JP5059506B2 - Plain bearing - Google Patents

Plain bearing Download PDF

Info

Publication number
JP5059506B2
JP5059506B2 JP2007189396A JP2007189396A JP5059506B2 JP 5059506 B2 JP5059506 B2 JP 5059506B2 JP 2007189396 A JP2007189396 A JP 2007189396A JP 2007189396 A JP2007189396 A JP 2007189396A JP 5059506 B2 JP5059506 B2 JP 5059506B2
Authority
JP
Japan
Prior art keywords
groove
bearing
width
sliding surface
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007189396A
Other languages
Japanese (ja)
Other versions
JP2009024798A (en
Inventor
和夫 丸山
剛 柳瀬
邦雄 眞木
理 馬渡
純一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2007189396A priority Critical patent/JP5059506B2/en
Publication of JP2009024798A publication Critical patent/JP2009024798A/en
Application granted granted Critical
Publication of JP5059506B2 publication Critical patent/JP5059506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、建設用機械の軸受のように、比較的寸法が大きくて軸受面である内周面に高い面圧が作用するとともに、軸受に対する軸の摺動が比較的低速度の揺動運動である軸受として好適に用いられるすべり軸受に関する。   The present invention, like a bearing of a construction machine, has a relatively large size and a high surface pressure acting on an inner peripheral surface as a bearing surface, and the shaft slides relative to the bearing at a relatively low speed. The present invention relates to a slide bearing that is suitably used as a bearing.

一般に、油圧ショベル等の建設用機械が備えるアームの関節部分は、軸受に挿入された軸が、ある程度の回動角度の範囲で繰り返し相対的に揺動するようになっており、20MPa以上の高い面圧を受ける。このため、この種の軸受としては、耐摩耗性に優れた材料を用いたすべり軸受が使用され、摺動面には粘度の高い潤滑油やグリース、ワックス等が供給されている。このようなすべり軸受にあっては、高い面圧を受けても金属接触が抑えられて摩耗しにくく円滑な軸受作用を発揮する上で、摺動面への潤滑油の供給が十分になされることが求められる。このため、すべり軸受の材料としては炭素鋼の熱処理品や高力黄銅等の材料が適用され、近年では、焼結材料の適用も具体化されている(特許文献1参照)。   Generally, the joint portion of an arm provided in a construction machine such as a hydraulic excavator is such that the shaft inserted into the bearing repeatedly swings relatively within a range of a certain rotation angle, and is higher than 20 MPa. Receive surface pressure. For this reason, as this type of bearing, a sliding bearing using a material having excellent wear resistance is used, and lubricating oil, grease, wax, or the like having high viscosity is supplied to the sliding surface. In such a sliding bearing, even if it is subjected to a high surface pressure, the metal contact is suppressed and it is difficult to wear, and the lubricating oil is sufficiently supplied to the sliding surface in order to exert a smooth bearing action. Is required. For this reason, a material such as a heat treated product of carbon steel or high-strength brass is applied as a material for the slide bearing, and in recent years, application of a sintered material has also been realized (see Patent Document 1).

上記の材料や潤滑油は優れたものであるが、よりいっそうの軸受の寿命延長を目的として、軸受の内周面に、周方向に交差する方向に延びる複数の傾斜溝を形成し、その傾斜溝内に貯留する潤滑油を軸の回転に伴って摺動面に供給するようにしたすべり軸受も適用されている(特許文献2参照)。   The above materials and lubricants are excellent, but for the purpose of further extending the life of the bearing, a plurality of inclined grooves extending in the direction intersecting the circumferential direction are formed on the inner peripheral surface of the bearing, and the inclination thereof A sliding bearing is also applied in which lubricating oil stored in the groove is supplied to the sliding surface as the shaft rotates (see Patent Document 2).

特開2003−222133号公報JP 2003-222133 A 特開2006−009846号公報JP 2006-009846 A

上記特許文献2に記載される軸受の傾斜溝は、その傾斜溝内に貯留する潤滑油が、回転する軸によって発生する吸引作用によって引き出され、軸の回転方向に隣接する山部の摺動面に流動して、その摺動面を潤滑するといった作用効果を得るためのもので、潤滑油の貯留量が増加して供給量も十分であるとされている。ところが、ある条件下においては、潤滑油が摺動面に十分に供給されない場合が起こることが判明した。その理由としては、傾斜溝内から隣の山部の摺動面に供給される潤滑油の量が、その摺動面全域を潤滑するには不足する場合があるからと推測された。これにより、摺動面において潤滑油量が不足する箇所が生じ、その箇所で金属接触となって、軸受の摩耗が進行することがわかった。   The inclined groove of the bearing described in Patent Document 2 is a sliding surface of a mountain portion adjacent to the rotation direction of the shaft, in which the lubricating oil stored in the inclined groove is drawn by the suction action generated by the rotating shaft. It is said that the amount of lubricating oil stored is increased and the supply amount is sufficient. However, it has been found that under certain conditions, the lubricating oil may not be sufficiently supplied to the sliding surface. The reason was presumed that the amount of lubricating oil supplied from the inside of the inclined groove to the sliding surface of the adjacent peak portion may be insufficient to lubricate the entire sliding surface. As a result, it was found that there was a portion where the amount of lubricating oil was insufficient on the sliding surface, and metal contact was made at that portion, and wear of the bearing progressed.

また、この種の軸受は、軸方向を横向きにして使用される場合が多い。このとき、軸が軸受内を回転するため、潤滑油は軸の回転方向へと運ばれる。軸の回転停止時では、軸受下部が重力により高い面圧を受けるため、潤滑油量が不足していると、軸と軸受が金属接触する。そのため、潤滑油が軸受上部へ運ばれる場合では、軸の回転停止時に軸受下部の潤滑油が不足するおそれがあることから、軸受上部に運ばれた潤滑油を軸受下部に戻さなければならない。しかしながら、上記文献に記載のすべり軸受では、軸受下部へ潤滑油が戻りにくいため、軸の回転停止時に軸受下部で潤滑油量が不足してしまい、軸と軸受が金属接触をするおそれがある。   In addition, this type of bearing is often used with the axial direction set sideways. At this time, since the shaft rotates in the bearing, the lubricating oil is carried in the rotational direction of the shaft. When the rotation of the shaft is stopped, the lower portion of the bearing receives a high surface pressure due to gravity. Therefore, if the amount of lubricating oil is insufficient, the shaft and the bearing are in metal contact. For this reason, when the lubricating oil is carried to the upper part of the bearing, the lubricating oil carried to the upper part of the bearing must be returned to the lower part of the bearing because the lubricating oil in the lower part of the bearing may be insufficient when the rotation of the shaft is stopped. However, in the slide bearing described in the above document, the lubricating oil is unlikely to return to the lower portion of the bearing, so that when the shaft stops rotating, the amount of lubricating oil is insufficient at the lower portion of the bearing, and the shaft and the bearing may come into metal contact.

よって本発明は、周方向に交差する方向に延びる複数の溝に貯留する潤滑油が、軸の回転に伴って、その溝に隣接する山部の摺動面の全域に十分に供給され、これによって優れた潤滑効果が得られ、高い面圧を受けても金属接触が抑えられて摩耗しにくく円滑な軸受作用を長期にわたって発揮させることができるすべり軸受を提供することを目的とする。   Therefore, according to the present invention, the lubricating oil stored in the plurality of grooves extending in the direction intersecting the circumferential direction is sufficiently supplied to the entire sliding surface of the mountain portion adjacent to the groove as the shaft rotates. It is an object of the present invention to provide a sliding bearing that can provide an excellent lubricating effect and that can prevent metal wear even when subjected to high surface pressure and is hard to wear and can exhibit a smooth bearing action over a long period of time.

本発明は、軸孔に挿入される軸を回転自在に支持し、その軸が摺動する内周面に、周方向に交差する方向に延びる複数の直線的な傾斜溝が周方向に間隔をおいて形成され、これら傾斜溝に潤滑油が供給されるすべり軸受であって、前記傾斜溝が、下記(A)〜(D)の条件で形成され、
(A)周方向と直交する方向に対して15°〜50゜の範囲で傾斜している。
(B)周方向の溝幅Bが1.19〜5mm。
(C)隣接する当該傾斜溝間の山部の表面である摺動面の周方向の幅Aが1〜7mm。
(D)前記山部の摺動面の幅Aと前記溝幅Bとの比A/Bが0.5〜4.05
さらに、前記すべり軸受の内周および外周に少なくとも一対の状態で環状溝が形成されるとともに、前記内周に形成された環状溝は前記傾斜溝に連通しており、前記一対の環状溝を互いに連通させる貫通孔が少なくとも1つ形成されることを特徴としている。
In the present invention, a shaft inserted into a shaft hole is rotatably supported, and a plurality of linear inclined grooves extending in a direction crossing the circumferential direction are spaced apart in the circumferential direction on an inner peripheral surface on which the shaft slides. A sliding bearing in which lubricating oil is supplied to these inclined grooves, wherein the inclined grooves are formed under the following conditions (A) to (D):
It is inclined in the range of 15 ° to 50 ° with respect (A) direction perpendicular to the circumferential direction.
(B) The circumferential groove width B is 1.19 to 5 mm.
(C) The width A in the circumferential direction of the sliding surface, which is the surface of the crest between adjacent inclined grooves, is 1 to 7 mm.
(D) Ratio A / B of the width A of the sliding surface of the peak portion and the groove width B is 0.5 to 4.05 .
Further, at least a pair of annular grooves are formed on the inner periphery and the outer periphery of the slide bearing, and the annular grooves formed on the inner periphery communicate with the inclined grooves, and the pair of annular grooves are mutually connected. At least one through-hole to be communicated is formed.

上記条件のうち、(A)の条件は、摺動方向と直交する仮想線が軸受内周のどの位置においても、摺動面と前記傾斜溝とを交差するように傾斜溝の傾斜角度、傾斜溝の幅および摺動面の幅を設定され、軸受内周のどの部分に軸の荷重が掛かっても、軸面は常に摺動面と傾斜溝との両方に接して、摺動面に潤滑油を常時供給する作用を得るための条件である。   Among the above conditions, the condition (A) is that the inclination angle and inclination of the inclined groove are such that the imaginary line orthogonal to the sliding direction intersects the sliding surface and the inclined groove at any position on the inner circumference of the bearing. The width of the groove and the width of the sliding surface are set, and no matter what part of the inner circumference of the bearing is subjected to the shaft load, the shaft surface always contacts both the sliding surface and the inclined groove, and the sliding surface is lubricated. This is a condition for obtaining an effect of constantly supplying oil.

また、上記条件のうち、(B)〜(D)を満たした相乗作用により、本発明に係る傾斜溝は従来よりも細くしても摺動面に十分な潤滑油が供給される。このような傾斜溝により、軸の回転に伴って溝内から引き出されて隣の山部の摺動面に流動する潤滑油の量は、その山部の全域にいきわたる量が確保され、このため十分な潤滑効果を得ることができる。すなわち、これらの条件は、内周面に形成する傾斜溝により摺動面を十分に潤滑するために最適化されたものである。   In addition, among the above conditions, due to the synergistic action satisfying (B) to (D), sufficient lubricating oil is supplied to the sliding surface even if the inclined groove according to the present invention is thinner than the conventional one. With such an inclined groove, the amount of lubricating oil that is drawn out of the groove with the rotation of the shaft and flows to the sliding surface of the adjacent peak portion is ensured over the entire peak portion. A sufficient lubricating effect can be obtained. That is, these conditions are optimized to sufficiently lubricate the sliding surface by the inclined grooves formed on the inner peripheral surface.

すなわち、本発明のすべり軸受は、特許文献2のすべり軸受を改良したものであり、上記(B)〜(D)の条件により、摺動面全域へ十分な量の潤滑油の供給を果たしたものである。また、摺動面の周方向の幅Aおよび前記摺動面の幅Aと前記溝幅Bとの比A/Bを最適化したことにより、本発明のすべり軸受は、従来のすべり軸受よりも周方向の溝幅Bを狭く、また傾斜溝の傾斜角度を拡大設定でき、摺動面が受ける面圧を低減させたものである。なお、本発明で言う溝幅Bおよび摺動面の幅Aは、上記のように周方向の幅であり、溝の延びる方向に対して直交する方向の幅ではない。   That is, the sliding bearing of the present invention is an improvement of the sliding bearing of Patent Document 2, and a sufficient amount of lubricating oil was supplied to the entire sliding surface under the above conditions (B) to (D). Is. In addition, by optimizing the circumferential width A of the sliding surface and the ratio A / B of the width A of the sliding surface and the groove width B, the sliding bearing of the present invention is more than the conventional sliding bearing. The groove width B in the circumferential direction can be narrowed, the inclination angle of the inclined groove can be set to be enlarged, and the surface pressure applied to the sliding surface is reduced. The groove width B and the sliding surface width A referred to in the present invention are the widths in the circumferential direction as described above, and are not the widths in the direction orthogonal to the extending direction of the grooves.

さらに、本発明のすべり軸受では、内周および外周に貫通孔により連通した一対の環状溝が形成されている。この環状溝と貫通孔により、軸の回転で軸受上部に貯留した潤滑油を、軸の回転を停止させたときに高い面圧を受ける軸受下部へ円滑に戻すことができる。このため、潤滑油を摺動面にまんべんなく供給でき、軸の回転停止時の潤滑油不足による軸受下部の金属接触が抑えられる。この結果、摺動面の潤滑をより効率的に行い、かつ、潤滑油の給脂期間を例えば2倍以上に延ばすことが可能となり、すべり軸受の長寿命化を図ることができる。   Furthermore, in the plain bearing of the present invention, a pair of annular grooves communicated by a through hole are formed on the inner periphery and the outer periphery. Due to the annular groove and the through hole, the lubricating oil stored in the upper part of the bearing by the rotation of the shaft can be smoothly returned to the lower part of the bearing that receives a high surface pressure when the rotation of the shaft is stopped. For this reason, lubricating oil can be evenly supplied to the sliding surface, and metal contact at the bottom of the bearing due to lack of lubricating oil when the rotation of the shaft is stopped can be suppressed. As a result, the sliding surface can be lubricated more efficiently, and the lubrication period of the lubricating oil can be extended, for example, twice or more, and the life of the slide bearing can be extended.

また、本発明のすべり軸受は焼結合金製であり、すべり軸受の傾斜溝の深さdが0.1〜3mmであることが好ましい。すべり軸受を焼結合金で製作することにより、原料である金属粉末を金型を用いて成形する際に傾斜溝を容易に形成することができるため、効率よく生産することができる。また、傾斜溝が上記条件の深さであると、傾斜溝内に潤滑油が確実に貯留し、かつ、潤滑油を摺動面へ十分に供給できる。   Moreover, the slide bearing of the present invention is made of a sintered alloy, and the depth d of the inclined groove of the slide bearing is preferably 0.1 to 3 mm. By manufacturing the sliding bearing with a sintered alloy, the inclined groove can be easily formed when the metal powder as a raw material is formed using a mold, and therefore, it can be efficiently produced. Further, when the inclined groove has the depth of the above condition, the lubricating oil can be reliably stored in the inclined groove, and the lubricating oil can be sufficiently supplied to the sliding surface.

本発明によれば、軸受の内周面に形成する潤滑油貯留用の溝の、周方向に直交する方向に対する傾斜角度、周方向の溝幅、溝間の摺動面の周方向の幅、溝と摺動面との周方向の幅の比、内周面に占める面積率を、その溝から摺動面全域に十分に潤滑油が供給されるように最適化したので、優れた潤滑効果が得られ、高い面圧を受けても金属接触が抑えられて摩耗し難く円滑な軸受作用を発揮させることができる。また、すべり軸受の内周および外周に貫通孔により連通した一対の環状溝を形成することにより、軸の回転で上部に貯留した潤滑油を軸の回転を停止したときに高い面圧を受ける軸受下部へ円滑に戻すことができる。これらの結果、摺動面の潤滑をより効率的に行い、かつ、潤滑油の給脂時間を延長することが可能になり、すべり軸受の長寿命化が図れるといった効果を奏する。   According to the present invention, the groove for lubricating oil storage formed on the inner peripheral surface of the bearing, the inclination angle with respect to the direction orthogonal to the circumferential direction, the groove width in the circumferential direction, the circumferential width of the sliding surface between the grooves, The ratio of the circumferential width between the groove and the sliding surface, and the area ratio of the inner peripheral surface are optimized so that sufficient lubricating oil is supplied from the groove to the entire sliding surface. Even when subjected to a high surface pressure, the metal contact is suppressed, and it is difficult to wear and a smooth bearing function can be exhibited. Also, by forming a pair of annular grooves communicating with through holes on the inner and outer peripheries of the slide bearing, the bearing that receives high surface pressure when the rotation of the shaft stops the lubricating oil stored in the upper part due to the rotation of the shaft. It can be smoothly returned to the lower part. As a result, it is possible to lubricate the sliding surface more efficiently, extend the lubrication time of the lubricating oil, and increase the life of the slide bearing.

以下、図面を参照して本発明の一実施形態を説明する。
図1および図2は、一実施形態の円筒状のすべり軸受を示しており、図1は斜視図、図2は側面図である。図2の上側は、軸受1の側面の断面図を表している。また、図3は、軸受1の内周面10の展開図である。この軸受1の内周面10には、周方向(図2の矢印Rで示す方向)に交差する方向に延びる複数の直線的な傾斜溝12が、周方向に等間隔をおいて形成されている。また、軸受1の内周および外周には周方向に延びる環状の内周溝15および外周溝16が全周にわたって1つずつ形成されている。これら内周溝15と外周溝16は軸受1の軸方向のほぼ中央に形成されている。そして、軸受1には、これら内周溝15と外周溝16とを連通する貫通孔17が形成されている。この場合、貫通孔17は、互いに180°位相がずれた位置に1つずつ、計2つ形成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a cylindrical plain bearing of one embodiment, FIG. 1 is a perspective view, and FIG. 2 is a side view. The upper side of FIG. 2 represents a cross-sectional view of the side surface of the bearing 1. FIG. 3 is a development view of the inner peripheral surface 10 of the bearing 1. A plurality of linear inclined grooves 12 extending in a direction intersecting the circumferential direction (direction indicated by arrow R in FIG. 2) are formed on the inner peripheral surface 10 of the bearing 1 at equal intervals in the circumferential direction. Yes. Further, annular inner circumferential grooves 15 and outer circumferential grooves 16 extending in the circumferential direction are formed on the inner circumference and the outer circumference of the bearing 1 one by one over the entire circumference. The inner circumferential groove 15 and the outer circumferential groove 16 are formed at substantially the center in the axial direction of the bearing 1. The bearing 1 is formed with a through hole 17 that communicates the inner and outer circumferential grooves 15 and 16. In this case, a total of two through holes 17 are formed, one at a position that is 180 ° out of phase with each other.

図4および図5は軸受1の軸孔11に軸20が回転自在に挿入された状態の断面図であり、図4は傾斜溝12を示す断面図、図5は内周溝15および外周溝16を示す断面図である。軸20は、傾斜溝12間の山部13の表面である摺動面14を摺動しながら揺動運動する。   4 and 5 are sectional views showing a state in which the shaft 20 is rotatably inserted into the shaft hole 11 of the bearing 1, FIG. 4 is a sectional view showing the inclined groove 12, and FIG. 5 is an inner circumferential groove 15 and an outer circumferential groove. FIG. The shaft 20 swings while sliding on the sliding surface 14 which is the surface of the peak 13 between the inclined grooves 12.

この軸受1は、内周面の直径が20〜150mm程度、軸方向高さが20〜150mm程度であり、油圧ショベル等の建設用機械が備えるアームの関節部分において、主に軸方向を横向きに配置されて、横方向に配置された軸20の荷重をその内周面10で支承し、20MPa以上の高面圧下で、最大摺動速度が20〜50mm/s程度の速度となる揺動運動に使用されるものである。このような軸20の揺動運動は、揺動角の両端で静止するとともに、運動方向が切り替わるというように動作する。すなわち、静止状態と摺動状態とを繰り返しながら運転される。したがって、この種のすべり軸受においては、動摩擦係数とともに、静止摩擦係数の両者を低減することが要求される。特に静止摩擦係数は動摩擦係数に比して値が大きいため、金属接触を防止するためには静止摩擦係数を低減することが重要である。   The bearing 1 has an inner peripheral surface with a diameter of about 20 to 150 mm and an axial height of about 20 to 150 mm. The joint 1 of an arm provided in a construction machine such as a hydraulic excavator mainly extends in the axial direction laterally. The swinging motion in which the load of the shaft 20 disposed in the lateral direction is supported by the inner peripheral surface 10 and the maximum sliding speed is about 20 to 50 mm / s under a high surface pressure of 20 MPa or more. Is used. Such a swinging motion of the shaft 20 operates so as to stop at both ends of the swinging angle and switch the motion direction. That is, it is operated while repeating a stationary state and a sliding state. Therefore, in this type of plain bearing, it is required to reduce both the dynamic friction coefficient and the static friction coefficient. In particular, since the static friction coefficient is larger than the dynamic friction coefficient, it is important to reduce the static friction coefficient in order to prevent metal contact.

本実施形態の軸受1は、前出の特許文献2のすべり軸受を改良したもので、特許文献2のすべり軸受と同様に、軸受1の内周面10に設けた傾斜溝12に潤滑油を貯留し、この潤滑油が、回転する軸により発生する吸引作用によって引き出され、軸20の回転方向に隣接する山部13の表面である摺動面14に流動して、その摺動面14を潤滑する作用を得るものである。   The bearing 1 of the present embodiment is an improvement of the above-described sliding bearing of Patent Document 2, and, like the sliding bearing of Patent Document 2, lubricating oil is applied to the inclined groove 12 provided on the inner peripheral surface 10 of the bearing 1. The lubricating oil is stored and drawn out by the suction action generated by the rotating shaft, and flows to the sliding surface 14 which is the surface of the mountain portion 13 adjacent to the rotating direction of the shaft 20. It obtains a lubricating action.

また、軸受1は、軸20の摺動方向(図2の矢印R方向)と直交する仮想線が軸受内周のどの位置においても前記傾斜溝12と摺動面14とに交差するように、傾斜溝12の傾斜角度θ、傾斜溝12の幅および摺動面14の幅が設定され、軸受内周のどの部分に軸20の荷重が掛かっても、軸面は常に傾斜溝12と摺動面14との両方に接して、摺動面14に潤滑油を常時供給する作用を有する。また、傾斜溝12は、軸受1の外部から異物が浸入した場合に、異物の逃げ場として作用し、異物が摺動面14に浸入することを防止して、異物による摩耗を防止する効果も有する。   Further, the bearing 1 is such that an imaginary line orthogonal to the sliding direction of the shaft 20 (the direction of the arrow R in FIG. 2) intersects the inclined groove 12 and the sliding surface 14 at any position on the inner periphery of the bearing. The inclination angle θ of the inclined groove 12, the width of the inclined groove 12, and the width of the sliding surface 14 are set, and the shaft surface always slides with the inclined groove 12 regardless of which part of the inner periphery of the bearing is subjected to the load of the shaft 20. In contact with both of the surfaces 14, the lubricating oil is constantly supplied to the sliding surface 14. In addition, the inclined groove 12 acts as a refuge for foreign matter when foreign matter enters from the outside of the bearing 1, and has an effect of preventing foreign matter from entering the sliding surface 14 and preventing wear due to the foreign matter. .

上記の作用を有する傾斜溝12において、傾斜溝12の間隔すなわち摺動面14の幅が広いと、摺動面14が受ける面圧が低下するが、その一方で広すぎると摺動面14全域への良好な潤滑油の供給がなされなくなる。また、摺動面14の幅が狭いと、潤滑油の供給を行い易くなるが、軸20の荷重を受ける摺動面14の面積が減少するため、摺動面14が受ける面圧が増大するので金属接触が生じ易くなる。これらの観点から本発明者等が検討した結果、摺動面14の周方向の幅A(摺動面の幅A)を1〜7mmとすると、摺動面14が受ける面圧が著しく増大することなく、摺動面14全域への良好な潤滑油の供給が果たせることことを見出した。したがって、本実施形態の軸受1は、摺動面14の幅Aを1〜7mmとする。   In the inclined groove 12 having the above action, if the interval between the inclined grooves 12, that is, the width of the sliding surface 14 is wide, the surface pressure received by the sliding surface 14 decreases. Good lubricating oil will not be supplied to Further, if the width of the sliding surface 14 is narrow, it becomes easy to supply the lubricating oil, but the area of the sliding surface 14 that receives the load of the shaft 20 decreases, so the surface pressure that the sliding surface 14 receives increases. Therefore, metal contact is likely to occur. As a result of studies by the present inventors from these viewpoints, when the circumferential width A of the sliding surface 14 (sliding surface width A) is 1 to 7 mm, the surface pressure received by the sliding surface 14 is significantly increased. Thus, it was found that good lubricating oil can be supplied to the entire sliding surface 14. Therefore, in the bearing 1 of the present embodiment, the width A of the sliding surface 14 is 1 to 7 mm.

傾斜溝12の幅については、狭すぎると潤滑油の貯留量が乏しくなり、摺動面14への潤滑油の十分な供給が果たせなくなる。その一方で傾斜溝12の幅が広すぎると、潤滑油が漏洩し易くなるとともに、軸20の荷重を受ける摺動面14の面積が減少するため、摺動面14が受ける面圧が大きくなることにより金属接触が生じ易くなり、動摩擦係数が増加する。これらの観点から検討した結果、摺動面14の幅Aを上記のように設定した場合、傾斜溝12の周方向の幅B(溝幅B)を1.19〜5mmと、特許文献2よりも狭く設定しても、摺動面14への潤滑油の十分な供給が果たせ、動摩擦係数を低減できることを見出した。このことから、本実施形態の軸受1は、溝幅Bを1.19〜5mmとする。また、軸受1においては、横幅Bを上記のように特許文献2のものよりも狭く設定した場合においても、摺動面14が受ける面圧は特許文献2のものよりも低減でき、より効果的に摺動面14全域への良好な潤滑油の供給が果たせる。
If the width of the inclined groove 12 is too narrow, the amount of lubricating oil stored becomes insufficient, and sufficient supply of lubricating oil to the sliding surface 14 cannot be achieved. On the other hand, when the width of the inclined groove 12 is too wide, the lubricating oil is liable to leak and the area of the sliding surface 14 that receives the load of the shaft 20 decreases, so that the surface pressure received by the sliding surface 14 increases. This facilitates metal contact and increases the dynamic friction coefficient. As a result of examination from these viewpoints, when the width A of the sliding surface 14 is set as described above, the circumferential width B (groove width B) of the inclined groove 12 is 1.19 to 5 mm, from Patent Document 2. However, it has been found that even if it is set narrowly, the lubricating oil can be sufficiently supplied to the sliding surface 14 and the dynamic friction coefficient can be reduced. From this, the bearing 1 of this embodiment sets the groove width B to 1.19 to 5 mm. Further, in the bearing 1, even when the lateral width B is set to be narrower than that of Patent Document 2, as described above, the surface pressure that the sliding surface 14 receives can be reduced more effectively than that of Patent Document 2. In addition, good lubricating oil can be supplied to the entire sliding surface 14.

また、上記の幅Aと溝幅Bは、摺動面14全域に潤滑油を十分に供給するにあたり密接な関係にある。すなわち、溝幅Bを上記範囲内で広く設定すれば、傾斜溝12に貯留される潤滑油の量が多くなるため、摺動面14に供給できる潤滑油量が多くなり、幅Aを大きく設定して、摺動面14の受ける面圧を低下させることが可能となる。一方、溝幅Bを狭く設定すると、傾斜溝12に貯留される潤滑油の量が少なくなるため、摺動面14に供給できる潤滑油量が少なくなり、幅Aを狭く設定せざるを得なくなる。したがって、良好な潤滑状態を得るためには、幅Aと溝幅Bを適切な比とすることが必要である。   Further, the width A and the groove width B are closely related to supplying sufficient lubricating oil to the entire sliding surface 14. That is, if the groove width B is set wide within the above range, the amount of lubricant stored in the inclined groove 12 increases, so the amount of lubricant that can be supplied to the sliding surface 14 increases, and the width A is set large. Thus, the surface pressure received by the sliding surface 14 can be reduced. On the other hand, if the groove width B is set narrow, the amount of lubricating oil stored in the inclined groove 12 decreases, so the amount of lubricating oil that can be supplied to the sliding surface 14 decreases, and the width A must be set narrow. . Therefore, in order to obtain a good lubrication state, it is necessary to set the width A and the groove width B to an appropriate ratio.

この観点より、本実施形態の軸受1では、幅Aと溝幅Bとをそれぞれ上記のように設定するとともに、幅Aと溝幅Bとの比A/Bを0.5〜4.05の範囲に設定する。幅Aと溝幅Bとの比A/Bが上記範囲内であれば、摺動面14が受ける面圧が過大とならず、良好な摺動面14全域への潤滑状態が得られ、動摩擦係数を低減できるとともに、摩耗し難く円滑な軸受作用を長期にわたって発揮するすべり軸受とすることができる。一方、幅Aと溝幅Bとの比A/Bが0.5に満たない場合、幅Aが溝幅Bに比して小さくなり過ぎて、摺動面14が受ける面圧が過大となり、金属接触が発生し易くなり、場合によっては座屈等の変形が生じるおそれがある。また、A/Bが4.05を超えると、幅Aが溝幅Bに比して大きくなり過ぎて、摺動面14全域への良好な潤滑状態を得難くなって、金属接触が発生し易くなり、摩耗が生じるおそれがある。
From this viewpoint, in the bearing 1 of the present embodiment, the width A and the groove width B are set as described above, and the ratio A / B between the width A and the groove width B is 0.5 to 4.05 . Set to range. If the ratio A / B between the width A and the groove width B is within the above range, the surface pressure received by the sliding surface 14 does not become excessive, and a good lubrication state over the entire sliding surface 14 can be obtained, resulting in dynamic friction. It is possible to obtain a slide bearing that can reduce the coefficient, and that is hard to wear and that exhibits a smooth bearing action over a long period of time. On the other hand, when the ratio A / B between the width A and the groove width B is less than 0.5, the width A is too small compared to the groove width B, and the surface pressure received by the sliding surface 14 is excessive. Metal contact tends to occur, and in some cases, deformation such as buckling may occur. Further, if A / B exceeds 4.05 , the width A becomes too large compared to the groove width B, and it becomes difficult to obtain a good lubrication state over the entire sliding surface 14, and metal contact occurs. It becomes easy and wear may occur.

軸受1は、上記のように幅A、溝幅Bおよび幅Aと溝幅Bの比A/Bを最適化したことにより、摺動面14が受ける面圧が著しく増大することなく、摺動面14全域への良好な潤滑油の供給が果たしたもので、これにより金属接触の発生を抑制するとともに動摩擦係数が低減され、摩耗し難く円滑な軸受作用を長期にわたって発揮することを実現した。また、このように摺動面14全域への良好な潤滑油の供給が果たされる結果、起動時および揺動角の両端での静止時においても、軸20と軸受1の摺動面14との間に潤滑油の油膜が維持され、静止摩擦係数の低減、および静止状態から運動状態へと移行する際の金属接触の防止が果たされる。   The bearing 1 can be slid without any significant increase in the surface pressure received by the sliding surface 14 by optimizing the width A, the groove width B, and the ratio A / B of the width A and the groove width B as described above. Good lubricant oil supply to the entire area of the surface 14 has been achieved, thereby suppressing the occurrence of metal contact and reducing the coefficient of dynamic friction, realizing a long-lasting smooth bearing action that is difficult to wear. In addition, as a result of the satisfactory supply of lubricating oil to the entire sliding surface 14 as described above, the shaft 20 and the sliding surface 14 of the bearing 1 are in contact with each other at the time of starting and at rest at both ends of the swing angle. In the meantime, the oil film of the lubricating oil is maintained, and the coefficient of static friction is reduced, and the metal contact during the transition from the stationary state to the moving state is prevented.

上記のように幅Aと溝幅Bの各々の大きさ、およびそれらの比A/Bを設定しても、傾斜溝12の傾斜角度θが小さすぎる場合、内周面10の軸20と接触する部分において、接触部分が横切る傾斜溝12の数と摺動面14の数は少なくなるとともに、傾斜溝12の長さと摺動面14の長さが長くなって、接触部分全体としては、潤滑状態が不均一な状態となる。傾斜溝12の傾斜角度θがある程度を超えると、接触部分を横切る傾斜溝12の数と摺動面14の数が増加するとともに、傾斜溝12の長さと摺動面14の長さが適切なものとなり、摺動部全域への良好な潤滑状態が得られる。一方で、傾斜溝12の傾斜角度θが大きすぎると、接触部分を横切る傾斜溝12の数と摺動面14の数はさらに増加するものの、潤滑油が傾斜溝12に沿って流動して、摺動面14への供給が不十分となる。これらの観点より傾斜溝12の傾斜角度θは15〜50°が適切であり、好ましくは20〜40°程度で摩擦係数が低く安定した値を示すので好適である。すなわち、本実施形態においては、幅Aと溝幅Bの各々の大きさおよびそれらの比A/Bを最適に設定したことにより、傾斜溝12の傾斜角度を特許文献2に比して適用範囲の拡大を果たしたもので、その結果、すべり軸受の設計の自由度が向上したものとなる。
Even when the size of each of the width A and the groove width B and the ratio A / B are set as described above, when the inclination angle θ of the inclined groove 12 is too small, it contacts the shaft 20 of the inner peripheral surface 10. In this portion, the number of the inclined grooves 12 and the number of the sliding surfaces 14 that the contact portion crosses are reduced, and the length of the inclined grooves 12 and the length of the sliding surface 14 are increased, so that the entire contact portion is lubricated. The state becomes uneven. When the inclination angle θ of the inclined groove 12 exceeds a certain level, the number of inclined grooves 12 and the number of sliding surfaces 14 that cross the contact portion increase, and the length of the inclined grooves 12 and the length of the sliding surface 14 are appropriate. Thus, a good lubrication state over the entire sliding portion can be obtained. On the other hand, if the inclination angle θ of the inclined groove 12 is too large, the number of the inclined grooves 12 and the number of sliding surfaces 14 that cross the contact portion further increase, but the lubricating oil flows along the inclined groove 12, Supply to the sliding surface 14 becomes insufficient. These are the inclination angle θ of the inclined grooves 12 in view is appropriate 15 to 50 °, good Mashiku is preferred exhibits a stable value of friction coefficient is low at approximately 20 to 40 °. That is, in the present embodiment, the size of each of the width A and the groove width B and the ratio A / B thereof are set optimally, so that the inclination angle of the inclined groove 12 can be applied as compared with Patent Document 2. As a result, the degree of freedom of design of the slide bearing is improved.

溝の間隔は図1〜3に示すような等間隔でもよいが、上記の幅A、溝幅Bおよび摺動面の幅Aと溝幅Bの比A/Bの範囲となるように形成すれば等間隔でなくともよい。また、傾斜溝12の深さdは、浅いと潤滑油の貯留量が少なく、摺動面14全域に潤滑油を供給することができないので、0.1mm以上とする必要がある。その一方で、傾斜溝12の深さdを深くしすぎると、傾斜溝12の底部に対して摺動面14の高さが大きくなり、高面圧、揺動運動の運転環境の下、摺動部の座屈が発生するおそれがある。このため傾斜溝12の深さdは3mm以下に止めるべきである。   The grooves may be equally spaced as shown in FIGS. 1 to 3, but are formed so as to be within the range of the ratio A / B of the width A, groove width B, and sliding surface width A to groove width B described above. It does not have to be equally spaced. Further, if the depth d of the inclined groove 12 is shallow, the amount of lubricating oil stored is small, and the lubricating oil cannot be supplied to the entire sliding surface 14, so it is necessary to set it to 0.1 mm or more. On the other hand, if the depth d of the inclined groove 12 is made too deep, the height of the sliding surface 14 with respect to the bottom portion of the inclined groove 12 becomes large, and the sliding surface under the operating environment of high surface pressure and oscillating motions. There is a risk of buckling of moving parts. For this reason, the depth d of the inclined groove 12 should be stopped at 3 mm or less.

なお、傾斜溝12の断面形状は、図示例では矩形状であるが、円弧状、U字状等、任意の形状が選択されるが、軸の揺動運動時に摺動面に潤滑油を供給し易いV字状、あるいは上面の幅が大きい台形状のものとすることが好ましい。また、傾斜溝12から傾斜溝12間の摺動面14に移行する角部は、潤滑油の流動性の向上や摩擦低減のために面取り加工されていることが望ましく、特に、傾斜溝12の断面形状が円弧状、U字状のものについては面取り加工されていることが望ましい。   In addition, although the cross-sectional shape of the inclined groove 12 is a rectangular shape in the illustrated example, an arbitrary shape such as an arc shape or a U shape is selected, but lubricating oil is supplied to the sliding surface during the swinging motion of the shaft. It is preferable to use a V-shape that is easy to handle or a trapezoidal shape having a large upper surface width. Further, it is desirable that the corner portion that transitions from the inclined groove 12 to the sliding surface 14 between the inclined grooves 12 is chamfered to improve the fluidity of the lubricating oil and reduce the friction. It is desirable that the cross-sectional shape is circular or U-shaped with chamfering.

本実施形態の軸受1には、上述したように内周および外周に、内周溝15および外周溝16が形成され、これら内周溝15と外周溝16とが貫通孔17とによって連通されている。これら内周溝15、外周溝16および貫通孔17は、上記した傾斜溝12にまんべんなく潤滑油を供給する作用を有する。すなわち、上記のように、軸受1は軸方向を横向きにして、横方向に配置された軸20の荷重を受けながら揺動運動されるが、揺動運動により移送された潤滑油や軸受1より滲み出した潤滑油は、この内周溝15、外周溝16および貫通孔17を通じて、軸受下部(図中下側)に集められ、軸受下部の傾斜溝12に供給されるとともに、軸20の荷重を受ける摺動面14への潤滑油の供給に寄与する。内周溝15と外周溝16は、軸方向に同じ長さの箇所に一対として用いることが貫通孔17を形成する点で好ましい。また、内周溝15と外周溝16は、軸受1の軸方向長さが長い場合、複数設けてもよい。   As described above, the bearing 1 of the present embodiment is formed with the inner peripheral groove 15 and the outer peripheral groove 16 on the inner periphery and the outer periphery, and the inner peripheral groove 15 and the outer peripheral groove 16 are communicated with each other through the through hole 17. Yes. The inner circumferential groove 15, the outer circumferential groove 16, and the through hole 17 have a function of supplying lubricating oil evenly to the inclined groove 12 described above. In other words, as described above, the bearing 1 is oscillated while receiving the load of the shaft 20 arranged in the lateral direction with the axial direction being lateral, but from the lubricating oil transferred by the oscillating motion or the bearing 1. The oozed lubricating oil is collected at the bearing lower portion (lower side in the figure) through the inner circumferential groove 15, outer circumferential groove 16 and through-hole 17, supplied to the inclined groove 12 at the lower portion of the bearing, and loaded on the shaft 20. This contributes to the supply of lubricating oil to the sliding surface 14 that receives the lubricating oil. The inner circumferential groove 15 and the outer circumferential groove 16 are preferably used as a pair at a portion having the same length in the axial direction in terms of forming the through hole 17. A plurality of inner circumferential grooves 15 and outer circumferential grooves 16 may be provided when the axial length of the bearing 1 is long.

図5に示すように、内周溝15と外周溝16を連結する貫通孔17は、外周溝16により回収された潤滑油を内周溝15および傾斜溝12に供給する。この作用を効率よく得るためには、貫通孔17は最も下部に配置される必要がある。貫通孔17を例えば5〜8個程度と多く、かつ均等に配置すると、何れかの貫通孔17が下部側に位置することとなるため、軸受1の組み付けの際に、貫通孔17の位相に気を配る必要がなくなるので好ましい。   As shown in FIG. 5, the through hole 17 that connects the inner circumferential groove 15 and the outer circumferential groove 16 supplies the lubricating oil recovered by the outer circumferential groove 16 to the inner circumferential groove 15 and the inclined groove 12. In order to obtain this action efficiently, the through-hole 17 needs to be arranged at the lowermost part. If the through holes 17 are, for example, as many as 5 to 8 and are evenly arranged, any of the through holes 17 will be positioned on the lower side, so that the phase of the through hole 17 is changed when the bearing 1 is assembled. This is preferable because it does not require attention.

潤滑油は、マシン油(工業用潤滑油)、グリース、ワックスと油の混合物等を使用することができる点で従来のものと同様であるが、傾斜溝12を上記範囲となるよう傾斜角度θ、幅A、溝幅Bおよび幅Aと溝幅Bの比A/Bを形成することで、従来のものよりも広い粘度範囲の潤滑油を使用できる。例えば、特許文献1等の傾斜溝を形成しない単純な円筒形状のすべり軸受において使用できるマシン油は、40℃以上の動粘度が414〜1100mm/s程度(ISO粘度グレードのISO VG 460〜1000相当)程度でしかない。しかしながら、上記条件範囲の傾斜溝12を形成した軸受1では、40℃における動粘度が1650mm/sの範囲のもの(ISO VG 1500相当)まで使用することが可能となる。これは、流動し難い高粘度の潤滑油であっても、軸受1においては、傾斜溝12の傾斜角度θ、幅A、溝幅Bおよび幅Aと溝幅Bの比A/Bを上記範囲に設定したことにより、摺動面14への潤滑油の供給状態が改善されたことの効果である。このような高粘度の潤滑油は流動し難いが、強固な油膜を形成できる。したがって、本実施形態の軸受1においては、高粘度の潤滑油を使用することにより、さらに金属接触を防いで摩耗の発生を防止し、軸受寿命の延長を図ることも可能である。また、グリースは、傾斜溝を形成しない単純な円筒形状のすべり軸受の場合、混和ちょう度が、205〜265程度(JIS K2220に規定の2〜4号ちょう度)のものしか使用できないが、軸受1では、混和ちょう度が130程度(5号ちょう度)のものまで使用できるようになる。 The lubricating oil is the same as the conventional one in that machine oil (industrial lubricating oil), grease, a mixture of wax and oil, etc. can be used, but the inclination angle θ is set so that the inclined groove 12 is in the above range. By forming the width A, the groove width B, and the ratio A / B between the width A and the groove width B, it is possible to use a lubricating oil having a wider viscosity range than the conventional one. For example, a machine oil that can be used in a simple cylindrical plain bearing that does not form an inclined groove as in Patent Document 1 has a kinematic viscosity of 40 ° C. or higher of about 414 to 1100 mm 2 / s (ISO VG of ISO VG 460 to 1000) It is only equivalent). However, in the bearing 1 in which the inclined groove 12 having the above condition range is formed, it is possible to use a bearing having a kinematic viscosity at 40 ° C. in the range of 1650 mm 2 / s (equivalent to ISO VG 1500). Even if this is a highly viscous lubricating oil that does not flow easily, in the bearing 1, the inclination angle θ of the inclined groove 12, the width A, the groove width B, and the ratio A / B of the width A and the groove width B are within the above range. This is because the supply state of the lubricating oil to the sliding surface 14 is improved. Such a high-viscosity lubricating oil hardly flows, but can form a strong oil film. Therefore, in the bearing 1 of the present embodiment, by using a high-viscosity lubricating oil, it is possible to further prevent the occurrence of wear by preventing metal contact and extend the bearing life. In addition, in the case of a simple cylindrical slide bearing that does not form an inclined groove, grease can only be used with a blending consistency of about 205-265 (No. 2-4 consistency specified in JIS K2220). In No. 1, it is possible to use up to about 130 (No. 5 consistency).

軸受1の材料は特に限定されず、熱処理された炭素鋼や、高力黄銅等の溶製材料を用いることができる。この場合、傾斜溝12は、鋳造、押し出し、機械加工等の手段で形成することができる。また、軸受1の材料として焼結材料を用いることもできる。焼結材料は、原料粉末を金型に充填した後、上下方向よりパンチを用いて圧縮成形して得られた成形体を焼結して得られる材料で、傾斜溝12の雄型をコアロッドに形成しておくことで、容易に付与できるので好ましい。また焼結材料は、溶製材料に比して組成のバリエーションが広く、溶製材料では得られない金属組織の材料が容易に得られる点からも推奨される。また、軸受1に推奨される焼結材料は、特許文献2に記載のものと同様である。   The material of the bearing 1 is not particularly limited, and a melted material such as heat-treated carbon steel or high-strength brass can be used. In this case, the inclined groove 12 can be formed by means such as casting, extrusion, or machining. A sintered material can also be used as the material of the bearing 1. The sintered material is a material obtained by sintering a molded body obtained by compressing a raw material powder into a mold and then using a punch from above and below, and the male die of the inclined groove 12 is used as a core rod. Forming it is preferable because it can be easily applied. Sintered materials are also recommended because they have a wide variety of compositions compared to melted materials, and can easily obtain metallographic materials that cannot be obtained with melted materials. Further, the sintered material recommended for the bearing 1 is the same as that described in Patent Document 2.

本実施形態の軸受1によれば、軸20が回転すると、それに伴って傾斜溝12内に貯留する潤滑油が傾斜溝12内から引き出されて軸20の回転方向に流動し、摺動面14に供給され、軸20との摺動が潤滑される。傾斜溝12が上記の傾斜角度θ、幅A、溝幅Bおよび幅Aと溝幅Bの比A/Bの各条件を満たすことにより、傾斜溝12内から摺動面14に流動する潤滑油の量は、その摺動面14の全域にいきわたる量が確保される。また、このように摺動面14の全域にいきわたった潤滑油は静止時においても保持される。このため十分な潤滑効果を得ることができ、動摩擦係数とともに静止摩擦係数も低減することができる。また、軸受1の内外周に形成された内周溝15と外周溝16および貫通孔17により揺動運動により移送された潤滑油を軸受下方に回収して傾斜溝12に供給するから上記の動摩擦係数および静止摩擦係数を低減する効果を長期にわたり維持することができる。これらの効果により、本実施形態の軸受1は、高い面圧を受けても長期にわたって潤滑効果が維持され、摩耗し難く耐久性が向上した軸受となる。また、内周溝15および外周溝16は、摺動面14近傍の潤滑油が消耗すると、摺動面14から離れた位置の傾斜溝12の潤滑油を内周溝15から回収して供給するので、潤滑油の給脂期間を2倍以上に延長することができる。   According to the bearing 1 of the present embodiment, when the shaft 20 rotates, the lubricating oil stored in the inclined groove 12 is drawn out from the inclined groove 12 and flows in the rotational direction of the shaft 20, and the sliding surface 14. And the sliding with the shaft 20 is lubricated. Lubricating oil that flows from the inclined groove 12 to the sliding surface 14 when the inclined groove 12 satisfies the above-described inclination angle θ, width A, groove width B, and ratio A / B of the width A and groove width B. As for the amount of, an amount extending over the entire sliding surface 14 is secured. Further, the lubricating oil that has spread over the entire area of the sliding surface 14 is retained even when it is stationary. Therefore, a sufficient lubricating effect can be obtained, and the static friction coefficient can be reduced together with the dynamic friction coefficient. Further, since the lubricating oil transferred by the swinging motion by the inner and outer circumferential grooves 15 and 16 and the through-hole 17 formed on the inner and outer circumferences of the bearing 1 is collected below the bearing and supplied to the inclined groove 12, the above-described dynamic friction is achieved. The effect of reducing the coefficient and the coefficient of static friction can be maintained over a long period of time. Due to these effects, the bearing 1 of the present embodiment is a bearing that maintains a lubricating effect over a long period of time even under a high surface pressure, is less likely to wear, and has improved durability. Further, when the lubricating oil in the vicinity of the sliding surface 14 is consumed, the inner peripheral groove 15 and the outer peripheral groove 16 collect and supply the lubricating oil in the inclined groove 12 at a position away from the sliding surface 14 from the inner peripheral groove 15. Therefore, the lubrication period of the lubricating oil can be extended more than twice.

次に、本発明の効果を実証する実施例を説明する。
[第1実施例]
アトマイズ鉄粉に、アトマイズ銅粉を18質量%と、黒鉛粉を0.8質量%とを添加した原料粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛粉0.5質量部を添加して混合し、この混合粉を、外径95mm、内径80mm、高さ(軸長)80mmの円筒形状に圧縮成形した。この成形体を1120℃の還元性ガス中で焼結し、続いて850℃に加熱した後に油焼入れし、温度180℃で焼戻しを行って軸受の試料を作製した。
Next, examples that demonstrate the effects of the present invention will be described.
[First embodiment]
To 100 parts by mass of raw material powder obtained by adding 18% by mass of atomized copper powder and 0.8% by mass of graphite powder to atomized iron powder, 0.5 parts by mass of zinc stearate powder is further added as a molding lubricant. The mixed powder was compression molded into a cylindrical shape having an outer diameter of 95 mm, an inner diameter of 80 mm, and a height (axial length) of 80 mm. This molded body was sintered in a reducing gas at 1120 ° C., subsequently heated to 850 ° C., then oil-quenched, and tempered at a temperature of 180 ° C. to prepare a bearing sample.

作製した軸受について、表1に示す条件の傾斜溝の本数、幅および深さで、周方向(摺動方向)と直交する方向に対する傾斜角度は20°と共通させて、機械加工により内周面に断面台形状の傾斜溝を形成した。また、機械加工により内周および外周に幅5mm、深さ1mmの環状の内周溝、外周溝を形成するとともに内外周溝を連通する貫通孔を等間隔に2個形成した。次いで、これら軸受に40℃における動粘度460mm2/sのマシン油を真空含浸して、表1に示す傾斜溝本数、山部の表面である摺動面の幅A、傾斜溝の溝幅B、摺動面の幅Aと溝幅Bとの比、傾斜溝の面積率および深さを有する軸受(試料番号01〜40)を作製した。なお、摺動面の幅Aおよび溝幅Bは各々周方向の幅であり、溝に直交する方向の幅ではない。なお、表1の下線で示す値は、本発明範囲を逸脱することを示している。   With respect to the produced bearings, the number of inclined grooves, the width and the depth of the conditions shown in Table 1 are set so that the inclination angle with respect to the direction orthogonal to the circumferential direction (sliding direction) is 20 °, and the inner peripheral surface is machined by machining. An inclined groove having a trapezoidal cross section was formed. Further, an annular inner circumferential groove and an outer circumferential groove having a width of 5 mm and a depth of 1 mm were formed on the inner and outer circumferences by machining, and two through holes communicating with the inner and outer circumferential grooves were formed at equal intervals. Next, these bearings were vacuum impregnated with a machine oil having a kinematic viscosity of 460 mm 2 / s at 40 ° C., and the number of inclined grooves shown in Table 1, the width A of the sliding surface which is the surface of the ridge, the groove width B of the inclined grooves, Bearings having the ratio of the sliding surface width A to the groove width B, the area ratio and the depth of the inclined grooves (sample numbers 01 to 40) were produced. The sliding surface width A and groove width B are circumferential widths, not widths perpendicular to the grooves. In addition, the value shown by the underline in Table 1 shows that it deviates from the scope of the present invention.

作製した軸受の試料01〜38を貫通孔が軸の鉛直下に配置されるようハウジング内に固定し、それら軸受の内周面と、焼入れして研磨処理した鋼製の軸の表面に混和ちょう度が280のグリース(リチウムグリース2号)を塗布し、各軸受の軸孔に軸を挿入した。軸受試料の内周面と軸とのクリアランスは300μm程度である。次いで、軸を、ラジアル方向に650Nの荷重を与えながら、角度10°の範囲を0.5mm/分といったすべり速度で揺動させた。なお、揺動させるにあたっては、振り子運動の末端位置でそれぞれ0.5秒間休止させた。この時、トルクセンサにて測定したトルク値より求めた静止摩擦係数および動摩擦係数の値(平均値)を、表1に併記する。   The prepared bearing samples 01 to 38 are fixed in the housing so that the through-holes are arranged vertically below the shaft, and mixed with the inner peripheral surface of the bearing and the surface of the steel shaft that has been quenched and polished. Grease with a degree of 280 (lithium grease No. 2) was applied, and the shaft was inserted into the shaft hole of each bearing. The clearance between the inner peripheral surface of the bearing sample and the shaft is about 300 μm. Next, the shaft was rocked at a sliding speed of 0.5 mm / min within a range of 10 ° while applying a load of 650 N in the radial direction. In addition, when rocking | fluctuating, it was made to rest each for 0.5 second in the terminal position of pendulum movement. At this time, the values (average values) of the static friction coefficient and the dynamic friction coefficient obtained from the torque values measured by the torque sensor are also shown in Table 1.

Figure 0005059506
Figure 0005059506

以下に試験結果についての考察を記す。
(1)摺動面の幅Aの影響:図6参照
表1の試料番号01〜07の軸受は、摺動面の幅Aと傾斜溝の溝幅Bとの比(A/B)をほぼ同じとした上で、幅Aを変化させてその影響を調べたものである。これらの試料において、摺動面の幅Aが1mmに満たない試料番号01の軸受では、摺動面の幅Aが小さすぎることから荷重に耐えられず山部が座屈変形し、その結果、溝幅Bが小さくなって潤滑油の供給が不十分となって静止摩擦係数および動摩擦係数の値が大きくなっている。一方、摺動面の幅Aが1mmの試料番号02の軸受では、荷重に十分耐えることができ、山部の変形は認められなかった。また、摺動面の幅Aが小さいことから傾斜溝からの潤滑油の供給を十分に受けることができ、静止摩擦係数および動摩擦係数も小さい値を示している。また摺動面の幅Aが大きくなるにしたがい静止摩擦係数および動摩擦係数は徐々に増加する傾向を示すものの、摺動面の幅Aが7mm(試料番号06)までは十分に小さい値を維持している。しかしながら、摺動面の幅Aが7mmを超える試料番号07の軸受では、摺動面の幅Aが大きく、傾斜溝からの潤滑油の供給が不十分となって静止摩擦係数および動摩擦係数がともに急激に増加している。これらのことから、摺動面の幅Aは1〜7mmの範囲が適切であることがわかる。
Below is a discussion of the test results.
(1) Influence of sliding surface width A: See FIG. 6 The bearings of sample numbers 01 to 07 in Table 1 have a ratio (A / B) of the sliding surface width A to the inclined groove width B (A / B). The effect was examined by changing the width A while assuming the same. In these samples, in the bearing of sample number 01 where the sliding surface width A is less than 1 mm, the sliding surface width A is too small, so that the load cannot withstand the load and the peak portion buckles and deforms. The groove width B becomes smaller and the supply of lubricating oil becomes insufficient, and the values of the static friction coefficient and the dynamic friction coefficient are increased. On the other hand, the bearing of sample number 02 having a sliding surface width A of 1 mm was able to withstand the load sufficiently, and no deformation of the peak portion was observed. In addition, since the width A of the sliding surface is small, the lubricating oil can be sufficiently supplied from the inclined groove, and the static friction coefficient and the dynamic friction coefficient are also small. In addition, as the sliding surface width A increases, the static friction coefficient and the dynamic friction coefficient tend to gradually increase. However, the sliding surface width A maintains a sufficiently small value up to 7 mm (sample No. 06). ing. However, in the bearing of Sample No. 07 having a sliding surface width A exceeding 7 mm, the sliding surface width A is large and the supply of lubricating oil from the inclined groove is insufficient, so that both the static friction coefficient and the dynamic friction coefficient are both. It is increasing rapidly. From these facts, it is understood that the range of 1 to 7 mm is appropriate for the width A of the sliding surface.

(2)溝幅Bの影響:図7参照
表1の試料番号08〜17の軸受は、摺動面の幅Aと溝幅Bとの比(A/B)を、試料番号08〜12の軸受と、試料番号13〜17の軸受とでほぼ同じとした上で、溝幅Bを変化させてその影響を調べたものである。これらの試料において、溝幅Bが1.19mmに満たない試料番号08の軸受では、摺動面の幅Aが十分であるにもかかわらず摺動面に供給する潤滑油が不十分となり、摩擦係数が大きい値を示している。一方、溝幅Bが1.19mmの試料番号11の軸受では、溝幅Bが十分に大きく摺動面に十分な潤滑油が供給できることにより、静止摩擦係数および動摩擦係数が急激に低下している。また、溝幅Bが1.19〜5mmの範囲において、両摩擦係数は低く安定した値を示している。しかしながら、溝幅Bが5mmを超える試料番号17の軸受では、溝幅Bに対する摺動面の幅Aの比(A/B)が一定であるため、摺動面の幅Aが大きくなって摺動面に十分な潤滑油が供給されず、静止摩擦係数および動摩擦係数ともに急激に増加している。これらのことから、溝幅Bは1.19〜5mmの範囲が適切であることがわかる。
(2) Influence of groove width B: see FIG. 7 The bearings of sample numbers 08 to 17 in Table 1 have the ratio (A / B) of the width A of the sliding surface to the groove width B of sample numbers 08 to 12. The effect was examined by changing the groove width B after making the bearings substantially the same for the bearings of Sample Nos. 13-17. In these samples, in the bearing of sample number 08 in which the groove width B is less than 1.19 mm, the lubricating oil supplied to the sliding surface becomes insufficient even though the width A of the sliding surface is sufficient, The coefficient of friction shows a large value. On the other hand, in the bearing of the sample number 11 with the groove width B of 1.19 mm, the static friction coefficient and the dynamic friction coefficient are drastically decreased because the groove width B is sufficiently large and sufficient lubricating oil can be supplied to the sliding surface. Yes. Further, in the range where the groove width B is 1.19 to 5 mm, both friction coefficients are low and stable values. However, in the bearing of sample number 17 where the groove width B exceeds 5 mm, the ratio (A / B) of the width A of the sliding surface to the groove width B is constant. Sufficient lubricating oil is not supplied to the moving surface, and both the coefficient of static friction and the coefficient of dynamic friction increase rapidly. From these, it is understood that the groove width B is appropriately in the range of 1.19 to 5 mm.

(3)摺動面の幅Aと溝幅Bとの比(A/B)の影響:図8,9参照
表1の試料番号18〜25と試料番号26〜33は、それぞれ溝本数を一定(前者が72本、後者が36本)にして、なおかつ摺動面の幅Aと溝幅Bを変えて、摺動面の幅Aと溝幅Bとの比(A/B)の影響を調べたものであり、試料番号18〜25(溝本数が72本)の結果が図8、試料番号26〜33(溝本数が36本)の結果が図9である。これらの試料よりA/Bが0.5に満たない試料番号18,26の軸受は、溝幅Bに対する摺動面の幅Aが大きく、摺動面に十分な潤滑油が供給されないことから、静止摩擦係数および動摩擦係数が大きい値を示している。一方、A/Bが0.5〜4.05の範囲の試料番号19〜23(溝本数が72本の場合)、試料番号27〜31(溝本数が36本の場合)の軸受では、摺動面に十分な潤滑油が供給することができ、静止摩擦係数および動摩擦係数ともに低く安定した値を示している。しかしながら、A/Bが4.05を超える試料番号24,25,32,33の軸受では、溝幅Bに対して摺動面の幅Aが大きく、このため摺動面に十分な潤滑油が供給されず急激に静止摩擦係数および動摩擦係数が増加している。これらのことからA/Bを0.5〜4.05の範囲とする必要があることがわかる。
(3) Influence of ratio (A / B) of sliding surface width A to groove width B: See FIGS. 8 and 9 Sample numbers 18 to 25 and sample numbers 26 to 33 in Table 1 each have a constant number of grooves. (The former is 72, the latter is 36) and the sliding surface width A and groove width B are changed, and the influence of the ratio (A / B) of the sliding surface width A and groove width B is changed. FIG. 8 shows the results of the sample numbers 18 to 25 (72 grooves), and FIG. 9 shows the results of the sample numbers 26 to 33 (36 grooves). The bearings of Sample Nos. 18 and 26 in which A / B is less than 0.5 than these samples have a large sliding surface width A with respect to the groove width B, and sufficient lubricating oil is not supplied to the sliding surface. The static friction coefficient and the dynamic friction coefficient are large. On the other hand, in bearings with sample numbers 19 to 23 (when the number of grooves is 72) and sample numbers 27 to 31 (when the number of grooves is 36) in the range of A / B of 0.5 to 4.05 , Sufficient lubricating oil can be supplied to the moving surface, and both the static friction coefficient and the dynamic friction coefficient are low and stable values. However, in bearings of sample numbers 24, 25, 32, and 33 with A / B exceeding 4.05 , the width A of the sliding surface is larger than the groove width B, and therefore sufficient lubricating oil is applied to the sliding surface. The static friction coefficient and the dynamic friction coefficient are increasing rapidly without being supplied. From these facts, it is understood that A / B needs to be in the range of 0.5 to 4.05 .

(4)傾斜溝の深さdの影響:図10参照
表1の試料番号20および34〜40の軸受は、傾斜溝の深さの影響を調べたものである。これらの試料より、傾斜溝の深さが0.1mmに満たない試料番号34の軸受では、傾斜溝の深さが浅すぎて傾斜溝に十分な潤滑油が貯留されず、このため摺動面への潤滑油の供給量が不十分となり、静止摩擦係数および動摩擦係数がともに大きい値を示している。一方、傾斜溝の深さが0.1mmの試料番号35の軸受では、傾斜溝が潤滑油を十分に貯留する深さを有しており、この結果、摺動面への潤滑油の供給量が十分になり、静止摩擦係数および動摩擦係数ともに急激に低下している。また、傾斜溝の深さが0.1〜3mmの範囲では、静止摩擦係数および動摩擦係数はともに低く安定した値を示している。しかしながら、傾斜溝の深さが3mmを超える試料番号40の軸受では、傾斜溝が深くなりすぎた結果、摺動面が荷重に耐えきれず摩耗が発生した。これらのことから、傾斜溝の深さは0.1〜3mmの範囲が適切であることがわかる。
(4) Influence of the depth d of the inclined groove: see FIG. 10 The bearings of the sample numbers 20 and 34 to 40 in Table 1 are obtained by examining the influence of the depth of the inclined groove. From these samples, in the bearing of the sample number 34 where the depth of the inclined groove is less than 0.1 mm, the inclined groove is too shallow and sufficient lubricating oil is not stored in the inclined groove. The amount of lubricating oil supplied to the tank becomes insufficient, and both the coefficient of static friction and the coefficient of dynamic friction show large values. On the other hand, in the bearing of the sample number 35 with the depth of the inclined groove of 0.1 mm, the inclined groove has a depth enough to store the lubricating oil, and as a result, the supply amount of the lubricating oil to the sliding surface Is sufficient, and both the coefficient of static friction and the coefficient of dynamic friction are rapidly decreasing. Further, when the depth of the inclined groove is in the range of 0.1 to 3 mm, the static friction coefficient and the dynamic friction coefficient are both low and stable values. However, in the bearing of Sample No. 40 in which the depth of the inclined groove exceeds 3 mm, as the inclined groove becomes too deep, the sliding surface cannot withstand the load and wear occurs. From these facts, it is understood that the depth of the inclined groove is suitably in the range of 0.1 to 3 mm.

[第2実施例]
第1実施例と同様の原料粉末を用い、同様に成形、焼結を行って作製した軸受試料について、溝の本数を72本、摺動面の幅Aを2.07mm、溝幅Bを1.42mm、溝の深さを0.7mmと共通させ、周方向(摺動方向)と直交する方向に対する傾斜角度を表2に示す条件に変更して、機械加工により内周面に断面台形状の傾斜溝と、第1実施例と同様の環状の内周溝、外周溝および貫通孔を形成した。次いで、第1実施例と同様にマシン油を真空含浸して表2に示す傾斜溝の傾斜角度を有する軸受(試料番号41〜53)を作製した。作製した軸受の試料41〜53を第1実施例と同様にして揺動試験を行い、得られた静止摩擦係数および動摩擦係数の値を表2に併記する。なお、表2に傾斜溝のが傾斜角度が20°の例として第1実施例の試料番号21の軸受の動摩擦係数の値を併記する。
[Second Embodiment]
A bearing sample produced by using the same raw material powder as in the first embodiment and similarly molded and sintered has 72 grooves, a sliding surface width A of 2.07 mm, and a groove width B of 1. .42 mm, groove depth of 0.7 mm in common, the inclination angle with respect to the direction orthogonal to the circumferential direction (sliding direction) is changed to the conditions shown in Table 2, and the trapezoidal cross section on the inner peripheral surface by machining And an annular inner circumferential groove, outer circumferential groove and through hole similar to those of the first embodiment were formed. Next, in the same manner as in the first example, machine oil was vacuum impregnated to produce bearings (sample numbers 41 to 53) having the inclination angles of the inclined grooves shown in Table 2. The produced bearing samples 41 to 53 are subjected to a rocking test in the same manner as in the first example, and the values of the obtained static friction coefficient and dynamic friction coefficient are also shown in Table 2. Table 2 also shows the value of the dynamic friction coefficient of the bearing of the sample number 21 of the first embodiment as an example in which the inclined groove has an inclination angle of 20 °.

Figure 0005059506
Figure 0005059506

(5)傾斜溝の傾斜角度の影響:図11参照
表2の試料番号21および41〜53の軸受は、傾斜溝の傾斜角度の影響を調べたものである。これらの試料より、傾斜溝の傾斜角度が10°に満たない軸受(試料番号41,42)および傾斜溝の傾斜角度が60°を超える軸受(試料番号51〜53)は、静止摩擦係数および動摩擦係数がともに高い値を示すが、傾斜溝の傾斜角度が10〜60°の軸受(試料番号21,43〜50)の軸受は静止摩擦係数および動摩擦係数ともに低い値を示している。また、傾斜溝の傾斜角度が15〜50°の軸受(試料番号21,44〜49)では、両摩擦係数がより小さくなっており、傾斜溝の傾斜角度が20〜40°の軸受(試料番号21,45〜48)は、両摩擦係数が最も低く、かつ安定した値を示している。これらのことから傾斜溝の角度は10〜60°の範囲で静止摩擦係数および動摩擦係数の低減の作用が顕著であり、15〜50°がより好ましく、20〜40°が最も好ましいことがわかる。
(5) Influence of the inclination angle of the inclined groove: see FIG. 11 The bearings of the sample numbers 21 and 41 to 53 in Table 2 were examined for the influence of the inclination angle of the inclined groove. From these samples, the bearings (sample numbers 41 and 42) in which the inclination angle of the inclined groove is less than 10 ° and the bearings (sample numbers 51 to 53) in which the inclination angle of the inclined groove exceeds 60 ° are the static friction coefficient and the dynamic friction. Both of the coefficients show high values, but the bearings of the bearings (sample numbers 21, 43-50) with the inclination angle of the inclined grooves of 10 to 60 ° show low values for both the static friction coefficient and the dynamic friction coefficient. Further, in the bearings (sample numbers 21, 44 to 49) in which the inclination angle of the inclined groove is 15 to 50 °, both friction coefficients are smaller, and the bearings (sample number in which the inclination angle of the inclined groove is 20 to 40 °). 21, 45-48) shows the lowest value of both friction coefficients and a stable value. From these facts, it can be seen that the angle of the inclined groove is remarkable in the effect of reducing the static friction coefficient and the dynamic friction coefficient in the range of 10 to 60 °, more preferably 15 to 50 °, and most preferably 20 to 40 °.

[第3実施例]
第1実施例と同様の原料粉末を用い、同様に成形、焼結を行って作製した軸受試料について、溝の本数を72本、摺動面の幅Aを2.07mm、溝幅Bを1.42mm、溝の深さを0.7mm、周方向(摺動方向)と直交する方向に対する傾斜角度を20°と共通させた断面台形状の傾斜溝を内周面に機械加工により形成するとともに、第1実施例と同様の環状の内周溝、外周溝および貫通孔を機械加工により形成したものと、内周溝、外周溝および貫通孔を形成しないものの2種を作製した。次いで、両者に第1実施例と同様にマシン油を真空含浸して内周溝、外周溝および貫通孔を有する軸受試料とこれらを有さない軸受試料を作製した。作製した2種の軸受試料を第1実施例と同様にして連続して揺動試験を行い、静止摩擦係数が0.15を超える時点を寿命として運転時間の比較を行った。
[Third embodiment]
A bearing sample produced by using the same raw material powder as in the first embodiment and similarly molded and sintered has 72 grooves, a sliding surface width A of 2.07 mm, and a groove width B of 1. A trapezoidal inclined groove with a common inclination angle of 20 ° with respect to the direction orthogonal to the circumferential direction (sliding direction) is formed on the inner peripheral surface by machining. Two types were produced: one in which the inner circumferential groove, outer circumferential groove and through hole were formed by machining, as in the first example, and one in which the inner circumferential groove, outer circumferential groove and through hole were not formed. Next, as in the first example, both were vacuum impregnated with machine oil to prepare a bearing sample having an inner circumferential groove, an outer circumferential groove and a through hole, and a bearing sample not having these. The produced two types of bearing samples were continuously subjected to a rocking test in the same manner as in the first example, and the operation time was compared with the time when the static friction coefficient exceeded 0.15.

その結果、内周溝、外周溝および貫通孔を有する軸受試料は、これらを有しない軸受試料が寿命に到達する時間の倍以上の時間連続運転しても寿命に達せず、内周溝、外周溝および貫通孔を有する軸受試料は、これらを有しない軸受試料に比して2倍以上の寿命を示すことが確認された。   As a result, a bearing sample having an inner circumferential groove, an outer circumferential groove and a through-hole does not reach the service life even if it is continuously operated for a time longer than the time that the bearing sample without these reaches the service life. It was confirmed that a bearing sample having a groove and a through-hole has a life that is twice or more that of a bearing sample not having these.

本発明のすべり軸受は、比較的大型で、20MPa以上の面圧が作用し、すべり速度が比較的遅く揺動して作動するような用途に好適である。具体的には、例えばブルトーザやパワーショベルのような建設機械の関節用軸受、物品移送ロボットの関節軸受等が挙げられる。   The slide bearing of the present invention is relatively large and suitable for applications in which a surface pressure of 20 MPa or more acts and the swing speed is relatively slow and swings. Specifically, for example, joint bearings for construction machines such as bulltozers and power shovels, joint bearings for article transfer robots, and the like can be given.

本発明の一実施形態の軸受の斜視図である。It is a perspective view of the bearing of one Embodiment of this invention. 図1に示した軸受の側面図および側面断面図である。FIG. 2 is a side view and a side sectional view of the bearing shown in FIG. 1. 図1に示した軸受の内周面を示す展開図である。It is an expanded view which shows the internal peripheral surface of the bearing shown in FIG. 同軸受に軸を挿入した状態の傾斜溝形成部の断面図である。It is sectional drawing of the inclined groove formation part of the state which inserted the axis | shaft in the bearing. 同軸受に軸を挿入した状態の内周溝および外周溝形成部の断面図である。It is sectional drawing of the inner periphery groove | channel and the outer periphery groove | channel formation part of the state which inserted the axis | shaft in the same bearing. 摺動面の幅Aの影響を明らかにする実施例の試験結果であって、その幅Aと静止摩擦係数および動摩擦係数の関係を示す線図である。It is a test result of the Example which clarifies the influence of the width A of a sliding surface, Comprising: It is a diagram which shows the relationship of the width A, a static friction coefficient, and a dynamic friction coefficient. 傾斜溝の溝幅Bの影響を明らかにする実施例の試験結果であって、その溝幅Bと静止摩擦係数および動摩擦係数の関係を示す線図である。It is a test result of the Example which clarifies the influence of the groove width B of an inclined groove | channel, Comprising: It is a diagram which shows the relationship between the groove width B, a static friction coefficient, and a dynamic friction coefficient. 傾斜溝の本数が72本の場合における、摺動面の幅Aと溝幅Bとの比(A/B)の影響を明らかにする実施例の試験結果であって、A/Bと静止摩擦係数および動摩擦係数の関係の一例を示す線図である。It is a test result of the example which clarifies the influence of the ratio (A / B) of the width A of the sliding surface and the groove width B when the number of inclined grooves is 72, and A / B and static friction It is a diagram which shows an example of the relationship between a coefficient and a dynamic friction coefficient. 傾斜溝の本数が36本の場合における、摺動面の幅Aと溝幅Bとの比(A/B)の影響を明らかにする実施例の試験結果であって、A/Bと静止摩擦係数および動摩擦係数の関係の一例を示す線図である。It is a test result of the example which clarifies the influence of the ratio (A / B) of the width A of the sliding surface and the groove width B when the number of inclined grooves is 36, and A / B and static friction It is a diagram which shows an example of the relationship between a coefficient and a dynamic friction coefficient. 傾斜溝の深さdの影響を明らかにする実施例の試験結果であって、その溝の深さdと静止摩擦係数および動摩擦係数の関係を示す線図である。It is a test result of the Example which clarifies the influence of the depth d of an inclined groove | channel, Comprising: It is a diagram which shows the relationship between the depth d of the groove | channel, a static friction coefficient, and a dynamic friction coefficient. 傾斜溝の傾斜角度の影響を明らかにする実施例の試験結果であって、その傾斜角度と静止摩擦係数および動摩擦係数の関係を示す線図である。It is a test result of the Example which clarifies the influence of the inclination angle of an inclination groove | channel, Comprising: It is a diagram which shows the relationship between the inclination angle, a static friction coefficient, and a dynamic friction coefficient.

符号の説明Explanation of symbols

1…軸受(すべり軸受)
10…内周面
11…軸孔
12…傾斜溝
14…摺動面
15…内周溝(環状溝)
16…外周溝(環状溝)
17…貫通孔
20…軸
A…摺動面の周方向の幅
B…傾斜溝の周方向の溝幅
R…周方向
S…周方向と直交する方向
1 ... Bearing (Slide bearing)
DESCRIPTION OF SYMBOLS 10 ... Inner peripheral surface 11 ... Shaft hole 12 ... Inclined groove 14 ... Sliding surface 15 ... Inner peripheral groove (annular groove)
16 ... outer peripheral groove (annular groove)
17 ... Through hole 20 ... Axis A ... Circumferential width of sliding surface B ... Circumferential groove width of inclined groove R ... Circumferential direction S ... Direction orthogonal to circumferential direction

Claims (3)

軸孔に挿入される軸を回転自在に支持し、その軸が摺動する内周面に、周方向に交差する方向に延びる複数の直線的な傾斜溝が周方向に間隔をおいて形成され、これら傾斜溝に潤滑油が供給されるすべり軸受であって、
前記傾斜溝が、下記(A)〜(D)の条件で形成され、
(A)周方向と直交する方向に対して15°〜50゜の範囲で傾斜している。
(B)周方向の溝幅Bが1.19〜5mm。
(C)隣接する当該傾斜溝間の山部の表面である摺動面の周方向の幅Aが1〜7mm。
(D)前記山部の摺動面の幅Aと前記溝幅Bとの比A/Bが0.5〜4.05
さらに、前記すべり軸受の内周および外周に少なくとも一対の状態で環状溝が形成されるとともに、前記内周に形成された環状溝は前記傾斜溝に連通しており、
前記一対の環状溝を互いに連通させる貫通孔が少なくとも1つ形成されることを特徴とするすべり軸受。
A plurality of linear inclined grooves extending in a direction crossing the circumferential direction are formed at intervals in the circumferential direction on an inner circumferential surface on which the shaft inserted into the shaft hole is rotatably supported. , A sliding bearing in which lubricating oil is supplied to these inclined grooves,
The inclined groove is formed under the following conditions (A) to (D),
It is inclined in the range of 15 ° to 50 ° with respect (A) direction perpendicular to the circumferential direction.
(B) The circumferential groove width B is 1.19 to 5 mm.
(C) The width A in the circumferential direction of the sliding surface, which is the surface of the crest between adjacent inclined grooves, is 1 to 7 mm.
(D) Ratio A / B of the width A of the sliding surface of the peak portion and the groove width B is 0.5 to 4.05 .
Further, an annular groove is formed in at least a pair of states on the inner periphery and outer periphery of the sliding bearing, and the annular groove formed on the inner periphery communicates with the inclined groove,
At least one through-hole for communicating the pair of annular grooves with each other is formed.
前記傾斜溝の深さdが0.1〜3mmであることを特徴とする請求項1に記載のすべり軸受。   The slide bearing according to claim 1, wherein a depth d of the inclined groove is 0.1 to 3 mm. 前記軸受が焼結合金製であることを特徴とする請求項1または2に記載のすべり軸受。   The sliding bearing according to claim 1, wherein the bearing is made of a sintered alloy.
JP2007189396A 2007-07-20 2007-07-20 Plain bearing Active JP5059506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189396A JP5059506B2 (en) 2007-07-20 2007-07-20 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189396A JP5059506B2 (en) 2007-07-20 2007-07-20 Plain bearing

Publications (2)

Publication Number Publication Date
JP2009024798A JP2009024798A (en) 2009-02-05
JP5059506B2 true JP5059506B2 (en) 2012-10-24

Family

ID=40396782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189396A Active JP5059506B2 (en) 2007-07-20 2007-07-20 Plain bearing

Country Status (1)

Country Link
JP (1) JP5059506B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747965B1 (en) * 2009-12-22 2017-06-15 두산인프라코어 주식회사 Sliding bearing and sliding bearing assembly
CN103133535A (en) * 2013-03-06 2013-06-05 北京工业大学 Hydraulic plunger pump sliding bearing and machining method thereof
JP6422443B2 (en) * 2013-12-27 2018-11-14 株式会社荏原製作所 Slide bearing device
CN103939472B (en) * 2014-03-27 2017-04-26 西安交通大学 Sliding bearing of double-screw compressor
CN111997999B (en) * 2020-08-20 2022-04-12 浙江申发轴瓦股份有限公司 Tilting pad sliding bearing bush structure and tilting pad sliding bearing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173937A (en) * 1992-12-09 1994-06-21 Toyota Motor Corp Piston connecting rod
JP4124510B2 (en) * 1998-04-15 2008-07-23 大豊工業株式会社 Grooved plain bearing
JP2004084815A (en) * 2002-08-27 2004-03-18 Komatsu Ltd Bearing device
JP4271624B2 (en) * 2004-06-23 2009-06-03 日立粉末冶金株式会社 Slide bearings for joints of construction machinery
JP2007309392A (en) * 2006-05-17 2007-11-29 Komatsu Ltd Bearing device

Also Published As

Publication number Publication date
JP2009024798A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5202307B2 (en) Slide bearings for joints of construction machines or article transfer robots
JP4271624B2 (en) Slide bearings for joints of construction machinery
EP2375091B1 (en) Sliding bearing and sliding bearing assembly
KR101747965B1 (en) Sliding bearing and sliding bearing assembly
US6991377B2 (en) Bearing device
KR101648986B1 (en) Sliding bearing having improved lubrication property
JP5059506B2 (en) Plain bearing
EP1925680A2 (en) Multi-row thrust roller bearing
JP2009250316A (en) Cage for rolling bearing
JP2009180376A (en) Sliding bearing, and working machine connecting device using the same
WO2005108808A1 (en) Bearing assembly having debris removal system
TW200824862A (en) Pneumatic tool
EP3875795B1 (en) Cylindrical roller bearing
JP2016147991A (en) chain
JP2010175002A (en) Oil-impregnated sintered bearing
US8974119B2 (en) Asymmetric split bearing with geometrically contoured work surface
JP2020193626A (en) Bearing of compressor for freezing machine
JP2005133881A (en) Solid lubrication rolling bearing
JP2006214469A (en) Rolling bearing with alignment ring
JP2009052729A (en) Corrugated press holder, and rolling ball bearing
JP2006194407A (en) Rolling device and rolling bearing
JP2014181814A (en) Cage for rolling bearing, and rolling bearing
JP2001126346A (en) Pinch roller device and bearing blank used for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350