JP5064872B2 - Process for producing N- (2-amino-1,2-dicyanovinyl) imidates - Google Patents

Process for producing N- (2-amino-1,2-dicyanovinyl) imidates Download PDF

Info

Publication number
JP5064872B2
JP5064872B2 JP2007111039A JP2007111039A JP5064872B2 JP 5064872 B2 JP5064872 B2 JP 5064872B2 JP 2007111039 A JP2007111039 A JP 2007111039A JP 2007111039 A JP2007111039 A JP 2007111039A JP 5064872 B2 JP5064872 B2 JP 5064872B2
Authority
JP
Japan
Prior art keywords
group
amino
dicyanovinyl
substituent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007111039A
Other languages
Japanese (ja)
Other versions
JP2008266200A (en
Inventor
満 高瀬
史宜 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007111039A priority Critical patent/JP5064872B2/en
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to CN201210295851.4A priority patent/CN102850238B/en
Priority to PCT/JP2008/057490 priority patent/WO2008133169A1/en
Priority to US12/450,730 priority patent/US8273899B2/en
Priority to CN2008800120665A priority patent/CN101663266B/en
Priority to EP08740560A priority patent/EP2138480B1/en
Priority to KR1020117015448A priority patent/KR101156497B1/en
Priority to AT08740560T priority patent/ATE528283T1/en
Priority to CN2012102958548A priority patent/CN102850277A/en
Priority to KR1020117015447A priority patent/KR101161602B1/en
Priority to KR1020097021314A priority patent/KR101132590B1/en
Publication of JP2008266200A publication Critical patent/JP2008266200A/en
Priority to US13/363,091 priority patent/US8785654B2/en
Priority to US13/363,062 priority patent/US8258333B2/en
Application granted granted Critical
Publication of JP5064872B2 publication Critical patent/JP5064872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、N−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法に関する。さらに詳細には、本発明は、式(III)で例示されるN−(2−アミノ−1,2−ジシアノビニル)イミデート類を、低い温度の反応条件で、短い時間に高収率で得ることができる製造方法に関する。   The present invention relates to a method for producing N- (2-amino-1,2-dicyanovinyl) imidates. More particularly, the present invention provides N- (2-amino-1,2-dicyanovinyl) imidates exemplified by formula (III) in high yield in a short time under low temperature reaction conditions. It is related with the manufacturing method which can be performed.

Figure 0005064872
式(III)中、R1は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基であり、R2は、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。
Figure 0005064872
In formula (III), R 1 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and R 2 may have a substituent. An alkyl group or an aryl group which may have a substituent.

N−(2−アミノ−1,2−ジシアノビニル)イミデート類(以下、RMDと略すことがある。)の一種であるメチルN−(2−アミノ−1,2−ジシアノビニル)ホルムイミデートは、抗がん剤ダカルバジン(dacarbazine)及びテモゾロミド(temozoromide)、肝臓保護薬ウラザミド(urazamide)の前駆体である1H−4(5)−アミノイミダゾール−5(4)−カルボキサミド類(以下、AICAと略すことがある。)や、4(5)−アミノ−1H−イミダゾール−5(4)−カルボニトリル類(以下、AICNと略すことがある。)や、4,5−ジシアノイミダゾール(以下、DCIと略すことがある。)を製造するための有用な中間原料である。   Methyl N- (2-amino-1,2-dicyanovinyl) formimidate, which is a kind of N- (2-amino-1,2-dicyanovinyl) imidate (hereinafter sometimes abbreviated as RMD), is , 1H-4 (5) -aminoimidazole-5 (4) -carboxamides (hereinafter abbreviated as AICA), which are precursors of the anticancer agents dacarbazine and temozoromide, and the hepatoprotective drug urazamide ), 4 (5) -amino-1H-imidazole-5 (4) -carbonitriles (hereinafter sometimes abbreviated as AICN), 4,5-dicyanoimidazole (hereinafter referred to as DCI). This is a useful intermediate raw material for producing.

RMDの合成法として、非特許文献1に、ジアミノマレオニトリル(以下DAMNと略すことがある。)とトリエチルオルトホルメートとを高温度のジオキサン中で反応させて、エチルN−(2−アミノ−1,2−ジシアノビニル)ホルムイミデート(以下EMDと略すことがある。)を合成する方法が記載されている。
B.L.Booth等(J.Chem.Soc.Perkin Trans.I,1990,1705)
As a method for synthesizing RMD, Non-Patent Document 1 discloses that diaminomaleonitrile (hereinafter sometimes abbreviated as DAMN) and triethylorthoformate are reacted in high-temperature dioxane to produce ethyl N- (2-amino- A method of synthesizing 1,2-dicyanovinyl) formimidate (hereinafter sometimes abbreviated as EMD) is described.
BLBooth et al. (J. Chem. Soc. Perkin Trans. I, 1990, 1705)

また、特許文献1に、ジアミノマレオニトリルとトリアルキルオルトホルメートとをC1〜C5アルコール中で加熱還流して反応させることを特徴とするアルキルN−(2−アミノ−1,2−ジシアノビニル)ホルムイミデートの製造方法が開示されている。
特開2001−302609号公報
Patent Document 1 discloses alkyl N- (2-amino-1,2-dicyanovinyl) characterized in that diaminomaleonitrile and trialkyl orthoformate are reacted by heating under reflux in a C1-C5 alcohol. A method for producing formimidate is disclosed.
JP 2001-302609 A

ところで、DAMNは高温条件下において分解したり、重合反応を起こしたりすることが知られている。上記製法においても、これらDAMNの副反応によって不純物が生成する。また、RMDは高温条件下で分解しやすいので、上記製法でRMDが生成しても、一部は分解してしまう。したがって、RMDの合成を低温条件下で短時間に行うことができる方法の開発が望まれている。   By the way, it is known that DAMN decomposes under high temperature conditions or causes a polymerization reaction. Even in the above production method, impurities are generated by these side reactions of DAMN. Moreover, since RMD is easily decomposed under high temperature conditions, even if RMD is produced by the above production method, a part of the RMD is decomposed. Therefore, development of a method that can synthesize RMD in a short time under low temperature conditions is desired.

一方、医薬中間体のAICNやAICAは、反応式(A)に示すように、RMDをアミジン化してN−(2−アミノ−1,2−ジシアノビニル)ホルムアミジン類(以下、AMDと略すことがある。)を得、次いで塩基性水溶液中で環化反応および加水分解反応させることによって得られることが知られている(例えば、特許文献2参照)。この環化反応および加水分解反応の効率を高め、AICNやAICAの収率を高くすることが求められる。この環化反応に供するAMDの原料であるRMDの製法が、環化反応等の効率に影響することがあるので、RMDの製法を環化反応に適合させることは重要である。
WO2004/35529
On the other hand, as shown in Reaction Formula (A), AICN and AICA, which are pharmaceutical intermediates, amidify RMD to form N- (2-amino-1,2-dicyanovinyl) formamidines (hereinafter abbreviated as AMD). And then cyclization and hydrolysis reaction in a basic aqueous solution (see, for example, Patent Document 2). It is required to increase the efficiency of this cyclization reaction and hydrolysis reaction and to increase the yield of AICN and AICA. It is important to adapt the RMD production method to the cyclization reaction because the production method of RMD, which is the raw material of AMD subjected to this cyclization reaction, may affect the efficiency of the cyclization reaction and the like.
WO2004 / 35529

Figure 0005064872
Figure 0005064872

本発明の目的は、N−(2−アミノ−1,2−ジシアノビニル)イミデート類を、低い温度の反応条件で、短時間に、高収率で得ることができる製造方法を提供することにある。   An object of the present invention is to provide a production method capable of obtaining N- (2-amino-1,2-dicyanovinyl) imidates in a short time and in a high yield under low-temperature reaction conditions. is there.

本発明者は、前記目的を達成するために鋭意検討した結果、ジアミノマレオニトリルとオルト蟻酸トリエステル等とを反応させる際に、硫酸などの強酸を存在させることによって、低い温度の反応条件で、短時間に、N−(2−アミノ−1,2−ジシアノビニル)イミデート類を高収率で得られることを見出した。本発明はこの知見に基づいてさらに検討した結果完成したものである。   As a result of diligent studies to achieve the above object, the present inventor, in the reaction of diaminomaleonitrile with orthoformate triester, etc., allows a strong acid such as sulfuric acid to be present under low temperature reaction conditions. It was found that N- (2-amino-1,2-dicyanovinyl) imidates can be obtained in high yield in a short time. The present invention has been completed as a result of further studies based on this finding.

すなわち、本発明は、以下の態様を含む。
(1) 強酸の存在下に、ジアミノマレオニトリルに、
式(II)で表される化合物を反応させる工程を含む、
CR1(OR23 (II)
(式(II)中、R1は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基であり、R2は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
N−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。
That is, the present invention includes the following aspects.
(1) In the presence of a strong acid, diaminomaleonitrile
Comprising reacting a compound represented by formula (II):
CR 1 (OR 2 ) 3 (II)
(In the formula (II), R 1 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and R 2 each independently represents a substituent. It is an alkyl group that may have or an aryl group that may have a substituent.)
A method for producing N- (2-amino-1,2-dicyanovinyl) imidates.

(2) 強酸が、トリフルオロ酢酸、メタンスルホン酸、p−トルエンスルホン酸または濃硫酸である、前記のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。
(3) 式(II)で表される化合物が、オルト蟻酸トリエステルまたはオルト酢酸トリエステルである、前記のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。
(4) 上記反応を非プロトン性有機溶媒中で行う、前記のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。
(5) 非プロトン性有機溶媒がテトラヒドロフランである、前記のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。
(2) The method for producing N- (2-amino-1,2-dicyanovinyl) imidates, wherein the strong acid is trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid or concentrated sulfuric acid.
(3) The method for producing the N- (2-amino-1,2-dicyanovinyl) imidates, wherein the compound represented by the formula (II) is orthoformate triester or orthoacetate triester.
(4) The method for producing the N- (2-amino-1,2-dicyanovinyl) imidates, wherein the reaction is performed in an aprotic organic solvent.
(5) The method for producing the N- (2-amino-1,2-dicyanovinyl) imidates, wherein the aprotic organic solvent is tetrahydrofuran.

本発明の製造方法によって、N−(2−アミノ−1,2−ジシアノビニル)イミデート類(RMD)を、低い温度の反応条件で、短時間に、高収率で得ることができる。また、本発明の方法によって得られたRMDは、アミジン化反応、環化反応および加水分解反応を高効率で行うことができるので、AICNなどの医薬中間体の合成原料として有用である。   By the production method of the present invention, N- (2-amino-1,2-dicyanovinyl) imidates (RMD) can be obtained in a high yield in a short time under low temperature reaction conditions. In addition, RMD obtained by the method of the present invention can be used as a raw material for synthesizing pharmaceutical intermediates such as AICN because it can perform amidation reaction, cyclization reaction and hydrolysis reaction with high efficiency.

ジアミノマレオニトリル(DAMN)は、式(I)で表される化合物を含むものである。このDAMNは、青酸の四量化反応から容易に合成することができ、また工業的に入手可能な化合物である。   Diaminomaleonitrile (DAMN) includes a compound represented by the formula (I). This DAMN is an industrially available compound that can be easily synthesized from the tetramerization reaction of hydrocyanic acid.

Figure 0005064872
Figure 0005064872

式(II)で表される化合物は、オルト蟻酸トリエステル、オルト酢酸トリエステルなどとして知られるオルトカルボン酸トリエステル類である。これらは工業的に入手可能な化合物である。   The compounds represented by the formula (II) are orthocarboxylic acid triesters known as orthoformic acid triester, orthoacetic acid triester and the like. These are industrially available compounds.

式(II)中のR1は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。
置換基を有してもよいアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、n−デシル基、メトキシメチル基、メチルチオメチル基、4−アセトキシ−3−アセトキシメチル−ブチル基、ヒドロキシエチル基、2−ヒドロキシプロピル基、4−ヒドロキシ−3−ヒドロキシメチル−ブチル基、2−ヒドロキシエトキシメチル基、2−ヒドロキシ−1−ヒドロキシメチル−エトキシメチル基、4−ヒドロキシ−2−ヒドロキシメチル−ブチル基、5−(N−メチルカルバモイルオキシ)ブチル基、ヒドロキシカルボニルメチル基、2−クロロエチル基、2−ジメチルアミノエチル基、N−置換−2−アスパラギル基などが挙げられる。
R 1 in formula (II) is a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent.
Examples of the alkyl group that may have a substituent include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, and an n-decyl group. Methoxymethyl group, methylthiomethyl group, 4-acetoxy-3-acetoxymethyl-butyl group, hydroxyethyl group, 2-hydroxypropyl group, 4-hydroxy-3-hydroxymethyl-butyl group, 2-hydroxyethoxymethyl group, 2-hydroxy-1-hydroxymethyl-ethoxymethyl group, 4-hydroxy-2-hydroxymethyl-butyl group, 5- (N-methylcarbamoyloxy) butyl group, hydroxycarbonylmethyl group, 2-chloroethyl group, 2-dimethyl Aminoethyl group, N-substituted-2-asparagyl group and the like can be mentioned.

置換基を有してもよいアリール基としては、フェニル基、4−メチルフェニル基、4−クロロフェニル基、2,3−ジメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジメチルフェニル基、4−メトキシフェニル基、3−フェノキシフェニル基、4−フェニルフェニル基、4−(2−クロロフェニル)フェニル基、4−(3−イソオキサゾリルフェニル)フェニル基、3−ベンジルフェニル基、2−ピリジルメチルフェニル基などが挙げられる。これらのうち、R1は、アミジン化反応の効率を考慮すると水素原子が好ましい。R1がメチル基やフェニル基であるときは環化反応時にジシアノイミダゾール誘導体の生成が優先的になる。 As the aryl group which may have a substituent, a phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 2,3-dimethylphenyl group, 3,5-dimethylphenyl group, 2,6-dimethylphenyl group 4-methoxyphenyl group, 3-phenoxyphenyl group, 4-phenylphenyl group, 4- (2-chlorophenyl) phenyl group, 4- (3-isoxazolylphenyl) phenyl group, 3-benzylphenyl group, 2 -A pyridylmethylphenyl group etc. are mentioned. Of these, R 1 is preferably a hydrogen atom in view of the efficiency of the amidine reaction. When R 1 is a methyl group or a phenyl group, formation of a dicyanoimidazole derivative is preferential during the cyclization reaction.

式(II)中のR2は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。R2における、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基の具体例としては、上記R1で例示したものと同様のものが挙げられる。式(II)中のR2は、すべて同じものであってもよいし、異なっていてもよい。本発明の製法によると、式(II)中のR2に由来するアルコール(R2OH)が副生する。副生するアルコールを効率的に除去回収しやすいという観点から、R2としては、C1〜C5のアルキル基が好ましく、メチル基又はエチル基が最も好ましい。 R 2 in the formula (II) is each independently an alkyl group which may have a substituent or an aryl group which may have a substituent. Specific examples of the alkyl group which may have a substituent or the aryl group which may have a substituent in R 2 include the same as those exemplified for R 1 above. R 2 in formula (II) may all be the same or different. According to the production method of the present invention, alcohol (R 2 OH) derived from R 2 in formula (II) is by-produced. R 2 is preferably a C1-C5 alkyl group, and most preferably a methyl group or an ethyl group, from the viewpoint that it is easy to efficiently remove and recover by-produced alcohol.

式(II)で表される化合物は、DAMNに対して、通常1〜2当量、好ましくは1.05〜1.3当量を使用して反応させる。この範囲の使用量にすると副反応が少なくなり、製造コストを低減できる。   The compound represented by the formula (II) is reacted with 1 to 2 equivalents, preferably 1.05 to 1.3 equivalents, with respect to DAMN. When the amount used is within this range, side reactions are reduced and the production cost can be reduced.

本発明の製造方法に用いられる強酸は、水溶液中でほとんど完全に電離する酸である。具体的には硫酸、臭化水素酸、沃化水素酸、硝酸、塩酸、過塩素酸;メタンスルホン酸、p−トルエンスルホン酸、トリフルオロ酢酸、トルフルオロメタンスルホン酸などが挙げられる。炭酸、酢酸、硼酸、硫化水素などの弱酸は、本発明の製造方法には適さない。強酸の使用量は、DAMNに対して0.2〜0.5モル%が好ましい。強酸の量が多くなりすぎると、副生成物の量が増加傾向になる。   The strong acid used in the production method of the present invention is an acid that is almost completely ionized in an aqueous solution. Specific examples include sulfuric acid, hydrobromic acid, hydroiodic acid, nitric acid, hydrochloric acid, perchloric acid; methanesulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and the like. Weak acids such as carbonic acid, acetic acid, boric acid and hydrogen sulfide are not suitable for the production method of the present invention. The amount of strong acid used is preferably 0.2 to 0.5 mol% with respect to DAMN. If the amount of strong acid is too large, the amount of by-products tends to increase.

本発明の製造方法では、溶媒を適宜用いることができる。溶媒の量はDAMN1モルに対して、通常0〜1L、好ましくは0.1〜0.3Lである。溶媒としては、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノールなどのアルコール;その他の有機溶媒などが挙げられる。これらのうち、得られたRMD液を用いたアミジン化反応、環化反応及び加水分解反応の効率が高くなるという観点から、非プロトン性有機溶媒が好ましく、エーテル類がより好ましく、テトラヒドロフランが特に好ましい。   In the production method of the present invention, a solvent can be appropriately used. The amount of the solvent is usually 0 to 1 L, preferably 0.1 to 0.3 L, with respect to 1 mol of DAMN. Examples of the solvent include ethers such as tetrahydrofuran, dioxane, diethyl ether, and diethylene glycol dimethyl ether; alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and t-butanol; and other organic solvents. Of these, aprotic organic solvents are preferred, ethers are more preferred, and tetrahydrofuran is particularly preferred from the viewpoint of increasing the efficiency of the amidation reaction, cyclization reaction, and hydrolysis reaction using the obtained RMD liquid. .

本発明の製造方法では、DAMNと式(II)で表される化合物との反応において強酸が存在すればよく、合成原料の添加順序、添加速度など特に制限されない。本発明の製造方法では、通常、先ず反応器に溶媒を仕込み、それに所定量のDAMNおよび式(II)で表される化合物を一緒にまたは別々に添加し、次いで強酸を添加する。強酸添加後、所定の温度に維持し、反応させる。   In the production method of the present invention, it is sufficient that a strong acid is present in the reaction between DAMN and the compound represented by the formula (II), and there are no particular restrictions on the order of addition and the rate of addition of synthetic raw materials. In the production method of the present invention, usually, a solvent is first charged in a reactor, and a predetermined amount of DAMN and a compound represented by the formula (II) are added together or separately, and then a strong acid is added. After adding the strong acid, the reaction is maintained at a predetermined temperature.

反応温度は特に制限されないが、低温すぎると反応が遅く製造に長時間を要するようになり、高温すぎると4,5−ジシアノイミダゾールなどの副生成物が増加し、純度が低下傾向になる。したがって、反応温度は、通常、室温(20℃前後)から溶媒還流温度までの温度であり、好ましくは30〜50℃である。また、反応時間は1時間以内であることが好ましい。反応時間が長くなりすぎると副生成物が増加し、純度が低下傾向になる。   The reaction temperature is not particularly limited, but if the temperature is too low, the reaction is slow and requires a long time for production. If the temperature is too high, byproducts such as 4,5-dicyanoimidazole increase and the purity tends to decrease. Therefore, the reaction temperature is usually a temperature from room temperature (around 20 ° C.) to the solvent reflux temperature, and preferably 30 to 50 ° C. The reaction time is preferably within 1 hour. If the reaction time is too long, by-products increase and the purity tends to decrease.

反応終了後、RMDを単離することができる。RMDの単離は、通常、濾過によって行なう。溶媒に溶解しているRMDを減らし収率を向上させるために0℃から室温までの間の温度に冷却してRMDを十分に析出させておく事が好ましい。このような方法により高純度のRMDが得られるが、更に純度を上げる必要がある場合には再結晶により精製することができる。   After the reaction is complete, RMD can be isolated. Isolation of RMD is usually performed by filtration. In order to reduce the RMD dissolved in the solvent and improve the yield, it is preferable that the RMD is sufficiently precipitated by cooling to a temperature between 0 ° C. and room temperature. High purity RMD can be obtained by such a method, but if it is necessary to further increase the purity, it can be purified by recrystallization.

RMDは高温下で分解しやすいので、単離せずに、本発明の製造方法によって得られたRMD液をそのまま、次の工程(例えば、アミジン化工程)に送り、利用することが好ましい。   Since RMD is easily decomposed at high temperature, it is preferable to use the RMD liquid obtained by the production method of the present invention as it is without being isolated, and to be used for the next step (for example, amidine formation step).

次に、本発明を、実施例および比較例を示して、より詳細に説明する。本発明はこれら実施例に限定されるものではない。   Next, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited to these examples.

実施例1
容量500mLの四つ口フラスコに、メタノール 216mLを仕込み、DAMN 108.1g(純度98.7%、0.987mol)、およびオルトギ酸トリメチル 116.73g(1.100mol)を加えた。この混合物にp−トルエンスルホン酸一水和物 190mgを加え、65℃に維持して攪拌した。攪拌開始から45分経過時にMMDの結晶が析出し、反応の完結が示唆された。
1.5時間攪拌させた後、5℃まで冷却し、結晶をろ別し、冷メタノール100mLを用いて洗浄し、次いで乾燥して、118.56g(0.852mol、収率80%)のメチルN−(2−アミノ−1,2−ジシアノビニル)ホルムイミデート(MMD)を得た。
Example 1
A 500 mL four-necked flask was charged with 216 mL of methanol, and 108.1 g of DAMN (purity 98.7%, 0.987 mol) and 116.73 g (1.100 mol) of trimethyl orthoformate were added. 190 mg of p-toluenesulfonic acid monohydrate was added to this mixture, and the mixture was maintained at 65 ° C. and stirred. After 45 minutes from the start of stirring, MMD crystals were precipitated, suggesting the completion of the reaction.
After stirring for 1.5 hours, it was cooled to 5 ° C., the crystals were filtered off, washed with 100 mL of cold methanol and then dried to give 118.56 g (0.852 mol, 80% yield) of methyl. N- (2-amino-1,2-dicyanovinyl) formimidate (MMD) was obtained.

Figure 0005064872
Meはメチル基を、TsOHはp−トルエンスルホン酸を表す。
Figure 0005064872
Me represents a methyl group, and TsOH represents p-toluenesulfonic acid.

MMDのNMRスペクトル:
1H NMR (400 MHz, CDCl3): δ 3.87(s, 3H), 4.64(brs, 2H), 8.02(s, 1H).
13C NMR (100 MHz, CDCl3): δ 54.76(q), 103.60(s), 112.85(s), 113.51(s), 121.24(s), 158.10(s).
NMR spectrum of MMD:
1 H NMR (400 MHz, CDCl 3 ): δ 3.87 (s, 3H), 4.64 (brs, 2H), 8.02 (s, 1H).
13 C NMR (100 MHz, CDCl 3 ): δ 54.76 (q), 103.60 (s), 112.85 (s), 113.51 (s), 121.24 (s), 158.10 (S).

実施例2
容量100mLの四つ口フラスコに、メタノール 20mLを仕込み、DAMN 10.95g(純度98.7%、0.100mol)、およびオルトギ酸トリメチル 12.73g(0.120mol)を加えた。この混合物にトリフルオロ酢酸 約20mgを加え、40℃に維持し攪拌した。攪拌開始から5分経過時にMMDの結晶が析出し、反応の完結が示唆された。
反応生成物は、逆相HPLC分析において、標準MMDと同様のピークパターンを示した。
1時間攪拌させた後、メタノール 20mLを加え、5℃以下に冷却し結晶を析出させた。該結晶をろ別し、冷メタノール20mLを用いて洗浄し、次いで乾燥して 10.21g(0.0680mol、収率68%)のMMDを得た。
Example 2
A 100 mL four-necked flask was charged with 20 mL of methanol, and 10.95 g of DAMN (purity 98.7%, 0.100 mol) and 12.73 g (0.120 mol) of trimethyl orthoformate were added. About 20 mg of trifluoroacetic acid was added to this mixture, and the mixture was maintained at 40 ° C. and stirred. MMD crystals were precipitated after 5 minutes from the start of stirring, suggesting the completion of the reaction.
The reaction product showed a peak pattern similar to standard MMD in reverse phase HPLC analysis.
After stirring for 1 hour, 20 mL of methanol was added and cooled to 5 ° C. or lower to precipitate crystals. The crystals were filtered off, washed with 20 mL of cold methanol and then dried to give 10.21 g (0.0680 mol, 68% yield) of MMD.

Figure 0005064872
Figure 0005064872

実施例3
容量100mLの四つ口フラスコに、テトラヒドロフラン(THF) 20mLを加え、DAMN 10.95g(純度98.7%、0.100mol)、およびオルトギ酸トリメチル 12.73g(0.120mol)を加えた。この混合物にメタンスルホン酸 約20mgを加え、40℃に維持して攪拌した。攪拌開始から10分経過時にMMDの結晶が析出し、反応の完結が示唆された。
反応生成物は、逆相HPLC分析において、標準MMDと同様のピークパターンを示した。
Example 3
To a four-necked flask with a capacity of 100 mL, 20 mL of tetrahydrofuran (THF) was added, and 10.95 g of DAMN (purity 98.7%, 0.100 mol) and 12.73 g (0.120 mol) of trimethyl orthoformate were added. About 20 mg of methanesulfonic acid was added to this mixture, and the mixture was stirred at 40 ° C. After 10 minutes from the start of stirring, MMD crystals were precipitated, suggesting the completion of the reaction.
The reaction product showed a peak pattern similar to standard MMD in reverse phase HPLC analysis.

Figure 0005064872
Figure 0005064872

実施例4
容量100mLの四つ口フラスコに、THF 20mLを加え、DAMN 10.81g(純度98.7%、0.987mol)、およびオルトギ酸トリメチル 16.52g(0.156mol)を加えた。この混合物に濃硫酸 約20mgを加え、50℃に維持し攪拌した。攪拌開始から30分経過時に逆相HPLC分析を行ったところ、標準MMDと同様のピークパターンを示した。
Example 4
To a 100 mL four-necked flask, 20 mL of THF was added, and 10.81 g of DAMN (purity 98.7%, 0.987 mol) and 16.52 g (0.156 mol) of trimethyl orthoformate were added. About 20 mg of concentrated sulfuric acid was added to this mixture, and the mixture was maintained at 50 ° C. and stirred. When reverse phase HPLC analysis was performed 30 minutes after the start of stirring, a peak pattern similar to that of standard MMD was shown.

Figure 0005064872
Figure 0005064872

実施例5
容量100mLの四つ口フラスコに、メタノール 20mLを加え、DAMN 10.95g(純度98.7%、0.100mol)、およびオルト酢酸トリメチル 14.42g(0.120mol)を加えた。この混合物にメタンスルホン酸 約20mgを加え、40℃に維持して攪拌した。メタンスルホン酸の添加後、徐々にメチルN−(2−アミノ−1,2−ジシアノビニル)アセトイミデート(Me−MMD)の結晶が析出し、攪拌開始から30分経過時に逆相HPLC分析を行ったところ、DAMNのピーク面積は0.1%であった。
1時間攪拌した後、メタノール 10mLを加え、5℃まで冷却し、結晶をろ別し、次いで乾燥して 11.64g(0.071mol、収率71%)のMe−MMDを得た。
Example 5
To a 100 mL four-necked flask, 20 mL of methanol was added, and 10.95 g of DAMN (purity 98.7%, 0.100 mol) and 14.42 g (0.120 mol) of trimethyl orthoacetate were added. About 20 mg of methanesulfonic acid was added to this mixture, and the mixture was stirred at 40 ° C. After the addition of methanesulfonic acid, crystals of methyl N- (2-amino-1,2-dicyanovinyl) acetimidate (Me-MMD) gradually precipitated, and reverse phase HPLC analysis was performed after 30 minutes from the start of stirring. As a result, the peak area of DAMN was 0.1%.
After stirring for 1 hour, 10 mL of methanol was added, the mixture was cooled to 5 ° C., the crystals were filtered off, and then dried to obtain 11.64 g (0.071 mol, yield 71%) of Me-MMD.

Figure 0005064872
Figure 0005064872

Me−MMDのNMRスペクトル:
1H NMR (400 MHz, DMSO−d6): δ 2.03(s, 3H), 3.73(s, 3H), 6.66(brs, 2H).
13C NMR (100 MHz, DMSO−d6): δ 17.25(q), 53.95(q), 99.24(s), 114.79(s), 116.63(s), 120.93(s), 165.81(s).
NMR spectrum of Me-MMD:
1 H NMR (400 MHz, DMSO-d 6 ): δ 2.03 (s, 3H), 3.73 (s, 3H), 6.66 (brs, 2H).
13 C NMR (100 MHz, DMSO-d 6 ): δ 17.25 (q), 53.95 (q), 99.24 (s), 114.79 (s), 116.63 (s), 120 .93 (s), 165.81 (s).

比較例1
容量100mLの四つ口フラスコに、THF 15mLを加え、DAMN 10.81g(純度98.7%、0.0987mol)、およびオルトギ酸トリメチル 16.52g(0.155mol)を加えた。65℃に維持し2.5時間攪拌したが、逆相HPLC分析ではMMDの生成を確認できなかった。
Comparative Example 1
To a four-necked flask with a capacity of 100 mL, 15 mL of THF was added, and 10.81 g of DAMN (purity 98.7%, 0.0987 mol) and 16.52 g (0.155 mol) of trimethyl orthoformate were added. Although it maintained at 65 degreeC and stirred for 2.5 hours, the production | generation of MMD was not able to be confirmed in reverse phase HPLC analysis.

Figure 0005064872
Figure 0005064872

比較例2
容量100mLの四つ口フラスコに、THF 20mLを加え、DAMN 10.81g(純度98.7%、0.0987mol)、およびオルトギ酸トリメチル 11.67g(0.110mol)を加えた。この混合物に酢酸 約20mgを加え、50℃で30分間攪拌したが、逆相HPLC分析ではMMDの生成を確認できなかった。
Comparative Example 2
To a 100 mL four-necked flask, 20 mL of THF was added, and 10.81 g of DAMN (purity 98.7%, 0.0987 mol) and 11.67 g (0.110 mol) of trimethyl orthoformate were added. About 20 mg of acetic acid was added to this mixture, and the mixture was stirred at 50 ° C. for 30 minutes. However, reverse phase HPLC analysis failed to confirm the formation of MMD.

Figure 0005064872
Figure 0005064872

以上の結果から、トリフルオロ酢酸、p−トルエンスルホン酸、メタンスルホン酸、硫酸などの強酸の存在下に、ジアミノマレオニトリルと、オルト蟻酸トリメチルやオルト酢酸トリメチルとをテトラヒドロフラン中で反応させると、低温度で短時間(1時間以内)に、メチルN−(2−アミノ−1,2−ジシアノビニル)ホルムイミデートやメチルN−(2−アミノ−1,2−ジシアノビニル)アセトイミデートが高収率で得られることがわかる。
一方、比較例1のごとく酸を全く用いずに、または比較例2のごとく酢酸などの弱酸の存在下に、ジアミノマレオニトリルと、オルト蟻酸トリメチルとを、テトラヒドロフラン中で反応させても、メチルN−(2−アミノ−1,2−ジシアノビニル)ホルムイミデートが得られないことがわかる。
From the above results, when diaminomaleonitrile is reacted with trimethyl orthoformate or trimethyl orthoacetate in tetrahydrofuran in the presence of a strong acid such as trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid or sulfuric acid, Methyl N- (2-amino-1,2-dicyanovinyl) formimidate and methyl N- (2-amino-1,2-dicyanovinyl) acetimidate are high in a short time (within 1 hour) at temperature. It turns out that it is obtained with a yield.
On the other hand, even if diaminomaleonitrile and trimethyl orthoformate are reacted in tetrahydrofuran without using any acid as in Comparative Example 1 or in the presence of a weak acid such as acetic acid as in Comparative Example 2, methyl N It can be seen that-(2-amino-1,2-dicyanovinyl) formimidate cannot be obtained.

Claims (5)

強酸の存在下、エーテル類中にて、ジアミノマレオニトリルに、
式(II)で表される化合物を反応させる工程を含む、
式(III)で表されるN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。

CR1(OR23 (II)
(式(II)中、R1は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基であり、R2は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)

Figure 0005064872
(式(III)中、R 1 は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基であり、R 2 は、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
Diethermaleonitrile in ethers in the presence of strong acid,
Comprising reacting a compound represented by formula (II):
A method for producing N- (2-amino-1,2-dicyanovinyl) imidates represented by formula (III) .

CR 1 (OR 2 ) 3 (II)
(In the formula (II), R 1 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and R 2 each independently represents a substituent. It is an alkyl group that may have or an aryl group that may have a substituent.)

Figure 0005064872
(In formula (III), R 1 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and R 2 may have a substituent. A good alkyl group or an aryl group which may have a substituent.)
強酸が、トリフルオロ酢酸、メタンスルホン酸、p−トルエンスルホン酸または濃硫酸である請求項1に記載のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。   The method for producing N- (2-amino-1,2-dicyanovinyl) imidates according to claim 1, wherein the strong acid is trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid or concentrated sulfuric acid. 式(II)で表される化合物が、オルト蟻酸トリエステルまたはオルト酢酸トリエステルである、請求項1または2に記載のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。   The method for producing N- (2-amino-1,2-dicyanovinyl) imidates according to claim 1 or 2, wherein the compound represented by the formula (II) is orthoformate triester or orthoacetate triester. . 上記反応を30〜50℃の温度範囲にて行う、請求項1〜3のいずれかひとつに記載のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。 The method for producing N- (2-amino-1,2-dicyanovinyl) imidates according to any one of claims 1 to 3, wherein the reaction is performed in a temperature range of 30 to 50C . エーテル類がテトラヒドロフランである、請求項1〜4のいずれかひとつに記載のN−(2−アミノ−1,2−ジシアノビニル)イミデート類の製造方法。 The method for producing N- (2-amino-1,2-dicyanovinyl) imidates according to any one of claims 1 to 4 , wherein the ether is tetrahydrofuran.
JP2007111039A 2007-04-19 2007-04-19 Process for producing N- (2-amino-1,2-dicyanovinyl) imidates Expired - Fee Related JP5064872B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2007111039A JP5064872B2 (en) 2007-04-19 2007-04-19 Process for producing N- (2-amino-1,2-dicyanovinyl) imidates
KR1020097021314A KR101132590B1 (en) 2007-04-19 2008-04-17 Method for production of n-2-amino-1,2-dicyanovinylimidate
US12/450,730 US8273899B2 (en) 2007-04-19 2008-04-17 Method for production of N-(2-amino-1,2-dicyanovinyl)imidates, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivatives
CN2008800120665A CN101663266B (en) 2007-04-19 2008-04-17 Method for production of N-(2-amino-1,2-dicyanovinyl)imidate, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivative
EP08740560A EP2138480B1 (en) 2007-04-19 2008-04-17 Method for production of n-(2-amino-1,2-dicyanovinyl)imidates and method for production of aminoimidazole derivatives
KR1020117015448A KR101156497B1 (en) 2007-04-19 2008-04-17 Method for production of aminoimidazole derivative
CN201210295851.4A CN102850238B (en) 2007-04-19 2008-04-17 The manufacture method of N-(amino-1, the 2-dicyanoethenyl of 2-) carbonamidine
CN2012102958548A CN102850277A (en) 2007-04-19 2008-04-17 Method for production of aminoimidazole derivatives
KR1020117015447A KR101161602B1 (en) 2007-04-19 2008-04-17 Method for production of n-(2-amino-1,2-dicyanovinyl)formamidine
PCT/JP2008/057490 WO2008133169A1 (en) 2007-04-19 2008-04-17 Method for production of n-(2-amino-1,2-dicyanovinyl)imidate, method for production of n-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivative
AT08740560T ATE528283T1 (en) 2007-04-19 2008-04-17 METHOD FOR PRODUCING N-(2-AMINO-1,2-DICYANOVINYL)IMIDATES AND METHOD FOR PRODUCING AMINOIMIDAZOLE DERIVATIVES
US13/363,091 US8785654B2 (en) 2007-04-19 2012-01-31 Method for production of N-(2-amino-1,2-dicyanovinyl)imidates, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivatives
US13/363,062 US8258333B2 (en) 2007-04-19 2012-01-31 Method for production of N-(2-amino-1,2-dicyanovinyl)imidates, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111039A JP5064872B2 (en) 2007-04-19 2007-04-19 Process for producing N- (2-amino-1,2-dicyanovinyl) imidates

Publications (2)

Publication Number Publication Date
JP2008266200A JP2008266200A (en) 2008-11-06
JP5064872B2 true JP5064872B2 (en) 2012-10-31

Family

ID=40046209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111039A Expired - Fee Related JP5064872B2 (en) 2007-04-19 2007-04-19 Process for producing N- (2-amino-1,2-dicyanovinyl) imidates

Country Status (1)

Country Link
JP (1) JP5064872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112737B2 (en) * 2007-04-19 2013-01-09 日本曹達株式会社 Method for producing aminoimidazole derivative

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778446A (en) * 1971-07-23 1973-12-11 Du Pont 2-substituted-4,5-dicyanoimidazoles and their preparation from diaminomaleonitrile
DE60029803T2 (en) * 1999-09-20 2007-09-20 Nippon Soda Co. Ltd. PROCESS FOR THE PREPARATION OF 4 (5) -AMINO-5 (4) -CARBOXAMIDOIMIDAZOLENES AND THEIR INTERMEDIATE PRODUCTS
JP2003246779A (en) * 2001-12-20 2003-09-02 Nippon Soda Co Ltd Method for manufacturing 4,5-dialkoxycarbonyl or 4,5- dicyanoimidazole

Also Published As

Publication number Publication date
JP2008266200A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
CA3183040A1 (en) Processes for the preparation of an apoptosis-inducing agent
JP2018118982A (en) Manufacture of 1-substituted methylidene compounds
JP5064872B2 (en) Process for producing N- (2-amino-1,2-dicyanovinyl) imidates
US20120123131A1 (en) Process for the preparation of strontium ranelate
US20160024069A1 (en) Processes and intermediates for the preparation of a pde10 inhibitor
EP2571854B1 (en) Method for manufacturing 1-alkyl-3-difluormethyl-5-hydroxypyrazoles
AU2010313521B2 (en) Methods of preparing 1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone
JP5004643B2 (en) Process for producing N- (2-amino-1,2-dicyanovinyl) formamidine
JP4790901B2 (en) Process for producing 4-amino-5-cyanoimidazole derivative and its intermediate
JP5112737B2 (en) Method for producing aminoimidazole derivative
EP2138480B1 (en) Method for production of n-(2-amino-1,2-dicyanovinyl)imidates and method for production of aminoimidazole derivatives
JP6336166B2 (en) Novel intermediate of imidafenacin, method for producing the same, and method for producing imidafenacin using the same
WO2011121597A1 (en) A PROCESS FOR THE PREPARATION OF 5-SUBSTITUTED 3-(5-NITRO-4-THIOCYANATOPYRIMIDIN-2-YL)-3H-BENZO [d]-IMIDAZOLE
JP2004512329A (en) Method for producing 1,5-disubstituted-3-amino-1,2,4-triazole and substituted aminoguanidine as intermediate compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5064872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees