるほど、基板Wからの反射光強度が低下すると共に、基板Wからの散乱光強度が増大する。従って、この基板Wからの散乱光の強度又はその経時的な変化から、検水の水質(不純物濃度等)を評価することができる。   When impurities in the test water adhere to the surface of the substrate W, the greater the amount of adhesion, the lower the reflected light intensity from the substrate W and the scattered light intensity from the substrate W increases. Therefore, the quality of the test water (impurity concentration, etc.) can be evaluated from the intensity of the scattered light from the substrate W or its change with time.

この実施の形態では、散乱光受光装置50により検知された散乱光の強度、又はこの強度の変化が所定値以上となったときには、警報装置が警報信号を発し、検水の水質が基準以下であることを知らせるようになっている。   In this embodiment, when the intensity of the scattered light detected by the scattered light receiving device 50 or a change in the intensity exceeds a predetermined value, the alarm device issues an alarm signal and the water quality of the test water is below the standard. It is to inform you that there is.

この水質評価方法では、基板Wを基板保持容器11内に収容したまま測定を行うため、外気等による汚染で測定結果に誤差が生じることはない。また、光照射装置30と散乱光受光装置50(及び反射光トラップ40)は、全反射光X線分析装置に比べて構成が簡易であり、低コストである。   In this water quality evaluation method, since the measurement is performed while the substrate W is housed in the substrate holding container 11, there is no error in the measurement result due to contamination by outside air or the like. In addition, the light irradiation device 30 and the scattered light receiving device 50 (and the reflected light trap 40) have a simpler configuration and lower cost than the total reflected light X-ray analyzer.

さらに、この水質評価方法では、基板Wを収容した収容室12a内に通水した状態で測定するので、基板Wを乾燥させる必要がなく、測定作業を現場で簡単且つ迅速に行うことができる。また、これにより、前述の特開2001−237289号のような収容室12a内の基板Wを高速回転させて該基板Wを乾燥させる機構も不要であり、容器コストも低い。   Furthermore, in this water quality evaluation method, since the measurement is performed in a state where the water is passed through the storage chamber 12a in which the substrate W is accommodated, it is not necessary to dry the substrate W, and the measurement operation can be performed easily and quickly on site. This also eliminates the need for a mechanism for rotating the substrate W in the accommodation chamber 12a at a high speed and drying the substrate W as described in JP-A-2001-237289, and the container cost is low.

この実施の形態のように、ユースポイントの手前で超純水供給用配管1から検水を取り出すように構成することにより、実際に使用される水と同じ水質の水を評価することができる。   As in this embodiment, by configuring the test water to be extracted from the ultrapure water supply pipe 1 before the use point, it is possible to evaluate water having the same quality as the water actually used.

この水質評価は、一定期間ごとに定期的に行われることが望ましい。   It is desirable that this water quality evaluation is performed periodically at regular intervals.

上記の実施の形態では、基板Wからの散乱光の強度及びその経時変化から水質評価を行うよう構成しているが、例えば、反射光トラップ40の代わりに散乱光受光装置50と同様の構成を有する反射光受光装置を設置し、基板Wからの反射光の強度及びその経時変化を測定することにより水質評価を行うように構成してもよい。   In the above embodiment, the water quality is evaluated from the intensity of the scattered light from the substrate W and its change over time. For example, instead of the reflected light trap 40, the same structure as the scattered light receiving device 50 is used. The reflected light receiving device may be installed, and the water quality may be evaluated by measuring the intensity of reflected light from the substrate W and its change with time.

また、基板Wの表面が特定波長の光を吸収する材質よりなる場合には、基板Wからの反射光又は散乱光における該特定波長の光の吸収量や吸収率を測定することにより水質評価を行うことも可能である。   Further, when the surface of the substrate W is made of a material that absorbs light of a specific wavelength, the water quality is evaluated by measuring the amount of absorption or absorption of the light of the specific wavelength in the reflected light or scattered light from the substrate W. It is also possible to do this.

上記の水質評価装置10を用いて水質評価を行った。   Water quality evaluation was performed using the water quality evaluation apparatus 10 described above.

[実施例1]
基板保持容器11内に基板Wとしてシリコンウエハを収容し、検水として、抵抗率18.2MΩ・cm、TOC濃度1ppbの超純水を該容器11内に通水した。この状態で、光照射装置30から収容室12a内のシリコンウエハに向けてレーザー光を照射すると共に、散乱光受光装置50により該シリコンウエハからの散乱光の強度を検出し、この検出値を散乱光強度記録演算器52により経時的に記録した。
[Example 1]
A silicon wafer was accommodated as a substrate W in the substrate holding container 11, and ultrapure water having a resistivity of 18.2 MΩ · cm and a TOC concentration of 1 ppb was passed through the container 11 as test water. In this state, laser light is irradiated from the light irradiation device 30 toward the silicon wafer in the storage chamber 12a, and the intensity of the scattered light from the silicon wafer is detected by the scattered light receiving device 50, and the detected value is scattered. Recording was performed with the light intensity recording calculator 52 over time.

通水開始から40時間後、散乱光強度は通水開始直後の10倍になった。   After 40 hours from the start of water flow, the scattered light intensity became 10 times that immediately after the start of water flow.

これは、容器11内に検水を40時間通水したことにより検水中の不純物がシリコンウエハの表面に付着して該シリコンウエハ表面が荒れ、これにより該シリコンウエハからの散乱光強度が増加したことを示している。   This is because the sample water passed through the container 11 for 40 hours caused impurities in the sample water to adhere to the surface of the silicon wafer, which roughened the surface of the silicon wafer, thereby increasing the intensity of scattered light from the silicon wafer. It is shown that.

[実施例2]
実施例1で用いた超純水に抵抗率17.0MΩ・cm、TOC濃度8ppbの一次純水を混合し、シリコンウエハを収容した基板保持容器11内に通水した。この混合した水の水質は、抵抗率18.0MΩ・cm、TOC濃度2ppbを示した。この状態で、光照射装置30から収容室12a内のシリコンウエハに向けてレーザー光を照射すると共に、散乱光受光装置50により該シリコンウエハからの散乱光の強度を検出し、この検出値を散乱光強度記録演算器52により経時的に記録した。
[Example 2]
The ultrapure water used in Example 1 was mixed with primary pure water having a resistivity of 17.0 MΩ · cm and a TOC concentration of 8 ppb, and passed through the substrate holding container 11 containing a silicon wafer. The water quality of the mixed water showed a resistivity of 18.0 MΩ · cm and a TOC concentration of 2 ppb. In this state, laser light is irradiated from the light irradiation device 30 toward the silicon wafer in the storage chamber 12a, and the intensity of the scattered light from the silicon wafer is detected by the scattered light receiving device 50, and the detected value is scattered. Recording was performed with the light intensity recording calculator 52 over time.

その結果、通水開始から5時間後に、散乱光強度が通水開始直後の10倍になった。   As a result, 5 hours after the start of water flow, the scattered light intensity became 10 times that immediately after the start of water flow.

この測定結果は、検水中のTOC濃度の増加を如実に反映したものとなっており、本発明方法及び装置の水質評価における有効性を示している。   This measurement result clearly reflects the increase in the TOC concentration in the test water, and shows the effectiveness of the method and apparatus of the present invention in water quality evaluation.

実施の形態に係る水質評価装置の縦断面図である。It is a longitudinal cross-sectional view of the water quality evaluation apparatus which concerns on embodiment. 水質評価装置の基板保持容器の上面図である。It is a top view of the substrate holding container of the water quality evaluation apparatus. 基板保持容器の底盤の斜視図である。It is a perspective view of the bottom board of a substrate holding container. 図1の水質評価装置を用いた水質評価方法を示す概略的な系統図である。It is a schematic systematic diagram which shows the water quality evaluation method using the water quality evaluation apparatus of FIG.

符号の説明Explanation of symbols

3 サンプリングチューブ
4 チューブ継手
10 水質評価装置
11 基板保持容器
12 底盤
12a 収容室
13 上蓋
14 給水口
15 排水口
16 給水管
17 排水管
18 導入管
19 導出管
20〜22 開閉バルブ
30 光照射装置
40 反射光トラップ
50 散乱光受光装置
52 散乱光強度記録演算器
W 基板
DESCRIPTION OF SYMBOLS 3 Sampling tube 4 Tube joint 10 Water quality evaluation apparatus 11 Substrate holding container 12 Bottom board 12a Accommodating chamber 13 Upper lid 14 Water supply port 15 Drainage port 16 Water supply pipe 17 Drainage pipe 18 Introduction pipe 19 Outlet pipe 20-22 Open / close valve 30 Light irradiation device 40 Reflection Optical trap 50 Scattered light receiving device 52 Scattered light intensity recording calculator W substrate

Claims (6)

電子デバイス基板を収容する収容室を有すると共に、該収容室に検水を流通させるための流入口及び流出口を有する容器と、
該収容室内に収容された電子デバイス基板に向けて光を照射する光照射手段と、
該電子デバイス基板からの反射光又は散乱光を受光してその強度を検出する受光手段と
を備えてなり、
該光照射手段の光の照射端及び受光手段の光の受光端は、それぞれ該収容室内に露呈しており、
該容器は、該収容室を有した底盤と、該収容室を閉鎖する上蓋とを有しており、該収容室は、該底盤の上面から凹陥した円形の窪みよりなり、
該上蓋の中央に、該収容室内に検水を流入させるための前記流入口が設けられ、該収容室の底面の中央に、該収容室内から検水を流出させるための前記流出口が設けられており、
該光照射手段は、該容器の外部に配置された照射光源と、該照射光源から照射された光を該収容室内に導くための照射光導入部材とを備えており、
該照射光導入部材は、該上蓋の上面から所定角度にて該収容室内の基板の上面の中央付近に向って差し込まれ、その先端面は、該収容室内に露出しており、該照射光導入部材の該先端面が前記光の照射端となっており、
該流入口回りに該光照射手段と180°反対側に、
該容器の外部に配置された反射光吸収器と、該収容室内の基板からの反射光を該収容室内から該反射光吸収器に導く反射光導出部材とを備えた反射光トラップ、又は、
該容器の外部に配置された反射光受光素子と、該収容室内の基板からの反射光を該収容室内から該反射光受光素子に導く反射光導出部材と、該反射光受光素子が検知した反射光の強度を記録する反射光強度記録演算器とを備えた反射光受光手段
が配置されており、
該反射光導出部材は、その軸心が該収容室内の基板からの反射光の光軸と一致するように、該上蓋の上面から所定角度にて該収容室内の基板の上面の中央付近に向って差し込まれ、その先端面は、該収容室内に露出しており、該反射光導出部材の該先端面が反射光の受光端となっており、
該流入口回りに該光照射手段から90°位置をずらして、
該容器の外部に配置された散乱光受光素子と、該収容室内の基板からの散乱光を該収容室内から該散乱光受光素子に導く散乱光導出部材と、該散乱光受光素子が検知した散乱光の強度を記録する散乱光強度記録演算器とを備えた散乱光受光手段
が配置されており、
該散乱光導出部材は、その軸心が該収容室内の基板からの散乱光の光軸と一致するように、該上蓋の上面から所定角度にて該収容室内の基板の上面の中央付近に向って差し込まれ、その先端面は、該収容室内に露出しており、該散乱光導出部材の該先端面が散乱光の受光端となっていることを特徴とする水質評価装置。
A container having a storage chamber for storing the electronic device substrate, and having an inlet and an outlet for circulating test water in the storage chamber;
Light irradiating means for irradiating light toward the electronic device substrate housed in the housing chamber;
Receiving reflected light or scattered light from the electronic device substrate Ri name and a light receiving means for detecting the intensity,
The light emitting end of the light irradiating means and the light receiving end of the light receiving means are respectively exposed in the accommodation chamber,
The container has a bottom plate having the storage chamber and an upper lid for closing the storage chamber, and the storage chamber is formed of a circular depression recessed from the upper surface of the bottom plate,
The inflow port for allowing the test water to flow into the storage chamber is provided at the center of the upper lid, and the outlet for discharging the test water from the storage chamber is provided at the center of the bottom surface of the storage chamber. And
The light irradiation means includes an irradiation light source disposed outside the container, and an irradiation light introducing member for guiding light irradiated from the irradiation light source into the storage chamber,
The irradiation light introducing member is inserted at a predetermined angle from the upper surface of the upper lid toward the vicinity of the center of the upper surface of the substrate in the accommodation chamber, and a tip surface thereof is exposed in the accommodation chamber, and the irradiation light introduction The tip surface of the member is an irradiation end of the light,
Around the inlet, 180 ° opposite to the light irradiation means,
A reflected light trap comprising: a reflected light absorber disposed outside the container; and a reflected light deriving member that guides reflected light from the substrate in the storage chamber to the reflected light absorber from the storage chamber; or
A reflected light receiving element disposed outside the container; a reflected light deriving member for guiding reflected light from the substrate in the housing chamber to the reflected light receiving element from the housing chamber; and a reflection detected by the reflected light receiving element Reflected light receiving means comprising a reflected light intensity recording calculator for recording the light intensity
Is placed,
The reflected light deriving member is directed toward the center of the upper surface of the substrate in the receiving chamber at a predetermined angle from the upper surface of the upper lid so that the axis of the reflected light deriving member coincides with the optical axis of the reflected light from the substrate in the receiving chamber. The front end surface is exposed in the housing chamber, and the front end surface of the reflected light deriving member is a light receiving end of the reflected light,
Shift the 90 ° position around the inlet from the light irradiation means,
A scattered light receiving element disposed outside the container; a scattered light deriving member that guides scattered light from the substrate in the housing chamber to the scattered light receiving element; and scattering detected by the scattered light receiving element. Scattered light receiving means comprising a scattered light intensity recording calculator for recording the light intensity
Is placed,
The scattered light deriving member is directed toward the center of the upper surface of the substrate in the receiving chamber at a predetermined angle from the upper surface of the upper lid so that its axis coincides with the optical axis of the scattered light from the substrate in the receiving chamber. A water quality evaluation apparatus , wherein the tip end surface of the scattered light deriving member is exposed to the scattered light receiving end .
請求項1において、前記受光手段の受光信号強度又はその変化を経時的に記録する記録手段を備えたことを特徴とする水質評価装置。 Oite to claim 1, the water quality evaluation apparatus characterized by comprising a recording means for recorded over time the light-receiving signal intensity or the change of the light receiving means. 請求項1又は2において、前記受光手段の受光信号強度又はその変化が所定値に達したときに警報信号を発生する警報手段を備えたことを特徴とする水質評価装置。 3. The water quality evaluation apparatus according to claim 1, further comprising alarm means for generating an alarm signal when the intensity of the received light signal of the light receiving means or a change thereof reaches a predetermined value. 請求項1ないしのいずれか1項において、前記光照射手段は特定波長の光を照射するものであり、前記受光手段はこの特定波長の光の強度を検知するものであることを特徴とする水質評価装置。 In any one of claims 1 to 3, the light irradiating means serves to irradiate light of a specific wavelength, the light receiving means is characterized in that for detecting the intensity of light of the specific wavelength Water quality evaluation device. 請求項1ないし4のいずれか1項に記載の水質評価装置を用いて超純水の水質を評価する水質評価方法であって、
水質評価装置の前記収容室内に電子デバイス基板を収容し、前記流入口及び流出口を介して該収容室内に超純水よりなる検水を連続的に流通させると共に、
該収容室内の該電子デバイス基板に前記光照射手段で光を照射し、該電子デバイス基板からの反射光又は散乱光の強度を前記反射光受光手段又は散乱光受光手段で検知して水質評価を行うことを特徴とする水質評価方法。
Met claims 1 to water quality evaluation method for evaluating the quality of ultra pure water using the water quality evaluation apparatus according to any one of 4,
Housing the electronic device substrate in the housing chamber of the water quality evaluation device, causes continuously circulating test water consisting of ultra-pure water into the housing chamber through the inlet and the outlet,
Light is irradiated to the light irradiation means in said housing chamber of the electronic device substrate, the detected intensity of the reflected light or scattered light by the reflected light receiving means or scattered light receiving means from the electronic device substrate quality evaluation Water quality evaluation method characterized by performing.
請求項において、電子デバイス基板として、シリコンウエハ、シリコンウエハの表面にシリコン酸化膜、アルミニウム薄膜又は銅薄膜が形成された基板、ガラス基板、GaAsウエハ、又はサファイアウエハを用いることを特徴とする水質評価方法。 6. The water quality according to claim 5, wherein the electronic device substrate is a silicon wafer, a substrate in which a silicon oxide film, an aluminum thin film or a copper thin film is formed on a surface of the silicon wafer, a glass substrate, a GaAs wafer, or a sapphire wafer. Evaluation methods.
JP2006283872A 2006-10-18 2006-10-18 Water quality evaluation method and apparatus Expired - Fee Related JP5066887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283872A JP5066887B2 (en) 2006-10-18 2006-10-18 Water quality evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283872A JP5066887B2 (en) 2006-10-18 2006-10-18 Water quality evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2008101982A JP2008101982A (en) 2008-05-01
JP5066887B2 true JP5066887B2 (en) 2012-11-07

Family

ID=39436417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283872A Expired - Fee Related JP5066887B2 (en) 2006-10-18 2006-10-18 Water quality evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP5066887B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266940A (en) * 1985-05-22 1986-11-26 Kurita Water Ind Ltd Measuring instrument for pulverous particles in liquid
JPS6293636A (en) * 1985-10-21 1987-04-30 Hitachi Ltd Inspection apparatus
JPH0781958B2 (en) * 1989-06-23 1995-09-06 三菱電機株式会社 Fine particle measuring device
JPH05332946A (en) * 1992-05-29 1993-12-17 Toshiba Corp Surface inspection instrument
JPH06242012A (en) * 1993-02-16 1994-09-02 Toshiba Corp Dust particle inspection system
JP2982720B2 (en) * 1996-04-26 1999-11-29 日本電気株式会社 Particle monitor device and dust-free process device equipped with the same
JP3769996B2 (en) * 1999-09-20 2006-04-26 三菱電機株式会社 Semiconductor substrate for defect inspection, semiconductor substrate inspection method, and semiconductor substrate inspection monitor device
JP4449135B2 (en) * 2000-01-25 2010-04-14 栗田工業株式会社 Semiconductor substrate holding container
JP4507336B2 (en) * 2000-02-17 2010-07-21 栗田工業株式会社 Water quality evaluation method and water quality evaluation semiconductor substrate holding container
JP4238359B2 (en) * 2003-12-25 2009-03-18 独立行政法人産業技術総合研究所 Substrate contamination particle detection method and apparatus
JP4543799B2 (en) * 2004-07-14 2010-09-15 栗田工業株式会社 Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method

Also Published As

Publication number Publication date
JP2008101982A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US7628926B2 (en) System and method for monitoring water transmission of UV light in disinfection systems
WO2006006370A1 (en) Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production
JP2006024931A (en) Substrate drying equipment
JP2008261770A (en) Optical sample measuring device, optical cell, and water quality measuring device
TW201636611A (en) Method of measuring carbonation levels in open-container beverages
KR100832107B1 (en) Contamination analysis unit and method, and reticle cleaning facility and method using the unit
KR102479214B1 (en) Substrate processing apparatus, substrate processing method and storage medium
JP4893156B2 (en) Water quality evaluation method and substrate contact tool used therefor
JP5066887B2 (en) Water quality evaluation method and apparatus
KR20110037469A (en) Apparatus for measuring ph by using absorptiometric analysis and measuring method using the same
WO2009110463A1 (en) Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
JP4660266B2 (en) Water quality inspection device
CN101241870A (en) Device for measuring the wafer film thickness
US10180394B2 (en) Systems and methods for performing cavity-enhanced absorption spectroscopy
KR101809021B1 (en) System and sensor measuring total organic carbon using conductivity method
JP2006214877A (en) Vapor phase decomposition device, sample pretreatment device using the same, and x-ray fluorescence analytical system
JP4507659B2 (en) Evaluation method of ultrapure water
JP4566032B2 (en) measuring device
JP2005024300A (en) Flow cell of fluorescence x-ray analytical apparatus
JPH1038795A (en) Optical fluid analyzer
ES2900675T3 (en) Apparatus and method for determining the analyte content in a fluid
WO2023058317A1 (en) Substrate processing device and substrate processing method
CN218298013U (en) Quick detection device of aflatoxin B1 in chinese-medicinal material pseudo-ginseng
US20180011005A1 (en) Apparatus for inline trace analysis of a liquid
JP2006194874A (en) Contamination analytical method for chemical solution, and contamination analytical system therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5066887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees