JP5066400B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP5066400B2
JP5066400B2 JP2007184576A JP2007184576A JP5066400B2 JP 5066400 B2 JP5066400 B2 JP 5066400B2 JP 2007184576 A JP2007184576 A JP 2007184576A JP 2007184576 A JP2007184576 A JP 2007184576A JP 5066400 B2 JP5066400 B2 JP 5066400B2
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia
particulate filter
reduction catalyst
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007184576A
Other languages
Japanese (ja)
Other versions
JP2009019610A (en
Inventor
博 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2007184576A priority Critical patent/JP5066400B2/en
Priority to PCT/JP2008/000578 priority patent/WO2009011080A1/en
Publication of JP2009019610A publication Critical patent/JP2009019610A/en
Application granted granted Critical
Publication of JP5066400B2 publication Critical patent/JP5066400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/25Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ammonia generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

近年、排気管の途中に排気ガス中のパティキュレートを捕集するパティキュレートフィルタを備えると共に、該パティキュレートフィルタの下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を備え、該選択還元型触媒と前記パティキュレートフィルタとの間に還元剤として尿素水を添加してパティキュレートとNOxの同時低減を図ることが提案されている。   2. Description of the Related Art In recent years, a selective reduction catalyst that includes a particulate filter that collects particulates in exhaust gas in the middle of an exhaust pipe, and that can selectively react NOx with ammonia even in the presence of oxygen on the downstream side of the particulate filter. It is proposed that urea water is added as a reducing agent between the selective reduction catalyst and the particulate filter to simultaneously reduce particulates and NOx.

この場合、選択還元型触媒への尿素水の添加は、パティキュレートフィルタと選択還元型触媒との間で行われることになるため、排気ガス中に添加された尿素水がアンモニアと炭酸ガスに熱分解されるまでの十分な反応時間を確保しようとすれば、尿素水の添加位置から選択還元型触媒までの距離を長くする必要があるが、パティキュレートフィルタと選択還元型触媒とを十分な距離を隔てて離間配置させてしまうと、車両への搭載性が著しく損なわれてしまう。   In this case, since the urea water is added to the selective reduction catalyst between the particulate filter and the selective reduction catalyst, the urea water added in the exhaust gas is heated to ammonia and carbon dioxide. In order to secure sufficient reaction time until decomposition, it is necessary to increase the distance from the urea water addition position to the selective catalytic reduction catalyst. However, there is a sufficient distance between the particulate filter and the selective catalytic reduction catalyst. If they are spaced apart from each other, the mountability on the vehicle is significantly impaired.

このため、本発明と同じ出願人により図5及び図6に示す如きコンパクトな排気浄化装置が特願2007−2923として既に提案されており、ここに図示している排気浄化装置では、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、排気ガス3中のパティキュレートを捕集するパティキュレートフィルタ5と、該パティキュレートフィルタ5の下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒6とをケーシング7,8により夫々抱持して並列に配置すると共に、パティキュレートフィルタ5の出側端部と選択還元型触媒6の入側端部との間をS字構造の連絡流路9により接続し、パティキュレートフィルタ5の出側端部から排出された排気ガス3が逆向きに折り返されて隣の選択還元型触媒6の入側端部に導入されるようにしている。   For this reason, a compact exhaust gas purification device as shown in FIGS. 5 and 6 has already been proposed by the same applicant as the present invention as Japanese Patent Application No. 2007-2923. In the exhaust gas purification device shown here, the diesel engine 1 A particulate filter 5 that collects particulates in the exhaust gas 3 in the middle of the exhaust pipe 4 through which the exhaust gas 3 discharged from the exhaust gas 2 circulates, and oxygen downstream of the particulate filter 5 The selective reduction catalyst 6 having the property of selectively reacting NOx with ammonia even in the presence of coexistence is held in parallel by the casings 7 and 8, and the outlet side end of the particulate filter 5 The selective reduction catalyst 6 is connected to the inlet end of the selective reduction catalyst 6 by an S-shaped connecting flow path 9 and discharged from the outlet end of the particulate filter 5. The exhaust gas 3 is folded in the reverse direction and introduced into the inlet end of the adjacent selective catalytic reduction catalyst 6.

図6に要部を拡大して示す如く、前記連絡流路9は、パティキュレートフィルタ5の出側端部を包囲し且つ該出側端部から出た直後の排気ガス3を略直角な向きに方向転換させつつ集合せしめるガス集合室9Aと、該ガス集合室9Aで集められた排気ガス3をパティキュレートフィルタ5の排気流れと逆向きに抜き出し且つその入側端部の軸心位置に尿素水添加手段10を備えたミキシングパイプ9Bと、該ミキシングパイプ9Bにより導かれた排気ガス3を略直角な向きに方向転換させつつ分散せしめ且つその分散された排気ガス3を選択還元型触媒6の入側端部に導入し得るよう該入側端部を包囲するガス分散室9CとによりS字構造を成すように構成されている。   As shown in an enlarged view in FIG. 6, the communication channel 9 surrounds the outlet end of the particulate filter 5 and directs the exhaust gas 3 immediately after exiting from the outlet end in a substantially perpendicular direction. The gas collecting chamber 9A that collects while changing the direction of the gas, and the exhaust gas 3 collected in the gas collecting chamber 9A are extracted in a direction opposite to the exhaust flow of the particulate filter 5, and urea is placed at the axial center position of the inlet end thereof. The mixing pipe 9B provided with the water addition means 10 and the exhaust gas 3 guided by the mixing pipe 9B are dispersed while changing the direction in a substantially perpendicular direction, and the dispersed exhaust gas 3 is dispersed in the selective reduction catalyst 6. An S-shaped structure is formed by the gas dispersion chamber 9C surrounding the inlet side end so as to be introduced into the inlet side end.

尚、パティキュレートフィルタ5が抱持されているケーシング7内の前段には、排気ガス3中の未燃燃料分を酸化処理する酸化触媒11が装備されており、また、選択還元型触媒6が抱持されているケーシング8内の後段には、余剰のアンモニアを酸化処理するアンモニア低減触媒12が装備されている。   In addition, an oxidation catalyst 11 that oxidizes the unburned fuel in the exhaust gas 3 is provided in the front stage in the casing 7 in which the particulate filter 5 is held, and the selective reduction catalyst 6 is provided. An ammonia reduction catalyst 12 that oxidizes surplus ammonia is provided in the rear stage in the casing 8 that is held.

そして、このような構成を採用すれば、パティキュレートフィルタ5により排気ガス3中のパティキュレートが捕集されると共に、その下流側のミキシングパイプ9Bの途中で尿素水添加手段10から尿素水が排気ガス3中に添加されてアンモニアと炭酸ガスに分解され、選択還元型触媒6上で排気ガス3中のNOxがアンモニアにより良好に還元浄化される結果、排気ガス3中のパティキュレートとNOxの同時低減が図られることになる。   If such a configuration is adopted, particulates in the exhaust gas 3 are collected by the particulate filter 5, and urea water is exhausted from the urea water addition means 10 in the middle of the mixing pipe 9B on the downstream side. As a result of being added to the gas 3 and decomposed into ammonia and carbon dioxide gas, the NOx in the exhaust gas 3 is reduced and purified well by the ammonia on the selective catalytic reduction catalyst 6, so that the particulates and NOx in the exhaust gas 3 can be simultaneously obtained. Reduction will be achieved.

この際、パティキュレートフィルタ5の出側端部から排出された排気ガス3が連絡流路9により逆向きに折り返されてから隣の選択還元型触媒6の入側端部に導入されるようになっているので、前記連絡流路9の途中にある尿素水の添加位置から選択還元型触媒6までの距離が長く確保されると共に、排気ガス3の流れが折り返されることで乱流化して尿素水と排気ガス3との混合促進が図られる結果、尿素水からアンモニアが生成されるのに十分な反応時間が確保される。   At this time, the exhaust gas 3 discharged from the outlet end portion of the particulate filter 5 is folded in the reverse direction by the connecting flow path 9 and then introduced into the inlet end portion of the adjacent selective catalytic reduction catalyst 6. Therefore, a long distance from the urea water addition position in the middle of the communication flow path 9 to the selective catalytic reduction catalyst 6 is secured, and the flow of the exhaust gas 3 is turned back to make turbulence and urea. As a result of promoting the mixing of the water and the exhaust gas 3, a sufficient reaction time is secured for generating ammonia from the urea water.

しかも、パティキュレートフィルタ5と選択還元型触媒6とが並列に配置され、これらパティキュレートフィルタ5と選択還元型触媒6との間に沿うように連絡流路9が配置されているので、その全体構成がコンパクトなものとなって車両への搭載性が大幅に向上されることになる。   In addition, the particulate filter 5 and the selective catalytic reduction catalyst 6 are arranged in parallel, and the connecting flow path 9 is arranged between the particulate filter 5 and the selective catalytic reduction catalyst 6, so that the whole The configuration becomes compact, and the mountability to the vehicle is greatly improved.

尚、本発明と関連する先行技術文献情報としては、例えば、下記の特許文献1等が既に存在している。
特開2005−155404号公報
As prior art document information related to the present invention, for example, the following Patent Document 1 already exists.
JP 2005-155404 A

しかしながら、図5及び図6に示す如き構造を採用することで尿素水からアンモニアへの十分な反応時間を確保できるとしても、排気温度が250℃を下まわるような低い運転状態(一般的に低負荷運転領域に排気温度が低い領域が拡がっている)では、尿素水からアンモニアへの反応そのものが良好に進まず、無理に尿素水を添加しても尿素が析出して固化してしまうだけで良好なアンモニア化を図ることができないという不具合があった。   However, even if a sufficient reaction time from urea water to ammonia can be ensured by adopting the structure as shown in FIGS. 5 and 6, a low operating state (generally low) where the exhaust temperature falls below 250 ° C. In the load operation region, the region where the exhaust temperature is low has spread), the reaction from urea water to ammonia does not proceed well, and even if urea water is forcibly added, urea precipitates and solidifies. There was a problem that good ammoniation could not be achieved.

例えば、都市部の路線バス等のように渋滞路ばかりを走行するような運行形態の車両では、必要温度以上での運転が長く継続しないため、選択還元型触媒に対し適切な量のアンモニアを連続して供給し続けることが難しく、NOx低減率が低いまま推移してしまって良好なNOx低減効果を得ることができない虞れがある。   For example, in a vehicle that travels only on a congested road such as a city bus, the operation above the required temperature does not continue for a long time, so an appropriate amount of ammonia is continuously applied to the selective catalytic reduction catalyst. Therefore, it is difficult to keep supplying, and the NOx reduction rate may remain low, and a good NOx reduction effect may not be obtained.

本発明は、上述の実情に鑑みてなされたものであり、排気温度の低い運転状態であっても、確実に尿素水等の還元剤をアンモニア化して良好なNOx低減効果が得られる排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and even in an operation state where the exhaust gas temperature is low, an exhaust gas purification apparatus that can reliably ammonia the reducing agent such as urea water and obtain a good NOx reduction effect. The purpose is to provide.

本発明は、パティキュレートフィルタと、その下流側に備えられて酸素共存下でも選択的にNOxをアンモニアと反応せしめる選択還元型触媒と、パティキュレートフィルタの出側から出た排気ガスを選択還元型触媒の入側に導く連絡流路とを備え、該連絡流路の途中に添加後に分解してアンモニアを生成する還元剤を添加し得るように構成した排気浄化装置であって、
前記連絡流路内に排気ガスの旋回流を形成する旋回流形成手段と、該旋回流形成手段による旋回流の形成位置より上流側の相対的に圧力が高い箇所から排気ガスの一部を抜き出して前記旋回流の形成位置に導くバイパスチャンバと、該バイパスチャンバ内を流れる排気ガスに対し前記還元剤をヒータ及び加水分解触媒により強制的に加水分解してアンモニアとして添加するサブ添加手段と、前記連絡流路の上流側で排気ガスの主流に対し前記還元剤を添加するメイン添加手段とを備え
パティキュレートフィルタの出側端部を包囲して排気ガスを集合せしめるガス集合室と、該ガス集合室で集められた排気ガスを選択還元型触媒の入側端部へ導くミキシングパイプとにより連絡流路の上流部分を構成し、ガス集合室からの排気ガスが前記ミキシングパイプの入側端部の周囲を一方向に旋回し且つ該ミキシングパイプの周方向複数箇所に形成した開口部に対し接線方向から導入されるように構成して旋回流形成手段とし、
ミキシングパイプの入側端部の開口端面を閉塞するようにバイパスチャンバを形成すると共に、該バイパスチャンバにおける前記開口端面を閉塞している壁部に多数の散気孔を穿設し、該各散気孔を介し前記ミキシングパイプ内へアンモニアを導入し得るように構成したことを特徴とするものである。
The present invention relates to a particulate filter, a selective reduction catalyst that is provided downstream thereof and selectively reacts with ammonia even in the presence of oxygen, and a selective reduction type exhaust gas emitted from the outlet side of the particulate filter. An exhaust purification device configured to be able to add a reducing agent that decomposes after addition and generates ammonia in the middle of the communication channel, the communication channel leading to the inlet side of the catalyst,
A swirl flow forming means for forming a swirl flow of exhaust gas in the communication flow path, and a part of the exhaust gas is extracted from a location where the pressure is relatively higher upstream than the swirl flow forming position by the swirl flow forming means. A bypass chamber for guiding the swirl flow to the formation position, sub-adding means for forcibly hydrolyzing the reducing agent with respect to the exhaust gas flowing in the bypass chamber by a heater and a hydrolysis catalyst, and adding the ammonia as ammonia, A main addition means for adding the reducing agent to the main stream of exhaust gas upstream of the communication channel ;
A gas collecting chamber that surrounds the outlet end of the particulate filter and collects exhaust gas, and a mixing pipe that guides the exhaust gas collected in the gas collecting chamber to the inlet end of the selective catalytic reduction catalyst. The exhaust gas from the gas collecting chamber forms an upstream portion of the passage, swirls around the inlet end of the mixing pipe in one direction, and is tangential to the openings formed in a plurality of circumferential directions of the mixing pipe The swirl flow forming means is configured to be introduced from
The bypass chamber is formed so as to close the opening end face of the inlet side end of the mixing pipe, and a large number of air holes are formed in the wall portion closing the opening end face of the bypass chamber. This is characterized in that ammonia can be introduced into the mixing pipe via the.

而して、負荷や回転数が共に低くて排気温度が低くなっている時にサブ添加手段を選択して還元剤の添加を行うと、該還元剤がヒータにより昇温されつつ加水分解触媒で確実にアンモニアと炭酸ガスに加水分解されてバイパスチャンバ内の排気ガスの流れに添加され、旋回流形成手段により旋回流が形成されている位置へ導入されるので、この旋回流により連絡流路内におけるアンモニアの分散が促進され、下流側の選択還元型触媒の全領域に対し満遍なく反応性の高いアンモニアが行き渡ってNOxが効率良く窒素に還元処理される。
特に本発明においては、ガス集合室からの排気ガスをミキシングパイプの入側端部の周囲を一方向に旋回するように導き、その排気ガスをミキシングパイプの周方向複数箇所に形成した開口部に対し接線方向から導入するようにしているので、排気ガスの旋回流が無理なく形成されることになり、しかも、ミキシングパイプ内を排気ガスの主流が流れることでバイパスチャンバ内のアンモニアが各散気孔から吸い出されて複数箇所から旋回流に混ざり、アンモニアと排気ガスとの混合性がより一層高められることになる。
Thus, if the sub-adding means is selected and the reducing agent is added when both the load and the rotational speed are low and the exhaust temperature is low, the reducing agent is reliably heated by the heater while being heated by the heater. It is hydrolyzed into ammonia and carbon dioxide and added to the exhaust gas flow in the bypass chamber, and is introduced to the position where the swirl flow is formed by the swirl flow forming means. Dispersion of ammonia is promoted, and ammonia having high reactivity is distributed uniformly over the entire area of the selective catalytic reduction catalyst on the downstream side, so that NOx is efficiently reduced to nitrogen.
In particular, in the present invention, the exhaust gas from the gas collecting chamber is guided to swivel around the inlet end of the mixing pipe in one direction, and the exhaust gas is introduced into openings formed at a plurality of circumferential positions of the mixing pipe. On the other hand, since the exhaust gas is introduced from the tangential direction, the swirl flow of the exhaust gas is formed without difficulty, and the main flow of the exhaust gas flows through the mixing pipe, so that the ammonia in the bypass chamber is diffused into each diffuser hole. And mixed with the swirling flow from a plurality of locations, and the mixing property of ammonia and exhaust gas is further enhanced.

他方、負荷や回転数が徐々に増加して排気温度が高くなってきたら、サブ添加手段からメイン添加手段に切り替えて連絡流路の上流側でバイパスチャンバを経由しない排気ガスの主流に対し還元剤を添加すれば良く、このようにすれば、還元剤が高温条件下で効率良くアンモニアと炭酸ガスに分解され、反応性の高いアンモニアにより下流側の選択還元型触媒にてNOxが効率良く窒素に還元処理される。   On the other hand, when the load and the rotational speed gradually increase and the exhaust temperature becomes higher, the sub-adding means is switched to the main adding means, and the reducing agent is used for the main flow of exhaust gas that does not pass through the bypass chamber on the upstream side of the communication channel. In this way, the reducing agent is efficiently decomposed into ammonia and carbon dioxide under high temperature conditions, and NOx is efficiently converted into nitrogen by the highly selective ammonia on the downstream side by the highly reactive ammonia. Reduced.

即ち、負荷や回転数が徐々に増加して排気流量が増加してくると、NOx濃度も高まって還元剤の添加量が多く必要となるが、サブ添加手段をそのまま用いて対応しようとすると、構造上の制約からコンパクトなものとなっている加水分解触媒に対し還元剤が多量に添加されて該加水分解触媒がびしょ濡れの状態となり、このびしょ濡れの状態の加水分解触媒が排気ガスの流れに晒されて多量の潜熱を奪われることにより温度低下し、加水分解触媒における還元剤の加水分解が停滞して選択還元型触媒へのアンモニアの供給が遅れ、NOx濃度の変化に還元剤の添加量をいくら追従させても実際の選択還元型触媒における還元反応が良好に追従しないという不具合が起こり得るため、負荷や回転数が徐々に増加して排気温度が上昇してきたならば、メイン添加手段に切り替えて還元剤を添加した方が良いのである。   That is, when the load and the rotational speed gradually increase and the exhaust gas flow rate increases, the NOx concentration also increases and a large amount of reducing agent is required. A large amount of reducing agent is added to the hydrolysis catalyst, which is compact due to structural constraints, and the hydrolysis catalyst becomes soaked. The soaked hydrolysis catalyst is exposed to the exhaust gas flow. The amount of latent heat is deprived and the temperature drops, the hydrolysis of the reducing agent in the hydrolysis catalyst stagnate, the supply of ammonia to the selective catalytic reduction catalyst is delayed, and the amount of reducing agent added to the change in NOx concentration No matter how much it follows, the reduction reaction in the actual selective reduction catalyst may not follow well, so if the load and the rotation speed gradually increase and the exhaust temperature rises , It's better with the addition of a reducing agent to switch to the main addition means.

更に、本発明をより具体的に実施するに際しては、バイパスチャンバの外周部から内側へ延在する筒体と、該筒体の内部に還元剤を噴射し得るよう前記バイパスチャンバの外周部に装着された噴射ノズルと、前記筒体の内周部に装備されたヒータと、前記筒体の内部の先端側に収容されて還元剤をアンモニアに加水分解する加水分解触媒と、旋回流形成手段による旋回流の形成位置より上流側の相対的に圧力が高い箇所から抜き出した排気ガスの一部を筒体の基端側に導き入れる排気導入管とによりサブ添加手段を構成することが好ましい。   Furthermore, when carrying out the present invention more specifically, a cylinder that extends inward from the outer periphery of the bypass chamber and an outer periphery of the bypass chamber that can inject a reducing agent into the cylinder are mounted. An injection nozzle, a heater mounted on the inner periphery of the cylinder, a hydrolysis catalyst that is housed on the front end side of the cylinder and hydrolyzes the reducing agent into ammonia, and a swirl flow forming means It is preferable that the sub-adding means is constituted by an exhaust introduction pipe for introducing a part of the exhaust gas extracted from a location where the pressure is relatively upstream from the position where the swirl flow is formed to the proximal end side of the cylindrical body.

また、パティキュレートフィルタと選択還元型触媒とを夫々の入側端部同士が同じ方向を向くように並列に配置し、パティキュレートフィルタの出側端部から排出された排気ガスを逆向きに折り返して隣の選択還元型触媒の入側端部に導入するS字構造の連絡流路を設けるようにしても良い。   In addition, the particulate filter and the selective catalytic reduction catalyst are arranged in parallel so that the respective input side ends face the same direction, and the exhaust gas discharged from the output side end of the particulate filter is folded back in the opposite direction. In addition, an S-shaped connecting flow channel may be provided that is introduced to the inlet side end of the adjacent selective catalytic reduction catalyst.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1、2に記載の発明によれば、排気温度の低い運転状態であっても、サブ添加手段を選択して還元剤の添加を行うことにより、該還元剤をヒータにより昇温しながら加水分解触媒にて強制的にアンモニアと炭酸ガスに加水分解することができ、しかも、旋回流形成手段により形成した旋回流でアンモニアの分散を促進して該アンモニアと排気ガスとの混合性を効果的に促進することができるので、選択還元型触媒の全領域に対し満遍なく反応性の高いアンモニアを行き渡らせてNOxを効率良く窒素に還元処理することができ、排気温度の低い運転状態におけるNOx低減効果を従来よりも著しく向上することができる。   (I) According to the first and second aspects of the present invention, the reducing agent is added by selecting the sub-adding means and adding the reducing agent even in the operation state where the exhaust temperature is low. While being heated by a heater, the hydrolysis catalyst can forcibly hydrolyze it into ammonia and carbon dioxide, and the ammonia and exhaust gas are promoted by the swirling flow formed by the swirling flow forming means. Can be effectively promoted, so that highly reactive ammonia can be distributed evenly over the entire range of the selective catalytic reduction catalyst, and NOx can be efficiently reduced to nitrogen. The NOx reduction effect in the low operating state can be remarkably improved as compared with the prior art.

(II)本発明の請求項1、2に記載の発明によれば、ガス集合室からの排気ガスをミキシングパイプの入側端部の周囲を一方向に旋回するように導き、その排気ガスをミキシングパイプの周方向複数箇所に形成した開口部に対し接線方向から導入するようにしているので、排気ガスの旋回流を無理なく形成することができ、ミキシングパイプの途中に旋回翼等を固定設置して排気ガスの旋回流を形成した場合の如き大幅な圧力損失の増加を回避することができる。 (II) According to the first and second aspects of the present invention, the exhaust gas from the gas collecting chamber is guided to swirl around the inlet end of the mixing pipe in one direction, and the exhaust gas is Since it is introduced from the tangential direction to the openings formed in the circumferential direction of the mixing pipe, the swirling flow of exhaust gas can be formed without difficulty, and swirling blades etc. are fixedly installed in the middle of the mixing pipe Thus, it is possible to avoid a significant increase in pressure loss as in the case where a swirling flow of exhaust gas is formed.

(III)本発明の請求項1、2に記載の発明によれば、ミキシングパイプ内の排気ガスの流れを利用してバイパスチャンバ内のアンモニアを各散気孔から吸い出し、ミキシングパイプ内に形成された排気ガスの旋回流に対し複数箇所からアンモニアを導入して、該アンモニアと排気ガスとの混合性を大幅に向上することができる。 (III) According to the first and second aspects of the present invention, the ammonia in the bypass chamber is sucked out from each aeration hole using the flow of the exhaust gas in the mixing pipe, and is formed in the mixing pipe. Ammonia can be introduced from a plurality of locations with respect to the swirling flow of the exhaust gas, and the mixing property between the ammonia and the exhaust gas can be greatly improved.

(IV)本発明の請求項に記載の発明によれば、排気温度の高い運転状態でメイン添加手段により添加した還元剤をアンモニアに分解させるのに十分な反応時間を確保しながらもパティキュレートフィルタ及び選択還元型触媒のコンパクトな配置を実現することができ、従来よりも車両への搭載性を大幅に向上することができる。
(IV) According to the invention described in claim 3 of the present invention, the particulates are secured while ensuring a reaction time sufficient to decompose the reducing agent added by the main addition means into ammonia in an operating state with a high exhaust temperature. A compact arrangement of the filter and the selective reduction catalyst can be realized, and the mounting property on the vehicle can be greatly improved as compared with the conventional case.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図4は本発明を実施する形態の一例を示すもので、本形態例においては、前述した図5及び図6のものと略同様に、パティキュレートフィルタ5と選択還元型触媒6とを夫々の入側端部同士が同じ方向を向くように並列に配置し、パティキュレートフィルタ5の出側端部から排出された排気ガス3を逆向きに折り返して隣の選択還元型触媒6の入側端部に導入するS字構造の連絡流路9を設けた排気浄化装置に関し、連絡流路9の上流部分を構成しているガス集合室9Aとミキシングパイプ9Bとの接続箇所に、以下に詳述する如き排気ガス3の旋回流を形成する旋回流形成手段13を構成するようにしている。   1 to 4 show an example of an embodiment for carrying out the present invention. In this embodiment, the particulate filter 5 and the selective catalytic reduction catalyst 6 are substantially the same as those in FIGS. 5 and 6 described above. Are arranged in parallel so that the respective inlet side end portions face in the same direction, and the exhaust gas 3 discharged from the outlet side end portion of the particulate filter 5 is folded back in the reverse direction, so that the adjacent selective catalytic reduction catalyst 6 With respect to the exhaust gas purification apparatus provided with the S-shaped connecting flow path 9 to be introduced into the inlet side end portion, at the connection place between the gas collecting chamber 9A and the mixing pipe 9B constituting the upstream portion of the connecting flow path 9, The swirling flow forming means 13 for forming the swirling flow of the exhaust gas 3 as described in detail in FIG.

即ち、特に図2に示されている通り、ガス集合室9Aの下流側端部がミキシングパイプ9Bの入側端部の周囲をスクロール形状を成すように被包し、これによりガス集合室9Aからの排気ガス3がミキシングパイプ9Bの入側端部の周囲を一方向に旋回する流れ(図2中における矢印を参照)を誘導されるようになっており、しかも、他方、前記ミキシングパイプ9Bの入側端部における上下位置に開口部14が形成されていて、該各開口部14に対し排気ガス3が接線方向から導入されるようになっている。   That is, as particularly shown in FIG. 2, the downstream end of the gas collecting chamber 9A encloses the periphery of the inlet end of the mixing pipe 9B so as to form a scroll shape. The exhaust gas 3 is guided to flow in one direction around the inlet end of the mixing pipe 9B (see the arrow in FIG. 2), and on the other hand, the mixing pipe 9B Openings 14 are formed at the upper and lower positions at the entrance end, and the exhaust gas 3 is introduced into each opening 14 from the tangential direction.

尚、図2中における符号15は、ガス集合室9Aの下流側端部のスクロール形状により誘導される排気ガス3の流れを二分して旋回方向内側の流れを下方の開口部14に対し接線方向から導入せしめる仕切板を示しており、この仕切板15により二分された旋回方向内側の流れが下方の開口部14に対し接線方向から導入され且つ旋回方向外側の流れが上方の開口部14に対し接線方向から導入されることにより、ミキシングパイプ9B内に効率良く排気ガス3の旋回流が形成されるようにしてある。   Note that reference numeral 15 in FIG. 2 indicates that the flow of the exhaust gas 3 induced by the scroll shape at the downstream end of the gas collecting chamber 9A is divided into two, and the flow inside the swirl direction is tangential to the opening 14 below. The flow inside the turning direction divided by the partition plate 15 is introduced from the tangential direction to the lower opening 14 and the flow outside the turning direction is introduced to the upper opening 14. By introducing from the tangential direction, the swirling flow of the exhaust gas 3 is efficiently formed in the mixing pipe 9B.

そして、このように旋回流形成手段13が構成されているガス集合室9Aとミキシングパイプ9Bとの接続箇所において、該ミキシングパイプ9Bの入側端部の開口端面を閉塞するようにバイパスチャンバ16が形成されており、このバイパスチャンバ16は、上方の開口部14に入る直前の相対的に圧力が高まっている箇所から排気導入管17を介し排気ガス3の一部を抜き出し且つ前記ミキシングパイプ9Bの開口端面を閉塞している壁部に穿設した多数の散気孔18から前記ミキシングパイプ9B内へ戻すようになっている(図1、図3、図4参照)。   The bypass chamber 16 is configured so as to close the opening end face of the inlet end of the mixing pipe 9B at the connecting portion between the gas collecting chamber 9A and the mixing pipe 9B in which the swirl flow forming means 13 is configured as described above. The bypass chamber 16 is formed by extracting a part of the exhaust gas 3 from the portion where the pressure is relatively increased immediately before entering the upper opening 14 through the exhaust introduction pipe 17 and of the mixing pipe 9B. It returns to the mixing pipe 9B from a number of diffused holes 18 drilled in the wall portion closing the opening end face (see FIGS. 1, 3, and 4).

ここで、特に図4に示す如く、前記バイパスチャンバ16には、その内部を流れる排気ガス3に対し尿素水をヒータ19及び加水分解触媒20により強制的に加水分解してアンモニアとして添加するサブ添加手段21が装備されており、前記加水分解触媒20では、次式
[化1]
(NH22CO+H2O→2NH3+CO2
により尿素水が効率良くアンモニアと炭酸ガスに加水分解されるようになっている。
Here, as shown particularly in FIG. 4, the bypass chamber 16 is sub-added in which urea water is forcibly hydrolyzed by the heater 19 and the hydrolysis catalyst 20 with respect to the exhaust gas 3 flowing through the bypass chamber 16 and added as ammonia. The hydrolysis catalyst 20 is equipped with the following means 21:
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2
As a result, urea water is efficiently hydrolyzed into ammonia and carbon dioxide.

このサブ添加手段21は、バイパスチャンバ16の外周部から内側へ延在する筒体22を備え、該筒体22の内部に尿素水を噴射し得るよう前記バイパスチャンバ16の外周部に噴射ノズル23を装着しており、しかも、前記筒体22の内周部にヒータ19を装備すると共に、前記筒体22の内部の先端側に尿素水をアンモニアに加水分解する加水分解触媒20を収容し、前記上方の開口部14に入る直前の相対的に圧力が高まっている箇所から抜き出した排気ガス3の一部を前記排気導入管17を通して前記筒体22の基端側に導き入れるように構成されている。   The sub-adding means 21 includes a cylindrical body 22 extending inward from the outer peripheral portion of the bypass chamber 16, and an injection nozzle 23 is provided on the outer peripheral portion of the bypass chamber 16 so that urea water can be injected into the cylindrical body 22. In addition, a heater 19 is mounted on the inner periphery of the cylindrical body 22, and a hydrolysis catalyst 20 that hydrolyzes urea water into ammonia is accommodated on the front end side of the cylindrical body 22, A part of the exhaust gas 3 extracted from a location where the pressure is increased immediately before entering the upper opening 14 is guided to the proximal end side of the cylindrical body 22 through the exhaust introduction pipe 17. ing.

他方、前記ガス集合室9Aの上流側におけるパティキュレートフィルタ5の出側端部を被包している部分には、排気ガス3の主流に対し尿素水を添加するメイン添加手段24が装備されており、このメイン添加手段24は、実質的にガス集合室9Aの外周部に装着された噴射ノズルのみで構成されている。   On the other hand, the main addition means 24 for adding urea water to the main flow of the exhaust gas 3 is provided in a portion covering the outlet end portion of the particulate filter 5 on the upstream side of the gas collecting chamber 9A. The main addition means 24 is substantially composed of only the injection nozzles mounted on the outer peripheral portion of the gas collecting chamber 9A.

而して、負荷や回転数が共に低くて排気温度が低くなっている時にサブ添加手段21を選択して尿素水の添加を行うと、該尿素水がヒータ19により昇温されつつ加水分解触媒20で確実にアンモニアと炭酸ガスに加水分解されてバイパスチャンバ16内の排気ガス3の流れに添加され、旋回流形成手段13により旋回流が形成されている位置へ導入されるので、この旋回流により連絡流路9内におけるアンモニアの分散が促進され、下流側の選択還元型触媒6の全領域に対し満遍なく反応性の高いアンモニアが行き渡ってNOxが効率良く窒素に還元処理される。   Thus, when the sub addition means 21 is selected and urea water is added when both the load and the rotational speed are low and the exhaust temperature is low, the hydrolysis catalyst is heated while the urea water is heated by the heater 19. 20 is surely hydrolyzed into ammonia and carbon dioxide gas, added to the flow of the exhaust gas 3 in the bypass chamber 16, and introduced into the position where the swirl flow is formed by the swirl flow forming means 13. As a result, the dispersion of ammonia in the communication channel 9 is promoted, and ammonia having high reactivity is distributed uniformly over the entire region of the selective catalytic reduction catalyst 6 on the downstream side, so that NOx is efficiently reduced to nitrogen.

特に本形態例においては、ミキシングパイプ9Bの入側端部の開口端面を閉塞するようにバイパスチャンバ16が形成されており、該バイパスチャンバ16における前記開口端面を閉塞している壁部に穿設した多数の散気孔18を介し前記ミキシングパイプ9B内へアンモニアが導入されるようにしているので、ミキシングパイプ9B内を排気ガス3の主流が流れることでバイパスチャンバ16内のアンモニアが各散気孔18から吸い出されて複数箇所から旋回流に混ざり、アンモニアと排気ガス3との混合性がより一層高められることになる。   In particular, in the present embodiment, the bypass chamber 16 is formed so as to close the opening end surface of the inlet side end portion of the mixing pipe 9B, and the wall portion of the bypass chamber 16 that closes the opening end surface is drilled. Since the ammonia is introduced into the mixing pipe 9B through the large number of diffused holes 18, the main flow of the exhaust gas 3 flows through the mixing pipe 9B, so that the ammonia in the bypass chamber 16 is converted into each diffused hole 18. And mixed with the swirling flow from a plurality of locations, and the mixing property of ammonia and the exhaust gas 3 is further enhanced.

ここで、補足して説明しておくと、アンモニアの比重は、排気ガスの比重の約1/2しかないため、単純に一箇所から排気ガスの流れに導入しても混ざり難いという傾向があるが、ミキシングパイプ9B内を排気ガス3の主流が流れることによる吸引作用を利用し、バイパスチャンバ16内のアンモニアを多数の散気孔18から分散させて排気ガス3の旋回流に導入させるようにすれば、アンモニアと排気ガス3との効果的な混合化が図られるのである。   Here, if it explains supplementarily, since the specific gravity of ammonia is only about 1/2 of the specific gravity of exhaust gas, even if it introduce | transduces into the flow of exhaust gas from one place, it tends to be hard to mix. However, by utilizing the suction action caused by the main flow of the exhaust gas 3 flowing in the mixing pipe 9B, the ammonia in the bypass chamber 16 is dispersed from the large number of air diffusion holes 18 and introduced into the swirling flow of the exhaust gas 3. For example, the ammonia and the exhaust gas 3 can be effectively mixed.

他方、負荷や回転数が徐々に増加して排気温度が高くなってきたら、サブ添加手段21からメイン添加手段24に切り替えて連絡流路9の上流側で排気ガス3の主流に対し尿素水を添加すれば良く、このようにすれば、尿素水が高温条件下で効率良くアンモニアと炭酸ガスに分解され、反応性の高いアンモニアにより下流側の選択還元型触媒6にてNOxが効率良く窒素に還元処理される。   On the other hand, when the load and the rotational speed gradually increase and the exhaust temperature becomes higher, the sub addition means 21 is switched to the main addition means 24 and urea water is supplied to the main flow of the exhaust gas 3 on the upstream side of the communication passage 9. In this way, the urea water is efficiently decomposed into ammonia and carbon dioxide under high temperature conditions, and NOx is efficiently converted into nitrogen in the selective catalytic reduction catalyst 6 on the downstream side by the highly reactive ammonia. Reduced.

即ち、負荷や回転数が徐々に増加して排気流量が増加してくると、NOx濃度も高まって尿素水の添加量が多く必要となるが、サブ添加手段21をそのまま用いて対応しようとすると、構造上の制約からコンパクトなものとなっている加水分解触媒20に対し尿素水が多量に添加されて該加水分解触媒20がびしょ濡れの状態となり、このびしょ濡れの状態の加水分解触媒20が排気ガス3の流れに晒されて多量の潜熱を奪われることにより温度低下し、加水分解触媒20における尿素水の加水分解が停滞して選択還元型触媒6へのアンモニアの供給が遅れ、NOx濃度の変化に尿素水の添加量をいくら追従させても実際の選択還元型触媒6における還元反応が良好に追従しないという不具合が起こり得るため、負荷や回転数が徐々に増加して排気温度が上昇してきたならば、メイン添加手段24に切り替えて尿素水を添加した方が良いのである。   That is, when the load and the rotational speed are gradually increased and the exhaust gas flow rate is increased, the NOx concentration is also increased, and a large amount of urea water is required. Further, a large amount of urea water is added to the hydrolysis catalyst 20 which is compact due to structural limitations, so that the hydrolysis catalyst 20 becomes soaked, and the soaked hydrolysis catalyst 20 becomes the exhaust gas. The temperature decreases due to exposure to the flow of No. 3 and a large amount of latent heat is taken away, the hydrolysis of urea water in the hydrolysis catalyst 20 stagnate, the supply of ammonia to the selective catalytic reduction catalyst 6 is delayed, and the NOx concentration changes However, no matter how much the amount of urea water added, the reduction reaction in the actual selective catalytic reduction catalyst 6 may not follow well, so the load and the rotational speed gradually increase. If the air temperature has been rising, it's better with the addition of urea water is switched to the main addition means 24.

従って、上記形態例によれば、排気温度の低い運転状態であっても、サブ添加手段21を選択して尿素水の添加を行うことにより、該尿素水をヒータ19により昇温しながら加水分解触媒20にて強制的にアンモニアと炭酸ガスに加水分解することができ、しかも、旋回流形成手段13により形成した旋回流でアンモニアの分散を促進して該アンモニアと排気ガス3との混合性を効果的に促進することができるので、選択還元型触媒6の全領域に対し満遍なく反応性の高いアンモニアを行き渡らせてNOxを効率良く窒素に還元処理することができ、排気温度の低い運転状態におけるNOx低減効果を従来よりも著しく向上することができる。   Therefore, according to the above embodiment, even in an operation state where the exhaust gas temperature is low, the urea water is hydrolyzed while being heated by the heater 19 by selecting the sub addition means 21 and adding the urea water. The catalyst 20 can be forcibly hydrolyzed into ammonia and carbon dioxide gas, and the dispersion of ammonia is promoted by the swirling flow formed by the swirling flow forming means 13 to improve the mixing property between the ammonia and the exhaust gas 3. Since it can be effectively promoted, NOx can be efficiently reduced to nitrogen by uniformly distributing highly reactive ammonia over the entire region of the selective catalytic reduction catalyst 6 in an operating state where the exhaust temperature is low. The NOx reduction effect can be remarkably improved as compared with the prior art.

また、ガス集合室9Aからの排気ガス3をミキシングパイプ9Bの入側端部の周囲を一方向に旋回するように導き、その排気ガス3をミキシングパイプ9Bの周方向複数箇所に形成した開口部14に対し接線方向から導入するようにしているので、排気ガス3の旋回流を無理なく形成することができ、ミキシングパイプ9Bの途中に旋回翼等を固定設置して排気ガス3の旋回流を形成した場合の如き大幅な圧力損失の増加を回避することができる。   Further, the exhaust gas 3 from the gas collecting chamber 9A is guided to swivel around the entrance end of the mixing pipe 9B in one direction, and the exhaust gas 3 is formed at a plurality of locations in the circumferential direction of the mixing pipe 9B. 14, the swirl flow of the exhaust gas 3 can be formed without difficulty, and swirl vanes or the like are fixedly installed in the middle of the mixing pipe 9B so that the swirl flow of the exhaust gas 3 is generated. A significant increase in pressure loss as in the case of formation can be avoided.

更に、本形態例おいては、ミキシングパイプ9B内の排気ガス3の流れを利用してバイパスチャンバ16内のアンモニアを各散気孔18から吸い出し、ミキシングパイプ9B内に形成された排気ガス3の旋回流に対し複数箇所からアンモニアを導入するようにしているので、該アンモニアと排気ガス3との混合性を大幅に向上することもできる。   Further, in the present embodiment, the ammonia in the bypass chamber 16 is sucked out from the air diffuser holes 18 by using the flow of the exhaust gas 3 in the mixing pipe 9B, and the swirl of the exhaust gas 3 formed in the mixing pipe 9B. Since ammonia is introduced from a plurality of locations in the flow, the mixing property between the ammonia and the exhaust gas 3 can be greatly improved.

また、ここに例示している通り、パティキュレートフィルタ5と選択還元型触媒6とを夫々の入側端部同士が同じ方向を向くように並列に配置し、パティキュレートフィルタ5の出側端部から排出された排気ガス3をS字構造の連絡流路9により逆向きに折り返して隣の選択還元型触媒6の入側端部に導入するようにした構成によれば、排気温度の高い運転状態でメイン添加手段24により添加した尿素水をアンモニアに分解させるのに十分な反応時間を確保しながらもパティキュレートフィルタ5及び選択還元型触媒6のコンパクトな配置を実現することができ、従来よりも車両への搭載性を大幅に向上することができる。   Further, as illustrated here, the particulate filter 5 and the selective catalytic reduction catalyst 6 are arranged in parallel so that the respective incoming side ends face the same direction, and the outgoing side end of the particulate filter 5 is arranged. According to the configuration in which the exhaust gas 3 discharged from the exhaust gas 3 is folded in the reverse direction by the S-shaped connecting flow path 9 and introduced into the inlet side end portion of the adjacent selective catalytic reduction catalyst 6, the operation at a high exhaust temperature is performed. In this state, it is possible to realize a compact arrangement of the particulate filter 5 and the selective catalytic reduction catalyst 6 while securing a reaction time sufficient to decompose the urea water added by the main addition means 24 into ammonia. However, it is possible to greatly improve the mountability to the vehicle.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、添加後に分解してアンモニアを生成する還元剤としては、例えば、尿素水以外にも蟻酸等の物質を適宜に採用し得ること、また、図示ではパティキュレートフィルタと選択還元型触媒とを並列に配置した場合を例示しているが、パティキュレートフィルタと選択還元型触媒とを直列に配置した場合や、クランク状に配置した場合等でも同様に適用し得ること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiments. As a reducing agent that decomposes after addition to generate ammonia, for example, a substance such as formic acid is appropriately used in addition to urea water. In the figure, the particulate filter and the selective catalytic reduction catalyst are illustrated as being arranged in parallel, but the particulate filter and the selective catalytic reduction catalyst are arranged in series, Needless to say, the present invention can be applied in the same manner even when arranged in a shape, and various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す斜視図である。It is a perspective view which shows an example of the form which implements this invention. 図1の旋回流形成手段の正面断面図である。It is front sectional drawing of the swirl | vortex flow formation means of FIG. 図1のバイパスチャンバの正面断面図である。It is front sectional drawing of the bypass chamber of FIG. 図1の旋回流形成手段及びバイパスチャンバの側面断面図である。It is side surface sectional drawing of the swirl | vortex flow formation means and bypass chamber of FIG. 従来例を示す概略図である。It is the schematic which shows a prior art example. 図5の要部を拡大して示す斜視図である。It is a perspective view which expands and shows the principal part of FIG.

符号の説明Explanation of symbols

3 排気ガス
4 排気管
5 パティキュレートフィルタ
6 選択還元型触媒
9 連絡流路
9A ガス集合室
9B ミキシングパイプ
9C ガス分散室
13 旋回流形成手段
14 開口部
16 バイパスチャンバ
17 排気導入管
18 散気孔
19 ヒータ
20 加水分解触媒
21 サブ添加手段
22 筒体
23 噴射ノズル
24 メイン添加手段
DESCRIPTION OF SYMBOLS 3 Exhaust gas 4 Exhaust pipe 5 Particulate filter 6 Selective reduction type catalyst 9 Connection flow path 9A Gas collection chamber 9B Mixing pipe 9C Gas dispersion chamber 13 Swirling flow formation means 14 Opening part 16 Bypass chamber 17 Exhaust introduction pipe 18 Aeration hole 19 Heater 20 Hydrolysis catalyst 21 Sub addition means 22 Cylinder 23 Injection nozzle 24 Main addition means

Claims (3)

パティキュレートフィルタと、その下流側に備えられて酸素共存下でも選択的にNOxをアンモニアと反応せしめる選択還元型触媒と、パティキュレートフィルタの出側から出た排気ガスを選択還元型触媒の入側に導く連絡流路とを備え、該連絡流路の途中に添加後に分解してアンモニアを生成する還元剤を添加し得るように構成した排気浄化装置であって、
前記連絡流路内に排気ガスの旋回流を形成する旋回流形成手段と、該旋回流形成手段による旋回流の形成位置より上流側の相対的に圧力が高い箇所から排気ガスの一部を抜き出して前記旋回流の形成位置に導くバイパスチャンバと、該バイパスチャンバ内を流れる排気ガスに対し前記還元剤をヒータ及び加水分解触媒により強制的に加水分解してアンモニアとして添加するサブ添加手段と、前記連絡流路の上流側で排気ガスの主流に対し前記還元剤を添加するメイン添加手段とを備え
パティキュレートフィルタの出側端部を包囲して排気ガスを集合せしめるガス集合室と、該ガス集合室で集められた排気ガスを選択還元型触媒の入側端部へ導くミキシングパイプとにより連絡流路の上流部分を構成し、ガス集合室からの排気ガスが前記ミキシングパイプの入側端部の周囲を一方向に旋回し且つ該ミキシングパイプの周方向複数箇所に形成した開口部に対し接線方向から導入されるように構成して旋回流形成手段とし、
ミキシングパイプの入側端部の開口端面を閉塞するようにバイパスチャンバを形成すると共に、該バイパスチャンバにおける前記開口端面を閉塞している壁部に多数の散気孔を穿設し、該各散気孔を介し前記ミキシングパイプ内へアンモニアを導入し得るように構成したことを特徴とする排気浄化装置。
A particulate filter, a selective reduction catalyst that is provided downstream of the particulate filter and selectively reacts with ammonia even in the presence of oxygen, and an exhaust gas emitted from the outlet side of the particulate filter is introduced into the selective reduction catalyst. An exhaust purification device configured to be able to add a reducing agent that decomposes after addition and generates ammonia in the middle of the communication channel,
A swirl flow forming means for forming a swirl flow of exhaust gas in the communication flow path, and a part of the exhaust gas is extracted from a location where the pressure is relatively higher upstream than the swirl flow forming position by the swirl flow forming means. A bypass chamber for guiding the swirl flow to the formation position, sub-adding means for forcibly hydrolyzing the reducing agent with respect to the exhaust gas flowing in the bypass chamber by a heater and a hydrolysis catalyst, and adding the ammonia as ammonia, A main addition means for adding the reducing agent to the main stream of exhaust gas upstream of the communication channel ;
A gas collecting chamber that surrounds the outlet end of the particulate filter and collects exhaust gas, and a mixing pipe that guides the exhaust gas collected in the gas collecting chamber to the inlet end of the selective catalytic reduction catalyst. The exhaust gas from the gas collecting chamber forms an upstream portion of the passage, swirls around the inlet end of the mixing pipe in one direction, and is tangential to the openings formed in a plurality of circumferential directions of the mixing pipe The swirl flow forming means is configured to be introduced from
The bypass chamber is formed so as to close the opening end face of the inlet side end of the mixing pipe, and a large number of air holes are formed in the wall portion closing the opening end face of the bypass chamber. An exhaust emission control device configured to be able to introduce ammonia into the mixing pipe via a pipe .
バイパスチャンバの外周部から内側へ延在する筒体と、該筒体の内部に還元剤を噴射し得るよう前記バイパスチャンバの外周部に装着された噴射ノズルと、前記筒体の内周部に装備されたヒータと、前記筒体の内部の先端側に収容されて還元剤をアンモニアに加水分解する加水分解触媒と、旋回流形成手段による旋回流の形成位置より上流側の相対的に圧力が高い箇所から抜き出した排気ガスの一部を筒体の基端側に導き入れる排気導入管とによりサブ添加手段を構成したことを特徴とする請求項1に記載の排気浄化装置。   A cylinder extending inward from the outer periphery of the bypass chamber, an injection nozzle mounted on the outer periphery of the bypass chamber so as to inject a reducing agent into the cylinder, and an inner periphery of the cylinder The heater, the hydrolysis catalyst housed in the front end side of the cylindrical body and hydrolyzing the reducing agent into ammonia, and the relative pressure upstream from the swirl flow forming position by the swirl flow forming means 2. The exhaust emission control device according to claim 1, wherein the sub addition means is constituted by an exhaust introduction pipe for introducing a part of the exhaust gas extracted from a high place to the base end side of the cylindrical body. パティキュレートフィルタと選択還元型触媒とを夫々の入側端部同士が同じ方向を向くように並列に配置し、パティキュレートフィルタの出側端部から排出された排気ガスを逆向きに折り返して隣の選択還元型触媒の入側端部に導入するS字構造の連絡流路を設けたことを特徴とする請求項1又は2に記載の排気浄化装置。 The particulate filter and the selective catalytic reduction catalyst are arranged in parallel so that the respective inlet ends face in the same direction, and the exhaust gas exhausted from the outlet end of the particulate filter is folded back in the opposite direction. The exhaust gas purification apparatus according to claim 1 or 2 , further comprising an S-shaped connecting flow path that is introduced into an inlet side end of the selective catalytic reduction catalyst .
JP2007184576A 2007-07-13 2007-07-13 Exhaust purification device Expired - Fee Related JP5066400B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007184576A JP5066400B2 (en) 2007-07-13 2007-07-13 Exhaust purification device
PCT/JP2008/000578 WO2009011080A1 (en) 2007-07-13 2008-03-13 Exhaust purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184576A JP5066400B2 (en) 2007-07-13 2007-07-13 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2009019610A JP2009019610A (en) 2009-01-29
JP5066400B2 true JP5066400B2 (en) 2012-11-07

Family

ID=40259428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184576A Expired - Fee Related JP5066400B2 (en) 2007-07-13 2007-07-13 Exhaust purification device

Country Status (2)

Country Link
JP (1) JP5066400B2 (en)
WO (1) WO2009011080A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1511757B1 (en) * 2002-06-07 2015-11-04 Universitair Medisch Centrum Utrecht New compounds for modulating the activity of exchange proteins directly activated by camp (epacs)
EP2496336B1 (en) * 2009-11-05 2017-09-27 Johnson Matthey Inc. A system and method to gasify aqueous urea into ammonia vapors using secondary flue gases
DE102009053949A1 (en) * 2009-11-19 2011-05-26 Man Nutzfahrzeuge Ag Device for the aftertreatment of exhaust gases of an internal combustion engine
FR2972764B1 (en) * 2011-03-16 2013-03-29 Peugeot Citroen Automobiles Sa COMPRESSOR ASSEMBLY EXHAUST GAS POST-TREATMENT BODY WITH SCR REDUCER MIXER
JP5349574B2 (en) * 2011-12-27 2013-11-20 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device
US8916100B2 (en) 2011-12-27 2014-12-23 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
JP5349576B2 (en) * 2011-12-27 2013-11-20 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device
US8932530B2 (en) 2011-12-27 2015-01-13 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
JP5349575B2 (en) 2011-12-27 2013-11-20 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device
US8991160B2 (en) 2013-01-17 2015-03-31 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
KR20140102122A (en) 2013-01-17 2014-08-21 가부시키가이샤 고마쓰 세이사쿠쇼 Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
CN104066941B (en) 2013-01-17 2016-01-20 株式会社小松制作所 Reducing agent aqueous solution device and possess its exhaust gas post-treatment device
WO2014112067A1 (en) 2013-01-17 2014-07-24 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device provided with same
CN103775741A (en) * 2014-02-24 2014-05-07 国家电网公司 Pipeline gatherer
EP3372798B1 (en) * 2017-03-08 2020-03-04 Perkins Engines Company Limited A compact selective catalytic reduction system
DE102018210622A1 (en) * 2018-06-28 2020-01-02 Dr Pley Engineering & Consulting (Bucharest) Srl REACTOR FOR THERMOHYDROLYSIS OF UREA
KR102590833B1 (en) * 2021-03-26 2023-10-17 가부시키가이샤 프로테리아루 Silicon carbide ceramic honeycomb structure and manufacturing method thereof
KR102441028B1 (en) * 2021-09-23 2022-09-07 (주)세라컴 System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108221A (en) * 2002-09-18 2004-04-08 Kubota Corp Gas engine
JP4262522B2 (en) * 2003-05-28 2009-05-13 株式会社日立ハイテクノロジーズ Exhaust gas treatment device for engine and exhaust gas treatment method
JP2005155404A (en) * 2003-11-25 2005-06-16 Komatsu Ltd Exhaust emission control device for internal combustion engine
JP2006200497A (en) * 2005-01-24 2006-08-03 Hino Motors Ltd Emission control device
JP2007032472A (en) * 2005-07-28 2007-02-08 Hitachi Ltd Exhaust gas treatment device using urea water
JP2007040149A (en) * 2005-08-02 2007-02-15 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
WO2009011080A1 (en) 2009-01-22
JP2009019610A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP5066400B2 (en) Exhaust purification device
US8347610B2 (en) Exhaust emission control device
JP5329383B2 (en) Exhaust purification device
US9217348B2 (en) Exhaust gas purification device
JP5099684B2 (en) Exhaust purification device
JP6053096B2 (en) Exhaust purification device
JP4823944B2 (en) Exhaust purification device
JP4928409B2 (en) Exhaust purification device
WO2009144766A1 (en) Exhaust emission purifier
WO2005098211A1 (en) Muffler device with exhaust gas purifying function
JP2009156077A (en) Exhaust emission control device for internal combustion engine
KR101981483B1 (en) Exhaust gas cleaning device
JP5057944B2 (en) Exhaust aftertreatment device
JP2011012564A (en) Exhaust gas purification apparatus
JP6746530B2 (en) Reactor
CN110352292A (en) Emission-control equipment
JP5555023B2 (en) Exhaust purification device
JP4214073B2 (en) Urea water addition device
JP2013104396A (en) Urea water mixing structure
JP6285255B2 (en) Exhaust purification device
JP5500959B2 (en) Exhaust purification device
JP2017218916A (en) Mixing structure
CN102061966A (en) Exhaust gas cleaning device
WO2018180457A1 (en) Reactor
JP2019132177A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees