JP5066863B2 - Rotating electric machine - Google Patents

Rotating electric machine

Info

Publication number
JP5066863B2
JP5066863B2 JP2006213360A JP2006213360A JP5066863B2 JP 5066863 B2 JP5066863 B2 JP 5066863B2 JP 2006213360 A JP2006213360 A JP 2006213360A JP 2006213360 A JP2006213360 A JP 2006213360A JP 5066863 B2 JP5066863 B2 JP 5066863B2
Authority
JP
Japan
Prior art keywords
magnetic
armature
protrusions
pole surface
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006213360A
Other languages
Japanese (ja)
Other versions
JP2008043043A (en
Inventor
浩和 藤井
能成 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006213360A priority Critical patent/JP5066863B2/en
Publication of JP2008043043A publication Critical patent/JP2008043043A/en
Application granted granted Critical
Publication of JP5066863B2 publication Critical patent/JP5066863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は回転電機に関し、特にいわゆるアキシャルギャップ型モータに関する。   The present invention relates to a rotating electrical machine, and more particularly to a so-called axial gap type motor.

いわゆるアキシャルギャップ型モータとは、回転軸の周りで周方向に回転可能な界磁子と、回転軸に平行な方向(以下、単に「回転軸方向」とも称す)において界磁子と対向する電機子とを備えるモータである。アキシャルギャップ型モータは、回転軸方向に薄型化しても界磁磁石(界磁磁束を発生させる磁石)の磁極面を大きくできるため、小型で大きいトルクを発生させることができる。よって特に精密モータでは良く採用され、近年では小型モータについても適用が検討されている。本件に関連する先行技術文献として、例えば特許文献1,2がある。   A so-called axial gap type motor is a field element that can rotate in the circumferential direction around a rotation axis, and an electric machine that faces the field element in a direction parallel to the rotation axis (hereinafter also simply referred to as “rotation axis direction”). It is a motor provided with a child. An axial gap type motor can generate a large torque because it can increase the magnetic pole surface of a field magnet (a magnet that generates a field magnetic flux) even if it is thinned in the direction of the rotation axis. Therefore, it is often used particularly in precision motors, and in recent years, application to small motors has been studied. As prior art documents related to this case, there are, for example, Patent Documents 1 and 2.

特開昭59−216458号公報JP 59-216458 A 特開2005−94955号公報JP 2005-94955 A

しかしながら、アキシャルギャップ型モータに採用される界磁磁石を永久磁石で一体に作成しようとすると、周方向において異なる磁極面が発生するように着磁される必要があった。かかる必要性に応えることは、多極の小型モータにおいては困難であり、十分な着磁が得られない場合があった。また、着磁むらが発生すれば、振動や騒音の原因となる。   However, when the field magnets employed in the axial gap type motor are formed integrally with the permanent magnets, it is necessary to magnetize the magnetic pole surfaces so as to be different in the circumferential direction. Meeting such a need is difficult in a multi-pole small motor, and sufficient magnetization may not be obtained. Moreover, if uneven magnetization occurs, it may cause vibration and noise.

一方、各磁極面毎に界磁磁石を作成すれば部品点数が増加し、界磁磁石の固定も困難となる。   On the other hand, if a field magnet is created for each magnetic pole surface, the number of parts increases and it becomes difficult to fix the field magnet.

さらには、永久磁石をロータ表面に設ければ、例えば固有抵抗の小さい焼結の希土類磁石等の場合、電機子からの回転磁界によって永久磁石内部に渦電流が発生したり、減磁する恐れがあった。これを回避するために永久磁石をロータコア内部に埋設すれば、磁束が短絡的に流れてしまって電機子に鎖交する磁束量が低減する。このような短絡的な磁束の流れを回避すべく永久磁石の近傍に空隙を設けることも考えられるが、これはロータコアの強度を確保する観点から抑制される永久磁石の磁極面積を更に抑制されることを招来する。   Furthermore, if a permanent magnet is provided on the rotor surface, for example, in the case of a sintered rare earth magnet having a low specific resistance, an eddy current may be generated inside the permanent magnet or demagnetized by the rotating magnetic field from the armature. there were. If a permanent magnet is embedded in the rotor core to avoid this, the amount of magnetic flux that flows in a short-circuited manner and interlinks with the armature is reduced. In order to avoid such a short-circuit magnetic flux flow, it is conceivable to provide a gap in the vicinity of the permanent magnet, but this further suppresses the magnetic pole area of the permanent magnet which is suppressed from the viewpoint of securing the strength of the rotor core. Invite you.

本発明は上記課題に鑑みてなされたものであり、小型化しても界磁磁石の個数を増やすことなく、界磁磁石の着磁が容易なアキシャルギャップ型の回転電機を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an axial gap type rotating electrical machine in which field magnets can be easily magnetized without increasing the number of field magnets even if the size is reduced. To do.

この発明にかかる回転電機は、回転軸(Q)の周りで周方向に回転可能な界磁子(1A〜1G)と、前記回転軸に平行な回転軸方向において前記界磁子と対向する電機子(2)とを備える。そしてその第1の態様では、前記界磁子は、前記回転軸の周囲で配置された環状の第1磁極面(103Na;103N)と、前記回転軸の周囲で配置され、前記第1磁極面とは極性が反対に着磁した環状の第2磁極面(103Sa;103S)とを呈する界磁磁石と、前記第1磁極面に設けられ、前記回転軸方向に突出する第1磁性突起(101N,102J)を有する第1磁性環(102N)と、前記第2磁極面に設けられ、前記第1磁性突起と同数で前記第1磁性突起の突出側に突出する第2磁性突起(101S,102K)を有する第2磁性環(102S)とを有する。そして、前記第1磁性突起と前記第2磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記電機子と対向する。そして前記界磁磁石が前記第1磁極面及び前記第2磁極面をいずれも軸方向に呈している。 A rotating electrical machine according to the present invention includes a field element (1A to 1G) that is rotatable in a circumferential direction around a rotation axis (Q), and an electric machine that faces the field element in a rotation axis direction parallel to the rotation axis. A child (2). And in the 1st aspect, the said field element is arrange | positioned around the said 1st magnetic pole surface arrange | positioned around the said 1st annular magnetic pole surface (103Na; 103N) arrange | positioned around the said rotating shaft, and the said rotating shaft. And a field magnet exhibiting an annular second magnetic pole surface (103Sa; 103S) magnetized opposite in polarity, and a first magnetic protrusion (101N) provided on the first magnetic pole surface and projecting in the direction of the rotation axis , 102J) and the second magnetic protrusions (101S, 102K) provided on the second magnetic pole surface and the same number as the first magnetic protrusions and protruding to the protruding side of the first magnetic protrusions. ) Having a second magnetic ring (102S). The first magnetic protrusions and the second magnetic protrusions are alternately provided in the circumferential direction while being magnetically separated from each other, and both of them face the armature in the rotation axis direction. The field magnet exhibits both the first magnetic pole surface and the second magnetic pole surface in the axial direction.

この発明にかかる回転電機の第2の態様は、その第1の態様であって、前記第1磁性突起(101N,102J)と前記第2磁性突起(101S,102K)とは、前記界磁子(1A〜1G)と前記電機子(2)との前記回転軸方向に沿った距離の2倍を超える距離以上で隔たる。   A second aspect of the rotating electrical machine according to the present invention is the first aspect, wherein the first magnetic protrusion (101N, 102J) and the second magnetic protrusion (101S, 102K) are the field element. (1A to 1G) and the armature (2) are separated by a distance that is more than twice the distance along the rotational axis direction.

この発明にかかる回転電機の第3の態様は、その第1の態様又は第2の態様であって、前記第1磁性突起は前記電機子(2)側に、前記電機子側で前記第2磁性環(102S)を覆う第1磁性板(101N)を含む。そして、前記第2磁性突起は前記電機子(2)側に、前記電機子側で前記第1磁性環(102N)を覆う第2磁性板(101S)を含む。   A third aspect of the rotating electrical machine according to the present invention is the first aspect or the second aspect thereof, wherein the first magnetic protrusion is on the armature (2) side, and on the armature side, the second aspect. A first magnetic plate (101N) covering the magnetic ring (102S) is included. The second magnetic protrusion includes, on the armature (2) side, a second magnetic plate (101S) that covers the first magnetic ring (102N) on the armature side.

この発明にかかる回転電機の第4の態様は、その第3の態様であって、前記界磁子(1C;1D)は前記第1磁性板(101N)及び前記第2磁性板(101S)を、その内周側及び外周側の少なくともいずれか一方において前記周方向に連結する薄肉部(101G;101H)を更に有する。   The 4th aspect of the rotary electric machine concerning this invention is the 3rd aspect, Comprising: The said field element (1C; 1D) is a said 1st magnetic plate (101N) and a said 2nd magnetic plate (101S). Further, at least one of the inner peripheral side and the outer peripheral side further has a thin portion (101G; 101H) connected in the circumferential direction.

この発明にかかる回転電機の第5の態様は、回転軸(Q)の周りで周方向に回転可能な界磁子(1A〜1G)と、前記回転軸に平行な回転軸方向において前記界磁子と対向する電機子(2)とを備える。そして前記界磁子は、前記回転軸の周囲で配置された環状の第1磁極面(103Na;103N)と、前記回転軸の周囲で配置され、前記第1磁極面とは極性が反対に着磁した環状の第2磁極面(103Sa;103S)とを呈する界磁磁石と、前記第1磁極面に設けられ、前記回転軸方向に突出する第1磁性突起(101N,102J)を有する第1磁性環(102N)と、前記第2磁極面に設けられ、前記第1磁性突起と同数で前記第1磁性突起の突出側に突出する第2磁性突起(101S,102K)を有する第2磁性環(102S)とを有する。そして、前記第1磁性突起と前記第2磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記電機子と対向する。
そして、前記界磁子(1C;1D)は、前記周方向において前記第1磁性突起(101N,102J)と前記第2磁性突起(101S,102K)との間に配置され、前記第1磁性突起及び前記第2磁性突起に対して相互に磁気的に分離され、前記回転軸方向に突出するq軸インダクタンス増大用磁性突起(101Q,102L)を有するq軸インダクタンス増大用磁性環(102Q)を更に有する。
According to a fifth aspect of the rotating electrical machine of the present invention, there is provided a field element (1A to 1G) capable of rotating in a circumferential direction around a rotation axis (Q), and the field in a rotation axis direction parallel to the rotation axis. An armature (2) facing the child. The field element is disposed around the rotary shaft and the first magnetic pole surface (103Na; 103N) arranged around the rotation axis, and the first magnetic pole surface is opposite in polarity to the first magnetic pole surface. A first field magnet having a magnetized annular second magnetic pole face (103Sa; 103S) and a first magnetic protrusion (101N, 102J) provided on the first magnetic pole face and projecting in the direction of the rotation axis. A second magnetic ring having a magnetic ring (102N) and a second magnetic protrusion (101S, 102K) provided on the second magnetic pole surface and protruding on the protruding side of the first magnetic protrusion in the same number as the first magnetic protrusion. (102S). The first magnetic protrusions and the second magnetic protrusions are alternately provided in the circumferential direction while being magnetically separated from each other, and both of them face the armature in the rotation axis direction.
And in the field element (1C; 1D), the first magnetic projections in the circumferential direction (101N, 102J) and said second magnetic protrusions (101S, 102K) disposed between said first magnetic A magnetic ring (102Q) for increasing q-axis inductance is magnetically separated from each other with respect to the protrusion and the second magnetic protrusion and has a magnetic protrusion (101Q, 102L) for increasing q-axis inductance that protrudes in the rotational axis direction. Also have.

この発明にかかる回転電機の第6の態様は、その第5の態様であって、前記第1磁性突起は前記電機子(3)側に、前記電機子(3)側で前記第2磁性環(102S)を覆う第1磁性板(101N)を含み、前記第2磁性突起は前記電機子(3)側に、前記電機子(3)側で前記第1磁性環(102N)を覆う第2磁性板(101S)を含み、前記q軸インダクタンス増大用磁性突起は前記電機子(3)側に、前記電機子(3)側で前記第1磁性環及び前記第2磁性環を覆うq軸インダクタンス増大用磁性板(101Q)を含む。   A sixth aspect of the rotating electrical machine according to the present invention is the fifth aspect thereof, wherein the first magnetic protrusion is on the armature (3) side, and the second magnetic ring is on the armature (3) side. A first magnetic plate (101N) covering (102S), wherein the second magnetic protrusion is on the armature (3) side, and the second magnetic projection (102N) is on the armature (3) side to cover the first magnetic ring (102N). The q-axis inductance increasing magnetic projection includes a magnetic plate (101S) and covers the first magnetic ring and the second magnetic ring on the armature (3) side and on the armature (3) side. Includes magnetic plate for increase (101Q).

この発明にかかる回転電機の第7の態様は、その第6の態様であって、前記界磁子(1C;1D)は、前記第1磁性板(101N)及び前記第2磁性板(101S)及び前記q軸インダクタンス増大用磁性板(101q)を、その内周側及び外周側の少なくともいずれか一方において前記周方向に連結する薄肉部(101G;101H)を更に有する。   A seventh aspect of the rotating electrical machine according to the present invention is the sixth aspect, wherein the field element (1C; 1D) includes the first magnetic plate (101N) and the second magnetic plate (101S). The q-axis inductance increasing magnetic plate (101q) further includes a thin portion (101G; 101H) for connecting in the circumferential direction on at least one of the inner peripheral side and the outer peripheral side.

この発明にかかる回転電機の第8の態様は、その第1乃至第7の態様のいずれかであって、前記界磁磁石は、前記回転軸方向に着磁されて前記第1磁極面(103Na)を呈する環状の第1磁石(103D)と、前記第1磁石の内周に設けられ、前記回転軸方向に着磁されて前記第2磁極面(103Sa)を呈する環状の第2磁石(103C)とを含む。そして前記界磁子(1A,1C)は、前記第1磁極面及び前記第2磁極面とは反対側で前記第1磁石と前記第2磁石とを磁気的に連結する環状の磁気ヨーク(106)を更に有する。   An eighth aspect of the rotating electrical machine according to the present invention is any one of the first to seventh aspects, wherein the field magnet is magnetized in the direction of the rotation axis and the first magnetic pole surface (103Na). ) And an annular second magnet (103C) which is provided on the inner periphery of the first magnet and is magnetized in the direction of the rotation axis and exhibits the second magnetic pole surface (103Sa). ). The field element (1A, 1C) includes an annular magnetic yoke (106) that magnetically connects the first magnet and the second magnet on the side opposite to the first magnetic pole surface and the second magnetic pole surface. ).

この発明にかかる回転電機の第9の態様は、その第1乃至第7の態様のいずれかであって、他の電機子(3)を更に備える。そして前記界磁磁石は、前記回転軸方向に着磁されて前記第1磁極面(103Na)及び前記第1磁極面とは極性が異なる第3磁極面(103Sb)を呈する環状の第1磁石(103D)と、前記第1磁石の内周に設けられ、前記回転軸方向に着磁されて前記第2磁極面(103Sa)及び前記第2磁極面とは極性が異なる第4磁極面(103Nb)を呈する環状の第2磁石(103C)とを含む。前記界磁子(1B)は、前記第3磁極面に設けられ、前記第1磁性突起とは反対側に突出する第3磁性突起(105S,104K)を有する第3磁性環(104S)と、前記第4磁極面に設けられ、前記第3磁性突起と同数で前記第3磁性突起の突出側に突出する第4磁性突起(105N,104J)を有する第4磁性環(104N)とを更に有する。前記第3磁性突起と前記第4磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記他の電機子と対向する。   A ninth aspect of the rotating electrical machine according to the present invention is any one of the first to seventh aspects, and further includes another armature (3). The field magnet is an annular first magnet (103Sb) magnetized in the direction of the rotation axis and exhibiting the first magnetic pole surface (103Na) and the third magnetic pole surface (103Sb) having a different polarity from the first magnetic pole surface. 103D) and a fourth magnetic pole surface (103Nb) provided on the inner periphery of the first magnet and magnetized in the direction of the rotation axis and having a polarity different from that of the second magnetic pole surface (103Sa) and the second magnetic pole surface An annular second magnet (103C) exhibiting the following. The field element (1B) is provided on the third magnetic pole surface, and a third magnetic ring (104S) having a third magnetic protrusion (105S, 104K) protruding on the opposite side of the first magnetic protrusion, And a fourth magnetic ring (104N) provided on the fourth magnetic pole surface and having fourth magnetic protrusions (105N, 104J) which are the same number as the third magnetic protrusions and protrude toward the protruding side of the third magnetic protrusions. . The third magnetic protrusions and the fourth magnetic protrusions are alternately provided in the circumferential direction while being magnetically separated from each other, and both of them face the other armatures in the rotation axis direction.

この発明にかかる回転電機の第10の態様は、その第8の態様又は第9の態様であって、前記第1磁極面(103Na)の面積と、前記第2磁極面(103Sa)の面積とは等しい。   A tenth aspect of the rotating electrical machine according to the present invention is the eighth aspect or the ninth aspect, wherein the area of the first magnetic pole surface (103Na) and the area of the second magnetic pole surface (103Sa) Are equal.

この発明にかかる回転電機の第11の態様は、その第8の態様又は第9の態様であって、前記第1磁極面(103Na)の面積は、前記第2磁極面(103Sa)の面積よりも大きい。   An eleventh aspect of the rotating electrical machine according to the present invention is the eighth aspect or the ninth aspect, wherein the area of the first magnetic pole surface (103Na) is larger than the area of the second magnetic pole surface (103Sa). Is also big.

この発明にかかる回転電機の第12の態様は、その第1乃至第7の態様のいずれかであって、前記界磁磁石は、前記径方向に着磁されて内周側に前記第1磁極面(103N)を、外周側に前記第2磁極面(103S)を、それぞれ呈する環状磁石(103)である。   A twelfth aspect of the rotating electrical machine according to the present invention is any one of the first to seventh aspects, wherein the field magnet is magnetized in the radial direction and the first magnetic pole is disposed on an inner peripheral side. An annular magnet (103) that presents the surface (103N) and the second magnetic pole surface (103S) on the outer peripheral side.

この発明にかかる回転電機の第13の態様は、その第12の態様であって、他の電機子(3)を更に備える。そして前記第1磁性環(102N)は、前記第1磁性突起(101N,102J)と反対方向に突出する第3磁性突起(105N,102Y)を更に有する。前記第2磁性環(102S)は、前記第2磁性突起(101S,102K)と反対方向に突出する第4磁性突起(105S,102Z)を更に有する。前記第3磁性突起と前記第4磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記他の電機子と対向する。   A thirteenth aspect of the rotating electrical machine according to the present invention is the twelfth aspect, and further includes another armature (3). The first magnetic ring (102N) further includes third magnetic protrusions (105N, 102Y) protruding in the opposite direction to the first magnetic protrusions (101N, 102J). The second magnetic ring (102S) further includes fourth magnetic protrusions (105S, 102Z) protruding in a direction opposite to the second magnetic protrusions (101S, 102K). The third magnetic protrusions and the fourth magnetic protrusions are alternately provided in the circumferential direction while being magnetically separated from each other, and both of them face the other armatures in the rotation axis direction.

この発明にかかる回転電機の第14の態様は、その第13の態様であって、前記周方向において、前記第1磁性突起(101N,102J)と前記第3磁性突起(105N,102Y)とは交互に配置される。前記周方向において、前記第2磁性突起(101S,102K)と前記第4磁性突起(105S,102Z)とは交互に配置される。   A fourteenth aspect of the rotating electrical machine according to the present invention is the thirteenth aspect, wherein the first magnetic protrusion (101N, 102J) and the third magnetic protrusion (105N, 102Y) are arranged in the circumferential direction. Alternatingly arranged. In the circumferential direction, the second magnetic protrusions (101S, 102K) and the fourth magnetic protrusions (105S, 102Z) are alternately arranged.

この発明にかかる回転電機の第15の態様は、その第1乃至第7の態様であって、前記界磁磁石は、前記回転軸方向に着磁されて前記第1磁極面(103Na)及び前記第2磁極面(103Sb)を呈する環状磁石(103D)であり、前記第2磁性環(102S)は、前記第1磁性環(102N)と共に前記環状磁石を挟む鍔部(102T)を有する。   A fifteenth aspect of the rotating electrical machine according to the present invention is the first to seventh aspects, wherein the field magnet is magnetized in the direction of the rotation axis, and the first magnetic pole surface (103Na) and the An annular magnet (103D) having a second magnetic pole surface (103Sb), and the second magnetic ring (102S) has a flange (102T) sandwiching the annular magnet together with the first magnetic ring (102N).

この発明にかかる回転電機の第16の態様は、その第1の態様であって、前記第1磁性環及び前記第2磁性環の固有抵抗は、前記界磁磁石の固有抵抗よりも高い。   A sixteenth aspect of the rotating electrical machine according to the present invention is the first aspect, and the specific resistance of the first magnetic ring and the second magnetic ring is higher than the specific resistance of the field magnet.

この発明にかかる回転電機の第17の態様は、その第5の態様であって、前記第1磁性環及び前記第2磁性環並びに前記q軸インダクタンス増大用磁性環の固有抵抗は、前記界磁磁石の固有抵抗よりも高い。   A seventeenth aspect of the rotating electrical machine according to the present invention is the fifth aspect thereof, and the specific resistance of the first magnetic ring, the second magnetic ring, and the q-axis inductance increasing magnetic ring is the field resistance. It is higher than the specific resistance of the magnet.

この発明にかかる回転電機の第18の態様は、その第1乃至第17の態様のいずれかであって、前記電機子はティースを有し、前記回転軸方向に沿って見て、前記ティースは前記第1磁性突起と前記第2磁性突起の内径と外径との間に位置する。   An eighteenth aspect of the rotating electrical machine according to the present invention is any one of the first to seventeenth aspects, wherein the armature has a tooth, and the tooth is It is located between the inner diameter and the outer diameter of the first magnetic protrusion and the second magnetic protrusion.

この発明にかかる回転電機の第1の態様によれば、第1磁極面や第2磁極面の個数が少なくても、第1磁性突起や第2磁性突起の個数で界磁子の極数を設定することができる。よって周方向において異なる磁極面が発生するように着磁する必要がなく、着磁が容易である。また第1磁性環や第2磁性環の存在により、界磁磁石の渦電流や減磁の発生を抑制できる。また第1磁性突起や第2磁性突起に流れる磁束は第1磁極面や第2磁極面の着磁むらの影響を受けにくい。   According to the first aspect of the rotating electrical machine of the present invention, even if the number of the first magnetic pole surface and the second magnetic pole surface is small, the number of poles of the field element is set by the number of the first magnetic protrusions and the second magnetic protrusions. Can be set. Therefore, it is not necessary to magnetize so that different magnetic pole faces are generated in the circumferential direction, and magnetization is easy. Further, the presence of the first magnetic ring and the second magnetic ring can suppress the generation of eddy current and demagnetization of the field magnet. Further, the magnetic flux flowing through the first magnetic protrusion and the second magnetic protrusion is not easily affected by uneven magnetization of the first magnetic pole surface and the second magnetic pole surface.

この発明にかかる回転電機の第2の態様によれば、第1磁極面と第2磁極面との間に流れる磁束が、電機子に鎖交しないで短絡的に流れることを防止する。   According to the 2nd aspect of the rotary electric machine concerning this invention, the magnetic flux which flows between a 1st magnetic pole surface and a 2nd magnetic pole surface is prevented from flowing short-circuiting without interlinking with an armature.

この発明にかかる回転電機の第3の態様によれば、電機子からみたN極の磁極面とS極の磁極面の構成を均一にし易く、回転電機の回転むら・振動・騒音が低減される。   According to the third aspect of the rotating electrical machine according to the present invention, the configuration of the N-pole magnetic pole surface and the S-pole magnetic pole surface viewed from the armature can be easily made uniform, and the rotation unevenness, vibration, and noise of the rotating electrical machine can be reduced. .

この発明にかかる回転電機の第4の態様によれば、第1磁性板と第2磁性板を一体に形成することができ、その製造が容易であるばかりではなく、これらの相互の位置決めが不要になる。また電機子との間のギャップ長の精度も高まる。   According to the fourth aspect of the rotating electrical machine of the present invention, the first magnetic plate and the second magnetic plate can be integrally formed, and not only the manufacture thereof is easy, but also the mutual positioning of these is unnecessary. become. In addition, the accuracy of the gap length with the armature is increased.

この発明にかかる回転電機の第5の態様によれば、リラクタンストルクを利用することができる。   According to the 5th aspect of the rotary electric machine concerning this invention, reluctance torque can be utilized.

この発明にかかる回転電機の第6の態様によれば、電機子からみたN極の磁極面とS極の磁極面の構成を均一にし易く、回転電機の回転むら・振動・騒音が低減される。またq軸磁路へと磁束を導き易くする。   According to the sixth aspect of the rotating electrical machine according to the present invention, the configuration of the N-pole magnetic pole surface and the S-pole magnetic pole surface viewed from the armature can be easily made uniform, and the rotation unevenness, vibration, and noise of the rotating electrical machine can be reduced. . In addition, the magnetic flux is easily guided to the q-axis magnetic path.

この発明にかかる回転電機の第7の態様によれば、第1磁性板と第2磁性板とq軸インダクタンス増大用磁性板を一体に形成することができ、その製造が容易であるばかりではなく、これらの相互の位置決めが不要になる。また電機子との間のギャップ長の精度も高まる。   According to the seventh aspect of the rotating electrical machine of the present invention, the first magnetic plate, the second magnetic plate, and the q-axis inductance increasing magnetic plate can be integrally formed, and not only the manufacture thereof is easy. These mutual positioning becomes unnecessary. In addition, the accuracy of the gap length with the armature is increased.

この発明にかかる回転電機の第8の態様によれば、第1磁石と第2磁石との反磁界の影響を小さくし、動作点磁束密度を高めることができる。   According to the 8th aspect of the rotary electric machine concerning this invention, the influence of the demagnetizing field of a 1st magnet and a 2nd magnet can be made small, and an operating point magnetic flux density can be raised.

この発明にかかる回転電機の第9の態様によれば、二つの電機子が界磁子に働かせる吸引力が拮抗し、相互にキャンセルされ、よって回転軸方向のスラスト力が低減される。   According to the ninth aspect of the rotating electrical machine according to the present invention, the attractive forces acting on the field element by the two armatures are antagonized and cancel each other, thereby reducing the thrust force in the rotating shaft direction.

この発明にかかる回転電機の第10の態様によれば、界磁子が発生する磁束量をN極とS極とで等しくし、動作点磁束密度を等しくできる。よって回転電機の回転むら・振動・騒音が低減される。   According to the tenth aspect of the rotating electrical machine of the present invention, the amount of magnetic flux generated by the field element can be made equal between the N pole and the S pole, and the operating point magnetic flux density can be made equal. Therefore, the rotation unevenness, vibration, and noise of the rotating electrical machine are reduced.

この発明にかかる回転電機の第11の態様によれば、第1磁性突起における磁気飽和を回避する。   According to the eleventh aspect of the rotating electrical machine of the present invention, magnetic saturation in the first magnetic protrusion is avoided.

この発明にかかる回転電機の第12の態様によれば、回転軸方向の小型化が容易である。   According to the 12th aspect of the rotary electric machine concerning this invention, size reduction of a rotating shaft direction is easy.

この発明にかかる回転電機の第13の態様によれば、二つの電機子が界磁子に働かせる吸引力が拮抗し、相互にキャンセルされ、よって回転軸方向のスラスト力が低減される。   According to the thirteenth aspect of the rotating electrical machine of the present invention, the attractive forces acting on the field element by the two armatures are antagonized and canceled out, thereby reducing the thrust force in the direction of the rotating shaft.

この発明にかかる回転電機の第14の態様によれば、界磁磁束が受ける磁気抵抗を小さくし、界磁子の内部で界磁磁束が短絡的に流れることを低減する。   According to the fourteenth aspect of the rotating electrical machine of the present invention, the magnetic resistance received by the field magnetic flux is reduced, and the field magnetic flux is prevented from flowing in a short circuit inside the field element.

この発明にかかる回転電機の第15の態様によれば、環状磁石の個数を低減し、またその着磁も容易である。   According to the fifteenth aspect of the rotating electrical machine of the present invention, the number of annular magnets is reduced and the magnetization is easy.

この発明にかかる回転電機の第16の態様及び第17の態様によれば、渦電流損を低減できる。   According to the sixteenth aspect and the seventeenth aspect of the rotating electrical machine according to the present invention, eddy current loss can be reduced.

この発明にかかる回転電機の第18の態様によれば、電機子と界磁子との間の、いわゆるエアギャップにおける磁気抵抗を低減する。   According to the eighteenth aspect of the rotating electrical machine of the present invention, the magnetic resistance in the so-called air gap between the armature and the field element is reduced.

第1の実施の形態.
図1は、本発明の第1の実施の形態にかかる回転電機に採用される界磁子1Aの構成を示す斜視図である。当該回転電機は例えば空気調和機の冷媒を圧縮する圧縮機や、ファンに採用することができる。
First embodiment.
FIG. 1 is a perspective view showing a configuration of a field element 1A employed in the rotating electrical machine according to the first embodiment of the present invention. The rotating electrical machine can be employed in, for example, a compressor that compresses a refrigerant of an air conditioner or a fan.

構造の理解を容易にするため、界磁子1Aを回転軸方向において分解して示している。但し、回転電機の分野の通常の技術知識を有する者であれば、界磁子1Aの構造を図1から認識することができる。   In order to facilitate understanding of the structure, the field element 1A is shown exploded in the direction of the rotation axis. However, a person having ordinary technical knowledge in the field of rotating electrical machines can recognize the structure of the field element 1A from FIG.

界磁子1Aは回転軸Qの周りで周方向に回転可能であり、ここでは回転子として機能する。界磁子1Aは磁性板群101と、磁性環群102と、界磁磁石103と、ヨーク106とを有する。   The field element 1A is rotatable in the circumferential direction around the rotation axis Q, and functions as a rotor here. The field element 1 </ b> A includes a magnetic plate group 101, a magnetic ring group 102, a field magnet 103, and a yoke 106.

界磁磁石103は界磁磁束を発生させ、ここでは環状の永久磁石103C,103Dで構成されている。永久磁石103Cは永久磁石103Dよりも内周側に配置されている。   The field magnet 103 generates a field magnetic flux, and here is constituted by annular permanent magnets 103C and 103D. The permanent magnet 103C is disposed on the inner peripheral side with respect to the permanent magnet 103D.

永久磁石103Cは回転軸方向の一方側(図1において上方側)にS極性の磁極面103Saを、他方側に(図1において下方側)にN極性の磁極面103Nbを、それぞれ呈している。また永久磁石103Dは回転軸方向の上記一方側にN極性の磁極面103Naを、上記他方側にS極性の磁極面103Sbを、それぞれ呈している。   The permanent magnet 103C has an S-polarity magnetic pole surface 103Sa on one side (upper side in FIG. 1) and an N-polar magnetic pole surface 103Nb on the other side (lower side in FIG. 1). Further, the permanent magnet 103D has an N-polar magnetic pole surface 103Na on the one side in the rotation axis direction and an S-polar magnetic pole surface 103Sb on the other side.

ヨーク106は磁極面103Nb,103Sbに設けられ、永久磁石103C,103Dを磁気的に連結する。   The yoke 106 is provided on the magnetic pole surfaces 103Nb and 103Sb, and magnetically connects the permanent magnets 103C and 103D.

磁性環群102は回転軸方向に厚みを有する環状の磁性体である磁性環102N,102Sを含む。磁性環102Sは磁極面103Saに設けられ、磁性環102Nは磁極面103Naに設けられる。つまり本実施の形態では、磁性環群102は界磁磁石103に対して回転軸方向の上記一方側に配置されることになる。   The magnetic ring group 102 includes magnetic rings 102N and 102S that are annular magnetic bodies having a thickness in the direction of the rotation axis. The magnetic ring 102S is provided on the magnetic pole surface 103Sa, and the magnetic ring 102N is provided on the magnetic pole surface 103Na. That is, in the present embodiment, the magnetic ring group 102 is arranged on the one side in the rotation axis direction with respect to the field magnet 103.

磁性環102Sは回転軸方向の上記一方側に突出する磁性突起102Kを有し、磁性環102Nは回転軸方向の上記一方側に突出する磁性突起102Jを有する。磁性突起102J,102Kは同数設けられる。これらの部材は接着剤で結合、または一体にモールドされる。   The magnetic ring 102S has a magnetic protrusion 102K protruding to the one side in the rotation axis direction, and the magnetic ring 102N has a magnetic protrusion 102J protruding to the one side in the rotation axis direction. The same number of magnetic protrusions 102J and 102K are provided. These members are bonded with an adhesive or molded together.

図2及び図3は界磁子1Aの構成と、これと共に回転電機を構成する電機子2との位置関係を示す断面図であり、回転軸Qを含む断面を示す。電機子2は回転軸方向の上記一方側(図2及び図3において上方側)において界磁子1Aと対向する。図2は磁性突起102Kを有する断面の断面図であり、図3は磁性突起102Jを有する断面の断面図である。   2 and 3 are cross-sectional views showing the positional relationship between the configuration of the field element 1A and the armature 2 constituting the rotating electric machine together with the field element 1A, and show a cross section including the rotating shaft Q. FIG. The armature 2 faces the field element 1A on the one side in the rotation axis direction (the upper side in FIGS. 2 and 3). 2 is a cross-sectional view of the cross section having the magnetic protrusion 102K, and FIG. 3 is a cross-sectional view of the cross section having the magnetic protrusion 102J.

磁性突起102Kの電機子2側には磁性板101Sが、磁性突起102Jの電機子2側には磁性板101Nが、それぞれ設けられる。磁性板101N,101Sは纏めて磁性体群101として把握できる。磁性突起102Kに更に磁性板101Sをも加えた構成をも、回転軸方向に突出する磁性突起として把握することができる。同様にして磁性突起102Jに更に磁性板101Nをも加えた構成をも、回転軸方向に突出する磁性突起として把握することができる。   A magnetic plate 101S is provided on the armature 2 side of the magnetic protrusion 102K, and a magnetic plate 101N is provided on the armature 2 side of the magnetic protrusion 102J. The magnetic plates 101N and 101S can be grasped together as the magnetic body group 101. A configuration in which the magnetic plate 101S is further added to the magnetic protrusion 102K can also be grasped as a magnetic protrusion protruding in the rotation axis direction. Similarly, a configuration in which the magnetic plate 101N is further added to the magnetic protrusion 102J can be grasped as a magnetic protrusion protruding in the rotation axis direction.

磁性板101Sは電機子2側で磁性環102Nを覆い、磁性板101Nは電機子2側で磁性環102Sを覆う。磁性突起102K及び磁性板101Sは、磁性突起102J及び磁性板101Nと相互に磁気的に分離されつつ、周方向において交互に設けられる。磁性板101N,101Sのいずれもが回転軸方向において電機子2と対向する。   The magnetic plate 101S covers the magnetic ring 102N on the armature 2 side, and the magnetic plate 101N covers the magnetic ring 102S on the armature 2 side. The magnetic protrusions 102K and the magnetic plates 101S are alternately provided in the circumferential direction while being magnetically separated from the magnetic protrusions 102J and the magnetic plates 101N. Both of the magnetic plates 101N and 101S face the armature 2 in the rotation axis direction.

磁性板101Sは磁性突起102Kを介して磁極面103Saに磁気的に連結されており、S極性に帯磁する。磁性板101Nは磁性突起102Jを介して磁極面103Naに磁気的に連結されており、N極性に帯磁する。   The magnetic plate 101S is magnetically coupled to the magnetic pole surface 103Sa via the magnetic protrusion 102K, and is magnetized to S polarity. The magnetic plate 101N is magnetically coupled to the magnetic pole surface 103Na via the magnetic protrusion 102J and is magnetized to N polarity.

磁性突起102Jは磁性突起102Kが設けられた位置以外では磁性環102Sよりも磁性板群101に近く、磁性突起102Kは磁性突起102Jが設けられた位置以外では磁性環102Nよりも磁性板群101に近い。よって回転軸方向において磁性板101Nと磁性環102Sとの間での磁気的短絡や、磁性板101Sと磁性環102Nとの間での磁気的短絡が回避される。   The magnetic protrusion 102J is closer to the magnetic plate group 101 than the magnetic ring 102S except at the position where the magnetic protrusion 102K is provided, and the magnetic protrusion 102K is closer to the magnetic plate group 101 than the magnetic ring 102N except at the position where the magnetic protrusion 102J is provided. close. Therefore, a magnetic short circuit between the magnetic plate 101N and the magnetic ring 102S and a magnetic short circuit between the magnetic plate 101S and the magnetic ring 102N in the rotation axis direction are avoided.

ここでは磁性突起102K及び磁性板101Sと、磁性突起102J及び磁性板101Nとのいずれもが、略90度ピッチで配置されている。磁性突起102K,102J及び磁性板101S,101Nは回転軸Qから見て周方向にほぼ45度の角度で広がる。具体的には45度よりも若干小さい角度で広がる方が、磁性突起102K,102J同士や、磁性板101S,101N同士を磁気的に短絡させない点で望ましい。但し磁性板101S,101Nの間で磁束が短絡的に流れないように、これらのピッチを等しく90度に設定しない場合(いわゆる不等ピッチ)には、磁性突起102K,102J及び磁性板101S,101Nのうちのいずれかの周方向の広がりが45度を超えてもよい。このような変形は、例えばコギングトルクを低減したい場合に採用される。   Here, all of the magnetic protrusions 102K and the magnetic plate 101S, and the magnetic protrusions 102J and the magnetic plate 101N are arranged at a pitch of approximately 90 degrees. The magnetic protrusions 102K and 102J and the magnetic plates 101S and 101N spread at an angle of approximately 45 degrees in the circumferential direction when viewed from the rotation axis Q. Specifically, spreading at an angle slightly smaller than 45 degrees is desirable from the viewpoint of not magnetically short-circuiting the magnetic protrusions 102K and 102J or the magnetic plates 101S and 101N. However, when these pitches are not set equal to 90 degrees (so-called unequal pitches) so that the magnetic flux does not flow short-circuit between the magnetic plates 101S and 101N, the magnetic projections 102K and 102J and the magnetic plates 101S and 101N The spread in the circumferential direction of any of the above may exceed 45 degrees. Such a deformation is employed, for example, when it is desired to reduce the cogging torque.

このようにして磁極面103Na,103Saはそれぞれ一つずつであるにも拘わらず、磁性突起の個数で界磁子1Aの極数(ここでは8個)を設定することができる。永久磁石103C,103Dはそれぞれ回転軸方向に一様に着磁すれば足りるので、着磁も容易である。特に界磁子の極数が多い場合に永久磁石を多極着磁すると、隣接する磁極面同士の間で磁束が短絡的に流れることは防ぎにくく、また磁極面の境界近傍での着磁が不完全となりやすい。即ち、極数が多いほど、磁極表面積の全磁極表面積に占める磁極境界近傍での漏れ磁束の割合、又は、磁極境界の無着磁部分の割合が増すことになる。かかる問題は永久磁石が小さくなるほど顕著となるので、本実施の形態の技術は特に小型モータにおいて顕著に奏功する。   In this manner, the number of poles of the field element 1A (eight in this case) can be set by the number of magnetic protrusions, although the magnetic pole surfaces 103Na and 103Sa are one each. The permanent magnets 103C and 103D only need to be magnetized uniformly in the direction of the rotation axis, and therefore can be easily magnetized. In particular, if the permanent magnet is multipolarized when the number of poles of the field element is large, it is difficult to prevent the magnetic flux from short-circuiting between adjacent magnetic pole faces, and magnetization near the boundary of the magnetic pole faces is difficult. It tends to be incomplete. That is, as the number of poles increases, the ratio of the leakage magnetic flux in the vicinity of the magnetic pole boundary to the total magnetic pole surface area of the magnetic pole surface area or the ratio of the non-magnetized portion of the magnetic pole boundary increases. Since such a problem becomes more prominent as the permanent magnet becomes smaller, the technique of the present embodiment is particularly effective in a small motor.

また磁極面103Na,103Saのそれぞれの電機子2側には磁性環102N,102Sが存在するので、電機子2からの回転磁界に起因する渦電流損や減磁を抑制できる。しかも、たとえ磁極面103Sa,103Naに着磁むらがあっても、これらにはそれぞれ磁性環102S,102Nが設けられるので、磁性突起102J,102Kに流れる磁束は、着磁むらによる影響を受けにくい。特に永久磁石103C,103Dのほぼ全面に亘り、それぞれ磁性環102S,102Nが密着することが望ましい。   Moreover, since the magnetic rings 102N and 102S exist on the armature 2 side of the magnetic pole surfaces 103Na and 103Sa, eddy current loss and demagnetization caused by the rotating magnetic field from the armature 2 can be suppressed. In addition, even if the magnetic pole surfaces 103Sa and 103Na have uneven magnetization, the magnetic rings 102S and 102N are provided on the magnetic pole surfaces 103Sa and 103Na, respectively. Therefore, the magnetic flux flowing through the magnetic protrusions 102J and 102K is hardly affected by the uneven magnetization. In particular, it is desirable that the magnetic rings 102S and 102N are in close contact with each other over almost the entire surface of the permanent magnets 103C and 103D.

永久磁石103C,103Dの減磁を更に抑制するためには、磁性環102N,102Sの径方向に沿った間隔を、永久磁石103C,103Dの厚みよりも小さくすることが好適である。磁性環102N,102Sの間の磁気抵抗を永久磁石103C,103Dの磁気抵抗よりも小さくすることにより、電機子2からの回転磁界が過剰となっても、当該回転磁束は永久磁石103C,103Dよりも磁性環102N,102Sの間を通りやすくなるからである。   In order to further suppress the demagnetization of the permanent magnets 103C and 103D, it is preferable to make the interval along the radial direction of the magnetic rings 102N and 102S smaller than the thickness of the permanent magnets 103C and 103D. Even if the rotating magnetic field from the armature 2 becomes excessive by making the magnetic resistance between the magnetic rings 102N and 102S smaller than the magnetic resistance of the permanent magnets 103C and 103D, the rotating magnetic flux is generated by the permanent magnets 103C and 103D. This is because it becomes easier to pass between the magnetic rings 102N and 102S.

磁極面103Naと磁極面103Saとの間に流れる磁束が、電機子2に鎖交しないで短絡的に流れることを防止するには、磁性突起102K,102Jと、磁性板101S,101Nとの間の距離は、界磁子1Aと電機子2との回転軸方向に沿った距離(いわゆるギャップ長)の2倍を超える距離以上で隔たることが望ましい。磁極面103Naと磁極面103Saとの間に流れる磁束が電機子2に鎖交する際には、界磁子1Aと電機子2との間(いわゆるエアギャップ)を二回経由する。よって磁性突起102K,102Jと、磁性板101S,101Nとの間にはエアギャップ二つ分よりも高い磁気抵抗を介在させることにより、界磁磁束を電機子巻線に鎖交させ易くするのである。   In order to prevent the magnetic flux flowing between the magnetic pole surface 103Na and the magnetic pole surface 103Sa from being short-circuited without interlinking with the armature 2, the magnetic projections 102K and 102J and the magnetic plates 101S and 101N can be prevented from flowing. It is desirable that the distance be separated by at least a distance exceeding twice the distance (so-called gap length) along the rotation axis direction between the field element 1A and the armature 2. When the magnetic flux flowing between the magnetic pole surface 103Na and the magnetic pole surface 103Sa is linked to the armature 2, it passes twice between the field element 1A and the armature 2 (so-called air gap). Therefore, by interposing a magnetic resistance higher than two air gaps between the magnetic protrusions 102K and 102J and the magnetic plates 101S and 101N, the field magnetic flux is easily interlinked with the armature winding. .

例えば磁性環102N,102S同士の間隔、磁極板101Nと磁極板101Sとの周方向の間隔、磁極板101Nと磁性環102Sとの回転軸方向の間隔、磁極板101Sと磁性環102Nとの回転軸方向の間隔がギャップ長の2倍を超える距離以上で隔たることが望ましい。   For example, the distance between the magnetic rings 102N and 102S, the distance between the magnetic pole plate 101N and the magnetic pole plate 101S in the circumferential direction, the distance between the magnetic pole plate 101N and the magnetic ring 102S in the rotation axis direction, and the rotation axis between the magnetic pole plate 101S and the magnetic ring 102N. It is desirable that the distance in the direction is at least a distance exceeding twice the gap length.

磁性板101S,101Nを設けることにより、電機子2からみたN極の磁極面とS極の磁極面の構成を均一にし易い。上述のように磁性板101Sは電機子2側で磁性環102Nを覆い、磁性板101Nは電機子2側で磁性環102Sを覆う。よって磁性板101S,101Nはいずれも扇形に、交互に設けられる。上述のようにこれらはいずれも周方向に略45度で広がる。そして磁性板101S,101Nの内径も外径も等しくすることで、相互に形状を一致させ、また径方向における位置関係も同様にできる。このように電機子2からみたN極の磁極面とS極の磁極面の構成を均一にするので、回転電機の回転むら・振動・騒音が低減される。   By providing the magnetic plates 101 </ b> S and 101 </ b> N, it is easy to make the configuration of the N-pole magnetic pole surface and the S-pole magnetic pole surface viewed from the armature 2 uniform. As described above, the magnetic plate 101S covers the magnetic ring 102N on the armature 2 side, and the magnetic plate 101N covers the magnetic ring 102S on the armature 2 side. Therefore, the magnetic plates 101S and 101N are alternately provided in a fan shape. As described above, these spread at about 45 degrees in the circumferential direction. By making the inner and outer diameters of the magnetic plates 101S and 101N equal, the shapes can be matched with each other, and the positional relationship in the radial direction can be made the same. In this way, the configuration of the N-pole magnetic pole face and the S-pole magnetic pole face as seen from the armature 2 is made uniform, so that the rotation unevenness, vibration, and noise of the rotating electric machine are reduced.

磁性突起102K、102Jの形状として階段状の形状が図示されているが、台形状であってもよい。また、角に面取りや丸み(アール)を設けることもできる。   A stepped shape is illustrated as the shape of the magnetic protrusions 102K and 102J, but it may be trapezoidal. In addition, chamfering and rounding can be provided at the corners.

また、磁性板101S,101Nの間の空隙は、例えば径方向に対して周方向へと傾くことも、スキューの効果が得られる点で好適である。また当該空隙を不等間隔で設けることも、コギングトルクを低減する効果が得られる点で好適である。   In addition, it is also preferable that the gap between the magnetic plates 101S and 101N is inclined in the circumferential direction with respect to the radial direction, for example, in order to obtain a skew effect. It is also preferable to provide the gaps at unequal intervals in that the effect of reducing the cogging torque can be obtained.

また磁性板101S,101Nの電機子2側の表面は、必ずしも平面でなくてもよい。例えば周方向に関して電機子2に対して凸であれば、周方向に沿って見たギャップ長の高調波成分が低減される点で好適である。   Further, the surface of the magnetic plates 101S and 101N on the armature 2 side is not necessarily flat. For example, if it is convex with respect to the armature 2 in the circumferential direction, it is preferable in that the harmonic component of the gap length viewed along the circumferential direction is reduced.

着磁は少し複雑になるが、界磁磁石103は永久磁石103C,103Dを一体に形成した構成を有していてもよい。この場合、径方向のある位置において着磁方向が切り替わる。   Although magnetization is a little complicated, the field magnet 103 may have a configuration in which the permanent magnets 103C and 103D are integrally formed. In this case, the magnetization direction is switched at a certain position in the radial direction.

例えば磁性環102N,102Sは磁気的に分離されながらも界磁子1Aとしての位置を固定するため、非磁性体によって結合されていてもよい。例えば界磁磁石103と併せて樹脂でモールドしてもよい。   For example, the magnetic rings 102N and 102S may be coupled by a nonmagnetic material in order to fix the position as the field element 1A while being magnetically separated. For example, it may be molded with resin together with the field magnet 103.

永久磁石103C,103Dが同じ材質であり、その厚みや磁極面の面積を相互に等しくして磁気抵抗を、ひいては動作点磁束密度を等しくできる。この場合には磁極面103Na,103Saが発生する磁束量は等しくなる。磁性環群102の磁気抵抗は、エアギャップ及び永久磁石103C,103Dのそれらに比べると十分に小さい。よって磁極面103Na,103Saが発生する磁束量を等しくすれば、界磁子1Aから発生する磁束量はN極、S極で等しくなると考えることができる。これにより回転電機の回転むら・振動・騒音を低減できる。   The permanent magnets 103C and 103D are made of the same material, and the thickness and the area of the magnetic pole face can be made equal to each other so that the magnetic resistance can be made equal, and hence the operating point magnetic flux density can be made equal. In this case, the magnetic flux amounts generated by the magnetic pole surfaces 103Na and 103Sa are equal. The magnetic resistance of the magnetic ring group 102 is sufficiently smaller than those of the air gap and the permanent magnets 103C and 103D. Therefore, if the amount of magnetic flux generated by the magnetic pole surfaces 103Na and 103Sa is made equal, it can be considered that the amount of magnetic flux generated from the field element 1A is equal between the N pole and the S pole. Thereby, the rotation unevenness, vibration, and noise of the rotating electrical machine can be reduced.

磁極面103Na,103Saが発生する磁束量を等しくすべく、これらの面積を同一にするには、永久磁石103Dの外径及び内径をD1o,D1iとし、永久磁石103Cの外径及び内径をD2o,D2iとすると、π(D1o2−D1i2)/4=π(D2o2−D2i2)/4であればよい。 In order to make these areas the same in order to equalize the amount of magnetic flux generated by the magnetic pole surfaces 103Na and 103Sa, the outer diameter and inner diameter of the permanent magnet 103D are D1o and D1i, and the outer diameter and inner diameter of the permanent magnet 103C are D2o, Assuming D2i, π (D1o 2 −D1i 2 ) / 4 = π (D2o 2 −D2i 2 ) / 4 may be satisfied.

しかしながら、上述の関係が満足されると、永久磁石103Cの径方向の長さは、永久磁石103Dの径方向の長さより大きくなる。そのため、磁性板101Nのうち磁性環102Sの上方に位置する部分は、磁性板101Sのうち磁性環102Nの上方に位置する部分よりも長くなる。しかしこのような部分の厚みが大きくできない場合は、容易に磁気飽和し、磁気抵抗を高くする。従って、磁極面103Naの面積を、磁極面103Saの面積より大きくすることも望ましい。   However, when the above relationship is satisfied, the radial length of the permanent magnet 103C is greater than the radial length of the permanent magnet 103D. Therefore, a portion of the magnetic plate 101N that is located above the magnetic ring 102S is longer than a portion of the magnetic plate 101S that is located above the magnetic ring 102N. However, when the thickness of such a portion cannot be increased, the magnetic saturation is easily achieved and the magnetoresistance is increased. Therefore, it is desirable to make the area of the magnetic pole surface 103Na larger than the area of the magnetic pole surface 103Sa.

ヨーク106を設けることにより、永久磁石103C,103Dの反磁界の影響を小さくし、動作点磁束密度を高めることができる。この場合、ヨーク106の内径で、回転シャフト(図示しない)を保持することが可能である。ヨーク106は磁極面103Na,103Sbを磁気的に短絡させる働きがあるため、回転シャフトが磁性体であってもヨーク106によって界磁磁束が短絡的に流れることはない。   By providing the yoke 106, the influence of the demagnetizing field of the permanent magnets 103C and 103D can be reduced, and the operating point magnetic flux density can be increased. In this case, it is possible to hold a rotating shaft (not shown) with the inner diameter of the yoke 106. Since the yoke 106 has a function of magnetically short-circuiting the magnetic pole surfaces 103Na and 103Sb, the field magnetic flux does not flow short-circuited by the yoke 106 even if the rotating shaft is a magnetic body.

ヨーク106を設けている場合、これと反対側にのみエアギャップが存在するので、回転軸方向の吸引力の対策を行うことが望ましい。例えば、スラスト軸受を設けたり、電機子2としては磁心を有しないコアレス巻線を採用することが望ましい。   When the yoke 106 is provided, an air gap exists only on the opposite side, so it is desirable to take measures against the suction force in the direction of the rotation axis. For example, it is desirable to provide a thrust bearing or employ a coreless winding having no magnetic core as the armature 2.

また、回転シャフトが磁性体である場合は、永久磁石103C,103Dの間や、磁性環102N,102Sの間で回転シャフトを介して磁束が短絡的に磁路となることを防ぐことが望ましい。例えば回転シャフトを非磁性体のボスを介して支持したりして、永久磁石103C,103Dや、磁性環102N,102Sに対して離隔することが望ましい。あるいはモールドした界磁子1Aを回転シャフトと勘合させてもよい。もちろん、回転シャフトが非磁性体のステンレス鋼で形成されている場合、またはヨーク106のみでシャフトを保持する場合はこの限りではない。   When the rotating shaft is a magnetic body, it is desirable to prevent the magnetic flux from short-circuiting between the permanent magnets 103C and 103D or between the magnetic rings 102N and 102S via the rotating shaft. For example, it is desirable that the rotary shaft be supported via a non-magnetic boss to be separated from the permanent magnets 103C and 103D and the magnetic rings 102N and 102S. Alternatively, the molded field element 1A may be fitted with the rotating shaft. Of course, this is not the case when the rotating shaft is formed of nonmagnetic stainless steel, or when the shaft is held only by the yoke 106.

磁性板群101、磁性環102S,102Nの材質は、圧粉磁心や、例えば電磁鋼板を採用し、回転軸方向を巻回中心とした巻鉄心が好適である。但し永久磁石103C,103Dが焼結の希土類磁石、特にネオジウム系磁石である場合、磁性板群101、磁性環102S,102Nの材質は、例えば圧粉磁芯を採用することが望ましい。磁性板群101、磁性環102S,102Nの固有抵抗を、永久磁石の固有抵抗よりも大きくし、回転電機内部における磁束の高周波成分による渦電流損を低減できるからである。特にPWMインバータで回転電機を駆動した場合には、このような高周波成分による渦電流損が顕著であるので、上記固有抵抗の大小関係は好適である。ここで固有抵抗を、磁束が流れる方向と直交する面における抵抗率と読み替えてもよい。   As the material of the magnetic plate group 101 and the magnetic rings 102S and 102N, a dust core or a wound iron core, for example, an electromagnetic steel plate is used and the rotation axis direction is the winding center is suitable. However, when the permanent magnets 103C and 103D are sintered rare earth magnets, particularly neodymium magnets, it is desirable to employ, for example, a dust core as the material of the magnetic plate group 101 and the magnetic rings 102S and 102N. This is because the specific resistance of the magnetic plate group 101 and the magnetic rings 102S and 102N can be made larger than the specific resistance of the permanent magnet, and the eddy current loss due to the high frequency component of the magnetic flux inside the rotating electrical machine can be reduced. In particular, when the rotating electrical machine is driven by a PWM inverter, the eddy current loss due to such a high frequency component is remarkable, and therefore the above-mentioned relationship between the specific resistances is suitable. Here, the specific resistance may be read as resistivity in a plane orthogonal to the direction in which the magnetic flux flows.

磁性板群101と磁性環102S,102Nとは別体であり、回転軸方向に沿って結合することもできる。あるいは磁性板群101と磁性突起102J,102Kとを一体にし、磁性突起102J,102Kを除いた磁性環102S,102Nと結合してもよい。   The magnetic plate group 101 and the magnetic rings 102S and 102N are separate and can be coupled along the direction of the rotation axis. Alternatively, the magnetic plate group 101 and the magnetic protrusions 102J and 102K may be integrated and coupled to the magnetic rings 102S and 102N excluding the magnetic protrusions 102J and 102K.

電機子2がティースを有する場合、回転軸方向に沿って見て、ティースの内径を磁性板群101の内径と同じ位置もしくは外周側に、ティースの外径を磁性板群101の外径と同じ位置もしくは内周側に、それぞれ配置することが望ましい。換言すれば、回転軸方向に沿って見て、磁性突起102J,102Kに加えて磁性板101N,101Sを含めた磁性突起の内径と外径の間に、電機子2のティースが配置されることが望ましい。ティースのほぼ全面が界磁子1Aに対向することにより、特にエアギャップ部の磁気抵抗を低くすることができる。   When the armature 2 has teeth, the inner diameter of the teeth is at the same position or outer peripheral side as the inner diameter of the magnetic plate group 101 and the outer diameter of the teeth is the same as the outer diameter of the magnetic plate group 101 when viewed along the rotation axis direction. It is desirable to arrange each at the position or the inner circumference side. In other words, the teeth of the armature 2 are arranged between the inner and outer diameters of the magnetic protrusions including the magnetic plates 101N and 101S in addition to the magnetic protrusions 102J and 102K when viewed along the rotation axis direction. Is desirable. Since almost the entire surface of the teeth faces the field element 1A, the magnetic resistance of the air gap portion can be particularly lowered.

第2の実施の形態.
図4は、本発明の第2の実施の形態にかかる回転電機に採用される界磁子1Bの構成を示す斜視図である。構造の理解を容易にするため、界磁子1Bを回転軸方向において分解して示している。
Second embodiment.
FIG. 4 is a perspective view showing a configuration of a field element 1B employed in the rotating electrical machine according to the second embodiment of the present invention. In order to facilitate understanding of the structure, the field element 1B is shown exploded in the direction of the rotation axis.

界磁子1Bは界磁子1Aのヨーク106を、磁性環群104及び磁性板群105に置換した構成を備えている。磁性環群104は回転軸方向に厚みを有する環状の磁性体である磁性環104N,104Sを含む。磁性環104Sは磁極面103Sbに設けられ、磁性環104Nは磁極面103Nbに設けられる。磁性環104Sは回転軸方向に沿って磁性突起102Jとは反対側に突出する磁性突起104Kを有し、磁性環104Nは回転軸方向に沿って磁性突起102Kとは反対側に突出する磁性突起104Jを有する。磁性突起104J,104Kは同数設けられる。   The field element 1B has a configuration in which the yoke 106 of the field element 1A is replaced with a magnetic ring group 104 and a magnetic plate group 105. The magnetic ring group 104 includes magnetic rings 104N and 104S which are annular magnetic bodies having a thickness in the direction of the rotation axis. The magnetic ring 104S is provided on the magnetic pole surface 103Sb, and the magnetic ring 104N is provided on the magnetic pole surface 103Nb. The magnetic ring 104S has a magnetic protrusion 104K that protrudes on the opposite side of the magnetic protrusion 102J along the rotation axis direction, and the magnetic ring 104N has a magnetic protrusion 104J that protrudes on the opposite side of the magnetic protrusion 102K along the rotation axis direction. Have The same number of magnetic protrusions 104J and 104K are provided.

図5及び図6は界磁子1Bの構成と、これと共に回転電機を構成する電機子2,3との位置関係を示す断面図であり、回転軸Qを含む断面を示す。電機子2は回転軸方向の一方側(図5及び図6において上方側)において界磁子1Bと対向し、電機子3は回転軸方向の他方側(図5及び図6において下方側)において界磁子1Bと対向する。図5は磁性突起102K,104Jを有する断面の断面図であり、図6は磁性突起102J,104Kを有する断面の断面図である。   5 and 6 are sectional views showing the configuration of the field element 1B and the positional relationship between the armatures 2 and 3 constituting the rotating electric machine together with the field element 1B, and show a section including the rotating shaft Q. FIG. The armature 2 faces the field element 1B on one side in the rotation axis direction (upper side in FIGS. 5 and 6), and the armature 3 is on the other side in the rotation axis direction (lower side in FIGS. 5 and 6). Opposite the field element 1B. 5 is a cross-sectional view of the cross section having the magnetic protrusions 102K and 104J, and FIG. 6 is a cross-sectional view of the cross section having the magnetic protrusions 102J and 104K.

磁性突起104Kの電機子3側には磁性板105Sが、磁性突起104Jの電機子3側には磁性板105Nが、それぞれ設けられる。磁性板105N,105Sは纏めて磁性体群105として把握できる。磁性突起104Kに更に磁性板105Sをも加えた構成をも、回転軸方向に突出する磁性突起として把握することができる。同様にして磁性突起104Jに更に磁性板105Nをも加えた構成をも、回転軸方向に突出する磁性突起として把握することができる。   A magnetic plate 105S is provided on the armature 3 side of the magnetic protrusion 104K, and a magnetic plate 105N is provided on the armature 3 side of the magnetic protrusion 104J. The magnetic plates 105N and 105S can be collectively understood as the magnetic body group 105. A configuration in which the magnetic plate 105S is further added to the magnetic protrusion 104K can also be grasped as a magnetic protrusion protruding in the rotation axis direction. Similarly, a configuration in which a magnetic plate 105N is further added to the magnetic protrusion 104J can also be grasped as a magnetic protrusion protruding in the rotation axis direction.

磁性板105Sは電機子3側で磁性環104Nを覆い、磁性板105Nは電機子3側で磁性環104Sを覆う。磁性突起104K及び磁性板105Sは、磁性突起104J及び磁性板105Nと相互に磁気的に分離されつつ、周方向において交互に設けられる。磁性板105S,105Nのいずれもが回転軸方向において電機子3と対向する。   The magnetic plate 105S covers the magnetic ring 104N on the armature 3 side, and the magnetic plate 105N covers the magnetic ring 104S on the armature 3 side. The magnetic protrusions 104K and the magnetic plates 105S are alternately provided in the circumferential direction while being magnetically separated from the magnetic protrusions 104J and the magnetic plates 105N. Both of the magnetic plates 105S and 105N face the armature 3 in the rotation axis direction.

以上のように磁性環群104、磁性板群105は、それぞれ磁性環群102、磁性板群101と同様の構成を有しており、また電機子3と対向する。よって第1の実施の形態で得られた効果は本実施の形態においても得られる。   As described above, the magnetic ring group 104 and the magnetic plate group 105 have the same configuration as the magnetic ring group 102 and the magnetic plate group 101, respectively, and face the armature 3. Therefore, the effect obtained in the first embodiment can also be obtained in this embodiment.

しかも、界磁子1Bに対して電機子2,3が働かせる吸引力は拮抗し、相互にキャンセルされ、よって回転軸方向のスラスト力が低減される。これは、回転シャフト(不図示)を受ける軸受け(不図示)への負荷を減少させ、軸受の機械損の低減や寿命の増加に寄与する。特に電機子2,3がティースを有する場合にその効果が顕著である。   In addition, the attractive forces exerted by the armatures 2 and 3 on the field element 1B are antagonistic and cancel each other, thereby reducing the thrust force in the direction of the rotation axis. This reduces the load on a bearing (not shown) that receives a rotating shaft (not shown), and contributes to a reduction in mechanical loss and an increase in life of the bearing. The effect is particularly remarkable when the armatures 2 and 3 have teeth.

なお、磁性突起102J,104K、磁性突起102K,104Jが、それぞれ回転軸方向に沿って並ぶ必要はない。周方向における位置が、磁性突起102J,104Kとで異なり、また磁性突起102K,104Jとで異なってもよく、ひいては磁性板群101,105同士の周方向における位置がずれてもよい。このように変形しても、上記効果を損なうことはない。磁性突起102J,104Kが周方向において交互に、また磁性突起102K,104Jが周方向において交互に、それぞれ配置されることは、それぞれ永久磁石103D,103Cの利用効率を上げる点で好適である。永久磁石を含む磁気回路の磁気抵抗が、ひいてはその動作点が周方向の位置によらずに一定となり、永久磁石の利用効率を上げるからである。この点については後に図24及び図25を用いてより詳細に説明する。   The magnetic protrusions 102J and 104K and the magnetic protrusions 102K and 104J do not need to be arranged along the rotation axis direction. The positions in the circumferential direction are different between the magnetic protrusions 102J and 104K, may be different between the magnetic protrusions 102K and 104J, and the positions of the magnetic plate groups 101 and 105 in the circumferential direction may be shifted. Even if it deform | transforms in this way, the said effect is not impaired. It is preferable that the magnetic protrusions 102J and 104K are alternately arranged in the circumferential direction and the magnetic protrusions 102K and 104J are alternately arranged in the circumferential direction from the viewpoint of increasing the utilization efficiency of the permanent magnets 103D and 103C, respectively. This is because the magnetic resistance of the magnetic circuit including the permanent magnet becomes constant regardless of the position in the circumferential direction, and the use efficiency of the permanent magnet is increased. This point will be described in detail later with reference to FIGS.

磁性突起104J,104Kを含めた磁性環104N,104Sや磁性板105N,105Sの形状、及びこれらの相互の位置関係は、第1の実施の形態で示された磁性突起102J,102Kを含めた磁性環102N,102Sや磁性板101N,101Sの形状、及びこれらの相互の位置関係と同様に選定することができる。例えばギャップ長としては、磁性板群105と電機子3との間の回転軸方向に沿った距離を採用して、磁性突起104J,104Kを含めた磁性環104N,104S、磁性板105N,105Sの相互の位置関係を選定する。この場合、磁性板群101側のN極の磁気回路と、磁性板群105側のS極の磁気回路の磁気抵抗は等しくでき、N極とS極の磁気回路が均一となる点で好適である。   The shapes of the magnetic rings 104N and 104S including the magnetic protrusions 104J and 104K and the magnetic plates 105N and 105S, and the positional relationship between them are the same as the magnetic protrusions 102J and 102K shown in the first embodiment. Selection can be made in the same manner as the shapes of the rings 102N and 102S and the magnetic plates 101N and 101S and their positional relationship. For example, as the gap length, a distance along the rotation axis direction between the magnetic plate group 105 and the armature 3 is adopted, and the magnetic rings 104N and 104S including the magnetic protrusions 104J and 104K, and the magnetic plates 105N and 105S. Select mutual positional relationship. In this case, the magnetic resistances of the N-pole magnetic circuit on the magnetic plate group 101 side and the S-pole magnetic circuit on the magnetic plate group 105 side can be made equal, which is preferable in that the N-pole and S-pole magnetic circuits are uniform. is there.

本実施の形態では界磁子1Aとは異なり、ヨーク106が設けられないので、永久磁石103C,103D相互の位置決めを、ひいては磁性環102N,102S,104N,104Sの位置決めを行うことが望ましい。例えば、永久磁石103C,103D同士、あるいは磁性環102N,102S同士、あるいは磁性環104N,104S同士を非磁性体で、例えば樹脂でモールドすることによって一体化することは上記位置決めの観点で好適である。   In the present embodiment, unlike the field element 1A, since the yoke 106 is not provided, it is desirable to position the permanent magnets 103C and 103D relative to each other, and thus position the magnetic rings 102N, 102S, 104N, and 104S. For example, the permanent magnets 103C and 103D, the magnetic rings 102N and 102S, or the magnetic rings 104N and 104S are made of a non-magnetic material, for example, by molding with resin, which is preferable from the viewpoint of positioning. .

第3の実施の形態.
図7は本発明の第3の実施の形態にかかる回転電機に採用される界磁子の構造を部分的に示す斜視図であり、構造の理解を容易にするため、回転軸方向において分解して示している。図7では磁性板群101と磁性環群102のみを示しているが、その余の構成要素は第1実施の形態及び第2の実施の形態でそれぞれ示された界磁子1A,1Bと同様に採用することができる。またこの後に説明する他の実施の形態においても本実施の形態の磁性板群101を採用することができる。
Third embodiment.
FIG. 7 is a perspective view partially showing the structure of the field element employed in the rotating electrical machine according to the third embodiment of the present invention. In order to facilitate understanding of the structure, FIG. It shows. In FIG. 7, only the magnetic plate group 101 and the magnetic ring group 102 are shown, but the remaining components are the same as those of the field elements 1A and 1B shown in the first and second embodiments, respectively. Can be adopted. Further, the magnetic plate group 101 of the present embodiment can also be adopted in other embodiments described later.

本実施の形態における磁性板群101では、磁性板101N,101Sが相互に連結されて円盤状に一体となっている。より具体的には、隣接する磁性板101N,101Sは、それらの外周側及び内周側において、それぞれ薄肉部101G,101Hで連結されている。薄肉部101G,101Hも、磁性板101N,101Sと一体に形成するので、磁性体であるけれどもその形状に由来して容易に磁気飽和し、実質的には磁気障壁として機能する。よって磁性板101N,101S同士の磁気的な分離は損なわれない。   In the magnetic plate group 101 in the present embodiment, the magnetic plates 101N and 101S are connected to each other and integrated into a disk shape. More specifically, adjacent magnetic plates 101N and 101S are connected by thin portions 101G and 101H on the outer peripheral side and the inner peripheral side, respectively. Since the thin portions 101G and 101H are also formed integrally with the magnetic plates 101N and 101S, they are magnetic bodies but easily magnetically saturated due to their shapes, and substantially function as magnetic barriers. Therefore, the magnetic separation between the magnetic plates 101N and 101S is not impaired.

このように磁性板群101を一体に形成することにより、その製造が容易であるばかりではなく、磁性板101N,101S同士の位置決めが不要になるという効果が得られる。更には電機子2と対向する側の磁性板群101の形状精度が高まり、ギャップ長の精度も向上する。   Thus, by integrally forming the magnetic plate group 101, not only the manufacture thereof is easy, but also the effect that the positioning of the magnetic plates 101N and 101S becomes unnecessary is obtained. Furthermore, the shape accuracy of the magnetic plate group 101 on the side facing the armature 2 is increased, and the accuracy of the gap length is also improved.

第4の実施の形態.
図8乃至図12に、本発明の第4の実施の形態にかかる回転電機に採用される界磁子1Cの構造を示す。界磁子1Cは第1の実施の形態で示された界磁子1Aと置換して、電機子2と共に回転電機を構成する。
Fourth embodiment.
8 to 12 show the structure of a field element 1C employed in a rotating electrical machine according to the fourth embodiment of the present invention. The field element 1C replaces the field element 1A shown in the first embodiment, and constitutes a rotating electric machine together with the armature 2.

図8は界磁子1Cの構成から磁性板群101を除いた構成を示す、回転軸方向に沿って見た平面図である。磁性環102Qは磁性環102N,102Sの間で、いわゆるq軸インダクタンス増大用に設けられている。磁性環102Qは、dqモデルにおけるq軸に位置してq軸インダクタンスを増大させる、q軸インダクタンス増大用の磁性突起102Lを有している。   FIG. 8 is a plan view showing a configuration in which the magnetic plate group 101 is removed from the configuration of the field element 1 </ b> C, viewed along the rotation axis direction. The magnetic ring 102Q is provided between the magnetic rings 102N and 102S for increasing the so-called q-axis inductance. The magnetic ring 102Q has a magnetic protrusion 102L for increasing the q-axis inductance that is positioned on the q-axis in the dq model and increases the q-axis inductance.

図9は界磁子1Cにおいて用いられる磁性板群101の構成を示す、回転軸方向に沿って見た平面図である。磁性板群101は、磁性突起102J,102Kに設けられる磁性板101N,101Sのみならず、磁性板101Qをもq軸インダクタンス増大用に有しており、周方向において磁性板101N,101Sの間で、これらと磁気的に分離されて配置されている。図9では第3の実施の形態で示された薄肉部101G,101Hが設けられ、磁性板101N,101S,101Qは一体として形成されている。   FIG. 9 is a plan view showing the configuration of the magnetic plate group 101 used in the field element 1 </ b> C as seen along the direction of the rotation axis. The magnetic plate group 101 includes not only the magnetic plates 101N and 101S provided on the magnetic protrusions 102J and 102K but also the magnetic plate 101Q for increasing q-axis inductance, and between the magnetic plates 101N and 101S in the circumferential direction. These are arranged magnetically separated from these. In FIG. 9, the thin portions 101G and 101H shown in the third embodiment are provided, and the magnetic plates 101N, 101S, and 101Q are integrally formed.

図10乃至図12はいずれも回転軸方向に沿った界磁子1Cの回転軸Qを含む断面図であり、かつ電機子2との位置関係をも示している。界磁子1Cにおいても、永久磁石103C,103D及びヨーク106を用いている。図10、図11、図12は、それぞれ磁性突起102K,102L,102Jが現れる位置での断面を示す。図8においては永久磁石103C,103Dはそれぞれ磁性環102S,102Nに隠れており、現れていない。   10 to 12 are sectional views including the rotation axis Q of the field element 1C along the rotation axis direction, and also show the positional relationship with the armature 2. FIG. Also in the field element 1C, permanent magnets 103C and 103D and a yoke 106 are used. 10, FIG. 11, and FIG. 12 show cross sections at positions where the magnetic protrusions 102K, 102L, and 102J appear, respectively. In FIG. 8, the permanent magnets 103C and 103D are hidden by the magnetic rings 102S and 102N, respectively, and do not appear.

磁性突起102Lの電機子2側には磁性板101Qが設けられ、これをも含めて回転軸方向に突出するq軸インダクタンス増大用の磁性突起として把握できる。そして磁性突起102J及び磁性板101N、並びに磁性突起102K及び磁性板101Sに対して相互に磁気的に分離されつつ、周方向においてこれらの間に配置される。   A magnetic plate 101Q is provided on the armature 2 side of the magnetic protrusion 102L, and can be grasped as a magnetic protrusion for increasing q-axis inductance that protrudes in the direction of the rotation axis including this. The magnetic protrusions 102J and the magnetic plate 101N, and the magnetic protrusions 102K and the magnetic plate 101S are magnetically separated from each other, and are disposed between them in the circumferential direction.

界磁子内部で磁束が短絡的に流れることを防ぐため、磁性突起102L及び磁性板101Qは、磁性突起102J及び磁性板101N、並びに磁性突起102K及び磁性板101Sとの間に、ギャップ長の2倍を超える距離以上の隔たりを有することが望ましい。例えば磁性環102Qと磁性環102N,102Sとの間隔、磁極板101N,101Sと磁性板101Qとの周方向の間隔、磁極板101Nと磁性環102Qとの回転軸方向の間隔、磁極板101Sと磁性環102Qとの回転軸方向の間隔がギャップ長の2倍を超える距離以上で隔たることが望ましい。   In order to prevent the magnetic flux from short-circuiting inside the field element, the magnetic protrusion 102L and the magnetic plate 101Q have a gap length of 2 between the magnetic protrusion 102J and the magnetic plate 101N, and the magnetic protrusion 102K and the magnetic plate 101S. It is desirable to have a distance greater than double the distance. For example, the interval between the magnetic ring 102Q and the magnetic rings 102N and 102S, the interval between the magnetic pole plates 101N and 101S and the magnetic plate 101Q, the interval between the magnetic pole plate 101N and the magnetic ring 102Q in the rotation axis direction, the magnetic pole plate 101S and the magnetic plate It is desirable that the distance in the rotation axis direction from the ring 102Q be greater than or equal to a distance exceeding twice the gap length.

界磁子1Cにおけるq軸磁路は、磁性板101Nあるいは磁性板101Sを介して相互に隣接する一対の磁性板101Qの間で、一対の磁性突起102L及び磁性環102Qを経由する。他方、d軸磁路は永久磁石103C,103Dを経由するので、永久磁石103C,103Dの磁気抵抗がd軸インダクタンスを低下させる。よってq軸インダクタンスのd軸インダクタンスに対する増加分と、いわゆるd軸電流とが協働し、リラクタンストルクを利用することができる。d軸電流の電流位相は進相に設定される。なお、磁性板101Qは磁性環102Qで電機子2と反対側で短絡されているので、ヨーク106と接触していても接触しなくてもよい。   The q-axis magnetic path in the field element 1C passes through a pair of magnetic projections 102L and a magnetic ring 102Q between a pair of magnetic plates 101Q adjacent to each other via the magnetic plate 101N or the magnetic plate 101S. On the other hand, since the d-axis magnetic path passes through the permanent magnets 103C and 103D, the magnetic resistance of the permanent magnets 103C and 103D reduces the d-axis inductance. Therefore, an increase in the q-axis inductance with respect to the d-axis inductance cooperates with a so-called d-axis current, and reluctance torque can be used. The current phase of the d-axis current is set to advance. Since the magnetic plate 101Q is short-circuited on the opposite side of the armature 2 by the magnetic ring 102Q, it may or may not be in contact with the yoke 106.

あるいは磁性環102Qがなくても、磁性突起102Lがヨーク106によって磁気的に結合していてもよい。この場合、ヨーク106が磁性環102Qの代替となる。   Alternatively, the magnetic protrusion 102L may be magnetically coupled by the yoke 106 without the magnetic ring 102Q. In this case, the yoke 106 is an alternative to the magnetic ring 102Q.

逆に磁性突起102Lを相互に連結するために磁性環102Qが設けられていれば、ヨーク106は必須ではないので省略することができる。   Conversely, if the magnetic ring 102Q is provided to connect the magnetic protrusions 102L to each other, the yoke 106 is not essential and can be omitted.

磁性板101Qや磁性突起102Lが周方向に広がる角度が大きいほど、リラクタンストルクは増大する。しかし界磁磁石103の体積を減少させてしまう。よって当該角度はマグネットトルクとリラクタンストルクとに要求される相互の比率によって決めるべきである。また、一般的に界磁子の磁極(ここでは磁性板101N,101Sが相当する)の角度は、電気角120°前後が、トルクリプルも少なく、単位永久磁石あたりのトルクも大きくなるということもいわれている。よって本実施の形態のように界磁子1Cの磁極が4極設けられている場合には、磁性板101N,101Sや磁性突起102J,102Kが周方向に広がる角度は、各々120°/(4/2)=60°程度であることが望ましい。   The reluctance torque increases as the angle at which the magnetic plate 101Q and the magnetic protrusion 102L spread in the circumferential direction increases. However, the volume of the field magnet 103 is reduced. Therefore, the angle should be determined by the mutual ratio required for the magnet torque and the reluctance torque. In general, it is said that the angle of the magnetic poles of the field elements (here, the magnetic plates 101N and 101S correspond) has an electric angle of around 120 °, and there is little torque ripple and the torque per unit permanent magnet increases. ing. Therefore, when four magnetic poles of the field element 1C are provided as in the present embodiment, the angles at which the magnetic plates 101N and 101S and the magnetic protrusions 102J and 102K spread in the circumferential direction are 120 ° / (4 / 2) = 60 ° is desirable.

なお、周方向において磁性板101Qと磁性板101N,101Sとの間に設けられる磁気障壁(本実施の形態では薄肉部101G,101H及びこれらによって両端が規定される空隙として例示されている)は径方向に延在していなくてもよい。また磁性板101Qは、径方向の位置によっては設けられていない場合もある。かかる変形により界磁子1Cの極の角度を広げ得るからである。   In the circumferential direction, a magnetic barrier provided between the magnetic plate 101Q and the magnetic plates 101N and 101S (illustrated as thin portions 101G and 101H and gaps defined at both ends thereof in this embodiment) has a diameter. It does not have to extend in the direction. The magnetic plate 101Q may not be provided depending on the radial position. This is because the pole angle of the field element 1C can be widened by such deformation.

また、磁性突起102Lが設けられていない位置での磁性環102Qの回転軸方向に沿っての厚みを、永久磁石103C,103Dのそれよりも厚くすることにより、磁性環102Qの径方向の巾を小さく選定することができる。これにより、磁極面103Na,103Saの面積を増大させることができる。但し磁性環102Qの上記の厚みを増大させることには、既述したような界磁子内部で磁束が短絡的に流れることを防ぐ観点から、制限がある。   Further, by making the thickness along the rotation axis direction of the magnetic ring 102Q at the position where the magnetic protrusion 102L is not provided larger than that of the permanent magnets 103C and 103D, the radial width of the magnetic ring 102Q is increased. Can be selected small. Thereby, the areas of the magnetic pole surfaces 103Na and 103Sa can be increased. However, increasing the thickness of the magnetic ring 102Q is limited from the viewpoint of preventing the magnetic flux from flowing in a short circuit inside the field element as described above.

磁性板101Qを設けることは、磁性突起102Lへと、ひいてはq軸磁路へと磁束を導き易くする観点で望ましい。また薄肉部101G,101Hを介して磁性板101N,101Sを相互に連結し、磁性板群101を一体に形成することができ、その製造が容易であるばかりではなく、これらの相互の位置決めが不要になる。また電機子2との間のギャップ長の精度も高まる。   Providing the magnetic plate 101Q is desirable from the viewpoint of facilitating the magnetic flux to the magnetic protrusion 102L and thus to the q-axis magnetic path. In addition, the magnetic plates 101N and 101S can be connected to each other through the thin portions 101G and 101H, so that the magnetic plate group 101 can be integrally formed. Not only the manufacture is easy, but also the mutual positioning is unnecessary. become. Also, the accuracy of the gap length with the armature 2 is increased.

もちろん、磁性板101Q,101N,101Sをそれぞれ別体として形成しても良いし、磁性板101Qを薄肉部101G,101Hを介して磁性板101N,101Sのいずれか一方のみと連結してもよい。   Of course, the magnetic plates 101Q, 101N, and 101S may be formed separately, or the magnetic plate 101Q may be connected to only one of the magnetic plates 101N and 101S via the thin portions 101G and 101H.

本実施の形態においても、第2の実施の形態で示された界磁子1Bと類似して、ヨーク106に置換して磁性環104S,104N及び磁性板群105を設けてもよい。図13乃至図17において、このような変形にかかる界磁子1Dの構成を示す。   Also in this embodiment, similarly to the field element 1B shown in the second embodiment, the magnetic rings 104S and 104N and the magnetic plate group 105 may be provided in place of the yoke 106. In FIG. 13 thru | or FIG. 17, the structure of the field element 1D concerning such a deformation | transformation is shown.

図13は界磁子1Dの構成から磁性板群101,105を除いた構成を示す、回転軸方向に沿って見た平面図である。また図14乃至図16はいずれも回転軸方向に沿った界磁子1Dの構成を示す断面図であり、回転軸Qを含む断面を示す。また電機子2,3との位置関係をも示している。図14、図15、図16は、それぞれ磁性突起102K,102L,102Jが現れる位置での断面を示す。図17は界磁子1Dの構成を回転軸方向において分解して示す斜視図である。   FIG. 13 is a plan view showing the configuration of the field element 1D excluding the magnetic plate groups 101 and 105, viewed along the rotation axis direction. 14 to 16 are sectional views showing the configuration of the field element 1D along the rotation axis direction, and show a section including the rotation axis Q. The positional relationship with the armatures 2 and 3 is also shown. FIGS. 14, 15, and 16 show cross sections at positions where the magnetic protrusions 102K, 102L, and 102J appear, respectively. FIG. 17 is an exploded perspective view showing the configuration of the field element 1D in the rotation axis direction.

磁性環102Qは磁性突起102Lとは反対側へと回転軸方向に沿って突出する磁性突起102Mを更に有しており、これもq軸インダクタンス増大用に設けられている。また、磁性板群105は図9に示された磁性板群101と同様の構成を有している。磁性突起102Mにはその電機子3側に、磁性板101Qに対応する磁性板105Qが設けられている。これにより、電機子3に対するq軸磁路として、一対の磁性板105Q、磁性突起102L,102M及び磁性環102Qが設けられることになる。   The magnetic ring 102Q further includes a magnetic protrusion 102M that protrudes in the direction of the rotation axis toward the opposite side of the magnetic protrusion 102L, and this is also provided for increasing the q-axis inductance. Further, the magnetic plate group 105 has the same configuration as the magnetic plate group 101 shown in FIG. A magnetic plate 105Q corresponding to the magnetic plate 101Q is provided on the magnetic protrusion 102M on the armature 3 side. Accordingly, a pair of magnetic plates 105Q, magnetic protrusions 102L and 102M, and a magnetic ring 102Q are provided as a q-axis magnetic path for the armature 3.

なお、図13において磁性環104N及び永久磁石103C、磁性環104S及び永久磁石103Dは、それぞれ磁性環102S及び磁性環102Nに隠れており、現れていない。   In FIG. 13, the magnetic ring 104N and the permanent magnet 103C, the magnetic ring 104S and the permanent magnet 103D are hidden by the magnetic ring 102S and the magnetic ring 102N, respectively, and do not appear.

図14乃至図16では磁性突起102L,102Mが設けられていない位置での磁性環102Qの厚さが永久磁石103C,103Dと等しく描かれている。しかし磁性環102Qの厚さが永久磁石103C,103Dの厚さを超えることは、磁性環102Qの径方向寸法を小さくし、以て磁極面103Sb,103Nbの面積を増大させる観点から望ましい。   14 to 16, the thickness of the magnetic ring 102Q at the position where the magnetic protrusions 102L and 102M are not provided is depicted as being equal to the permanent magnets 103C and 103D. However, it is desirable that the thickness of the magnetic ring 102Q exceeds the thickness of the permanent magnets 103C and 103D from the viewpoint of reducing the radial dimension of the magnetic ring 102Q and increasing the area of the magnetic pole surfaces 103Sb and 103Nb.

このように電機子2,3を設けることでスラスト力をキャンセルできることは、第2実施の形態で述べたとおりである。また、磁性突起104J,104K,102Mの周方向の位置と、磁性突起102J,102K,102Lの周方向の位置を、ひいては磁性板群101,105同士の周方向の位置をずらせてもよい。   As described in the second embodiment, the thrust force can be canceled by providing the armatures 2 and 3 as described above. Further, the circumferential positions of the magnetic protrusions 104J, 104K, and 102M and the circumferential positions of the magnetic protrusions 102J, 102K, and 102L, and the circumferential positions of the magnetic plate groups 101 and 105 may be shifted.

永久磁石103C,103Dが焼結の希土類磁石、特にネオジウム系磁石である場合、磁性板群101,105、磁性環102S,102N,102Q,104N,104Sの材質は、例えば圧粉磁芯を採用することが望ましい。これらの固有抵抗を、永久磁石の固有抵抗よりも大きくし、回転電機内部における磁束の高周波成分による渦電流損を低減できるからである。   When the permanent magnets 103C and 103D are sintered rare earth magnets, particularly neodymium magnets, the magnetic plate groups 101 and 105 and the magnetic rings 102S, 102N, 102Q, 104N, and 104S are made of, for example, dust cores. It is desirable. This is because these specific resistances can be made larger than the specific resistances of the permanent magnets, and eddy current loss due to high frequency components of magnetic flux inside the rotating electrical machine can be reduced.

第5の実施の形態.
図18は、本発明の第5の実施の形態にかかる回転電機に採用される界磁子1Eの構成を示す斜視図である。構造の理解を容易にするため、界磁子1Eを回転軸方向において分解して示している。
Fifth embodiment.
FIG. 18 is a perspective view showing a configuration of a field element 1E employed in the rotating electrical machine according to the fifth embodiment of the present invention. In order to facilitate understanding of the structure, the field element 1E is shown exploded in the direction of the rotation axis.

界磁子1Eは界磁子1Aと同様、電機子2(図2、図3参照)と共に回転電機を構成する。界磁子1Eは界磁子1A〜1C(第1、第2、第4の形態参照)と同様に、磁性板群101と、磁性環群102と、界磁磁石103とを有する。但しヨーク106は設けられず、界磁磁石103も界磁子1Aに設けられているものとは構成が異なる。   The field element 1E constitutes a rotating electric machine together with the armature 2 (see FIGS. 2 and 3), similarly to the field element 1A. The field element 1E includes a magnetic plate group 101, a magnetic ring group 102, and a field magnet 103, similarly to the field elements 1A to 1C (see the first, second, and fourth embodiments). However, the yoke 106 is not provided, and the field magnet 103 is different in configuration from that provided in the field element 1A.

界磁磁石103は環状の永久磁石で構成されており、径方向に着磁されて内周側に磁極面103Nを、外周側に磁極面103Sを、それぞれ呈している。磁性環102Sは磁極面103Sに設けられ、磁性環102Nは磁極面103Nに設けられる。つまり本実施の形態では、磁性環群102は界磁磁石103を径方向において挟む。   The field magnet 103 is composed of an annular permanent magnet, which is magnetized in the radial direction and has a magnetic pole surface 103N on the inner peripheral side and a magnetic pole surface 103S on the outer peripheral side. The magnetic ring 102S is provided on the magnetic pole surface 103S, and the magnetic ring 102N is provided on the magnetic pole surface 103N. That is, in the present embodiment, the magnetic ring group 102 sandwiches the field magnet 103 in the radial direction.

図19及び図20は界磁子1Eの構成と、これと共に回転電機を構成する電機子2との位置関係を示す断面図であり、回転軸Qを含む断面を示す。電機子2は回転軸方向の一方側(図19及び図20において上方側)において界磁子1Eと対向する。図19は磁性突起102Kを有する断面の断面図であり、図20は磁性突起102Jを有する断面の断面図である。   19 and 20 are cross-sectional views showing the positional relationship between the configuration of the field element 1E and the armature 2 that forms the rotating electric machine together with the field element 1E, and show a cross section including the rotation axis Q. The armature 2 faces the field element 1E on one side in the rotation axis direction (upper side in FIGS. 19 and 20). 19 is a cross-sectional view of a cross section having the magnetic protrusion 102K, and FIG. 20 is a cross-sectional view of a cross section having the magnetic protrusion 102J.

本実施の形態においても界磁子1Aと同様に、第1の実施の形態の効果を得ることができる。しかも界磁子1Aでは磁性環群102が界磁磁石103に対して回転軸方向に沿って配置されているのに対し、界磁子1Eでは磁性環群102が界磁磁石103を径方向において挟むので、回転軸方向の小型化が容易であり、またこれらの間の位置決めも容易である。またヨーク106をも必要としないので、界磁子1Eは回転軸方向の小型化に好適である。   Also in the present embodiment, the effect of the first embodiment can be obtained as in the case of the field element 1A. In addition, in the field element 1A, the magnetic ring group 102 is disposed along the rotation axis direction with respect to the field magnet 103, whereas in the field element 1E, the magnetic ring group 102 causes the field magnet 103 to move in the radial direction. Since they are sandwiched, it is easy to reduce the size in the direction of the rotation axis, and positioning between them is also easy. Further, since the yoke 106 is not required, the field element 1E is suitable for miniaturization in the rotation axis direction.

しかも、界磁磁石103を着磁する前に、これを用いて界磁子1Eを組み立ててから、界磁子1Eの内周側と外周側の空間を利用して界磁磁石103の着磁を行うこともできる。   In addition, before the field magnet 103 is magnetized, the field magnet 1E is assembled using this, and then the field magnet 103 is magnetized using the space on the inner and outer peripheral sides of the field element 1E. Can also be done.

磁性環102S,103Nは界磁磁石103を挟むので、上述のようにこれらの間の位置決めは容易であるが、磁性環102S,103Nは非磁性体によって結合されていても良い。例えば界磁磁石103と併せて樹脂でモールドすることができる。   Since the magnetic rings 102S and 103N sandwich the field magnet 103, positioning between them is easy as described above, but the magnetic rings 102S and 103N may be coupled by a nonmagnetic material. For example, it can be molded with resin together with the field magnet 103.

第1の実施の形態で示された磁性突起102J,102Kを含めた磁性環102N,102Sや磁性板101N,101Sの形状、及びこれらの相互の位置関係は、本実施の形態においても採用することができる。   The shapes of the magnetic rings 102N and 102S including the magnetic protrusions 102J and 102K and the magnetic plates 101N and 101S shown in the first embodiment and the mutual positional relationship between them are also adopted in this embodiment. Can do.

また第3の実施の形態において図7を用いて示されたように、磁性板101N,101Sが薄肉部101G,101Hで相互に連結されて円盤状に一体となっている磁性板群101を、本実施の形態において採用してもよい。   Further, as shown in FIG. 7 in the third embodiment, the magnetic plates 101N and 101S are mutually connected by the thin portions 101G and 101H, and the magnetic plate group 101 is integrated in a disc shape. You may employ | adopt in this Embodiment.

第6の実施の形態.
図21は、本発明の第6の実施の形態にかかる回転電機に採用される界磁子1Fの構成を示す斜視図である。構造の理解を容易にするため、界磁子1Fを回転軸方向において分解して示している。
Sixth embodiment.
FIG. 21 is a perspective view showing a configuration of a field element 1F employed in the rotating electrical machine according to the sixth embodiment of the present invention. In order to facilitate understanding of the structure, the field element 1F is shown exploded in the direction of the rotation axis.

界磁子1Fは、第5の実施の形態に示された界磁子1Eと同様に、径方向に着磁された永久磁石で構成された界磁磁石103、これを径方向において挟む磁性環102N,102S、磁性板群101を有している。そして第2の実施の形態に示された界磁子1Bと類似して、磁性板群105を界磁磁石103に対して磁性板群101と反対側に設けている。   Similarly to the field element 1E shown in the fifth embodiment, the field element 1F includes a field magnet 103 composed of a permanent magnet magnetized in the radial direction, and a magnetic ring sandwiching the field magnet 103 in the radial direction. 102N and 102S and the magnetic plate group 101 are included. Similar to the field element 1B shown in the second embodiment, the magnetic plate group 105 is provided on the opposite side of the magnetic plate group 101 with respect to the field magnet 103.

界磁子1Fが備える磁性環群102の形状は、界磁子1Bが備える磁性環群102,104(図4参照)を回転軸方向に連結した構成を有している。但し磁性突起の周方向の配置がずれている。具体的には本実施の形態における磁性環102Nが有する磁性突起102Y及び磁性環102Sが有する磁性突起102Zは、それぞれ、界磁子1Bが備える磁性環104Sが有する磁性突起104K及び磁性環104Nが有する磁性突起104Jに相当する。   The magnetic ring group 102 included in the field element 1F has a configuration in which the magnetic ring groups 102 and 104 (see FIG. 4) included in the field element 1B are connected in the rotation axis direction. However, the circumferential arrangement of the magnetic protrusions is shifted. Specifically, the magnetic protrusion 102Y included in the magnetic ring 102N and the magnetic protrusion 102Z included in the magnetic ring 102S in the present embodiment have the magnetic protrusion 104K and the magnetic ring 104N included in the magnetic ring 104S included in the field element 1B, respectively. This corresponds to the magnetic protrusion 104J.

図22及び図23は界磁子1Fの構成と、これと共に回転電機を構成する電機子2,3との位置関係を示す断面図であり、回転軸Qを含む断面を示す。電機子2,3はそれぞれ回転軸方向の一方側及び他方側(図22及び図23における上方側及び下方側)において界磁子1Fと対向する。図22は磁性突起102Jを有する断面の断面図であり、図23は磁性突起102Kを有する断面の断面図である。   22 and 23 are cross-sectional views showing the positional relationship between the configuration of the field element 1F and the armatures 2 and 3 constituting the rotary electric machine together with the field element 1F, and show a cross section including the rotation axis Q. The armatures 2 and 3 face the field element 1F on one side and the other side in the rotation axis direction (upper side and lower side in FIGS. 22 and 23), respectively. 22 is a cross-sectional view of a cross section having the magnetic protrusion 102J, and FIG. 23 is a cross-sectional view of a cross section having the magnetic protrusion 102K.

磁性突起102Yは磁性突起104Kと類似して、界磁磁石103の外周側で電機子3へ向けて(よって磁性板群105へと向けて)突出する。しかし磁性突起102Yは磁性突起104Kとは異なり、磁性突起102Jと同じ極性、即ちここではN極に帯磁している。同様に、磁性突起102Zは磁性突起104Jと類似して、界磁磁石103の内周側で電機子3へ向けて突出するが、磁性突起102Kと同じくS極に帯磁している。よって磁性突起102Y,102Zの電機子3側には、それぞれ磁性板105N,105Sが設けられる。   Similar to the magnetic protrusion 104K, the magnetic protrusion 102Y protrudes toward the armature 3 (and thus toward the magnetic plate group 105) on the outer peripheral side of the field magnet 103. However, unlike the magnetic protrusion 104K, the magnetic protrusion 102Y is magnetized to the same polarity as the magnetic protrusion 102J, that is, the N pole here. Similarly, the magnetic protrusion 102Z is similar to the magnetic protrusion 104J and protrudes toward the armature 3 on the inner peripheral side of the field magnet 103, but is magnetized to the S pole like the magnetic protrusion 102K. Therefore, magnetic plates 105N and 105S are provided on the armature 3 side of the magnetic protrusions 102Y and 102Z, respectively.

本実施の形態においては磁性突起102J,102YのいずれもがN極に帯磁するので、図4に示された磁性時102J,104Kの関係とは異なり、回転軸方向に沿っては並ばない。   In the present embodiment, both of the magnetic protrusions 102J and 102Y are magnetized in the N pole, so that they are not aligned along the rotation axis direction, unlike the relationship between the magnetic times 102J and 104K shown in FIG.

図24は磁性突起102J,102Y近傍における磁束ΦNの流れを模式的に示す斜視図である。磁性環102Nの内周側は界磁磁石103からN極性の磁束ΦNを受け、磁束ΦNは周方向においてほぼ均一となって径方向に沿って流れ、磁性突起102J,102Yによりそれぞれ回転軸方向の一方側及び他方側へと流れる。   FIG. 24 is a perspective view schematically showing the flow of the magnetic flux ΦN in the vicinity of the magnetic protrusions 102J and 102Y. The inner circumferential side of the magnetic ring 102N receives the N-polar magnetic flux ΦN from the field magnet 103, and the magnetic flux ΦN flows substantially uniformly in the circumferential direction and flows along the radial direction. The magnetic projections 102J and 102Y respectively move in the rotational axis direction. It flows to one side and the other side.

図25は、磁性突起102J,102Yが回転軸方向に沿って並ぶ場合の磁束ΦNの流れを模式的に示す斜視図である。磁性突起102J,102Yが設けられていない位置では、磁性環102Nの内周側から周方向に沿って磁性突起102J,102Yが設けられる位置へと磁束ΦNが流れる。よって磁束ΦNは、磁性突起102J,102Yが設けられていない位置から磁性突起102J,102Yが設けられる位置までの間の磁性環102Nの磁気抵抗を受けることになる。磁性突起102J,102Yが設けられる位置では、磁性環102Nの内周側から一旦は径方向に沿って流れ、そして磁性突起102J,102Yによりそれぞれ回転軸方向の一方側及び他方側へと分岐して流れる。   FIG. 25 is a perspective view schematically showing the flow of the magnetic flux ΦN when the magnetic protrusions 102J and 102Y are arranged along the rotation axis direction. At a position where the magnetic protrusions 102J and 102Y are not provided, the magnetic flux ΦN flows from the inner peripheral side of the magnetic ring 102N to a position where the magnetic protrusions 102J and 102Y are provided along the circumferential direction. Therefore, the magnetic flux ΦN receives the magnetic resistance of the magnetic ring 102N from the position where the magnetic protrusions 102J and 102Y are not provided to the position where the magnetic protrusions 102J and 102Y are provided. At the position where the magnetic protrusions 102J and 102Y are provided, the magnetic protrusions 102J and 102Y once flow along the radial direction from the inner peripheral side of the magnetic ring 102N, and are branched to one side and the other side in the rotation axis direction by the magnetic protrusions 102J and 102Y, respectively. Flowing.

従って、周方向において磁性突起102J及び磁性板101Nと、磁性突起102Y及び磁性板105Nとを周方向において交互に配置し、磁性突起102K及び磁性板101Sと、磁性突起102Z及び磁性板105Sとを周方向において交互に配置することにより、界磁磁石103が発生する界磁磁束が受ける磁気抵抗を小さくし、界磁子1F内部で界磁磁束が短絡的に流れることも低減できる。また永久磁石103の動作点が周方向の位置によらずに一定となり、永久磁石103の利用効率を上げる点でも好適である。   Therefore, the magnetic protrusions 102J and the magnetic plates 101N and the magnetic protrusions 102Y and the magnetic plates 105N are alternately arranged in the circumferential direction in the circumferential direction, and the magnetic protrusions 102K and the magnetic plates 101S, and the magnetic protrusions 102Z and the magnetic plates 105S are surrounded. By alternately arranging in the direction, the magnetic resistance received by the field magnetic flux generated by the field magnet 103 can be reduced, and the field magnetic flux flowing in a short circuit inside the field element 1F can be reduced. In addition, the operating point of the permanent magnet 103 is constant regardless of the position in the circumferential direction, which is also preferable in that the utilization efficiency of the permanent magnet 103 is increased.

もちろん、界磁子1Fも界磁子1Bと同様に、回転軸方向において相互に反対側から電機子2,3と対向するので、スラスト力を低減する。   Of course, the field element 1F, like the field element 1B, faces the armatures 2 and 3 from the opposite sides in the direction of the rotation axis, thereby reducing the thrust force.

なお、回転シャフト(不図示)が磁性体であっても、磁性環102SがS極に磁化されているため、磁性環102Sは磁束を短絡させる磁路とはならない。しかし、回転シャフト及び軸受を通して電機子2,3に回り込むことによって磁束が電機子巻線(不図示)に有効に鎖交しないばかりか、軸受損失を増加させる可能性がある。従って、回転シャフトがステンレス等の非磁性体であれば不要な工夫ではあるが、回転シャフトを磁性環102Sから所定の距離で離すことが望ましい。例えば非磁性体のボスを介するか、モールドしたロータを回転シャフトと勘合することが考えられる。これは第5の実施の形態についても同様である。   Even if the rotating shaft (not shown) is a magnetic material, the magnetic ring 102S is not a magnetic path for short-circuiting the magnetic flux because the magnetic ring 102S is magnetized to the south pole. However, the magnetic flux does not effectively interlink with the armature winding (not shown) by wrapping around the armatures 2 and 3 through the rotating shaft and the bearing, and may increase the bearing loss. Therefore, if the rotating shaft is a non-magnetic material such as stainless steel, it is unnecessary. However, it is desirable that the rotating shaft be separated from the magnetic ring 102S by a predetermined distance. For example, it is conceivable to fit a rotor that has been molded via a non-magnetic boss or a molded rotor. The same applies to the fifth embodiment.

その他、磁性突起102Y,102Zを含めた磁性環102N,102Sや磁性板105N,105Sの形状、及びこれらの相互の位置関係は、第2の実施の形態で示された磁性突起104J,104Kを含めた磁性環104N,104Sや磁性板105N,105Sの形状、及びこれらの相互の位置関係と同様に選定することができる。   In addition, the shapes of the magnetic rings 102N and 102S including the magnetic protrusions 102Y and 102Z and the magnetic plates 105N and 105S, and the positional relationship between them include the magnetic protrusions 104J and 104K shown in the second embodiment. The magnetic rings 104N and 104S and the magnetic plates 105N and 105S can be selected in the same manner as the shapes and their mutual positional relations.

第7の実施の形態.
図26は、本発明の第7の実施の形態にかかる回転電機に採用される界磁子1Gの構成を示す斜視図である。構造の理解を容易にするため、界磁子1Gを回転軸方向において分解して示している。
Seventh embodiment.
FIG. 26 is a perspective view showing a configuration of a field element 1G employed in the rotary electric machine according to the seventh embodiment of the present invention. In order to facilitate understanding of the structure, the field element 1G is shown exploded in the direction of the rotation axis.

界磁子1Gは、第1の実施の形態に示された界磁子1Aと同様に、回転軸方向に着磁された環状の永久磁石103D、磁性環102S、磁極面103Naに設けられた磁性環102Nを備えている。但し、界磁磁石103Cは設けられておらず、またヨーク106に置換して鍔部102Tを備えている。   As with the field element 1A shown in the first embodiment, the field element 1G has an annular permanent magnet 103D magnetized in the rotation axis direction, a magnetic ring 102S, and a magnet provided on the magnetic pole surface 103Na. A ring 102N is provided. However, the field magnet 103C is not provided, and a flange 102T is provided in place of the yoke 106.

鍔部102Tは磁性環102Sと連結しつつ外周側へと張り出しており、磁極面103Sbと隣接して磁気的に結合する。つまり鍔部102Tは磁性環102Nと共に永久磁石103Dを挟む。   The flange portion 102T projects to the outer peripheral side while being connected to the magnetic ring 102S, and is magnetically coupled adjacent to the magnetic pole surface 103Sb. That is, the flange 102T sandwiches the permanent magnet 103D together with the magnetic ring 102N.

図27及び図28は界磁子1Gの構成と、これと共に回転電機を構成する電機子2との位置関係を示す断面図であり、回転軸Qを含む断面を示す。電機子2は回転軸方向の一方側(図27及び図28における上方側)において界磁子1Gと対向する。図27は磁性突起102Jを有する断面の断面図であり、図28は磁性突起102Kを有する断面の断面図である。   27 and 28 are cross-sectional views showing the positional relationship between the configuration of the field element 1G and the armature 2 that forms the rotating electric machine together with the field element 1G, and show a cross section including the rotation axis Q. The armature 2 faces the field element 1G on one side in the rotation axis direction (the upper side in FIGS. 27 and 28). 27 is a cross-sectional view of a cross section having the magnetic protrusion 102J, and FIG. 28 is a cross-sectional view of a cross section having the magnetic protrusion 102K.

界磁子1Gにおいては、磁極面103Sbに流入出する磁束の経路は、鍔部102T、磁性環102S、磁性板101Sを経由する。よって界磁子1Gは、構造的には、界磁子1Aにおける永久磁石103Cを単なる磁性体に置換して磁性環102Sを増厚したものと見ることができる。つまり界磁子1Gは、要求された極数を磁性突起102J、102Kの個数で対応しつつ、界磁磁石を1個の永久磁石103Dで構成することができる。   In the field element 1G, the path of the magnetic flux flowing into and out of the magnetic pole surface 103Sb passes through the flange portion 102T, the magnetic ring 102S, and the magnetic plate 101S. Therefore, in terms of structure, the field element 1G can be regarded as a thickened magnetic ring 102S by replacing the permanent magnet 103C in the field element 1A with a simple magnetic material. That is, in the field element 1G, the field magnet can be configured by one permanent magnet 103D while the required number of poles corresponds to the number of magnetic protrusions 102J and 102K.

永久磁石103Dの着磁は回転軸方向に沿っているので、着磁前の永久磁石103Dを界磁子1Gとして組み込んだ後に、あるいは更に界磁子1Gを電機子2と共に回転電機として組み込んだ後に、着磁することも容易である。例えば界磁子1G、あるいは回転電機を空芯コイルの内部に配置して着磁することも可能である。   Since the magnetization of the permanent magnet 103D is along the rotation axis direction, after the permanent magnet 103D before magnetization is incorporated as the field element 1G, or after the field element 1G is further incorporated together with the armature 2 as a rotating electric machine. It is also easy to magnetize. For example, the field element 1G or the rotating electric machine can be magnetized by being arranged inside the air-core coil.

第6の実施の形態で示した界磁子1Fと同様に、回転シャフト(不図示)が磁性体であっても、磁性環102Sは磁束を短絡させる磁路とはならない。しかし例えば非磁性体のボスを介するか、モールドしたロータを回転シャフトと勘合し、回転シャフトを磁性環102Sから所定の距離で離すことが望ましい。   Similar to the field element 1F shown in the sixth embodiment, even if the rotating shaft (not shown) is a magnetic body, the magnetic ring 102S does not become a magnetic path for short-circuiting the magnetic flux. However, for example, it is desirable to separate the rotating shaft from the magnetic ring 102S by a predetermined distance through a non-magnetic boss or by fitting a molded rotor with the rotating shaft.

第1の実施の形態で示された磁性突起102J,102Kを含めた磁性環102N,102Sや磁性板101N,101Sの形状、及びこれらの相互の位置関係は、本実施の形態においても採用することができる。   The shapes of the magnetic rings 102N and 102S including the magnetic protrusions 102J and 102K and the magnetic plates 101N and 101S shown in the first embodiment and the mutual positional relationship between them are also adopted in this embodiment. Can do.

また第3の実施の形態において図7を用いて示されたように、磁性板101N,101Sが薄肉部101G,101Hで相互に連結されて円盤状に一体となっている磁性板群101を、本実施の形態において採用してもよい。   Further, as shown in FIG. 7 in the third embodiment, the magnetic plates 101N and 101S are mutually connected by the thin portions 101G and 101H, and the magnetic plate group 101 is integrated in a disc shape. You may employ | adopt in this Embodiment.

電機子の構成例.
図29は上記実施の形態で言及された電機子2,3の構成を例示する斜視図である。当該電機子はヨーク201を有する電機子コアにおいて、電機子巻線U1〜U4,V1〜V4,W1〜W4が回転軸Qの周囲に設けられている。具体的にはヨーク201と反対側から見て時計回りに電機子巻線U1,V1,W1,U2,V2,W2,U3,V3,W3,U4,V4,W4がこの順に並んで配置されている。ここでは8極の界磁子に対応する場合を述べる。
Example of armature configuration.
FIG. 29 is a perspective view illustrating the configuration of the armatures 2 and 3 referred to in the above embodiment. The armature is an armature core having a yoke 201, and armature windings U1 to U4, V1 to V4, and W1 to W4 are provided around the rotation axis Q. Specifically, armature windings U1, V1, W1, U2, V2, W2, U3, V3, W3, U4, V4 and W4 are arranged in this order in a clockwise direction when viewed from the side opposite to yoke 201. Yes. Here, a case corresponding to an 8-pole field element will be described.

図30はこれら電機子巻線のみを取り出して示す斜視図である。また図31及び図32は当該電機子の断面図である。図31は回転軸Qに平行で回転軸Qを含み、電機子巻線U2が現れる位置の断面を示す。図32は電機子巻線U3,V3が隣接する位置での周方向の断面を示す。   FIG. 30 is a perspective view showing only these armature windings. 31 and 32 are cross-sectional views of the armature. FIG. 31 shows a cross section of a position parallel to the rotation axis Q and including the rotation axis Q, where the armature winding U2 appears. FIG. 32 shows a cross section in the circumferential direction at a position where the armature windings U3 and V3 are adjacent.

電機子コアはヨーク201上に突出する12のティース202を有しており、ティース202の先端側(ヨーク201とは反対側)は回転軸Qに垂直な平面において拡がった端部203を有している。そして端部203と界磁子とが回転軸方向において対向する。端部203での広がりはエアギャップのパーミアンスを高くするので、界磁子の動作点磁束密度を高くできるという利点を有する。   The armature core has twelve teeth 202 protruding on the yoke 201, and the tip side (the side opposite to the yoke 201) of the teeth 202 has an end portion 203 that expands in a plane perpendicular to the rotation axis Q. ing. The end portion 203 and the field element face each other in the rotation axis direction. The widening at the end 203 increases the air gap permeance, which has the advantage that the operating point magnetic flux density of the field element can be increased.

当該電機子ではティース202に対してU相、V相、W相の巻線が集中巻で巻回される。具体的には電機子巻線U1〜U4にはU相電流が、電機子巻線V1〜V4にはV相電流が、電機子巻線W1〜W4にはW相電流が、それぞれ供給されて回転磁界を発生させる。   In the armature, U-phase, V-phase, and W-phase windings are wound around the teeth 202 in concentrated winding. Specifically, the U-phase current is supplied to the armature windings U1 to U4, the V-phase current is supplied to the armature windings V1 to V4, and the W-phase current is supplied to the armature windings W1 to W4. Generate a rotating magnetic field.

このような集中巻ではコイルの重なりが無く、電機子全体を小型化できるとともに、巻線抵抗を低減できる効果がある。その一方で、隣接するティースから発生する回転磁界の磁束の相違が、後述する分布巻と比べると急峻であるため、振動・騒音が大い。なお、ティース202の個数は12個でなくても、9個でもよい。8極の界磁子に9個のティースの組み合わせは、コギングトルクが極めて小さいという利点がある。   In such concentrated winding, there is no overlapping of coils, and the entire armature can be reduced in size and the winding resistance can be reduced. On the other hand, since the difference in the magnetic flux of the rotating magnetic field generated from adjacent teeth is steep compared to the distributed winding described later, vibration and noise are large. The number of teeth 202 is not limited to 12 and may be nine. The combination of nine teeth with an eight-pole field element has the advantage that the cogging torque is extremely small.

図33は以下の分布巻で採用される電機子コアの形状を示す斜視図である。当該電機子コアは24個のティース202を有しており、その各々の先端側は拡がった端部203を有している。   FIG. 33 is a perspective view showing the shape of an armature core employed in the following distributed winding. The armature core has 24 teeth 202, each of which has a widened end 203 on the tip side.

図34は波巻に採用される電機子巻線を示す斜視図であり、電機子巻線U0,V0,W0が図33のティース202の1個分ずつずれて積層されている。図35は電機子巻線U0,V0,W0を電機子コアに巻回した状態を示す斜視図である。電機子巻線U0,V0,W0はいずれもティース202の3個ずつを1組として、ティース202に対して内側、外側を交互に通る形態で巻回される。   FIG. 34 is a perspective view showing armature windings used for wave winding, in which the armature windings U0, V0, W0 are stacked while being shifted by one of the teeth 202 of FIG. FIG. 35 is a perspective view showing a state where the armature windings U0, V0, W0 are wound around the armature core. Each of the armature windings U0, V0, and W0 is wound in such a form that three of the teeth 202 are taken as one set and the inside and the outside of the teeth 202 are alternately passed.

電機子巻線U0,V0,W0にはそれぞれU相電流、V相電流、W相電流が流される。3相の巻線がそれぞれ1組になっているので、結線が少なくて済み、同相間のわたり線も不要であるという利点がある。回転磁界の磁束の変化は滑らかであるため、振動・騒音が少ないという利点がある。   U-phase current, V-phase current, and W-phase current flow through the armature windings U0, V0, and W0, respectively. Since each of the three-phase windings is one set, there is an advantage that the number of connections is small and no cross-wires between the same phases are required. Since the magnetic flux of the rotating magnetic field changes smoothly, there is an advantage that vibration and noise are small.

図34、図35では、電機子巻線U0,V0,W0を重ねて配置しているため、例えば電機子巻線U0を巻回している回転軸方向の位置では、電機子巻線V0が巻回される周方向の位置には巻線が存在せず、ティース202の周囲に隙間がある。しかし径方向に延びる巻線をヨーク201から見て全て同じ高さに配置し、それらを内周側や外周側で接続して電機子巻線U0,V0,W0を構成してもよい。   In FIGS. 34 and 35, the armature windings U0, V0, and W0 are arranged so as to overlap each other. For example, the armature winding V0 is wound at the position in the rotation axis direction around which the armature winding U0 is wound. There are no windings in the circumferential position to be rotated, and there is a gap around the teeth 202. However, the armature windings U0, V0, and W0 may be configured by arranging all the windings extending in the radial direction at the same height when viewed from the yoke 201 and connecting them on the inner peripheral side or the outer peripheral side.

図36は分布巻に採用される電機子巻線を示す斜視図であり、図37は電機子コアに電機子巻線が三層に分かれて巻回された状態を示す斜視図である。ヨーク201に最も遠い層では電機子巻線U1,U2がいずれもティース202の3個ずつを巻回し、両者が周方向に交互に配列される。同様にして、電機子巻線U1,U2よりもヨーク201側には電機子巻線V1,V2が、更にヨーク201側には電機子巻線W1,W2が、それぞれ巻回されている。ヨーク201とは反対側から見て、電機子巻線V1,V2は電機子巻線U1,U2に対して時計回り方向にティース202の1個分ずれ、電機子巻線W1,W2は電機子巻線V1,V2に対して時計回り方向にティース202の1個分ずれている。   FIG. 36 is a perspective view showing an armature winding employed for distributed winding, and FIG. 37 is a perspective view showing a state in which the armature winding is wound in three layers around the armature core. In the layer farthest from the yoke 201, the armature windings U1 and U2 are wound around three teeth 202, and both are alternately arranged in the circumferential direction. Similarly, the armature windings V1 and V2 are wound on the yoke 201 side of the armature windings U1 and U2, and the armature windings W1 and W2 are wound on the yoke 201 side. When viewed from the side opposite to the yoke 201, the armature windings V1, V2 are shifted by one of the teeth 202 in the clockwise direction with respect to the armature windings U1, U2, and the armature windings W1, W2 are armatures. One tooth 202 is shifted in the clockwise direction with respect to the windings V1, V2.

例えば電機子巻線U1,V1,W1にはそれぞれU相電流、V相電流、W相電流が流され、電機子巻線U2,V2,W2にはそれぞれ電機子巻線U1,V1,W1とは逆相の電流が流れる。   For example, the U-phase current, the V-phase current, and the W-phase current are passed through the armature windings U1, V1, and W1, respectively. The armature windings U2, V2, and W2 are respectively armature windings U1, V1, and W1. Is a reverse-phase current.

ティース202の各々には複数の相の電機子巻線に流れる電流による磁束が重畳されるため、磁束の変化が滑らかである。   Since the magnetic flux due to the current flowing through the armature windings of a plurality of phases is superimposed on each of the teeth 202, the change of the magnetic flux is smooth.

なお、径方向に延びる巻線をヨーク201から見て全て同じ高さに配置し、それらを内周側や外周側で接続して電機子巻線U1,V1,W1,U2,V2,W2を構成してもよい。   In addition, the windings extending in the radial direction are all arranged at the same height when viewed from the yoke 201, and they are connected on the inner peripheral side or the outer peripheral side to connect the armature windings U1, V1, W1, U2, V2, W2 It may be configured.

図38は分布巻に採用される電機子巻線を示す斜視図であり、図39は電機子コアに電機子巻線が二層に分かれて巻回された状態を示す斜視図である。ヨーク201に最も遠い層では電機子巻線U1,V1,W1がいずれもティース202の3個ずつを巻回し、三者が周方向にティース202の1個分を開けて交互に配列される。同様にして、電機子巻線U1,V1,W1よりもヨーク201側には電機子巻線U2,V2,W2がいずれもティース202の3個ずつを巻回し、三者が周方向にティース202の1個分を開けて交互に配列される。電機子巻線U1,U2にはU相電流が、電機子巻線V1,V2にはV相電流が、電機子巻線W1,W2にはW相巻線が、それぞれ流される。   FIG. 38 is a perspective view showing an armature winding employed for distributed winding, and FIG. 39 is a perspective view showing a state in which the armature winding is wound in two layers around the armature core. In the layer farthest from the yoke 201, the armature windings U1, V1, and W1 are all wound around three teeth 202, and the three are alternately arranged by opening one tooth 202 in the circumferential direction. Similarly, three armature windings U2, V2, and W2 are wound on the yoke 201 side of the armature windings U1, V1, and W1, and three teeth 202 are wound in the circumferential direction. Are arranged alternately. A U-phase current is passed through the armature windings U1, U2, a V-phase current is passed through the armature windings V1, V2, and a W-phase winding is passed through the armature windings W1, W2.

U相電流、V相電流、W相電流の総和は零となるので、電機子巻線W1,V2の双方が巻回された位置のティース202には、実質的にはU相電流の逆相電流によって励起される磁束が発生することになる。よって図36、図37に示された構造と比較すると、電機子巻線の個数は半分で足り、コイルは2層となる。よって製造工程数が削減されるし、結線が減るため、電機子の寸法も小さくできる。   Since the sum of the U-phase current, the V-phase current, and the W-phase current is zero, the teeth 202 at the position where both the armature windings W1 and V2 are wound are substantially opposite in phase to the U-phase current. A magnetic flux excited by the current is generated. Therefore, compared with the structure shown in FIG. 36 and FIG. 37, the number of armature windings is half and the coil has two layers. Therefore, the number of manufacturing steps is reduced and the number of connections is reduced, so that the dimensions of the armature can be reduced.

本発明の第1の実施の形態にかかる回転電機に採用される界磁子の構成を示す斜視図である。It is a perspective view which shows the structure of the field element employ | adopted as the rotary electric machine concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 1st Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第1の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 1st Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第2の実施の形態にかかる回転電機に採用される界磁子の構成を示す斜視図である。It is a perspective view which shows the structure of the field element employ | adopted as the rotary electric machine concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 2nd Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第2の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 2nd Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第3の実施の形態における界磁子の構造を部分的に示す斜視図である。It is a perspective view which shows partially the structure of the field element in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における界磁子の構造を示す平面図である。It is a top view which shows the structure of the field element in the 4th Embodiment of this invention. 本発明の第4の実施の形態における界磁子の構造を示す平面図である。It is a top view which shows the structure of the field element in the 4th Embodiment of this invention. 本発明の第4の実施の形態における界磁子の構造を示す断面図である。It is sectional drawing which shows the structure of the field element in the 4th Embodiment of this invention. 本発明の第4の実施の形態における界磁子の構造を示す断面図である。It is sectional drawing which shows the structure of the field element in the 4th Embodiment of this invention. 本発明の第4の実施の形態における界磁子の構造を示す断面図である。It is sectional drawing which shows the structure of the field element in the 4th Embodiment of this invention. 本発明の第4の実施の形態の変形における界磁子の平面図である。It is a top view of the field element in the deformation | transformation of the 4th Embodiment of this invention. 本発明の第4の実施の形態の変形における界磁子の断面図である。It is sectional drawing of the field element in the deformation | transformation of the 4th Embodiment of this invention. 本発明の第4の実施の形態の変形における界磁子の断面図である。It is sectional drawing of the field element in the deformation | transformation of the 4th Embodiment of this invention. 本発明の第4の実施の形態の変形における界磁子の断面図である。It is sectional drawing of the field element in the deformation | transformation of the 4th Embodiment of this invention. 本発明の第4の実施の形態の変形における界磁子の斜視図である。It is a perspective view of the field element in the deformation | transformation of the 4th Embodiment of this invention. 本発明の第5の実施の形態にかかる回転電機における界磁子の構成を示す斜視図である。It is a perspective view which shows the structure of the field element in the rotary electric machine concerning the 5th Embodiment of this invention. 本発明の第5の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 5th Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第5の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 5th Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第6の実施の形態にかかる回転電機における界磁子の構成を示す斜視図である。It is a perspective view which shows the structure of the field element in the rotary electric machine concerning the 6th Embodiment of this invention. 本発明の第6の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 6th Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第6の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 6th Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 磁性突起近傍における磁束の流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of the magnetic flux in the magnetic protrusion vicinity. 磁性突起近傍における磁束の流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of the magnetic flux in the magnetic protrusion vicinity. 本発明の第7の実施の形態にかかる回転電機における界磁子の構成を示す斜視図である。It is a perspective view which shows the structure of the field element in the rotary electric machine concerning the 7th Embodiment of this invention. 本発明の第7の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 7th Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 本発明の第7の実施の形態における界磁子の構成と、これと共に回転電機を構成する電機子との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the structure of the field element in the 7th Embodiment of this invention, and the armature which comprises a rotary electric machine with this. 電機子の構成を例示する斜視図である。It is a perspective view which illustrates the composition of an armature. 電機子巻線の構成を例示する斜視図である。It is a perspective view which illustrates the composition of an armature winding. 電機子の断面図である。It is sectional drawing of an armature. 電機子の断面図である。It is sectional drawing of an armature. 電機子コアの形状を示す斜視図である。It is a perspective view which shows the shape of an armature core. 電機子巻線を示す斜視図である。It is a perspective view which shows an armature winding. 電機子巻線を電機子コアに巻回した状態を示す斜視図である。It is a perspective view which shows the state which wound the armature winding to the armature core. 電機子巻線を示す斜視図である。It is a perspective view which shows an armature winding. 電機子巻線を電機子コアに巻回した状態を示す斜視図である。It is a perspective view which shows the state which wound the armature winding to the armature core. 電機子巻線を示す斜視図である。It is a perspective view which shows an armature winding. 電機子巻線を電機子コアに巻回した状態を示す斜視図である。It is a perspective view which shows the state which wound the armature winding to the armature core.

符号の説明Explanation of symbols

1A〜1G 界磁子
101N,101S,105N,105S 磁性板
101J,101K,101L,101Y,101Z 磁性突起
101G,101H 薄肉部
102N,102S,104N,104S,102Q 磁性環
103N,103Na,103Nb,103S,103Sa,103Sb 磁極面
103 界磁磁石
103C,103D 永久磁石
2,3 電機子
Q 回転軸
1A to 1G Field elements 101N, 101S, 105N, 105S Magnetic plates 101J, 101K, 101L, 101Y, 101Z Magnetic protrusions 101G, 101H Thin parts 102N, 102S, 104N, 104S, 102Q Magnetic rings 103N, 103Na, 103Nb, 103S, 103Sa, 103Sb Magnetic pole surface 103 Field magnet 103C, 103D Permanent magnet 2,3 Armature Q Rotating shaft

Claims (18)

回転軸(Q)の周りで周方向に回転可能な界磁子(1A〜1G)と、前記回転軸に平行な回転軸方向において前記界磁子と対向する電機子(2)とを備え、
前記界磁子は、
前記回転軸の周囲で配置された環状の第1磁極面(103Na;103N)と、前記回転軸の周囲で配置され、前記第1磁極面とは極性が反対に着磁した環状の第2磁極面(103Sa;103S)とを呈する界磁磁石と、
前記第1磁極面に設けられ、前記回転軸方向に突出する第1磁性突起(101N,102J)を有する第1磁性環(102N)と、
前記第2磁極面に設けられ、前記第1磁性突起と同数で前記第1磁性突起の突出側に突出する第2磁性突起(101S,102K)を有する第2磁性環(102S)と、
を有し、
前記第1磁性突起と前記第2磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記電機子と対向し、
前記界磁磁石が前記第1磁極面及び前記第2磁極面をいずれも軸方向に呈している回転電機。
A field element (1A to 1G) rotatable in a circumferential direction around a rotation axis (Q), and an armature (2) facing the field element in a rotation axis direction parallel to the rotation axis;
The field element is
An annular first magnetic pole surface (103Na; 103N) disposed around the rotating shaft, and an annular second magnetic pole disposed around the rotating shaft and magnetized with an opposite polarity to the first magnetic pole surface A field magnet exhibiting a surface (103Sa; 103S);
A first magnetic ring (102N) provided on the first magnetic pole surface and having first magnetic protrusions (101N, 102J) protruding in the rotation axis direction;
A second magnetic ring (102S) provided on the second magnetic pole surface and having second magnetic protrusions (101S, 102K) that are the same number as the first magnetic protrusions and protrude toward the protrusion side of the first magnetic protrusions;
Have
The first magnetic protrusions and the second magnetic protrusions are alternately provided in the circumferential direction while being magnetically separated from each other, both of which face the armature in the rotation axis direction ,
Rotating electric machine wherein the field magnet is that not both exhibit axially said first pole face and the second pole face.
前記第1磁性突起(101N,102J)と前記第2磁性突起(101S,102K)とは、前記界磁子(1A〜1G)と前記電機子(2)との前記回転軸方向に沿った距離の2倍を超える距離以上で隔たる、請求項1記載の回転電機。   The first magnetic protrusions (101N, 102J) and the second magnetic protrusions (101S, 102K) are distances along the rotation axis direction between the field elements (1A to 1G) and the armature (2). The rotating electrical machine according to claim 1, wherein the rotating electrical machines are separated by at least a distance more than twice. 前記第1磁性突起は前記電機子(2)側に、前記電機子側で前記第2磁性環(102S)を覆う第1磁性板(101N)を含み、
前記第2磁性突起は前記電機子(2)側に、前記電機子側で前記第1磁性環(102N)を覆う第2磁性板(101S)を含む、請求項1乃至請求項2のいずれか一つに記載の回転電機。
The first magnetic protrusion includes, on the armature (2) side, a first magnetic plate (101N) that covers the second magnetic ring (102S) on the armature side,
The said 2nd magnetic protrusion contains the 2nd magnetic plate (101S) which covers the said 1st magnetic ring (102N) in the said armature (2) side on the said armature (2) side. The rotating electric machine according to one.
前記界磁子(1C;1D)は
前記第1磁性板(101N)及び前記第2磁性板(101S)を、その内周側及び外周側の少なくともいずれか一方において前記周方向に連結する薄肉部(101G;101H)
を更に有する、請求項3記載の回転電機。
The field element (1C; 1D) is a thin portion that connects the first magnetic plate (101N) and the second magnetic plate (101S) in the circumferential direction on at least one of the inner peripheral side and the outer peripheral side. (101G; 101H)
The rotating electrical machine according to claim 3, further comprising:
回転軸(Q)の周りで周方向に回転可能な界磁子(1A〜1G)と、前記回転軸に平行な回転軸方向において前記界磁子と対向する電機子(2)とを備え、
前記界磁子は、
前記回転軸の周囲で配置された環状の第1磁極面(103Na;103N)と、前記回転軸の周囲で配置され、前記第1磁極面とは極性が反対に着磁した環状の第2磁極面(103Sa;103S)とを呈する界磁磁石と、
前記第1磁極面に設けられ、前記回転軸方向に突出する第1磁性突起(101N,102J)を有する第1磁性環(102N)と、
前記第2磁極面に設けられ、前記第1磁性突起と同数で前記第1磁性突起の突出側に突出する第2磁性突起(101S,102K)を有する第2磁性環(102S)と、
を有し、
前記第1磁性突起と前記第2磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記電機子と対向する回転電機であって、
前記界磁子(1C;1D)は前記周方向において前記第1磁性突起(101N,102J)と前記第2磁性突起(101S,102K)との間に配置され、前記第1磁性突起及び前記第2磁性突起に対して相互に磁気的に分離され、前記回転軸方向に突出するq軸インダクタンス増大用磁性突起(101Q,102L)を有するq軸インダクタンス増大用磁性環(102Q)
を更に有する回転電機。
A field element (1A to 1G) rotatable in a circumferential direction around a rotation axis (Q), and an armature (2) facing the field element in a rotation axis direction parallel to the rotation axis;
The field element is
An annular first magnetic pole surface (103Na; 103N) disposed around the rotating shaft, and an annular second magnetic pole disposed around the rotating shaft and magnetized with an opposite polarity to the first magnetic pole surface A field magnet exhibiting a surface (103Sa; 103S);
A first magnetic ring (102N) provided on the first magnetic pole surface and having first magnetic protrusions (101N, 102J) protruding in the rotation axis direction;
A second magnetic ring (102S) provided on the second magnetic pole surface and having second magnetic protrusions (101S, 102K) that are the same number as the first magnetic protrusions and protrude toward the protrusion side of the first magnetic protrusions;
Have
The first magnetic protrusion and the second magnetic protrusion are alternately provided in the circumferential direction while being magnetically separated from each other, both of which are rotating electric machines that face the armature in the rotation axis direction. ,
The field element (1C; 1D) is disposed between the first magnetic protrusion (101N, 102J) and the second magnetic protrusion (101S, 102K) in the circumferential direction, and the first magnetic protrusion and the first magnetic protrusion A magnetic ring (102Q) for increasing q-axis inductance having magnetic protrusions (101Q, 102L) for increasing q-axis inductance that are magnetically separated from each other with respect to the two magnetic protrusions and project in the direction of the rotation axis
In addition Yusuke that rotary electric machine.
前記第1磁性突起は前記電機子(3)側に、前記電機子(3)側で前記第2磁性環(102S)を覆う第1磁性板(101N)を含み、
前記第2磁性突起は前記電機子(3)側に、前記電機子(3)側で前記第1磁性環(102N)を覆う第2磁性板(101S)を含み、
前記q軸インダクタンス増大用磁性突起は前記電機子(3)側に、前記電機子(3)側で前記第1磁性環及び前記第2磁性環を覆うq軸インダクタンス増大用磁性板(101Q)を含む、請求項5記載の回転電機。
The first magnetic protrusion includes, on the armature (3) side, a first magnetic plate (101N) that covers the second magnetic ring (102S) on the armature (3) side,
The second magnetic protrusion includes, on the armature (3) side, a second magnetic plate (101S) that covers the first magnetic ring (102N) on the armature (3) side,
The magnetic projection for increasing q-axis inductance has a magnetic plate (101Q) for increasing q-axis inductance that covers the first magnetic ring and the second magnetic ring on the armature (3) side on the armature (3) side. The rotating electrical machine according to claim 5, further comprising:
前記界磁子(1C;1D)は
前記第1磁性板(101N)及び前記第2磁性板(101S)及び前記q軸インダクタンス増大用磁性板(101q)を、その内周側及び外周側の少なくともいずれか一方において前記周方向に連結する薄肉部(101G;101H)
を更に有する、請求項6記載の回転電機。
The field element (1C; 1D) includes the first magnetic plate (101N), the second magnetic plate (101S), and the q-axis inductance increasing magnetic plate (101q) at least on the inner peripheral side and the outer peripheral side. Thin part (101G; 101H) connected in the circumferential direction on either side
The rotating electrical machine according to claim 6, further comprising:
前記界磁磁石は、
前記回転軸方向に着磁されて前記第1磁極面(103Na)を呈する環状の第1磁石(103D)と、
前記第1磁石の内周に設けられ、前記回転軸方向に着磁されて前記第2磁極面(103Sa)を呈する環状の第2磁石(103C)と
を含み、
前記界磁子(1A,1C)は、
前記第1磁極面及び前記第2磁極面とは反対側で前記第1磁石と前記第2磁石とを磁気的に連結する環状の磁気ヨーク(106)
を更に有する、請求項1乃至請求項7のいずれか一つに記載の回転電機。
The field magnet is
An annular first magnet (103D) magnetized in the direction of the rotation axis and exhibiting the first magnetic pole surface (103Na);
An annular second magnet (103C) provided on the inner periphery of the first magnet and magnetized in the direction of the rotation axis to exhibit the second magnetic pole surface (103Sa);
The field element (1A, 1C) is
An annular magnetic yoke (106) for magnetically connecting the first magnet and the second magnet on the opposite side of the first magnetic pole surface and the second magnetic pole surface
The rotating electrical machine according to any one of claims 1 to 7, further comprising:
他の電機子(3)
を更に備え、
前記界磁磁石は、
前記回転軸方向に着磁されて前記第1磁極面(103Na)及び前記第1磁極面とは極性が異なる第3磁極面(103Sb)を呈する環状の第1磁石(103D)と、
前記第1磁石の内周に設けられ、前記回転軸方向に着磁されて前記第2磁極面(103Sa)及び前記第2磁極面とは極性が異なる第4磁極面(103Nb)を呈する環状の第2磁石(103C)と
を含み、
前記界磁子(1B)は、
前記第3磁極面に設けられ、前記第1磁性突起とは反対側に突出する第3磁性突起(105S,104K)を有する第3磁性環(104S)と、
前記第4磁極面に設けられ、前記第3磁性突起と同数で前記第3磁性突起の突出側に突出する第4磁性突起(105N,104J)を有する第4磁性環(104N)と、
を更に有し、
前記第3磁性突起と前記第4磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記他の電機子と対向する、請求項1乃至請求項7のいずれか一つに記載の回転電機。
Other armature (3)
Further comprising
The field magnet is
An annular first magnet (103D) magnetized in the direction of the rotational axis and exhibiting the first magnetic pole surface (103Na) and the third magnetic pole surface (103Sb) having a different polarity from the first magnetic pole surface;
An annular ring that is provided on the inner periphery of the first magnet and is magnetized in the direction of the rotation axis and exhibits a second magnetic pole surface (103Sa) and a fourth magnetic pole surface (103Nb) having a different polarity from the second magnetic pole surface. A second magnet (103C),
The field element (1B) is
A third magnetic ring (104S) provided on the third magnetic pole surface and having a third magnetic protrusion (105S, 104K) protruding opposite to the first magnetic protrusion;
A fourth magnetic ring (104N) provided on the fourth magnetic pole surface and having fourth magnetic protrusions (105N, 104J) which are the same number as the third magnetic protrusions and protrude toward the protruding side of the third magnetic protrusions;
Further comprising
The third magnetic protrusion and the fourth magnetic protrusion are alternately provided in the circumferential direction while being magnetically separated from each other, both of which are opposed to the other armature in the rotation axis direction. The rotating electrical machine according to any one of claims 1 to 7.
前記第1磁極面(103Na)の面積と、前記第2磁極面(103Sa)の面積とは等しい、請求項8乃至請求項9のいずれか一つに記載の回転電機。   The rotating electrical machine according to any one of claims 8 to 9, wherein an area of the first magnetic pole surface (103Na) is equal to an area of the second magnetic pole surface (103Sa). 前記第1磁極面(103Na)の面積は、前記第2磁極面(103Sa)の面積よりも大きい、請求項8乃至請求項9のいずれか一つに記載の回転電機。   The rotating electrical machine according to any one of claims 8 to 9, wherein an area of the first magnetic pole surface (103Na) is larger than an area of the second magnetic pole surface (103Sa). 前記界磁磁石は、前記径方向に着磁されて内周側に前記第1磁極面(103N)を、外周側に前記第2磁極面(103S)を、それぞれ呈する環状磁石(103)である、請求項1乃至請求項7のいずれか一つに記載の回転電機。   The field magnet is an annular magnet (103) magnetized in the radial direction and presenting the first magnetic pole surface (103N) on the inner peripheral side and the second magnetic pole surface (103S) on the outer peripheral side. A rotating electrical machine according to any one of claims 1 to 7. 他の電機子(3)
を更に備え、
前記第1磁性環(102N)は、前記第1磁性突起(101N,102J)と反対方向に突出する第3磁性突起(105N,102Y)を更に有し、
前記第2磁性環(102S)は、前記第2磁性突起(101S,102K)と反対方向に突出する第4磁性突起(105S,102Z)を更に有し、
前記第3磁性突起と前記第4磁性突起とは相互に磁気的に分離されつつ前記周方向において交互に設けられ、そのいずれもが前記回転軸方向において前記他の電機子と対向する、請求項12記載の回転電機。
Other armature (3)
Further comprising
The first magnetic ring (102N) further includes a third magnetic protrusion (105N, 102Y) protruding in a direction opposite to the first magnetic protrusion (101N, 102J),
The second magnetic ring (102S) further includes fourth magnetic protrusions (105S, 102Z) protruding in a direction opposite to the second magnetic protrusions (101S, 102K),
The third magnetic protrusion and the fourth magnetic protrusion are alternately provided in the circumferential direction while being magnetically separated from each other, both of which are opposed to the other armature in the rotation axis direction. 12. The rotating electrical machine according to 12.
前記周方向において、前記第1磁性突起(101N,102J)と前記第3磁性突起(105N,102Y)とは交互に配置され、
前記周方向において、前記第2磁性突起(101S,102K)と前記第4磁性突起(105S,102Z)とは交互に配置される、請求項13記載の回転電機。
In the circumferential direction, the first magnetic protrusions (101N, 102J) and the third magnetic protrusions (105N, 102Y) are alternately arranged,
The rotating electrical machine according to claim 13, wherein the second magnetic protrusions (101S, 102K) and the fourth magnetic protrusions (105S, 102Z) are alternately arranged in the circumferential direction.
前記界磁磁石は、前記回転軸方向に着磁されて前記第1磁極面(103Na)及び前記第2磁極面(103Sb)を呈する環状磁石(103D)であり、
前記第2磁性環(102S)は、前記第1磁性環(102N)と共に前記環状磁石を挟む鍔部(102T)を有する、請求項1乃至請求項7のいずれか一つに記載の回転電機。
The field magnet is an annular magnet (103D) that is magnetized in the rotation axis direction and exhibits the first magnetic pole surface (103Na) and the second magnetic pole surface (103Sb),
The rotating electrical machine according to any one of claims 1 to 7, wherein the second magnetic ring (102S) includes a flange (102T) that sandwiches the annular magnet together with the first magnetic ring (102N).
前記第1磁性環及び前記第2磁性環の固有抵抗は、前記界磁磁石の固有抵抗よりも高い、請求項1記載の回転電機。   The rotating electrical machine according to claim 1, wherein specific resistances of the first magnetic ring and the second magnetic ring are higher than a specific resistance of the field magnet. 前記第1磁性環及び前記第2磁性環並びに前記q軸インダクタンス増大用磁性環の固有抵抗は、前記界磁磁石の固有抵抗よりも高い、請求項5記載の回転電機。   The rotating electrical machine according to claim 5, wherein specific resistances of the first magnetic ring, the second magnetic ring, and the q-axis inductance increasing magnetic ring are higher than a specific resistance of the field magnet. 前記電機子はティースを有し、
前記回転軸方向に沿って見て、前記ティースは前記第1磁性突起と前記第2磁性突起の内径と外径との間に位置する、請求項1乃至請求項17のいずれか一つに記載の回転電機。
The armature has teeth;
18. The tooth according to claim 1, wherein the teeth are positioned between an inner diameter and an outer diameter of the first magnetic protrusion and the second magnetic protrusion as viewed along the rotation axis direction. Rotating electric machine.
JP2006213360A 2006-08-04 2006-08-04 Rotating electric machine Expired - Fee Related JP5066863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213360A JP5066863B2 (en) 2006-08-04 2006-08-04 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213360A JP5066863B2 (en) 2006-08-04 2006-08-04 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2008043043A JP2008043043A (en) 2008-02-21
JP5066863B2 true JP5066863B2 (en) 2012-11-07

Family

ID=39177449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213360A Expired - Fee Related JP5066863B2 (en) 2006-08-04 2006-08-04 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5066863B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092784B2 (en) * 2007-09-11 2012-12-05 ダイキン工業株式会社 Axial gap type rotating electrical machine
CN103855828A (en) * 2014-03-03 2014-06-11 常州奥立思特电子有限公司 Permanent-magnet direct-current brushless motor rotor structure
CN108933488B (en) * 2017-05-22 2020-08-04 日本电产株式会社 Rotor and motor with same
GB2580916B (en) * 2019-01-29 2021-09-29 Saietta Group PLC Axial flux electrical machine
CN109687674B (en) * 2019-03-04 2020-08-11 哈尔滨工业大学 Radial parallel multiphase permanent magnet fault-tolerant motor
CN114301197B (en) 2021-08-02 2024-06-04 华为数字能源技术有限公司 Motor stator, driving motor and electric automobile
GB2613841A (en) * 2021-12-16 2023-06-21 Saietta Group PLC Stacked-winding stator electrical machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662558A (en) * 1992-08-06 1994-03-04 Nippondenso Co Ltd Multistage position control actuator
JP3410519B2 (en) * 1993-08-30 2003-05-26 日本サーボ株式会社 Three-phase claw-pole type permanent magnet type rotating electric machine
JPH07312858A (en) * 1994-05-17 1995-11-28 Toshiba Corp Rotary electric machine
US7608964B2 (en) * 2004-03-31 2009-10-27 Daikin Industries, Ltd. Motor, blower, compressor, and air conditioner

Also Published As

Publication number Publication date
JP2008043043A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4962033B2 (en) Axial gap type motor
JP4702286B2 (en) Rotor, motor driving method, compressor
US7528519B2 (en) Permanent magnet rotary motor
CN112838693B (en) Rotary electric machine
JP5332082B2 (en) motor
JP6597184B2 (en) Permanent magnet type motor
US8829758B2 (en) Rotary electric machine
JP5423738B2 (en) Rotating electric machine
JP5813254B2 (en) Permanent magnet rotating electric machine
JP5066863B2 (en) Rotating electric machine
JP2012161227A (en) Rotor for rotary electric machine
JP2003264947A (en) Permanent magnet motor
JP6421349B2 (en) Rotating electrical machine
JP2014150626A (en) Rotor for permanent magnet motor, method of manufacturing rotor for permanent magnet motor, and permanent magnet motor
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP2011078202A (en) Axial gap motor
JP5429241B2 (en) Rotating electric machine
JP2008193842A (en) Axial gap type rotating electric machine
JP5702118B2 (en) Rotor structure and motor
US20080290754A1 (en) AC Motor
JP4080273B2 (en) Permanent magnet embedded motor
JP4798090B2 (en) Rotor, axial gap type motor, motor driving method, compressor
JP6950275B2 (en) Rotor and motor
JP2003333811A (en) Induction motor having a plurality of axially divided stator windings
JP4798089B2 (en) Rotor, axial gap type motor, motor driving method, compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees