JP5060356B2 - Manufacturing method of BAW resonance device - Google Patents

Manufacturing method of BAW resonance device Download PDF

Info

Publication number
JP5060356B2
JP5060356B2 JP2008076697A JP2008076697A JP5060356B2 JP 5060356 B2 JP5060356 B2 JP 5060356B2 JP 2008076697 A JP2008076697 A JP 2008076697A JP 2008076697 A JP2008076697 A JP 2008076697A JP 5060356 B2 JP5060356 B2 JP 5060356B2
Authority
JP
Japan
Prior art keywords
piezoelectric layer
substrate
layer forming
piezoelectric
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008076697A
Other languages
Japanese (ja)
Other versions
JP2009232283A (en
Inventor
規裕 山内
朝明 松嶋
健雄 白井
孝明 吉原
嘉城 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008076697A priority Critical patent/JP5060356B2/en
Publication of JP2009232283A publication Critical patent/JP2009232283A/en
Application granted granted Critical
Publication of JP5060356B2 publication Critical patent/JP5060356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧電層の厚み方向の縦振動モードを利用する共振子を有するBAW(Bulk Acoustic Wave)共振装置の製造方法に関するものである。   The present invention relates to a method of manufacturing a BAW (Bulk Acoustic Wave) resonance device having a resonator using a longitudinal vibration mode in the thickness direction of a piezoelectric layer.

従来から、2GHz以上の高周波帯域で用いる共振装置としてSAW(Surface Acoustic Wave)共振装置よりもBAW共振装置が適していることが知られており、近年、BAW共振装置をUWB(Ultra Wide Band)用フィルタに応用する場合に、UWB用フィルタに適応できる帯域幅(例えば、300MHz)を確保するために、圧電層の圧電材料として、AlNに比べて電気機械結合係数(keff)が大きな鉛系圧電材料(例えば、PZTなど)を採用することが提案されている(例えば、特許文献1参照)。なお、上記特許文献1には、BAW共振装置として、FBAR(Film Bulk Acoustic Resonator)およびSMR(Solidly Mounted Resonator)が記載されている。 Conventionally, it is known that a BAW resonance device is more suitable than a SAW (Surface Acoustic Wave) resonance device as a resonance device used in a high frequency band of 2 GHz or more. In recent years, a BAW resonance device has been used for UWB (Ultra Wide Band). When applying to a filter, in order to secure a bandwidth (for example, 300 MHz) that can be applied to a UWB filter, a lead-based piezoelectric material having a large electromechanical coupling coefficient (k eff ) compared to AlN as a piezoelectric material of the piezoelectric layer. It has been proposed to employ a material (for example, PZT) (for example, see Patent Document 1). In Patent Document 1, FBAR (Film Bulk Acoustic Resonator) and SMR (Solidly Mounted Resonator) are described as BAW resonance devices.

また、FBARと称されるBAW共振装置としては、上記特許文献1に開示された構造に限らず、例えば、図4(f)に示すように、単結晶MgO基板もしくは単結晶STO基板からなる支持基板1’の一表面側に第1の導電性材料(例えば、Pt,Irなど)からなる下部電極31’と鉛系圧電材料(例えば、PZTなど)からなる圧電層32’と第2の導電性材料(例えば、Pt,Ir,Al,Mo,Wなど)からなる上部電極33’とを有する共振子3’を備え、支持基板1’に下部電極31’を露出させる空洞部1a’が貫設された構造のものが知られている。なお、図4(f)に示した構成のBAW共振装置は、圧電層32’における下部電極31’側とは反対側に上部電極33’と圧電層32’との接触面積を規定する開孔部4a’を有するシリコン酸化膜からなる絶縁層4’が形成されている。   Further, the BAW resonance device called FBAR is not limited to the structure disclosed in the above-mentioned Patent Document 1, and for example, as shown in FIG. 4 (f), a support made of a single crystal MgO substrate or a single crystal STO substrate. On one surface side of the substrate 1 ′, a lower electrode 31 ′ made of a first conductive material (eg, Pt, Ir, etc.), a piezoelectric layer 32 ′ made of a lead-based piezoelectric material (eg, PZT, etc.), and a second conductive material. A cavity 3a having an upper electrode 33 'made of a conductive material (eg, Pt, Ir, Al, Mo, W, etc.) and exposing the lower electrode 31' to the support substrate 1 '. An installed structure is known. Note that the BAW resonator having the configuration shown in FIG. 4F has an opening that defines the contact area between the upper electrode 33 ′ and the piezoelectric layer 32 ′ on the opposite side of the piezoelectric layer 32 ′ from the lower electrode 31 ′ side. An insulating layer 4 ′ made of a silicon oxide film having a portion 4a ′ is formed.

以下、図4(f)に示した構成のBAW共振装置の製造方法ついて説明する。   Hereinafter, a method of manufacturing the BAW resonator having the configuration shown in FIG.

まず、単結晶MgO基板からなる支持基板1’の上記一表面側に上記第1の導電性材料からなる下部電極31’をスパッタ法やCVD法などにより形成することによって、図4(a)に示す構造を得る。   First, the lower electrode 31 ′ made of the first conductive material is formed on the one surface side of the support substrate 1 ′ made of a single crystal MgO substrate by a sputtering method, a CVD method, or the like, so that FIG. Get the structure shown.

その後、支持基板1’の上記一表面側に鉛系圧電材料(例えば、PZT)からなる圧電層32’をスパッタ法やCVD法やゾルゲル法などにより形成することによって、図4(b)に示す構造を得る。   Thereafter, a piezoelectric layer 32 ′ made of a lead-based piezoelectric material (for example, PZT) is formed on the one surface side of the support substrate 1 ′ by a sputtering method, a CVD method, a sol-gel method, or the like, as shown in FIG. Get the structure.

次に、フォトリソグラフィ技術およびエッチング技術を利用して圧電層32’を所定形状にパターニングすることによって、図4(c)に示す構造を得る。   Next, the structure shown in FIG. 4C is obtained by patterning the piezoelectric layer 32 'into a predetermined shape using a photolithography technique and an etching technique.

続いて、支持基板1’の上記一表面側に上述の開孔部4a’を有する絶縁層4’を形成することによって、図4(d)に示す構造を得る。ここにおいて、絶縁層4’の形成にあたっては、例えば、支持基板1’の上記一表面側において絶縁層4’の形成予定領域以外の部位を覆うレジスト層を形成してから、スパッタ法やCVD法などにより支持基板1’の上記一表面側の全面に絶縁層4’を成膜し、その後、レジスト層および当該レジスト層上の絶縁層4’をリフトオフすればよい。   Subsequently, the structure shown in FIG. 4D is obtained by forming the insulating layer 4 ′ having the above-described opening 4 a ′ on the one surface side of the support substrate 1 ′. Here, in forming the insulating layer 4 ′, for example, a resist layer covering a portion other than the region where the insulating layer 4 ′ is to be formed is formed on the one surface side of the support substrate 1 ′, and then a sputtering method or a CVD method is used. For example, an insulating layer 4 ′ may be formed on the entire surface of the one surface side of the support substrate 1 ′, and then the resist layer and the insulating layer 4 ′ on the resist layer may be lifted off.

上述の開孔部4a’を有する絶縁層4’を形成した後、支持基板1’の上記一表面側に上部電極33’を形成することによって、図4(e)に示す構造を得る。上部電極33’の形成にあたっては、スパッタ法やEB蒸着法やCVD法などにより上部電極33’を成膜してから、フォトリソグラフィ技術およびエッチング技術を利用して所定形状にパターニングすればよい。   After forming the insulating layer 4 ′ having the opening 4 a ′, the upper electrode 33 ′ is formed on the one surface side of the support substrate 1 ′, thereby obtaining the structure shown in FIG. In forming the upper electrode 33 ′, the upper electrode 33 ′ may be formed by sputtering, EB vapor deposition, CVD, or the like, and then patterned into a predetermined shape using a photolithography technique and an etching technique.

上述の上部電極33’を形成した後、フォトリソグラフィ技術およびエッチング技術を利用して支持基板1’に厚み方向に貫通する空洞部1a’を形成することによって、図4(f)に示す構造のBAW共振装置を得ることができる。なお、単結晶MgO基板からなる支持基板1’に空洞部1a’を形成する際のエッチャントとしては、燐酸などを用いればよい。   After the upper electrode 33 ′ is formed, a cavity 1a ′ penetrating in the thickness direction is formed in the support substrate 1 ′ by using a photolithography technique and an etching technique, whereby the structure shown in FIG. A BAW resonance device can be obtained. Note that phosphoric acid or the like may be used as an etchant for forming the cavity 1a 'in the support substrate 1' made of a single crystal MgO substrate.

ところで、圧電層32’の材料としてPZTなどの鉛系圧電材料を利用したBAW共振装置を上述の製造方法で製造する場合には、支持基板1’として当該鉛系圧電材料との格子定数差が単結晶Si基板に比べて小さく格子整合性の良い単結晶MgO基板や単結晶STO基板を用いることにより、圧電層32’の結晶性を向上でき機械的品質係数や電気機械結合係数などの向上を図れる。しかしながら、単結晶MgO基板や単結晶STO基板は単結晶Si基板に比べて非常に高価であり、上記特許文献1に開示されたBAW共振装置のように支持基板として単結晶Si基板を用いる場合に比べて、コストが高くなってしまう。   By the way, when a BAW resonance device using a lead-based piezoelectric material such as PZT as a material of the piezoelectric layer 32 ′ is manufactured by the above-described manufacturing method, a lattice constant difference from the lead-based piezoelectric material as the support substrate 1 ′ is increased. By using a single crystal MgO substrate or a single crystal STO substrate that is smaller than a single crystal Si substrate and has good lattice matching, the crystallinity of the piezoelectric layer 32 'can be improved, and the mechanical quality factor, electromechanical coupling coefficient, etc. can be improved. I can plan. However, the single crystal MgO substrate and the single crystal STO substrate are very expensive as compared with the single crystal Si substrate. When the single crystal Si substrate is used as the support substrate like the BAW resonator disclosed in Patent Document 1 above. Compared with the cost.

これに対して、一対の電極間に圧電層を有するMEMSデバイスの製造方法として、単結晶MgO基板からなる圧電層形成基板の一表面側に鉛系圧電材料(例えば、PZTなど)からなる圧電層を形成し、続いて、圧電層上に第1の接合用金属層を形成し、その後、圧電層形成基板の上記一表面側の第1の接合用金属層と単結晶Si基板からなる支持基板の一表面側に形成した第2の接合用金属層とを接合し、更にその後、圧電層形成基板を透過するレーザ光を圧電層形成基板の他表面側から照射して圧電層形成基板を圧電層から剥離することで圧電層を支持基板の上記一表面側に転写するようにした製造方法が提案されており(例えば、特許文献2)、この製造方法によれば圧電層の結晶性を向上できるとともに、単結晶MgO基板の再利用が可能となる。なお、上記特許文献2に記載の製造方法では、第1の接合用金属層と第2の接合用金属層とで上記一対の電極の一方の電極が構成されるので、圧電層を支持基板の上記一表面側に転写した後に、他方の電極を形成すればよい。
特開2007−295025号公報 特開2003−309303号公報
On the other hand, as a method of manufacturing a MEMS device having a piezoelectric layer between a pair of electrodes, a piezoelectric layer made of a lead-based piezoelectric material (for example, PZT) on one surface side of a piezoelectric layer forming substrate made of a single crystal MgO substrate. Subsequently, a first bonding metal layer is formed on the piezoelectric layer, and then the first bonding metal layer on the one surface side of the piezoelectric layer forming substrate and a single crystal Si substrate are used. The second bonding metal layer formed on one surface side of the piezoelectric layer forming substrate is bonded, and then the laser beam transmitted through the piezoelectric layer forming substrate is irradiated from the other surface side of the piezoelectric layer forming substrate to thereby piezoelectrically apply the piezoelectric layer forming substrate. A manufacturing method has been proposed in which the piezoelectric layer is transferred to the one surface side of the support substrate by peeling from the layer (for example, Patent Document 2). According to this manufacturing method, the crystallinity of the piezoelectric layer is improved. And re-use of single crystal MgO substrate It is possible. In the manufacturing method described in Patent Document 2, since the first bonding metal layer and the second bonding metal layer constitute one electrode of the pair of electrodes, the piezoelectric layer is formed on the support substrate. After the transfer to the one surface side, the other electrode may be formed.
JP 2007-295025 A JP 2003-309303 A

しかしながら、上記特許文献2に記載された製造方法では、圧電層形成基板に形成した圧電層を支持基板側へ転写するために、圧電層形成基板の第1の接合用金属層と支持基板の第2の接合用金属層とを接合する接合工程と、当該接合工程の後でレーザ光を照射して圧電層形成基板を剥離する剥離工程との2つの工程が必要となってしまう。   However, in the manufacturing method described in Patent Document 2, in order to transfer the piezoelectric layer formed on the piezoelectric layer forming substrate to the supporting substrate side, the first bonding metal layer of the piezoelectric layer forming substrate and the first of the supporting substrate are transferred. Two steps, a joining step for joining the two joining metal layers, and a peeling step for peeling the piezoelectric layer forming substrate by irradiating laser light after the joining step are required.

本発明は上記事由に鑑みて為されたものであり、その目的は、圧電層の結晶性を向上できるとともに圧電層形成基板の再利用が可能で且つ製造工程の簡略化を図れるBAW共振装置の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and the object of the present invention is to improve the crystallinity of the piezoelectric layer, to enable reuse of the piezoelectric layer forming substrate, and to simplify the manufacturing process. It is to provide a manufacturing method.

請求項1の発明は、支持基板と、支持基板の一表面側に形成された下部電極、下部電極における支持基板側とは反対側に形成され支持基板とは格子定数差のある圧電材料からなる圧電層、圧電層における下部電極側とは反対側に形成された上部電極を有する共振子とを備えたBAW共振装置の製造方法であって、圧電層を支持基板に比べて当該圧電層との格子整合性の良い圧電層形成用基板の一表面側に形成する圧電層形成工程と、圧電層形成基板の前記一表面と支持基板の前記一表面側に形成した下部電極との間に圧電層が位置するように支持基板の前記一表面側に圧電層形成基板を配置し、圧電層形成基板を透過するレーザ光を圧電層形成基板の他表面側から照射し圧電層と圧電層形成基板における圧電層側の界面で吸収させて圧電層を支持基板の前記一表面側に転写する転写工程とを備えることを特徴とする。   The invention of claim 1 is composed of a support substrate, a lower electrode formed on one surface side of the support substrate, and a piezoelectric material formed on the opposite side of the lower electrode from the support substrate side and having a lattice constant difference from the support substrate. A method of manufacturing a BAW resonance device comprising a piezoelectric layer and a resonator having an upper electrode formed on the side opposite to the lower electrode side of the piezoelectric layer, wherein the piezoelectric layer is compared with the piezoelectric layer relative to the support substrate. Piezoelectric layer formed between the one surface of the piezoelectric layer forming substrate and the lower electrode formed on the one surface side of the supporting substrate, and the piezoelectric layer forming step formed on the one surface side of the piezoelectric layer forming substrate with good lattice matching The piezoelectric layer forming substrate is disposed on the one surface side of the support substrate so that the substrate is positioned, and laser light that passes through the piezoelectric layer forming substrate is irradiated from the other surface side of the piezoelectric layer forming substrate. The piezoelectric layer is absorbed by the interface on the piezoelectric layer side. Characterized in that it comprises a transfer step of transferring to the one surface side of the lifting board.

この発明によれば、圧電層を支持基板に比べて当該圧電層との格子整合性の良い圧電層形成用基板の一表面側に形成する圧電層形成工程と、圧電層形成基板の前記一表面と支持基板の前記一表面側に形成した下部電極との間に圧電層が位置するように支持基板の前記一表面側に圧電層形成基板を配置し、圧電層形成基板を透過するレーザ光を圧電層形成基板の他表面側から照射し圧電層と圧電層形成基板における圧電層側の界面で吸収させて圧電層を支持基板の前記一表面側に転写する転写工程とを備えるので、圧電層の結晶性を向上できるとともに圧電層形成基板の再利用が可能であり、しかも、圧電層形成基板に形成した圧電層を支持基板側へ転写するための工程はレーザ光を照射して圧電層を転写する転写工程だけでよいから、従来のように接合工程と剥離工程との2つの工程を必要とする場合に比べて製造工程の簡略化を図れる。   According to the present invention, the piezoelectric layer forming step of forming the piezoelectric layer on one surface side of the piezoelectric layer forming substrate having better lattice matching with the piezoelectric layer than the supporting substrate, and the one surface of the piezoelectric layer forming substrate A piezoelectric layer forming substrate is disposed on the one surface side of the supporting substrate so that the piezoelectric layer is positioned between the lower electrode formed on the one surface side of the supporting substrate and laser light transmitted through the piezoelectric layer forming substrate. A transfer step of irradiating from the other surface side of the piezoelectric layer forming substrate and absorbing it at the interface between the piezoelectric layer and the piezoelectric layer side of the piezoelectric layer forming substrate and transferring the piezoelectric layer to the one surface side of the supporting substrate. The crystallinity of the piezoelectric layer can be improved and the piezoelectric layer forming substrate can be reused. In addition, the process for transferring the piezoelectric layer formed on the piezoelectric layer forming substrate to the support substrate side is performed by irradiating the piezoelectric layer with laser light. Since only the transfer process to transfer is necessary, Attained to simplify the manufacturing process as compared with the case that requires two steps of the sea urchin bonding step and separation step.

請求項2の発明は、請求項1の発明において、前記圧電材料が鉛系圧電材料であり、前記圧電層形成基板として、単結晶MgO基板もしくは単結晶STO基板を用い、前記支持基板として単結晶Si基板を用いることを特徴とする。   The invention of claim 2 is the invention of claim 1, wherein the piezoelectric material is a lead-based piezoelectric material, a single crystal MgO substrate or a single crystal STO substrate is used as the piezoelectric layer forming substrate, and a single crystal is used as the support substrate. A Si substrate is used.

この発明によれば、前記圧電層の結晶性を向上できるとともに前記支持基板の低コスト化を図れる。   According to this invention, the crystallinity of the piezoelectric layer can be improved and the cost of the support substrate can be reduced.

請求項3の発明は、請求項2の発明において、前記圧電層形成工程よりも前に前記圧電層形成基板の前記一表面上にPLTもしくはPTOもしくはSROからなるシード層を形成するシード層形成工程を備え、前記転写工程では、前記レーザ光を前記圧電層形成基板と前記シード層との界面で吸収させて前記圧電層と前記シード層との積層膜を転写することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the invention, the seed layer forming step of forming a seed layer made of PLT, PTO, or SRO on the one surface of the piezoelectric layer forming substrate before the piezoelectric layer forming step. In the transfer step, the laser beam is absorbed at the interface between the piezoelectric layer forming substrate and the seed layer to transfer the laminated film of the piezoelectric layer and the seed layer.

この発明によれば、前記圧電層形成工程よりも前に前記圧電層形成基板の前記一表面上にPLTもしくはPTOもしくはSROからなるシード層を形成するシード層形成工程を備えていることにより、前記圧電層の結晶性をより一層向上でき、しかも、前記転写工程では、前記レーザ光を前記圧電層形成基板と前記シード層との界面で吸収させて前記圧電層と前記シード層との積層膜を転写するので、前記圧電層形成基板を再利用することができる。   According to this invention, by providing a seed layer forming step of forming a seed layer made of PLT, PTO or SRO on the one surface of the piezoelectric layer forming substrate before the piezoelectric layer forming step, The crystallinity of the piezoelectric layer can be further improved, and in the transfer step, the laser beam is absorbed at the interface between the piezoelectric layer forming substrate and the seed layer to form a laminated film of the piezoelectric layer and the seed layer. Since the transfer is performed, the piezoelectric layer forming substrate can be reused.

請求項1の発明では、圧電層の結晶性を向上できるとともに圧電層形成基板の再利用が可能で且つ製造工程の簡略化を図れるという効果がある。   According to the first aspect of the invention, the crystallinity of the piezoelectric layer can be improved, the piezoelectric layer forming substrate can be reused, and the manufacturing process can be simplified.

本実施形態におけるBAW共振装置は、図1(f)に示すように、単結晶Si基板からなる支持基板1と、支持基板1の一表面側に形成された下部電極31、下部電極31における支持基板1側とは反対側に形成され支持基板1とは格子定数差のある圧電材料(例えば、PZTなど)からなる圧電層32、圧電層32における下部電極31側とは反対側に形成された上部電極33を有する共振子3とを備えている。ここにおいて、下部電極31は、第1の導電性材料(例えば、In,Pt,Irなど)により形成され、上部電極33は、第2の導電性材料(例えば、Pt,Ir,Al,Mo,Wなど)により形成されている。   As shown in FIG. 1 (f), the BAW resonance device according to the present embodiment includes a support substrate 1 made of a single crystal Si substrate, a lower electrode 31 formed on one surface side of the support substrate 1, and support on the lower electrode 31. A piezoelectric layer 32 made of a piezoelectric material (for example, PZT) having a lattice constant difference from the support substrate 1 formed on the opposite side of the substrate 1 side, and formed on the opposite side of the piezoelectric layer 32 to the lower electrode 31 side. And a resonator 3 having an upper electrode 33. Here, the lower electrode 31 is made of a first conductive material (for example, In, Pt, Ir, etc.), and the upper electrode 33 is made of a second conductive material (for example, Pt, Ir, Al, Mo, etc.). W etc.).

また、本実施形態におけるBAW共振装置は、支持基板1の上記一表面上にシリコン酸化膜からなる絶縁膜20が形成され、当該絶縁膜20上に下部電極31が形成されており、支持基板1には、絶縁膜20において共振子3の共振領域に重なる部位を露出させる空洞部1aが貫設されている。要するに、本実施形態におけるBAW共振装置は、支持基板1に空洞部1aを設けることにより支持基板1側への弾性波エネルギの伝搬を抑制するようにしたFBARを構成している。なお、支持基板1の空洞部1aは、支持基板1の厚み方向において絶縁膜20から離れる(つまり、下部電極31から離れる)につれて徐々に開口面積が大きくなる形状に開孔されている。なお、支持基板1として、絶縁性基板を用いる場合には、絶縁膜20は設ける必要はない。   In the BAW resonator according to the present embodiment, the insulating film 20 made of a silicon oxide film is formed on the one surface of the supporting substrate 1, and the lower electrode 31 is formed on the insulating film 20. In the insulating film 20, a cavity 1 a that exposes a portion overlapping the resonance region of the resonator 3 is provided. In short, the BAW resonance apparatus in the present embodiment constitutes an FBAR in which propagation of elastic wave energy to the support substrate 1 side is suppressed by providing the support substrate 1 with a cavity 1a. Note that the cavity 1a of the support substrate 1 is formed in a shape in which the opening area gradually increases as the distance from the insulating film 20 increases in the thickness direction of the support substrate 1 (that is, from the lower electrode 31). When an insulating substrate is used as the support substrate 1, the insulating film 20 does not need to be provided.

また、本実施形態におけるBAW共振装置は、圧電層32における下部電極31側とは反対側に上部電極33と圧電層32との接触面積を規定する開孔部4aを有するシリコン酸化膜からなる絶縁層4が形成されている。なお、絶縁層4の材料としては、SiOを採用しているが、SiOに限らず、例えば、Siを採用してもよい。 Further, the BAW resonance device according to the present embodiment is an insulating film made of a silicon oxide film having an opening 4a that defines the contact area between the upper electrode 33 and the piezoelectric layer 32 on the opposite side of the piezoelectric layer 32 from the lower electrode 31 side. Layer 4 is formed. As the material of the insulating layer 4, is adopted to SiO 2, is not limited to SiO 2, for example, it may be adopted Si 3 N 4.

また、本実施形態におけるBAW共振装置は、圧電層32の圧電材料として鉛系圧電材料の一種であるPZTを採用しており、支持基板1として、上記一表面が(100)面の単結晶Si基板を用いているが、鉛系圧電材料は、PZTに限らず、例えば、PZT−PMTや適宜の不純物を添加したPZTなどを採用してもよい。   Further, the BAW resonance device in the present embodiment employs PZT, which is a kind of lead-based piezoelectric material, as the piezoelectric material of the piezoelectric layer 32, and the support substrate 1 is a single crystal Si whose one surface is a (100) plane. Although the substrate is used, the lead-based piezoelectric material is not limited to PZT, and for example, PZT-PMT or PZT to which appropriate impurities are added may be employed.

なお、本実施形態におけるBAW共振装置では、共振子3の共振周波数を5GHzに設定してあり、圧電層32の厚みを600nmに設定してあるが、これらの数値は一例であって特に限定するものではない。例えば、共振周波数を3GHz〜5GHzの範囲で設計する場合には、圧電層32の厚みは200nm〜600nmの範囲で適宜設定すればよい。   In the BAW resonator according to the present embodiment, the resonance frequency of the resonator 3 is set to 5 GHz, and the thickness of the piezoelectric layer 32 is set to 600 nm. However, these numerical values are only examples and are particularly limited. It is not a thing. For example, when designing the resonance frequency in the range of 3 GHz to 5 GHz, the thickness of the piezoelectric layer 32 may be appropriately set in the range of 200 nm to 600 nm.

以下、本実施形態のBAW共振装置の製造方法について図1を参照しながら説明する。   Hereinafter, a method for manufacturing the BAW resonator according to the present embodiment will be described with reference to FIG.

まず、圧電材料(例えば、PZTなど)からなる圧電層32を単結晶Si基板からなる支持基板1に比べて当該圧電層32との格子定数差が小さく格子整合性の良い単結晶MgO基板からなる圧電層形成用基板10(図1(a)参照)の一表面側(図1(a)における下面側)に形成する圧電層形成工程を行い、その後、図1(b)に示すように圧電層形成基板10の上記一表面側の圧電層32と支持基板1の上記一表面側の絶縁膜20上に形成した所定膜厚(例えば、100nm)のIn膜からなる下部電極31とを対向させてから、図1(c)に示すように圧電層形成基板10の上記一表面と支持基板1の上記一表面側に形成した下部電極31との間に圧電層32が位置するように支持基板1の上記一表面側に圧電層形成基板を配置し、圧電層形成基板10を透過するレーザ光を圧電層形成基板10の他表面側(図1(b)における上面側)から照射し圧電層32と圧電層形成基板10における圧電層32側の界面(ここでは、圧電層形成基板10と圧電層32との界面)で吸収させて圧電層32を支持基板1の上記一表面側に転写し圧電層形成基板10を支持基板1から離す転写工程を行うことによって、図1(c)に示す構造を得る。なお、圧電層形成工程において用いる圧電層形成基板10としては、上記一表面が(100)面で厚さが300μmの単結晶MgO基板を採用しているが、単結晶MgO基板に限らず、上記一表面が(100)面の単結晶STO基板などを採用してもよい。また、圧電層形成基板10の厚さは特に限定するものではない。   First, the piezoelectric layer 32 made of a piezoelectric material (for example, PZT) is made of a single crystal MgO substrate having a small lattice constant difference from the piezoelectric layer 32 and having good lattice matching as compared with the support substrate 1 made of a single crystal Si substrate. A piezoelectric layer forming step is performed on one surface side (the lower surface side in FIG. 1A) of the piezoelectric layer forming substrate 10 (see FIG. 1A), and then, as shown in FIG. The piezoelectric layer 32 on the one surface side of the layer forming substrate 10 and the lower electrode 31 made of an In film having a predetermined thickness (for example, 100 nm) formed on the insulating film 20 on the one surface side of the support substrate 1 are opposed to each other. After that, as shown in FIG. 1C, the support substrate is arranged such that the piezoelectric layer 32 is positioned between the one surface of the piezoelectric layer forming substrate 10 and the lower electrode 31 formed on the one surface side of the support substrate 1. 1. A piezoelectric layer forming substrate is disposed on the one surface side of 1, Laser light that passes through the electrode layer forming substrate 10 is irradiated from the other surface side (the upper surface side in FIG. 1B) of the piezoelectric layer forming substrate 10, and the interface between the piezoelectric layer 32 and the piezoelectric layer 32 side of the piezoelectric layer forming substrate 10 ( Here, a transfer process is performed in which the piezoelectric layer 32 is absorbed at the interface between the piezoelectric layer forming substrate 10 and the piezoelectric layer 32 to transfer the piezoelectric layer 32 to the one surface side of the supporting substrate 1 and separate the piezoelectric layer forming substrate 10 from the supporting substrate 1. As a result, the structure shown in FIG. As the piezoelectric layer forming substrate 10 used in the piezoelectric layer forming step, a single crystal MgO substrate having a surface of (100) and a thickness of 300 μm is used. However, the piezoelectric layer forming substrate 10 is not limited to the single crystal MgO substrate. A single crystal STO substrate having one (100) surface may be employed. Further, the thickness of the piezoelectric layer forming substrate 10 is not particularly limited.

上述の圧電層形成工程では、圧電層32をスパッタ法やCVD法やゾルゲル法などにより形成する。また、支持基板1の上記一表面側の下部電極31は、スパッタ法やCVD法などにより形成すればよい。また、上述の転写工程では、レーザ光を照射する領域を制御して圧電層32の一部を転写することで、別途に圧電層32をパターニングする工程を不要としているが、圧電層32の全部を転写するようにしてもよい。また、転写工程におけるレーザ光の光源としては、例えば、波長が248nmのKrFエキシマレーザを用いればよく、圧電層形成基板10が単結晶MgO基板であり、圧電層32の圧電材料がPZTである場合には、当該KrFエキシマレーザの出力密度は0.1mJ/mm〜1.8mJ/mmの範囲で設定することが望ましい。ここで、出力密度が0.1mJ/mm未満であると、圧電層32を転写できないことがあり、1.8mJ/mmよりも大きいと圧電層形成基板10が割れて圧電層形成基板10の破片が支持基板1側の圧電層32側に付着してしまうことがある。なお、転写工程において剥離した圧電層形成基板10に残留している圧電層32については、例えば、適宜のエッチャント(例えば、フッ酸など)により選択的にエッチング除去すればよい。 In the piezoelectric layer forming step described above, the piezoelectric layer 32 is formed by a sputtering method, a CVD method, a sol-gel method, or the like. Further, the lower electrode 31 on the one surface side of the support substrate 1 may be formed by sputtering, CVD, or the like. Further, in the above-described transfer process, a part of the piezoelectric layer 32 is transferred by controlling the region irradiated with the laser light, so that a separate patterning process for the piezoelectric layer 32 is not necessary. May be transferred. Further, as a laser light source in the transfer process, for example, a KrF excimer laser having a wavelength of 248 nm may be used, and the piezoelectric layer forming substrate 10 is a single crystal MgO substrate, and the piezoelectric material of the piezoelectric layer 32 is PZT. For this, the output density of the KrF excimer laser is preferably set in the range of 0.1 mJ / mm 2 to 1.8 mJ / mm 2 . Here, if the output density is less than 0.1 mJ / mm 2 , the piezoelectric layer 32 may not be transferred. If the output density is greater than 1.8 mJ / mm 2 , the piezoelectric layer forming substrate 10 is cracked and the piezoelectric layer forming substrate 10 is broken. May adhere to the piezoelectric layer 32 side on the support substrate 1 side. Note that the piezoelectric layer 32 remaining on the piezoelectric layer forming substrate 10 peeled off in the transfer process may be selectively etched away with an appropriate etchant (for example, hydrofluoric acid, for example).

上述の転写工程の後、支持基板1の上記一表面側に上述の開孔部4aを有する絶縁層4を形成する絶縁層形成工程を行うことによって、図1(d)に示す構造を得る。ここにおいて、絶縁層形成工程では、例えば、支持基板1の上記一表面側において絶縁層4の形成予定領域以外の部位を覆うレジスト層を形成してから、スパッタ法やCVD法などにより支持基板1の上記一表面側の全面に絶縁層4を成膜し、その後、レジスト層および当該レジスト層上の絶縁層4をリフトオフすればよい。   After the above-described transfer step, the structure shown in FIG. 1D is obtained by performing the insulating layer forming step of forming the insulating layer 4 having the above-described opening 4a on the one surface side of the support substrate 1. Here, in the insulating layer forming step, for example, after forming a resist layer covering a portion other than the region where the insulating layer 4 is to be formed on the one surface side of the supporting substrate 1, the supporting substrate 1 is formed by sputtering or CVD. The insulating layer 4 may be formed on the entire surface on the one surface side, and then the resist layer and the insulating layer 4 on the resist layer may be lifted off.

上述の絶縁層形成工程の後、支持基板1の上記一表面側に上部電極33を形成する上部電極形成工程を行うことによって、図1(e)に示す構造を得る。上部電極形成工程では、スパッタ法やEB蒸着法やCVD法などにより上部電極33を成膜してから、フォトリソグラフィ技術およびエッチング技術を利用して所定形状にパターニングすればよい。   After the above-described insulating layer forming step, the upper electrode forming step of forming the upper electrode 33 on the one surface side of the support substrate 1 is performed, thereby obtaining the structure shown in FIG. In the upper electrode formation step, the upper electrode 33 may be formed by sputtering, EB vapor deposition, CVD, or the like, and then patterned into a predetermined shape using a photolithography technique and an etching technique.

上述の上部電極形成工程の後、フォトリソグラフィ技術およびエッチング技術を利用して支持基板1に厚み方向に貫通する空洞部1aを形成する空洞部形成工程を行うことによって、図1(f)に示す構造のBAW共振装置を得ることができる。なお、空洞部形成工程において単結晶MgO基板からなる支持基板1に空洞部1aを形成する際のエッチャントとしては、燐酸などを用いればよい。   After the above-described upper electrode formation step, a cavity portion forming step is performed in which a cavity portion 1a penetrating in the thickness direction is formed in the support substrate 1 by using a photolithography technique and an etching technique, as shown in FIG. A BAW resonance device having a structure can be obtained. Note that phosphoric acid or the like may be used as an etchant when forming the cavity 1a in the support substrate 1 made of a single crystal MgO substrate in the cavity formation process.

なお、上述のBAW共振装置の製造にあたっては、上述の支持基板1および圧電層形成基板10それぞれウェハ状のものを用いてウェハレベルで多数のBAW共振装置を形成した後、ダイシング工程で個々のBAW共振装置に分割すればよい。   In the manufacture of the above-described BAW resonance device, a large number of BAW resonance devices are formed at the wafer level using the support substrate 1 and the piezoelectric layer-forming substrate 10 described above, respectively. What is necessary is just to divide | segment into a resonance apparatus.

以上説明した本実施形態のBAW共振装置の製造方法によれば、圧電層32を支持基板1に比べて当該圧電層32との格子整合性の良い圧電層形成用基板10の上記一表面側に形成する圧電層形成工程と、圧電層形成基板10の上記一表面と支持基板1の上記一表面側に形成した下部電極31との間に圧電層32が位置するように支持基板1の上記一表面側に圧電層形成基板10を配置し、圧電層形成基板10を透過するレーザ光を圧電層形成基板10の上記他表面側から照射し圧電層32と圧電層形成基板10における圧電層32側の界面で吸収させて圧電層32を支持基板1の上記一表面側に転写する転写工程とを備えるので、圧電層32の結晶性を向上でき高品質の圧電層32を得ることができるとともに圧電層形成基板10の再利用が可能であり、しかも、圧電層形成基板10に形成した圧電層32を支持基板1側へ転写するための工程はレーザ光を照射して圧電層32を転写する転写工程だけでよいから、従来のように接合工程と剥離工程との2つの工程を必要とする場合に比べて製造工程の簡略化を図れる。   According to the method for manufacturing the BAW resonance device of the present embodiment described above, the piezoelectric layer 32 is placed on the one surface side of the piezoelectric layer forming substrate 10 having better lattice matching with the piezoelectric layer 32 than the support substrate 1. The piezoelectric layer forming step to be formed, and the piezoelectric layer 32 is positioned between the one surface of the piezoelectric layer forming substrate 10 and the lower electrode 31 formed on the one surface side of the supporting substrate 1. The piezoelectric layer forming substrate 10 is disposed on the front surface side, and laser light transmitted through the piezoelectric layer forming substrate 10 is irradiated from the other surface side of the piezoelectric layer forming substrate 10 to the piezoelectric layer 32 and the piezoelectric layer 32 side of the piezoelectric layer forming substrate 10. And the transfer step of transferring the piezoelectric layer 32 to the one surface side of the support substrate 1 by absorbing the piezoelectric layer 32, so that the crystallinity of the piezoelectric layer 32 can be improved and a high-quality piezoelectric layer 32 can be obtained. Reuse of layered substrate 10 In addition, the process for transferring the piezoelectric layer 32 formed on the piezoelectric layer forming substrate 10 to the support substrate 1 side is only a transfer process for transferring the piezoelectric layer 32 by irradiating the laser beam. As described above, the manufacturing process can be simplified as compared with the case where two processes of the joining process and the peeling process are required.

また、本実施形態のBAW共振装置の製造方法では、圧電層32の圧電材料が鉛系圧電材料であり、圧電層形成基板10として、単結晶MgO基板もしくは単結晶STO基板を用い、支持基板1として単結晶Si基板を用いるので、圧電層32の結晶性を向上できるとともに支持基板1の低コスト化を図れる。   Further, in the method of manufacturing the BAW resonator according to this embodiment, the piezoelectric material of the piezoelectric layer 32 is a lead-based piezoelectric material, and a single crystal MgO substrate or a single crystal STO substrate is used as the piezoelectric layer forming substrate 10. Therefore, the crystallinity of the piezoelectric layer 32 can be improved and the cost of the support substrate 1 can be reduced.

ところで、圧電層32の圧電材料は、鉛系圧電材料に限らず、例えば、鉛フリーのKNN(ニオブ酸カリウムナトリウム)や、KN、NN、KNNに不純物(例えば、Li,Nb,Ta,Sb,Cuなど)を添加したものでもよい。また、上述のBAW共振装置の製造方法において、圧電層形成工程よりも前に圧電層形成基板10の上記一表面上に、圧電層32の結晶配向を制御するためのPLTもしくはPTOもしくはSROからなるシード層を形成するシード層形成工程を設け、転写工程では、レーザ光を圧電層形成基板10とシード層との界面で吸収させて圧電層32とシード層との積層膜を転写するようにしてもよく、シード層形成工程を設けることにより、圧電層32の結晶性をより一層向上でき、しかも、転写工程では、レーザ光を圧電層形成基板10とシード層との界面で吸収させて圧電層32とシード層との積層膜を転写するので、圧電層形成基板10を再利用することができる。   By the way, the piezoelectric material of the piezoelectric layer 32 is not limited to the lead-based piezoelectric material. For example, lead-free KNN (potassium sodium niobate), KN, NN, and KNN have impurities (for example, Li, Nb, Ta, Sb, Cu or the like) may be added. Further, in the above-described method for manufacturing a BAW resonance device, PLT, PTO, or SRO for controlling the crystal orientation of the piezoelectric layer 32 is formed on the one surface of the piezoelectric layer forming substrate 10 before the piezoelectric layer forming step. A seed layer forming step for forming a seed layer is provided, and in the transfer step, laser light is absorbed at the interface between the piezoelectric layer forming substrate 10 and the seed layer to transfer the laminated film of the piezoelectric layer 32 and the seed layer. In addition, by providing the seed layer forming step, the crystallinity of the piezoelectric layer 32 can be further improved, and in the transfer step, the laser light is absorbed at the interface between the piezoelectric layer forming substrate 10 and the seed layer to thereby reduce the piezoelectric layer. Since the laminated film of 32 and the seed layer is transferred, the piezoelectric layer forming substrate 10 can be reused.

下記表1に圧電層32、シード層、下部電極31、基板(支持基板1、圧電層形成基板10)それぞれの材料の格子定数などを示す。   Table 1 below shows the lattice constants and the like of the materials of the piezoelectric layer 32, the seed layer, the lower electrode 31, and the substrate (support substrate 1, piezoelectric layer forming substrate 10).

Figure 0005060356
Figure 0005060356

なお、表1における「ap」は基板の一表面に平行な方向(基板材料のa軸方向に平行な方向)における格子間隔であり、成膜時の表面を(100)面とすることが好ましい正方晶系および立方晶系では、「a」と同じである。また、「cp」は基板の一表面に直交する方向(基板材料のc軸方向に平行な方向)の格子間隔であり、成膜時の表面を(100)面とすることが好ましい正方晶系および立方晶系では、「c」と同じである。また、斜方晶系のSROについては、成膜時の表面を(101)面とすることが好ましいが、SROは、図2(a)に示す結晶構造を有しており、(101)面が図2(b)に示すような二次元格子となるので、「ap」を隣り合うSr元素の格子点間の間隔ではなく、隣り合うRu元素とO元素との擬似格子点間の間隔として記載してあり、「cp」についても同様の間隔を記載してある。また、KNN、KN、NNそれぞれの「ap」,「cp」については、刊行物1〔Takehisa SAITO,et al,「Pulsed Laser Deposition of High-Quality (K,Na)NbO3Thin Films on SrTiO3 Substrate Using High-Density Ceramic Targets」,Japanese Journal of Applied Physics,Vol.43,No.9B,2004,pp.6627-6631〕において「Table II. Lattiice parameters of (K,Na)NbO3films with a psudo-tetoragonal unit cell」で「a」,「b」として報告されている値を記載してある。また、圧電層形成基板10の材料は、圧電層32の材料よりもヤング率が大きい材料を採用することが好ましい。 Note that “a p ” in Table 1 is a lattice interval in a direction parallel to one surface of the substrate (a direction parallel to the a-axis direction of the substrate material), and the surface at the time of film formation is the (100) plane. In the preferred tetragonal system and cubic system, it is the same as “a”. Further, “c p ” is a lattice spacing in a direction orthogonal to one surface of the substrate (a direction parallel to the c-axis direction of the substrate material), and the surface at the time of film formation is preferably a (100) plane. For systems and cubic systems, this is the same as “c”. Further, for orthorhombic SRO, the surface during film formation is preferably the (101) plane, but the SRO has the crystal structure shown in FIG. Becomes a two-dimensional lattice as shown in FIG. 2B, so that “a p ” is not the interval between the lattice points of the adjacent Sr element, but the interval between the pseudo lattice points of the adjacent Ru element and the O element. The same interval is also described for “c p ”. For “a p ” and “c p ” of KNN, KN, and NN, see publication 1 [Takehisa SAITO, et al, “Pulsed Laser Deposition of High-Quality (K, Na) NbO 3 Thin Films on SrTiO 3 Substrate Using High-Density Ceramic Targets ”, Japanese Journal of Applied Physics, Vol. 43, No. 9B, 2004, pp. 6627-6631],“ Table II. Lattiice parameters of (K, Na) NbO 3 films with a The values reported as “a” and “b” in the “psudo-tetoragonal unit cell” are described. Moreover, it is preferable to employ a material having a Young's modulus larger than that of the piezoelectric layer 32 as the material of the piezoelectric layer forming substrate 10.

(実施形態2)
本実施形態におけるBAW共振装置は、実施形態1にて図1(f)を参照しながら説明した空洞部1aを支持基板1に設ける代わりに、図3(e)に示すように、単結晶Si基板からなる支持基板1と共振子3の下部電極31との間に、音響ミラー(音響多層膜)2が形成されている点が相違する。要するに、本実施形態におけるBAW共振装置は、SMRを構成している。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
In the BAW resonator according to this embodiment, instead of providing the support substrate 1 with the cavity 1a described with reference to FIG. 1 (f) in the first embodiment, as shown in FIG. The difference is that an acoustic mirror (acoustic multilayer film) 2 is formed between the support substrate 1 made of a substrate and the lower electrode 31 of the resonator 3. In short, the BAW resonance device in the present embodiment constitutes an SMR. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

音響ミラー2は、相対的に音響インピーダンスの低い材料からなる低音響インピーダンス層21と相対的に音響インピーダンスの高い材料からなる高音響インピーダンス層22とが交互に積層されており、上述の下部電極31は、最上層の低音響インピーダンス層21上に形成されている。なお、低音響インピーダンス層21および高音響インピーダンス層22それぞれの膜厚は、圧電層32の共振周波数の弾性波(バルク弾性波)の波長の4分の1の値に設定すればよい。   The acoustic mirror 2 is formed by alternately laminating a low acoustic impedance layer 21 made of a material having a relatively low acoustic impedance and a high acoustic impedance layer 22 made of a material having a relatively high acoustic impedance. Is formed on the uppermost low acoustic impedance layer 21. The film thickness of each of the low acoustic impedance layer 21 and the high acoustic impedance layer 22 may be set to a value that is a quarter of the wavelength of the elastic wave (bulk elastic wave) at the resonance frequency of the piezoelectric layer 32.

本実施形態では、低音響インピーダンス層21の材料としてSiO、高音響インピーダンス層22の材料としてWを採用しているが、これらの材料は特に限定するものではなく、低音響インピーダンス層21の材料としては、例えば、Si,poly−Si,Al,ポリマーなどを採用してもよく、高音響インピーダンス層22の材料としては、例えば、Au,Mo,AlN,ZnOなどを採用してもよい。 In this embodiment, SiO 2 is used as the material of the low acoustic impedance layer 21 and W is used as the material of the high acoustic impedance layer 22. However, these materials are not particularly limited, and the material of the low acoustic impedance layer 21 is used. For example, Si, poly-Si, Al, polymer, or the like may be used. As the material of the high acoustic impedance layer 22, for example, Au, Mo, AlN, ZnO, or the like may be used.

なお、本実施形態におけるBAW共振装置では、共振子3の共振周波数を4GHzに設定してあり、下部電極31の厚みを100nm、圧電層32の厚みを300nm、上部電極33の厚みを100nm、低音響インピーダンス層21の厚みを400nm、高音響インピーダンス層22の厚みを350nmに設定してあるが、これらの数値は一例であって特に限定するものではない。また、共振周波数を3GHz〜5GHzの範囲で設計する場合には、圧電層32の厚みは200nm〜600nmの範囲で、低音響インピーダンス層21の厚みは250nm〜550nmの範囲で、高音響インピーダンス層22の厚みは200nm〜450nmの範囲で、それぞれ適宜設定すればよい。   In the BAW resonance device according to the present embodiment, the resonance frequency of the resonator 3 is set to 4 GHz, the thickness of the lower electrode 31 is 100 nm, the thickness of the piezoelectric layer 32 is 300 nm, the thickness of the upper electrode 33 is 100 nm, and low. Although the thickness of the acoustic impedance layer 21 is set to 400 nm and the thickness of the high acoustic impedance layer 22 is set to 350 nm, these numerical values are merely examples and are not particularly limited. When the resonance frequency is designed in the range of 3 GHz to 5 GHz, the piezoelectric layer 32 has a thickness of 200 nm to 600 nm, the low acoustic impedance layer 21 has a thickness of 250 nm to 550 nm, and the high acoustic impedance layer 22. The thickness of each may be set appropriately in the range of 200 nm to 450 nm.

以下、本実施形態のBAW共振装置の製造方法について図3を参照しながら説明するが、実施形態1の製造方法と同様の工程については説明を適宜省略する。   Hereinafter, the manufacturing method of the BAW resonator according to the present embodiment will be described with reference to FIG.

まず、圧電材料(例えば、PZTなど)からなる圧電層32を単結晶Si基板からなる支持基板1に比べて当該圧電層32との格子定数差が小さく格子整合性の良い単結晶MgO基板からなる圧電層形成用基板10(図3(a)参照)の一表面側(図3(a)における下面側)に形成する圧電層形成工程を行い、その後、図3(b)に示すように圧電層形成基板10の上記一表面側の圧電層32と支持基板1の上記一表面側の音響ミラー2上に形成した所定膜厚(例えば、100nm)のIn膜からなる下部電極31とを対向させてから、図3(c)に示すように圧電層形成基板10の上記一表面と支持基板1の上記一表面側に形成した下部電極31との間に圧電層32が位置するように支持基板1の上記一表面側に圧電層形成基板を配置し、圧電層形成基板10を透過するレーザ光を圧電層形成基板10の他表面側(図3(b)における上面側)から照射し圧電層32と圧電層形成基板10における圧電層32側の界面(ここでは、圧電層形成基板10と圧電層32との界面)で吸収させて圧電層32を支持基板1の上記一表面側に転写し圧電層形成基板10を支持基板1から離す転写工程を行うことによって、図3(c)に示す構造を得る。なお、支持基板1の上記一表面側に音響ミラー2を形成する音響ミラー形成工程は、転写工程よりも前に行えばよく、音響ミラー形成工程では、支持基板1の上記一表面側にSiO膜からなる低音響インピーダンス層21とW膜からなる高音響インピーダンス層22とを例えばスパッタ法やCVD法などにより交互に成膜することで音響ミラー(音響多層膜)2を形成すればよい。 First, the piezoelectric layer 32 made of a piezoelectric material (for example, PZT) is made of a single crystal MgO substrate having a small lattice constant difference from the piezoelectric layer 32 and having good lattice matching as compared with the support substrate 1 made of a single crystal Si substrate. A piezoelectric layer forming step is performed on one surface side (the lower surface side in FIG. 3A) of the piezoelectric layer forming substrate 10 (see FIG. 3A), and then, as shown in FIG. The piezoelectric layer 32 on the one surface side of the layer forming substrate 10 and the lower electrode 31 made of an In film having a predetermined film thickness (for example, 100 nm) formed on the acoustic mirror 2 on the one surface side of the support substrate 1 are opposed to each other. After that, as shown in FIG. 3C, the support substrate is arranged such that the piezoelectric layer 32 is located between the one surface of the piezoelectric layer forming substrate 10 and the lower electrode 31 formed on the one surface side of the support substrate 1. 1. A piezoelectric layer forming substrate is arranged on the one surface side of 1 Laser light passing through the piezoelectric layer forming substrate 10 is irradiated from the other surface side (the upper surface side in FIG. 3B) of the piezoelectric layer forming substrate 10 and the interface between the piezoelectric layer 32 and the piezoelectric layer 32 side of the piezoelectric layer forming substrate 10 ( Here, a transfer process is performed in which the piezoelectric layer 32 is absorbed at the interface between the piezoelectric layer forming substrate 10 and the piezoelectric layer 32 to transfer the piezoelectric layer 32 to the one surface side of the supporting substrate 1 and separate the piezoelectric layer forming substrate 10 from the supporting substrate 1. As a result, the structure shown in FIG. The acoustic mirror forming step for forming the acoustic mirror 2 on the one surface side of the support substrate 1 may be performed before the transfer step. In the acoustic mirror forming step, SiO 2 is formed on the one surface side of the support substrate 1. The acoustic mirror (acoustic multilayer film) 2 may be formed by alternately forming the low acoustic impedance layer 21 made of a film and the high acoustic impedance layer 22 made of a W film by, for example, sputtering or CVD.

上述の転写工程の後、支持基板1の上記一表面側に上述の開孔部4aを有する絶縁層4を形成する絶縁層形成工程を行うことによって、図3(d)に示す構造を得る。   After the above-described transfer process, the structure shown in FIG. 3D is obtained by performing an insulating layer forming process for forming the insulating layer 4 having the above-described opening 4a on the one surface side of the support substrate 1.

上述の絶縁層形成工程の後、支持基板1の上記一表面側に上部電極33を形成する上部電極形成工程を行うことによって、図3(e)に示す構造のBAW共振装置を得ることができる。   After the above-described insulating layer forming step, the upper electrode forming step of forming the upper electrode 33 on the one surface side of the support substrate 1 is performed, whereby the BAW resonance device having the structure shown in FIG. .

しかして、本実施形態のBAW共振装置の製造方法によれば、実施形態1と同様、圧電層32の結晶性を向上でき高品質の圧電層32を得ることができるとともに圧電層形成基板10の再利用が可能であり、しかも、圧電層形成基板10に形成した圧電層32を支持基板1側へ転写するための工程はレーザ光を照射して圧電層32を転写する転写工程だけでよいから、従来のように接合工程と剥離工程との2つの工程を必要とする場合に比べて製造工程の簡略化を図れる。   Thus, according to the method of manufacturing the BAW resonator of the present embodiment, the crystallinity of the piezoelectric layer 32 can be improved and a high-quality piezoelectric layer 32 can be obtained as in the first embodiment, and the piezoelectric layer forming substrate 10 can be obtained. In addition, the process for transferring the piezoelectric layer 32 formed on the piezoelectric layer forming substrate 10 to the support substrate 1 side is only a transfer process for transferring the piezoelectric layer 32 by irradiating laser light. Thus, the manufacturing process can be simplified as compared with the conventional case where two processes of the joining process and the peeling process are required.

ところで、上記各実施形態1,2で説明した製造方法において説明した転写工程においては、In膜からなる下部電極31が接合層を兼ねているが接合層は、少なくとも下部電極31の一部により構成されていればよい。また、接合層の材料はInに限らず、導電性エポキシ樹脂を採用してもよく、接合性および密着性を向上させることができる。また、転写工程において、圧電層形成基板10の上記他表面側から圧力を印加するようにすれば、接合性および密着性を向上させることができる。また、支持基板1がフレキシブルな基板であれば、圧電層32の応力を緩和することができる。   By the way, in the transfer process described in the manufacturing method described in the first and second embodiments, the lower electrode 31 made of an In film also serves as a bonding layer, but the bonding layer is configured by at least a part of the lower electrode 31. It only has to be done. Further, the material of the bonding layer is not limited to In, and a conductive epoxy resin may be adopted, and the bonding property and adhesion can be improved. Further, in the transfer step, if pressure is applied from the other surface side of the piezoelectric layer forming substrate 10, the bondability and adhesion can be improved. Moreover, if the support substrate 1 is a flexible substrate, the stress of the piezoelectric layer 32 can be relieved.

また、上記各実施形態1,2で説明したBAW共振装置を、3GHz以上の高周波帯においてカットオフ特性が急峻で且つ帯域幅の広いフィルタ、例えば、UWB用フィルタとして応用する場合には、複数個(例えば、8個)の共振子3を支持基板1の上記一表面側に形成し、これら複数個の共振子3をラダー型フィルタを構成するように接続すれば、UWB用フィルタの低コスト化および小型化を図れる。   When the BAW resonator described in the first and second embodiments is applied as a filter having a sharp cutoff characteristic and a wide bandwidth in a high frequency band of 3 GHz or more, for example, a UWB filter, a plurality of BAW resonators are used. If (for example, eight) resonators 3 are formed on the one surface side of the support substrate 1 and the plurality of resonators 3 are connected to form a ladder filter, the cost of the UWB filter can be reduced. And downsizing can be achieved.

実施形態1のBAW共振装置の製造方法を説明するための主要工程断面図である。FIG. 4 is a main process sectional view for explaining the method for manufacturing the BAW resonator according to the first embodiment. 表1の説明図である。It is explanatory drawing of Table 1. FIG. 実施形態2のBAW共振装置の製造方法を説明するための主要工程断面図である。FIG. 10 is a main process sectional view for illustrating the method for manufacturing the BAW resonator according to the second embodiment. 従来例を示すBAW共振装置の製造方法を説明するための主要工程断面図である。It is main process sectional drawing for demonstrating the manufacturing method of the BAW resonance apparatus which shows a prior art example.

符号の説明Explanation of symbols

1 支持基板
1a 空洞部
3 共振子
4 絶縁層
10 圧電層形成用基板
20 絶縁膜
31 下部電極
32 圧電層
33 上部電極
DESCRIPTION OF SYMBOLS 1 Support substrate 1a Cavity part 3 Resonator 4 Insulating layer 10 Substrate for piezoelectric layer formation 20 Insulating film 31 Lower electrode 32 Piezoelectric layer 33 Upper electrode

Claims (3)

支持基板と、支持基板の一表面側に形成された下部電極、下部電極における支持基板側とは反対側に形成され支持基板とは格子定数差のある圧電材料からなる圧電層、圧電層における下部電極側とは反対側に形成された上部電極を有する共振子とを備えたBAW共振装置の製造方法であって、圧電層を支持基板に比べて当該圧電層との格子整合性の良い圧電層形成用基板の一表面側に形成する圧電層形成工程と、圧電層形成基板の前記一表面と支持基板の前記一表面側に形成した下部電極との間に圧電層が位置するように支持基板の前記一表面側に圧電層形成基板を配置し、圧電層形成基板を透過するレーザ光を圧電層形成基板の他表面側から照射し圧電層と圧電層形成基板における圧電層側の界面で吸収させて圧電層を支持基板の前記一表面側に転写する転写工程とを備えることを特徴とするBAW共振装置の製造方法。   A support substrate, a lower electrode formed on one surface of the support substrate, a piezoelectric layer made of a piezoelectric material formed on the opposite side of the lower electrode from the support substrate side and having a lattice constant difference from the support substrate, and a lower portion of the piezoelectric layer A method of manufacturing a BAW resonance device including a resonator having an upper electrode formed on the side opposite to an electrode side, wherein the piezoelectric layer has a better lattice matching with the piezoelectric layer than the supporting substrate The piezoelectric substrate is formed on one surface side of the forming substrate, and the supporting substrate is positioned so that the piezoelectric layer is positioned between the one surface of the piezoelectric layer forming substrate and the lower electrode formed on the one surface side of the supporting substrate. A piezoelectric layer forming substrate is disposed on the one surface side of the substrate, and a laser beam transmitted through the piezoelectric layer forming substrate is irradiated from the other surface side of the piezoelectric layer forming substrate and absorbed at the interface between the piezoelectric layer and the piezoelectric layer forming substrate on the piezoelectric layer side. Let the piezoelectric layer on the support substrate Method for manufacturing a BAW resonator, characterized in that it comprises a transfer step of transferring to the side. 前記圧電材料が鉛系圧電材料であり、前記圧電層形成基板として、単結晶MgO基板もしくは単結晶STO基板を用い、前記支持基板として単結晶Si基板を用いることを特徴とする請求項1記載のBAW共振装置の製造方法。   The piezoelectric material is a lead-based piezoelectric material, a single crystal MgO substrate or a single crystal STO substrate is used as the piezoelectric layer forming substrate, and a single crystal Si substrate is used as the support substrate. A method of manufacturing a BAW resonance device. 前記圧電層形成工程よりも前に前記圧電層形成基板の前記一表面上にPLTもしくはPTOもしくはSROからなるシード層を形成するシード層形成工程を備え、前記転写工程では、前記レーザ光を前記圧電層形成基板と前記シード層との界面で吸収させて前記圧電層と前記シード層との積層膜を転写することを特徴とする請求項2記載のBAW共振装置の製造方法。   A seed layer forming step of forming a seed layer made of PLT, PTO, or SRO on the one surface of the piezoelectric layer forming substrate prior to the piezoelectric layer forming step; 3. The method of manufacturing a BAW resonance device according to claim 2, wherein the laminated film of the piezoelectric layer and the seed layer is transferred by absorption at an interface between the layer forming substrate and the seed layer.
JP2008076697A 2008-03-24 2008-03-24 Manufacturing method of BAW resonance device Expired - Fee Related JP5060356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076697A JP5060356B2 (en) 2008-03-24 2008-03-24 Manufacturing method of BAW resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076697A JP5060356B2 (en) 2008-03-24 2008-03-24 Manufacturing method of BAW resonance device

Publications (2)

Publication Number Publication Date
JP2009232283A JP2009232283A (en) 2009-10-08
JP5060356B2 true JP5060356B2 (en) 2012-10-31

Family

ID=41247147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076697A Expired - Fee Related JP5060356B2 (en) 2008-03-24 2008-03-24 Manufacturing method of BAW resonance device

Country Status (1)

Country Link
JP (1) JP5060356B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020132996A1 (en) * 2018-12-26 2020-07-02 天津大学 Single crystal piezoelectric film bulk acoustic resonator and manufacturing method thereof
WO2020132997A1 (en) * 2018-12-26 2020-07-02 天津大学 Single crystal piezoelectric thin film bulk acoustic wave resonator and forming method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399970B2 (en) 2010-03-31 2014-01-29 パナソニック株式会社 Ferroelectric device manufacturing method
JP5862368B2 (en) * 2012-02-28 2016-02-16 株式会社村田製作所 Method for manufacturing piezoelectric device
JP2013197522A (en) * 2012-03-22 2013-09-30 Ricoh Co Ltd Piezoelectric thin film element and method of manufacturing the same, and droplet discharge head using the piezoelectric thin film element, and ink jet recording device
JP6357730B2 (en) * 2013-02-05 2018-07-18 株式会社リコー Heating method, piezoelectric film and method for manufacturing piezoelectric element
WO2017026257A1 (en) * 2015-08-07 2017-02-16 株式会社Piezo Studio Method for manufacturing piezoelectric thin-film element
CN109802648B (en) * 2018-12-26 2023-02-17 天津大学 Single crystal piezoelectric film bulk acoustic resonator and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175614A (en) * 1984-09-21 1986-04-18 Nec Corp Manufacture of thin film piezoelectric vibrator
JPH0738363A (en) * 1993-05-18 1995-02-07 Matsushita Electric Ind Co Ltd Working method for electronic parts
JPH11163654A (en) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd Manufacture of reinforced piezo-electric substrate
JP2000357931A (en) * 1999-06-16 2000-12-26 Victor Co Of Japan Ltd Manufacture of composite piezoelectric oscillator
JP2003309303A (en) * 2002-04-18 2003-10-31 Canon Inc Method for manufacturing piezoelectric film type actuator, and method for manufacturing liquid injection head
US6964201B2 (en) * 2003-02-25 2005-11-15 Palo Alto Research Center Incorporated Large dimension, flexible piezoelectric ceramic tapes
JP4077805B2 (en) * 2004-04-23 2008-04-23 松下電器産業株式会社 Manufacturing method of resonator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020132996A1 (en) * 2018-12-26 2020-07-02 天津大学 Single crystal piezoelectric film bulk acoustic resonator and manufacturing method thereof
WO2020132997A1 (en) * 2018-12-26 2020-07-02 天津大学 Single crystal piezoelectric thin film bulk acoustic wave resonator and forming method therefor

Also Published As

Publication number Publication date
JP2009232283A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5060356B2 (en) Manufacturing method of BAW resonance device
JP4077805B2 (en) Manufacturing method of resonator
JP5080858B2 (en) Piezoelectric thin film resonator and filter
JP2008109414A (en) Piezoelectric thin film resonator and filter
US20070228880A1 (en) Piezoelectric thin film resonator
JP2006197147A (en) Piezoelectric thin-film resonator and filter using the same
JP4373936B2 (en) Thin film piezoelectric resonator and manufacturing method thereof
JP2007208728A (en) Piezoelectric thin-film resonator, filter, and method of manufacturing the piezoelectric thin-film resonator
JP2010147875A (en) Baw resonance device and method of manufacturing the same
JP5299676B2 (en) Piezoelectric thin film acoustic resonator and manufacturing method thereof
JP2008211392A (en) Resonator and manufacturing method thereof
JP5862368B2 (en) Method for manufacturing piezoelectric device
JP2010147874A (en) Baw resonance device and method of manufacturing the same
JP2010050736A (en) Resonator, and method of manufacturing the same
JP2005198117A (en) Electronic device formation structure, and manufacturing method of electronic device
JP2010147871A (en) Method of manufacturing baw resonance device
JP2007288504A (en) Piezoelectric thin film resonator
JP5202252B2 (en) Acoustic wave resonator
JP2008211385A (en) Manufacturing method of piezoelectric thin film, resonator, and filter for uwb using the same
JP2010028772A (en) Baw resonator and uwb filter
JP2007208727A (en) Piezoelectric thin-film resonator, filter, and method of manufacturing the piezoelectric thin-film resonator
JP5020612B2 (en) Piezoelectric thin film device
JP2009290364A (en) Baw resonance device, and manufacturing method thereof
JP2009290367A (en) Baw resonance device and method of manufacturing the same
JP2009290366A (en) Baw filter and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees