JP5062719B2 - Caged peptide - Google Patents

Caged peptide Download PDF

Info

Publication number
JP5062719B2
JP5062719B2 JP2006131003A JP2006131003A JP5062719B2 JP 5062719 B2 JP5062719 B2 JP 5062719B2 JP 2006131003 A JP2006131003 A JP 2006131003A JP 2006131003 A JP2006131003 A JP 2006131003A JP 5062719 B2 JP5062719 B2 JP 5062719B2
Authority
JP
Japan
Prior art keywords
peptide
caged
cells
group
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131003A
Other languages
Japanese (ja)
Other versions
JP2007302584A (en
Inventor
有紀 大室
吉郎 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006131003A priority Critical patent/JP5062719B2/en
Publication of JP2007302584A publication Critical patent/JP2007302584A/en
Application granted granted Critical
Publication of JP5062719B2 publication Critical patent/JP5062719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、ケージドペプチドに関する。   The present invention relates to caged peptides.

硬骨魚類から哺乳類まで保存されているフィブロネクチンのRGD(Arg-Gly-Asp)を含むアミノ酸配列を持つペプチドは、インテグリンファミリーに広く結合することが知られている。   It is known that peptides having an amino acid sequence including RGD (Arg-Gly-Asp) of fibronectin that is conserved from teleosts to mammals are widely bound to the integrin family.

一方、紫外線照射により除去可能な基を有するケージドペプチドは公知であり、ケージド化ニューロペプチドへの光照射により生理活性を有するニューロペプチドに変換可能であることが、特許文献1に開示されている
特開平10−120699号公報
On the other hand, caged peptides having groups that can be removed by ultraviolet irradiation are known, and it is disclosed in Patent Document 1 that they can be converted into neuropeptides having physiological activity by light irradiation to caged neuropeptides.
Japanese Patent Laid-Open No. 10-120699

RGD配列はフィブロネクチン、ラミニン、ビトロネクチンなどの細胞外マトリックスに
含まれる配列で、RGD配列を有する細胞接着ペプチドはこれらのマトリックスに対する受
容体であるインテグリンと結合する。細胞接着ペプチドとその受容体の作用メカニズムを詳細に調べるためには、細胞に実質的にダメージを与えることなく、細胞周辺の細胞接着ペプチド濃度を任意に変えられることが望ましい。本発明は、このような性質を有する修飾された細胞接着ペプチドを提供することを目的とする。
The RGD sequence is a sequence contained in an extracellular matrix such as fibronectin, laminin, or vitronectin, and a cell adhesion peptide having an RGD sequence binds to an integrin that is a receptor for these matrices. In order to examine the action mechanism of the cell adhesion peptide and its receptor in detail, it is desirable that the cell adhesion peptide concentration around the cell can be arbitrarily changed without substantially damaging the cell. The object of the present invention is to provide a modified cell adhesion peptide having such properties.

本発明者は、上記課題に鑑み検討を重ねた結果、RGD(Arg-Gly-Asp)ユニットに紫外線照射により除去可能な光感受性基を導入して細胞接着性ペプチドの細胞接着活性が減弱ないし消失したケージドペプチドを得、これに光照射することで、細胞に実質的にダメージを与えることなく光感受性基が除去され細胞接着性を回復した細胞接着ペプチドが得られることを見出した。   As a result of repeated studies in view of the above problems, the present inventor introduced a photosensitive group that can be removed by ultraviolet irradiation into an RGD (Arg-Gly-Asp) unit to reduce or eliminate the cell adhesion activity of the cell adhesion peptide. It was found that a cell adhesion peptide in which the photosensitivity group was removed and the cell adhesion property was recovered was obtained by irradiating the caged peptide with light without substantially damaging the cells.

本発明は、以下のケージドペプチドに関する。
項1. 紫外線照射により除去可能な光感受性基をRGDユニットに有し、紫外線照射によ
り、細胞接着ペプチドに変換可能なケージドペプチド。
項2. 光感受性基が2−ニトロベンジル基である、項1に記載のケージドペプチド。
項3. 光感受性基がRGDユニットのグリシンのアミノ基に結合されてなる、項1に記載
のケージドペプチド。
The present invention relates to the following caged peptides.
Item 1. A caged peptide that has a photosensitive group that can be removed by UV irradiation in the RGD unit and can be converted to a cell adhesion peptide by UV irradiation.
Item 2. Item 2. The caged peptide according to Item 1, wherein the photosensitive group is a 2-nitrobenzyl group.
Item 3. Item 2. The caged peptide according to Item 1, wherein the photosensitive group is bonded to the amino group of glycine of the RGD unit.

RGDを含むペプチドはインテグリンの結合配列であり、細胞間、細胞内のシグナル伝達
、細胞接着に関与することから、細胞生物学や生体適合材料においての研究が古くから行われている。本発明のケージドペプチドを用いれば、光照射によって部位特異的および時間特異的かつ無侵襲に、intact peptideを系中に生じさせることができるため、intact peptideの細胞や組織との作用機序のより詳細な解析をするための研究開発用試薬としての利用や、光リソグラフィー等による細胞のパターン培養を行うための材料としての利用等、産業上有用である。
Peptides including RGD are integrin binding sequences and are involved in cell-cell and intracellular signal transduction and cell adhesion, and thus have been studied for a long time in cell biology and biocompatible materials. When the caged peptide of the present invention is used, an intact peptide can be generated in the system in a site-specific and time-specific and non-invasive manner by light irradiation, so that the mechanism of action of the intact peptide with cells and tissues can be determined. It is industrially useful, for example, as a reagent for research and development for detailed analysis or as a material for performing cell pattern culture by photolithography or the like.

本明細書において、”ケージドペプチド”とは、細胞接着ペプチドのRGD部分に紫外線
照射により除去可能な光感受性基が付加されたペプチドであって、それ自身は細胞接着活性がペプチドよりも活性が減弱ないし消失したポリペプチドを意味する。ケージドペプチドの生理活性は、もとの生理活性ペプチドの50%以下、好ましくは20%以下、より好ましくは5%以下、特に好ましくは1%以下である。
In this specification, “caged peptide” is a peptide in which a photosensitive group that can be removed by UV irradiation is added to the RGD portion of a cell adhesion peptide, and itself has a cell adhesion activity that is less attenuated than the peptide. It means a lost polypeptide. The physiological activity of the caged peptide is 50% or less, preferably 20% or less, more preferably 5% or less, and particularly preferably 1% or less of the original physiologically active peptide.

本明細書において、“intact peptide”とは、ケージドペプチドから光感受性基が除去され、細胞接着能が回復したペプチドを意味する。   In the present specification, “intact peptide” means a peptide in which the photosensitive group is removed from the caged peptide and the cell adhesion ability is restored.

ケージドペプチドに結合する光感受性基の数は、ケージドペプチドの生理活性が減弱ないし消失する限り特に限定されないが、例えば、1〜3個、好ましくは1〜2個、特に好ましくは1個である。   The number of photosensitive groups bound to the caged peptide is not particularly limited as long as the physiological activity of the caged peptide is attenuated or disappears. For example, it is 1 to 3, preferably 1 to 2, and particularly preferably 1.

光感受性基は、RGD部分を構成するArg、Gly、Aspのいずれに連結してもよい。また、光感受性基は、αアミノ基、不斉炭素に結合したCOOH基、側鎖のCOOH基のいずれに結合してもよい。   The photosensitive group may be linked to any one of Arg, Gly and Asp constituting the RGD part. The photosensitive group may be bonded to any of an α-amino group, a COOH group bonded to an asymmetric carbon, and a side chain COOH group.

光感受性基は、紫外線照射により切断されるものであれば特に限定されないが、例えば下記式(I)   The photosensitive group is not particularly limited as long as it is cleaved by ultraviolet irradiation. For example, the following formula (I)

〔式中、R1、R2、R3は、同一又は異なって水素原子、低級アルキル基、低級アルコキ
シ基、アミノ基、ハロゲン原子、水酸基またはシアノ基を示すか、あるいはR1、R2及びR3のいずれか2つが一緒になってメチレンジオキシ基を示す。Rは、水素原子又はメチ
ル基を示す。〕が挙げられる。
[Wherein R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, an amino group, a halogen atom, a hydroxyl group or a cyano group, or R 1 , R 2 and Any two of R 3 together represent a methylenedioxy group. R represents a hydrogen atom or a methyl group. ].

式(I)において、R1、R2、R3で表される低級アルキル基としては、メチル、エチ
ル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチルなどの炭素数1〜4の直鎖又は分枝を有するアルキル基が挙げられる。
In the formula (I), examples of the lower alkyl group represented by R 1 , R 2 , and R 3 include carbon such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl. The alkyl group which has a linear or branched number 1-4 is mentioned.

低級アルコキシ基としては、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシなどの炭素数1〜4の直鎖又は分枝を有するアルコキシ基が挙げられる。   Examples of the lower alkoxy group include linear or branched alkoxy groups having 1 to 4 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy and the like. .

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

好ましい式(I)の基は、R1、R2、R3は、いずれか2つが水素原子で、残りの1つ
が水素原子、低級アルキル基または低級アルコキシ基で、Rが水素原子で表される基である。
In the preferred group of formula (I), any one of R 1 , R 2 and R 3 is a hydrogen atom, the remaining one is a hydrogen atom, a lower alkyl group or a lower alkoxy group, and R is a hydrogen atom. It is a group.

光感受性基は、紫外線照射により除去される。照射される紫外線としては、光感受性基を除去できる限り特に限定されず、通常の紫外線ランプなどが用いられる。紫外線照射の
条件は特に限定されないが、例えばTLC検出用の紫外線ハンドランプ(トプコン製、PU-2)で1時間程度処理すればよい。
Photosensitive groups are removed by UV irradiation. The ultraviolet ray to be irradiated is not particularly limited as long as the photosensitive group can be removed, and a normal ultraviolet lamp or the like is used. Although the conditions for ultraviolet irradiation are not particularly limited, for example, it may be processed for about 1 hour with an ultraviolet hand lamp for detection of TLC (Topcon, PU-2).

本発明のケージドペプチドは、アミノ酸のαアミノ基またはRGDがC末端にある場合のAsp(D)のカルボキシル基あるいは側鎖カルボキシル基に予め光感受性基を導入し、その後、固相合成法または液相合成法などの常法に従い製造することができる。例えば、αアミノ基に光感受性基を導入した場合には、光感受性基を有するアミノ酸(Arg、GlyまたはAsp
)をFmoc化し、常法に従い固相合成又は液相合成法を用いてケージドペプチドに導くことができる。
In the caged peptide of the present invention, a photosensitive group is previously introduced into the carboxyl group or side chain carboxyl group of Asp (D) when the α-amino group of amino acid or RGD is at the C-terminus, and then the solid phase synthesis method or solution It can be produced according to a conventional method such as a phase synthesis method. For example, when a photosensitive group is introduced into the α-amino group, an amino acid having a photosensitive group (Arg, Gly or Asp
) Can be converted to Fmoc and can be converted into caged peptides using solid phase synthesis or liquid phase synthesis according to conventional methods.

本発明のケージドペプチドは、組織又は細胞の培養液中に適量配合し、該培養液全体に紫外線を照射するか、あるいは、共焦点光照射装置などを用いて、培養液中の特定の部分に光を照射することで、細胞周辺の特定の位置に細胞接着ペプチドを瞬時に出現させることができ、細胞接着ペプチドの研究を容易に行うことを可能にする。   The caged peptide of the present invention is mixed in an appropriate amount in a culture solution of tissue or cells, and the whole culture solution is irradiated with ultraviolet rays, or a specific part of the culture solution is used by using a confocal light irradiation device or the like. By irradiating with light, the cell adhesion peptide can instantly appear at a specific position around the cell, and the cell adhesion peptide can be easily studied.

また、本発明のケージドペプチドを支持体上に固定し、パターン状に紫外線照射することで、任意のパターンで細胞接着ペプチドを固定化した支持体を得ることができ、該パターンと細胞の関係を調べることも可能である。   In addition, by fixing the caged peptide of the present invention on a support and irradiating it with ultraviolet rays in a pattern, it is possible to obtain a support on which the cell adhesion peptide is immobilized in an arbitrary pattern, and the relationship between the pattern and the cells It is also possible to investigate.

以下本発明を、参考例及び実施例を用いてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
参考例1:N−2-ニトロべンジル−グリシン(cGly)の製造
300mlナス型フラスコでグリシン15.02g(0.2mmol)をメタノール50mlと2N水酸化ナトリウム水溶液50mlに分散させ、メタノール100mlに溶解させた2-ニトロベンズアルデヒド33.25g(0.22mol)を撹拌しながら少量
ずつ加えた。約50分の攪拌後、フラスコを氷浴に移し、水素化ホウ素ナトリウム6.0g(0.159mol)を攪拌しながら少量ずつ加えた。約2時間後、メタノールをエバポレーターにより留去し、得られた懸濁液をジエチルエーテルにて洗浄後、2N塩酸水溶液を加え万能pH試験紙によりpHを約5に調整し、ジエチルエーテルにて洗浄した。これに約50mlの水を加え、加熱後、放冷し、得られた固形物を水洗後、真空乾燥し、N−2-ニトロべンジル−グリシン(cGly)12.26g(収率29%)を得た。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using a reference example and an Example, this invention is not limited to these Examples.
Reference Example 1: Production of N-2-nitrobenzyl-glycine (cGly) In a 300 ml eggplant type flask, 15.02 g (0.2 mmol) of glycine was dispersed in 50 ml of methanol and 50 ml of 2N aqueous sodium hydroxide solution, and dissolved in 100 ml of methanol. 33.25 g (0.22 mol) of 2-nitrobenzaldehyde was added in small portions with stirring. After stirring for about 50 minutes, the flask was transferred to an ice bath, and 6.0 g (0.159 mol) of sodium borohydride was added little by little with stirring. After about 2 hours, methanol was distilled off with an evaporator, and the resulting suspension was washed with diethyl ether, then 2N aqueous hydrochloric acid was added, the pH was adjusted to about 5 with universal pH test paper, and washed with diethyl ether. did. About 50 ml of water was added to this, and after heating, it was allowed to cool. The resulting solid was washed with water and dried in vacuo, and 12.26 g of N-2-nitrobenzil-glycine (cGly) (29% yield) Got.

参考例2:N-α-フルオレニルメチルオキシカルボニル-N-2-ニトロべンジル−グリシン(Fmoc-cGly)の製造
氷浴上の100mlナス型フラスコに上記参考例で得たcGly2.13g(10mmol)を10%炭酸ナトリウム水溶液(20ml)とアセトン(10ml)に溶解させ、アセトン(20ml)に溶解した9-フルオレニル-N-スクシンイミジル炭酸塩4.98g(20mmol)を滴下ロートで滴下後、一夜撹拌した。これをエバポレーターにより、アセト
ンを留去した後、水相をジエチルエーテルで洗浄し、2N塩酸水溶液を加え万能pH試験紙によりpHを約4以下に調整した後、酢酸エチルにより抽出し、有機相を1N塩酸1回、水2回、飽和食塩水1回にて洗浄し、硫酸ナトリウムで脱水し、濃縮し、ヘキサンを加え白色沈殿を析出させた。次いで、この白色沈殿を濾取し、ヘキサンで洗浄して乾燥させ、標記化合物3.01gを回収した。収率69.7%。
Reference Example 2: Production of N-α-fluorenylmethyloxycarbonyl-N-2-nitrobenzyl-glycine (Fmoc-cGly) 2.100 g of cGly obtained in the above Reference Example in a 100 ml eggplant type flask on an ice bath ( 10 mmol) was dissolved in 10% aqueous sodium carbonate solution (20 ml) and acetone (10 ml), and 9.98 g (20 mmol) of 9-fluorenyl-N-succinimidyl carbonate dissolved in acetone (20 ml) was added dropwise with a dropping funnel overnight. Stir. After the acetone is distilled off by an evaporator, the aqueous phase is washed with diethyl ether, 2N hydrochloric acid aqueous solution is added, the pH is adjusted to about 4 or less with a universal pH test paper, and the organic phase is extracted with ethyl acetate. The extract was washed once with 1N hydrochloric acid, twice with water and once with saturated brine, dehydrated with sodium sulfate, concentrated, and hexane was added to precipitate a white precipitate. The white precipitate was then collected by filtration, washed with hexane and dried to recover 3.01 g of the title compound. Yield 69.7%.

参考例3:非ケージドぺプチドの製造
自動ペプチド合成装置PSSM−8((株)島津製作所製)を使用し、この合成マニュアルに従
い粗ペプチドを合成した。レジンはTGS-RAM レジン((株)島津製作所製)を用いた。合成スケールは、リアクションベッセル1個に対し、100mgのレジンとFmoc化アミノ酸を200μmol加えた。合成終了後、リアクションベッセル内のペプチドレジンにメタノール
及びt−ブチルメチルエーテルを加え順次洗浄した後、ペプチドレジンを1時間減圧乾燥
した。乾燥後、クリーベッジカクテル(レジン100mgのスケールに対してトリフルオロ酢酸(以下、TFAと略す)/チオアニソール/エタンジチオール/水/エチルメチルスル
フィド/チオフェノール/1, 2-エタンジチオール=0.8ml/0.05ml/0.05ml/0.03 ml / 0.02 ml / 0.025 ml)をリアクションベッセル内に注入し、約8時間放置した。クリーベッジカクテルの濾液を遠沈管に回収し、冷却したジエチルエーテルを加え、遠心操作を行い、析出した沈殿物を回収し、アルゴン気流中で乾燥し、更に減圧乾燥して、粗ペプチドを得た。この粗ペプチドをC18AR-IIカラム(φ20x250mm、ナカライ製)
を装着した逆相系液体クロマトグラフィー(溶出液0.1%TFA水溶液と80%アセトニ
トリル水溶液のグラジエント溶出)により、単離した。マトリックスにα-シアノ-4-ヒ
ドロキシケイヒ酸を用い、レーザーイオン化飛行時間質量分析装置(Voyager DE-STR-D1、パーセプティブバイオシステムズ製)により、分子量を測定し、同定した。精製したペプ
チド溶液を凍結乾燥することにより、乾燥した白色粉末の目的物を得た。intact peptide(Tyr-Ala-Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-amide)の質量分析値、観測
値 1266.82、計算値 1266.33。reverse peptide (Ser-Asp-Gly-Arg-Gly-amide)の質量
分析値、観測値 490.88、計算値 490.47、short peptide (Gly-Arg-Gly-Asp-Ser -amide)の質量分析値、観測値 490.96、計算値490.47
Reference Example 3: Production of non-caged peptide Using an automatic peptide synthesizer PSSM-8 (manufactured by Shimadzu Corporation), a crude peptide was synthesized according to this synthesis manual. As the resin, TGS-RAM resin (manufactured by Shimadzu Corporation) was used. The synthetic scale was 100 mg of resin and 200 μmol of Fmoc amino acid added to one reaction vessel. After completion of the synthesis, methanol and t-butyl methyl ether were added to the peptide resin in the reaction vessel and washed sequentially, and then the peptide resin was dried under reduced pressure for 1 hour. After drying, the crevice cocktail (trifluoroacetic acid (hereinafter abbreviated as TFA) /thioanisole/ethanedithiol/water/ethylmethylsulfide/thiophenol/1,2-ethanedithiol=0.8 ml for 100 mg scale of resin) /0.05 ml / 0.05 ml / 0.03 ml / 0.02 ml / 0.025 ml) was injected into the reaction vessel and allowed to stand for about 8 hours. The filtrate of the cleavage cocktail was collected in a centrifuge tube, cooled diethyl ether was added, the mixture was centrifuged, the deposited precipitate was collected, dried in an argon stream, and further dried under reduced pressure to obtain a crude peptide. . C18AR-II column (φ20x250mm, Nacalai)
Were isolated by reverse phase liquid chromatography (gradient elution of 0.1% TFA aqueous solution and 80% acetonitrile aqueous solution). Using α-cyano-4-hydroxycinnamic acid as a matrix, molecular weight was measured and identified by a laser ionization time-of-flight mass spectrometer (Voyager DE-STR-D1, manufactured by Perceptive Biosystems). The purified peptide solution was freeze-dried to obtain a desired product as a dry white powder. Mass spectrometry, observed value 1266.82, calculated value 1266.33 of intact peptide (Tyr-Ala-Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-amide). Mass analysis value, observed value 490.88, calculated value 490.47 of reverse peptide (Ser-Asp-Gly-Arg-Gly-amide), mass analysis value, observed value of short peptide (Gly-Arg-Gly-Asp-Ser-amide) 490.96, calculated value 490.47

実施例1:ケージドぺプチドの製造
上記参考例3と同様に、自動合成機を用い、C末端側からcGlyの部位まで(cGly-Asp-Ser-Pro-Ala-Ser-Ser)合成した。cGlyの導入部位では、上記参考例2で得たFmoc-cGlyを約86mg用いた。合成終了後、Fmoc−Arg(Pmc)((株)ペプチド研究所製)132mg(0.2mmol)を400μlのDMFと315μlのN−メチルモルホリン(1 M、ジメチルホルムアミド溶液)、33μlのジイソプロピルカルボジイミドを加え溶解したものを、リアクションベッセルに加え、窒素バブリングにより60分攪拌した。その後、反応液を濾去し、レジンをジメチルホルムアミド1mlの添加・窒素バブリング1分・濾去の操作を5回繰り返した。その後、C末端からArgの部位まで結合されたレジンを用いて、残りのTyr-Ala-Val-Thr-Glyのアミノ酸配列を結合させ、上記参考例
3の方法に従い精製した。精製したペプチド溶液は遮光下で取り扱った。溶液凍結乾燥することにより、乾燥した白色粉末の目的物を得た。質量分析値(Tyr-Ala-Val-Thr-Gly-Arg-cGly-Asp-Ser-Pro-Ala-Ser-Ser-amide)、観測値 1402.71、計算値 1401.33)。
Example 1: Production of caged peptide In the same manner as in Reference Example 3 above, an automatic synthesizer was used to synthesize from the C-terminal side to the cGly site (cGly-Asp-Ser-Pro-Ala-Ser-Ser). About 86 mg of Fmoc-cGly obtained in Reference Example 2 was used at the cGly introduction site. After completion of the synthesis, 132 mg (0.2 mmol) of Fmoc-Arg (Pmc) (manufactured by Peptide Institute, Inc.) was added with 400 μl of DMF, 315 μl of N-methylmorpholine (1 M, dimethylformamide solution), 33 μl of diisopropylcarbodiimide. The dissolved material was added to the reaction vessel and stirred for 60 minutes by nitrogen bubbling. Thereafter, the reaction solution was filtered off, and the operation of adding 1 ml of dimethylformamide, 1 minute of nitrogen bubbling, and filtering off the resin was repeated 5 times. Thereafter, the remaining Tyr-Ala-Val-Thr-Gly amino acid sequence was bound using a resin bound from the C-terminal to the Arg site, and purified according to the method of Reference Example 3 above. The purified peptide solution was handled in the dark. The desired product as a dry white powder was obtained by freeze-drying the solution. Mass spectrometric value (Tyr-Ala-Val-Thr-Gly-Arg-cGly-Asp-Ser-Pro-Ala-Ser-Ser-amide), observed value 1402.71, calculated value 1401.33).

試験例1
細胞培養
HeLa細胞 ((財)ヒューマンサイエンス振興財団研究資源バンク(泉南、大阪)から
購入) は2-25回継代を行った。5%二酸化炭素存在下で37度に設定したインキュベーター
内で9 cm ディッシュ (Cat. No.172958, Nunc, Rokilde, Denmark)を用いてHeLa細胞
を培養した。培養液は10 % fetal bovine serum (Cat.No.199-141, Lot. 494273, Origin: Australia, Invitrogen, , Carlsbad, California, USA)、500 IU/ml ペニシリン、5 mg/mlストレプトマイシンを含んだDulbecco’s modified Eagles medium (Cat.No.12430-047, Invitrogen) を用いた。
Test example 1
Cell culture
HeLa cells (purchased from Research Resource Bank (Sennan, Osaka), Human Science Foundation) passed 2-25 times. HeLa cells were cultured in a 9 cm dish (Cat. No. 172958, Nunc, Rokilde, Denmark) in an incubator set at 37 degrees in the presence of 5% carbon dioxide. The culture solution was Dulbecco's containing 10% fetal bovine serum (Cat.No. 199-141, Lot. Modified Eagles medium (Cat. No. 12430-047, Invitrogen) was used.

細胞形態観察
HeLa細胞をガラスベースディッシュ (Cat.No.3911-035, Iwaki, Funabashi, Chiba, Japan)に1 X 104細胞まいた。24時間後に培養液を1 mMのペプチドを含んだ新しい培養液に
交換した。さらに24時間後に、4 % パラホルムアルデヒドを用いて細胞を固定し、0.1 % Tritonを含んだPBSで5分間処理した。アクチンフィラメントと核をPhosphate buffer salineで希釈した5 U/ml Rhodamine Phalloidin (Invitrogen)と500 mM Sytox Greenによっ
て染色した。染色した細胞は共焦点レーザー顕微鏡 (Olympus FLUOVIEW FV1000, 新宿、
東京)によって観察した。
Cell morphology observation
HeLa cells were spread on glass-based dishes (Cat. No. 3911-035, Iwaki, Funabashi, Chiba, Japan) at 1 × 10 4 cells. After 24 hours, the culture medium was replaced with a new culture medium containing 1 mM peptide. After another 24 hours, the cells were fixed with 4% paraformaldehyde and treated with PBS containing 0.1% Triton for 5 minutes. Actin filaments and nuclei were stained with 5 U / ml Rhodamine Phalloidin (Invitrogen) diluted with Phosphate buffer saline and 500 mM Sytox Green. The stained cells were analyzed using a confocal laser microscope (Olympus FLUOVIEW FV1000, Shinjuku,
(Tokyo).

UV照射
UV照射を行う24時間前にHeLa細胞をガラスベースディッシュに1 X 104細胞まいた。 培養液を1 mMのケージド化したペプチドを含んだ新しい培養液に交換した後、UV照射を行った。UV照射は紫外線ランプ(UV-100A型, (株)浜松ホトニクス、浜松、静岡)の光を干
渉フィルター (365 nm, Asahi Spectra, 365 FX, 北区、東京)を通した光をディッシュの上方約1cmより照射した。ガラス部位へのエネルギーは12 mW/cm2になるようにランプの出射光位置を微調整した。エネルギーの測定は、紫外線強度計(UVX−36、ウルトラバイ
オレッド社製、Upland, Ca, USA)を用いた。
UV irradiation
24 hours prior to performing the UV irradiation of HeLa cells were plated 1 X 10 4 cells to the glass base dish. After exchanging the culture medium with a new culture medium containing 1 mM caged peptide, UV irradiation was performed. For UV irradiation, the light from the UV lamp (UV-100A, Hamamatsu Photonics, Hamamatsu, Shizuoka) is passed through the interference filter (365 nm, Asahi Spectra, 365 FX, Kita-ku, Tokyo). Irradiated from 1 cm. The exit light position of the lamp was finely adjusted so that the energy to the glass part was 12 mW / cm 2 . For the measurement of energy, an ultraviolet intensity meter (UVX-36, manufactured by Ultra Bio Red, Upland, Ca, USA) was used.

HPLC分析
ペプチド溶液は逆相系分析HPLCにより分析を行った。具体的には、摂氏40度に保ったカラム(Cosmosil 5C18-AR-II(φ4.6×50mm、ナカライテスク製)をHPL
Cポンプ(PU−980i、日本分光製)に装着し0.1%TFA水溶液(A液)、0.1%TFAを含む80%アセトニトリル水溶液(B液)を溶出液とし、A液100%で平衡化後、試料を注入し、グラジエントA液0〜100%/B液0〜100%(20分)、流速1ml/minで溶出させ、波長280nmの吸収を測定した。
HPLC analysis The peptide solution was analyzed by reversed-phase analytical HPLC. Specifically, a column (Cosmosil 5C18-AR-II (φ4.6 × 50 mm, manufactured by Nacalai Tesque)) kept at 40 degrees Celsius is HPL.
Attached to C pump (PU-980i, JASCO), 0.1% TFA aqueous solution (A solution), 80% acetonitrile aqueous solution containing 0.1% TFA (B solution) as eluent, After equilibration, the sample was injected and eluted at a gradient A solution of 0 to 100% / B solution of 0 to 100% (20 minutes) at a flow rate of 1 ml / min, and absorption at a wavelength of 280 nm was measured.

実験結果
まず硬骨魚類から哺乳類まで保存されているフィブロネクチンのRGDを含むアミノ酸配
列を持つペプチド(以下、intact peptide)、intact peptideと同じ配列を持つがRGDのGをケージド化したペプチド(ケージドペプチド)、さらにRGDの逆配列を持ったペプチド
(以下reverse peptideとする)を合成した(Table 1)。
Experimental results First, a peptide with an amino acid sequence containing RGD of fibronectin that is conserved from teleosts to mammals (hereinafter, intact peptide), a peptide that has the same sequence as the intact peptide but is caged with G of RGD (caged peptide), Furthermore, a peptide having a reverse sequence of RGD (hereinafter referred to as reverse peptide) was synthesized (Table 1).

合成したケージドペプチドの構造は、質量分析により同定したが、UV照射前の試料でもintact peptideに相当するピークが観察された(図3、観測値12683.57、計算値1266.33
)。これは、質量分析時のイオン化に紫外レーザーを用いているために光分解反応が進行し、intact peptideが生じたことを示している。また、ケージドペプチドAを紫外線ラン
プを用いて光照射すると、intact peptideの生成がHPLCによっても確認された(図4)。
Although the structure of the synthesized caged peptide was identified by mass spectrometry, a peak corresponding to the intact peptide was also observed in the sample before UV irradiation (FIG. 3, observed value 12683.57, calculated value 1266.33).
). This indicates that since an ultraviolet laser is used for ionization at the time of mass spectrometry, the photodecomposition reaction proceeds and an intact peptide is generated. In addition, when caged peptide A was irradiated with light using an ultraviolet lamp, the production of intact peptide was also confirmed by HPLC (FIG. 4).

細胞培養液中に含まれるintact peptideとケージドペプチドが細胞の細胞骨格および形態に及ぼす効果を観察した。細胞骨格については、ペプチドを含まない培養液中で培養した細胞ではfocal contactにおいてアクチンフィラメントが正常にstress fiberを形成し
ていることが観察された。reverse peptideを含む培養液中で培養した細胞についてもfocal contactにおいてアクチンフィラメントが正常にstress fiberを形成していることが観察された。しかしintact peptideを含む培養液中で培養した細胞ではfocal contactにお
いてアクチンフィラメントの並びが乱れているのが観察された(図1矢印)。また、ペプチドを含まない培養液中で培養した細胞とreverse peptideを含む培養液中で培養した細
胞ではみられない丸い形の細胞が認められた (図1点線矢印)。培養細胞にUVを照射した場合、細胞のfocal contactにおいてアクチンフィラメントが正常にstress fiberを形
成していることが観察された。
The effects of intact peptide and caged peptide contained in the cell culture medium on the cytoskeleton and morphology of the cells were observed. Regarding the cytoskeleton, it was observed that the actin filaments normally formed stress fibers at the focal contact in the cells cultured in the culture medium containing no peptide. It was also observed that actin filaments normally formed stress fibers at the focal contact in cells cultured in a culture solution containing the reverse peptide. However, in the cells cultured in the culture solution containing the intact peptide, it was observed that the actin filaments were disordered in the focal contact (arrows in FIG. 1). In addition, round cells that were not observed in cells cultured in a culture solution containing no peptide and cells cultured in a culture solution containing a reverse peptide were observed (dotted line arrows in FIG. 1). When cultured cells were irradiated with UV, it was observed that the actin filaments normally formed stress fibers at the focal contact of the cells.

ケージドペプチドを含む培養液中で培養した細胞についてはfocal contactにおいてア
クチンフィラメントが正常にstress fiberを形成していることが観察されたが、ケージドペプチドを含む培養液中で培養した細胞にUVを照射した場合、focal contactにおいてア
クチンフィラメントの並びが乱れているのが観察され(図1矢印)、丸い形の細胞が認められた(図1点線矢印)。
For cells cultured in a culture solution containing caged peptide, it was observed that the actin filaments normally formed stress fibers at the focal contact, but the cells cultured in the culture solution containing caged peptide were irradiated with UV. In this case, it was observed that the arrangement of actin filaments was disturbed in the focal contact (arrow in FIG. 1), and round cells were observed (dotted arrow in FIG. 1).

細胞の形態については、ペプチドを含まない培養液中で培養した細胞とreverse peptideを含む培養液中で培養した細胞は面積が広く、高さが低いことが観察された。しかし、intact peptideを含む培養液中で培養した細胞は面積が狭く、高さが高いことが観察され
た。UVを照射した細胞とケージドペプチドを含む培養液中で培養し、UVを照射した細胞は面積が小さく、高さが高いことが観察された(図1,2)。
Regarding cell morphology, it was observed that cells cultured in a culture solution containing no peptide and cells cultured in a culture solution containing a reverse peptide had a large area and a low height. However, it was observed that the cells cultured in the culture solution containing the intact peptide had a small area and a high height. It was observed that the cells irradiated with UV and the cells irradiated with UV were cultured in a medium containing caged peptide, and the cells irradiated with UV had a small area and a high height (FIGS. 1 and 2).

・RGD配列を含むintact peptideにニトロベンジル基を導入したケージドペプチドを合成
した。これをUV光照射することにより、intact peptideを生じさせることができた。
・RGD配列を含むintact peptideを培養液中に添加することにより、Hela細胞のfocal contactの形成異常等の形態変化を誘導する。
・ケージドペプチドを培養液中に添加してもHela細胞の形態変化を誘導しないが、UV照射により、上記変化を誘導できた。
・RGDを含むペプチドはインテグリンの結合配列であり、細胞間、細胞内のシグナル伝達
、細胞接着に関与することから、細胞生物学や生体適合材料においての研究が古くから行われている。このケージドペプチドを用いれば、光照射によって部位特異的および時間特異的、無侵襲に、intact peptideを系中に生じさせることができるため、intact peptideの細胞や組織との作用機序のより詳細な解析をするための研究開発用試薬としての利用や、光リソグラフィー等による細胞のパターン培養を行うための材料としての利用、等、産業上有用である。
A caged peptide in which a nitrobenzyl group was introduced into an intact peptide containing an RGD sequence was synthesized. By irradiating this with UV light, an intact peptide could be generated.
・ Intact peptide containing RGD sequence is added to the culture medium to induce morphological changes such as abnormal formation of focal contact of Hela cells.
・ Addition of caged peptide to the culture broth did not induce morphological changes of Hela cells, but the above changes could be induced by UV irradiation.
-RGD-containing peptides are integrin binding sequences and are involved in cell-to-cell and intracellular signal transduction and cell adhesion. Research into cell biology and biocompatible materials has long been conducted. By using this caged peptide, the intact peptide can be generated in the system in a site-specific, time-specific, and non-invasive manner by light irradiation, so that the mechanism of action of the intact peptide with cells and tissues is more detailed. It is industrially useful, for example, as a reagent for research and development for analysis and as a material for performing cell pattern culture by photolithography or the like.

細胞形態観察。focal contact(矢印)においてアクチンフィラメントの並びが乱れていることが観察された。またそれらの場合では細胞の広がりが小さく、その傾向が顕著な細胞では方向性を持ったアクチンフィラメントが観察されず、形の丸いものが認められた(点線矢印)。Cell morphology observation. It was observed that the arrangement of actin filaments was disturbed at the focal contact (arrow). In those cases, the spread of the cells was small, and the actin filaments having directionality were not observed in the cells with a prominent tendency, and rounded shapes were observed (dotted arrows). 細胞形態変化。intact peptideを培養液に加えた場合とケージド化したペプチドを培養液に加えてUV照射をした場合、細胞の広がりが小さく、高くなることが観察された。N=10, 2回実験を行って同じ結果を得たうちの1回の実験結果を示した。Cell shape change. It was observed that when the intact peptide was added to the culture solution and when the caged peptide was added to the culture solution and irradiated with UV, the cell spread was small and high. N = 10, the results of one experiment out of which two experiments were performed and the same results were obtained. ケージドペプチドの質量分析測定。ケージドペプチドをレーザーイオン化飛行時間質量分析装置により測定した。Mass spectrometric measurement of caged peptides. Caged peptides were measured with a laser ionization time-of-flight mass spectrometer. ケージドペプチドの光分解。ケージドペプチド(1mM)を480秒紫外光照射した産物(D)には、intact peptideに同定される新たな溶出ピークが観察された。Photolysis of caged peptides. In the product (D) obtained by irradiating the caged peptide (1 mM) with ultraviolet light for 480 seconds, a new elution peak identified as the intact peptide was observed.

Claims (1)

Tyr-Ala-Val-Thr-Gly-Arg-cGly-Asp-Ser-Pro-Ala-Ser-Ser-amide(ここで、cGlyはN-2-ニトロベンジルグリシン残基を示す。)で表されるケージドペプチド。 Tyr-Ala-Val-Thr-Gly-Arg-cGly-Asp-Ser-Pro-Ala-Ser-Ser-amide (where cGly represents an N-2-nitrobenzylglycine residue). Caged peptide.
JP2006131003A 2006-05-10 2006-05-10 Caged peptide Expired - Fee Related JP5062719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131003A JP5062719B2 (en) 2006-05-10 2006-05-10 Caged peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131003A JP5062719B2 (en) 2006-05-10 2006-05-10 Caged peptide

Publications (2)

Publication Number Publication Date
JP2007302584A JP2007302584A (en) 2007-11-22
JP5062719B2 true JP5062719B2 (en) 2012-10-31

Family

ID=38836841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131003A Expired - Fee Related JP5062719B2 (en) 2006-05-10 2006-05-10 Caged peptide

Country Status (1)

Country Link
JP (1) JP5062719B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2863834B2 (en) * 1996-10-21 1999-03-03 工業技術院長 Caged peptide
JP2000319202A (en) * 1999-01-12 2000-11-21 Bunshi Biophotonics Kenkyusho:Kk New reagent for preparing caged compound and caging method
JP2001081095A (en) * 1999-09-13 2001-03-27 Japan Science & Technology Corp Caged compound having improved efficiency and photoresponsibility
JP2001288159A (en) * 2000-03-31 2001-10-16 Bunshi Biophotonics Kenkyusho:Kk Lysine derivative for synthesizing caged peptide and method of synthesizing caged peptide using the same

Also Published As

Publication number Publication date
JP2007302584A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US9181302B2 (en) WT1 antigen peptide conjugate vaccine
KR102397271B1 (en) Method for preparing amg 416
JP2020502051A (en) Disulfide-containing cell membrane penetrating peptide and method for producing and using same
Hunter et al. Solid phase synthesis of peptides containing backbone-fluorinated amino acids
AU2016340763B2 (en) Integrin binding peptides and uses thereof
Herbert et al. Synthesis of glycosylated 5-hydroxylysine, an important amino acid present in collagen-like proteins such as adiponectin
CN107602670B (en) Polypeptide EIP-22 capable of antagonizing RNA binding activity of EWSR1 protein and application thereof
AU2001293948B2 (en) Cyclic peptides, method for preparing same and use as angiogenesis inhibitor or activator
Liu et al. An Fmoc compatible, O to S shift-mediated procedure for the preparation of C-terminal thioester peptides
FR2877946A1 (en) MAUROCALCIN-DERIVED PEPTIDES FOR USE AS VECTORS FOR INTRACELLULAR ADDRESSING OF MOLECULES OF INTEREST
JPWO2008123180A1 (en) Target substance detection method, tag, DNA, vector, probe and detection kit used therefor
JP5062719B2 (en) Caged peptide
WO2011103668A1 (en) Cancer specific peptides and arrays for screening same
CN1447699A (en) Peptide and peptide minetic conjugates with integrin-inhibitor properties
US20220213138A1 (en) Cyclic compounds and methods of making and using
JP2024512074A (en) immunomodulator
EP2403829A1 (en) Cross-linking agents
Sawada et al. Synthesis and application of visible light sensitive azobenzene
EP0603399A1 (en) Endothelin-antagonizing peptide
Yoshida et al. Development of the efficient preparation method for thermoresponsive elastin‐like peptides using liquid‐phase synthesis combined with fragment condensation strategy
Sidorova et al. Synthesis and properties of a new conformational antigen which models an extracellular region of β1-adrenoreceptor
US20030055213A1 (en) Endothelin-antagonizing peptide
RU2356576C1 (en) SYNTHETIC ANTIGEN ABILITY TO BIND β1-ADRENORECEPTOR AUTOANTIBODIES
WO2023054712A1 (en) Peptide
EP4003403A1 (en) Receptor-targeting peptide-drug conjugates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees