JP5058562B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP5058562B2
JP5058562B2 JP2006298993A JP2006298993A JP5058562B2 JP 5058562 B2 JP5058562 B2 JP 5058562B2 JP 2006298993 A JP2006298993 A JP 2006298993A JP 2006298993 A JP2006298993 A JP 2006298993A JP 5058562 B2 JP5058562 B2 JP 5058562B2
Authority
JP
Japan
Prior art keywords
hole
injection port
sealing plug
battery
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006298993A
Other languages
Japanese (ja)
Other versions
JP2008117605A (en
Inventor
龍大 渥美
隆志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2006298993A priority Critical patent/JP5058562B2/en
Publication of JP2008117605A publication Critical patent/JP2008117605A/en
Application granted granted Critical
Publication of JP5058562B2 publication Critical patent/JP5058562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は電解液の注液口に封止栓を装着した密閉型電池に関する。   The present invention relates to a sealed battery in which a sealing plug is attached to an electrolyte injection port.

近年、携帯電話、デジタルカメラ、ポータブルオーディオなどの小型の電子機器の電源として各種の電池が用いられており、リチウムイオン電池等の非水電解液を使用した小型で大容量の角形密閉型電池がよく用いられている。   In recent years, various types of batteries have been used as power sources for small electronic devices such as mobile phones, digital cameras, and portable audio devices. Small and large-capacity rectangular sealed batteries using non-aqueous electrolytes such as lithium ion batteries have been used. It is often used.

角形密閉型電池は、電池缶と蓋体との嵌合部を封口した後、注液口から電解液を注入した後、注液口に封止栓を嵌合した状態でレーザ光を照射して溶融させて注液口を封止している。レーザ溶接においては、注液口に付着した電解液によって溶接不良による封止不良が生じたり、あるいは注液口の壁面と封止栓との嵌合状態の不良によって封止不良が生じることがあった。この状況を図面に基づいて説明する。   A rectangular sealed battery seals the fitting part between the battery can and the lid, and then injects the electrolyte from the injection port, and then irradiates the laser beam with the sealing plug fitted to the injection port. The injection port is sealed by melting. In laser welding, a sealing failure may occur due to poor welding due to the electrolyte adhering to the injection port, or a sealing failure may occur due to a poor fitting state between the wall of the injection port and the sealing plug. It was. This situation will be described with reference to the drawings.

図5は従来の角形密閉型電池の製造工程の説明図であり、図5(a)は電解液注入工程の模式的断面図、図5(b)は封止栓の挿入工程の模式的断面図、図5(c)はレーザ溶接工程の模式的断面図である。1は蓋体、2は注液口、5は電解液、6は封止栓、7は溶接用のレーザ光を示す。図5(b)、図5(c)のようにレーザ溶接部分に残留した電解液5がレーザ光7の照射時に溶接不良を発生させることがある。   FIGS. 5A and 5B are explanatory views of a manufacturing process of a conventional rectangular sealed battery, FIG. 5A is a schematic cross-sectional view of an electrolyte injection process, and FIG. 5B is a schematic cross-section of a sealing plug insertion process. FIG. 5C is a schematic cross-sectional view of the laser welding process. Reference numeral 1 denotes a lid, 2 denotes a liquid injection port, 5 denotes an electrolytic solution, 6 denotes a sealing plug, and 7 denotes a laser beam for welding. As shown in FIGS. 5B and 5C, the electrolyte 5 remaining in the laser welding portion may cause welding failure when the laser beam 7 is irradiated.

他の注液口として円筒状の部分とそれに繋がるテーパー面によって形成された注液口により注液口の内面に付着した電解液を速やかに落下させ、注液口と封止栓の嵌合部および溶接部に電解液の残留を防止することが提案されている(たとえば特許文献1)。   The liquid injection port formed by the cylindrical part and the tapered surface connected to it as another liquid injection port quickly drops the electrolyte attached to the inner surface of the liquid injection port, and the fitting part between the liquid injection port and the sealing plug In addition, it has been proposed to prevent the electrolyte from remaining in the weld (for example, Patent Document 1).

しかしながら、注液口に封止栓を挿入すると、電解液が注液口からその周辺部に飛び出し、周辺部に付着が発生、あるいは、レーザ溶接時に両者のわずかな隙間より電解液が漏れ溶接部の封止特性が悪化するおそれがあった。   However, when a sealing plug is inserted into the liquid injection port, the electrolyte jumps out from the liquid injection port to the periphery thereof, and adhesion occurs at the periphery, or the electrolyte leaks from the slight gap between the two during laser welding. There was a possibility that the sealing characteristics of the deteriorated.

特開2002−358948号公報JP 2002-358948 A

本発明の課題は、注液口に封止栓を装着する密閉型電池において、注液時あるいは封止栓の挿入時に注液口周辺に付着した電解液による封止不良が生じることのない密閉型電池を提供することにある。   An object of the present invention is to provide a hermetic battery in which a sealing plug is attached to a liquid injection port, so that sealing failure does not occur due to an electrolyte adhering to the periphery of the liquid injection port during injection or when a sealing plug is inserted. It is to provide a type battery.

前記課題を解決するため本発明の密閉型電池は、フランジ部付きの封止栓を注液口に装着する密閉型電池において、前記注液口の中心孔の周囲には前記封止栓のフランジ部に当接し前記中心孔と同心の環状のフランジ当接部が設けられ、このフランジ当接部の周囲には前記中心孔と同心の環状の溝部が設けられ、この溝部には電池内部に貫通する貫通孔が設けられたことを特徴とする。こうすることで、電解液の注入後、注液口に封止栓を挿入したとき、フランジ当接部などに付着した電解液はその貫通孔を通って電池内部に落下するので、レーザ溶接部分に電解液が残留することがなくなる。   In order to solve the above problems, a sealed battery according to the present invention is a sealed battery in which a sealing plug with a flange portion is attached to a liquid inlet, and a flange of the sealing plug is provided around a central hole of the liquid inlet. An annular flange contact portion that is in contact with the center hole and concentric with the center hole is provided, and an annular groove portion that is concentric with the center hole is provided around the flange contact portion, and this groove portion penetrates the inside of the battery. A through hole is provided. By doing so, when the sealing plug is inserted into the injection port after the injection of the electrolytic solution, the electrolytic solution attached to the flange contact portion etc. falls into the battery through the through hole, so that the laser welded portion No electrolyte remains.

前記貫通孔の合計面積S1と、前記溝部の面積S2との面積比S1/S2が、0.1以上で0.5以下であるとよい。こうすると、注液口部分の機械的強度を確保しながら、電解液を電池内部に落下させうる構造となる。 The area ratio S 1 / S 2 between the total area S 1 of the through holes and the area S 2 of the groove is preferably 0.1 or more and 0.5 or less. If it carries out like this, it will become a structure which can drop electrolyte solution inside a battery, ensuring the mechanical strength of a liquid inlet part.

本発明の密閉型電池は、注液口周囲の同心円状の溝部に貫通孔部を有することにより、電解液を注入する際に注液口に付着した電解液は、注液口と同心円状に設けた溝部の貫通孔部から電池内部に落下し、封止栓と蓋体との嵌合部においては電解液が残留することを防止することができ、レーザ溶接による封止工程でピンホール等を生じることなく溶接することができる。   The sealed battery of the present invention has a through-hole in a concentric groove around the liquid inlet, so that the electrolyte attached to the liquid inlet when the electrolyte is injected is concentrically with the liquid inlet. It can be prevented from falling into the battery from the through-hole part of the provided groove part, and the electrolyte solution remaining in the fitting part between the sealing plug and the lid body. It can be welded without producing.

また、注液口に封止栓を挿入時、あるいは封止栓の挿入後に、注液口から飛び出した電解液は溝部の貫通孔部から電池内部に落下し、レーザ光の照射される嵌合部に達することがなく、レーザ溶接時の封止不良を低減することができる。   Also, when the sealing plug is inserted into the injection port, or after the sealing plug is inserted, the electrolyte that has jumped out of the injection port falls into the battery from the through-hole portion of the groove and is irradiated with laser light. The sealing failure at the time of laser welding can be reduced without reaching the part.

本発明の実施の形態を図面に基づいて説明する。図1は、本発明の一実施の形態での密閉型電池を説明する図であり、図1(a)はその平面図であり、図1(b)は図1(a)において注液口部分をA−A線で切断した断面図である。また、図2は本発明の一実施の形態での注液口部分を示す平面図である。さらに、図3は、本発明の一実施の形態での密閉型電池の電解液注入から注液口封止に至る製造工程を説明する図であり、図3(a)は電解液注入工程を、図3(b)は封止栓の挿入工程を、図3(c)はレーザ溶接工程を模式的に説明する断面図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a sealed battery according to an embodiment of the present invention, FIG. 1 (a) is a plan view thereof, and FIG. 1 (b) is a liquid inlet in FIG. 1 (a). It is sectional drawing which cut | disconnected the part by the AA line. FIG. 2 is a plan view showing a liquid injection port part in one embodiment of the present invention. Furthermore, FIG. 3 is a figure explaining the manufacturing process from electrolyte solution injection | pouring of a sealed battery in one embodiment of this invention to injection hole sealing, FIG.3 (a) is an electrolyte solution injection | pouring process. FIG. 3B is a cross-sectional view schematically illustrating the sealing plug insertion process, and FIG. 3C is a schematic view illustrating the laser welding process.

本発明の密閉型電池は、図1(a)のように、電池缶内に電極素子を収納した後に電池缶の開口部を蓋体1で封口したものであり、蓋体1は中央部に電極端子9を有するとともに、安全弁および注液口2を有し、図1(b)のように、注液口部分は構成する板状の部材に注液中心孔2aを有し、注液中心孔2a周囲の同心円状の溝部3に貫通孔部4を有している。なお、図1(b)では複雑さを避けるために、貫通孔部4の内壁の隅の形状を図示しなかった。その溝部3と貫通孔部4を上方からみると、図2のようであり、注液中心孔2aの周囲にフランジ当接部8が円環状の凸部をなし、その外周に沿って円環状の溝部3を形成し、この溝部3の底面には電池内部に貫通する4つの貫通孔部4を形成する。このとき貫通孔部4の4つの合計面積Sが溝部3の面積Sに対して、S/Sが0.1〜0.5の範囲になるようにする。ここで、溝部3の面積Sは貫通孔部4がない場合の円環状の溝の面積を指している。言い換えると、溝部3の面積Sは、貫通孔部4の合計面積Sを含んでいる。 As shown in FIG. 1 (a), the sealed battery according to the present invention is obtained by sealing the opening of the battery can with the lid 1 after the electrode element is accommodated in the battery can. It has an electrode terminal 9 and a safety valve and a liquid injection port 2, and as shown in FIG. 1 (b), the liquid injection port part has a liquid injection center hole 2 a in a plate-shaped member constituting the liquid injection center. A through-hole portion 4 is provided in a concentric groove portion 3 around the hole 2a. In addition, in FIG.1 (b), in order to avoid complexity, the shape of the corner of the inner wall of the through-hole part 4 was not illustrated. The groove part 3 and the through hole part 4 are viewed from above as shown in FIG. 2, and the flange contact part 8 forms an annular convex part around the liquid injection center hole 2a, and the annular part extends along the outer periphery thereof. The groove portion 3 is formed, and four through-hole portions 4 penetrating into the battery are formed on the bottom surface of the groove portion 3. Relative to the area S 2 of the four total area S 1 is the groove 3 of the through hole 4 at this time, S 1 / S 2 is set to be in the range of 0.1 to 0.5. The area S 2 of the groove 3 points to the area of the annular groove in the absence of the through hole 4. In other words, the area S 2 of the groove part 3 includes the total area S 1 of the through-hole part 4.

このとき、貫通孔部4の形状は、図2に示したような円弧状の形に限られず、任意の形状が可能であるが、円環状の溝部3に均等に分散配置されることが注液口部分の機械的強度を確保する点および電解液の落下を容易にする点で好ましい。   At this time, the shape of the through-hole portion 4 is not limited to the arc shape as shown in FIG. 2, and any shape is possible, but it is noted that the through-hole portion 4 is evenly distributed and arranged in the annular groove portion 3. This is preferable in terms of ensuring the mechanical strength of the liquid inlet and facilitating the dropping of the electrolyte.

次に素電池および電池缶は公知技術によって作製し、上述の注液口を持つ蓋体と組合せ、図3(a)のように電解液5を注入する。その後、図3(b)のように封止栓6を注液口2に挿入するとき、フランジ部6aが当接するフランジ当接部8に付着した電解液5は、貫通孔部4を通って電池内部に落ち込み、フランジ部6aの外周の蓋体1との嵌合部に侵入することはない。また、図3(c)のように溝部3の底に付着した電解液5が封止栓のフランジ部6aの外周の嵌合部に侵入することもない。次いで、レーザ光7による溶接封止を行い、本実施の形態の密閉型電池を得る。   Next, the unit cell and the battery can are produced by a known technique, combined with the lid body having the above-described liquid injection port, and the electrolytic solution 5 is injected as shown in FIG. Thereafter, when the sealing plug 6 is inserted into the liquid injection port 2 as shown in FIG. 3B, the electrolytic solution 5 attached to the flange contact portion 8 with which the flange portion 6 a comes into contact passes through the through-hole portion 4. It does not fall into the inside of the battery and enter the fitting portion with the lid body 1 on the outer periphery of the flange portion 6a. Further, as shown in FIG. 3C, the electrolytic solution 5 attached to the bottom of the groove portion 3 does not enter the fitting portion on the outer periphery of the flange portion 6a of the sealing plug. Next, welding sealing with laser light 7 is performed to obtain the sealed battery of the present embodiment.

(実施例1)
本実施例の密閉型電池の構造は上記実施の形態で参照した図1、図2および図3で示したものと同様である。まず、図1(b)および図2を参照する。蓋体1はアルミニウム合金からなり厚さが1mmであり、注液中心孔2aは直径φ0.8mmで高さを0.7mmとし、その周囲に内径φ1.2mm、外径φ2.0mm、深さ0.7mmの溝部3を同心円状に形成し、溝部3の4箇所に貫通孔部4を形成する。注液中心孔2a、溝部3および貫通孔部4はプレス加工等により形成される。図3のように、封止栓6は注液口2の溝部3を覆うフランジ部6aと注液中心孔2aに収まる突出部6bとから構成される。
Example 1
The structure of the sealed battery of this example is the same as that shown in FIGS. 1, 2, and 3 referred to in the above embodiment. First, refer to FIG. 1B and FIG. The lid 1 is made of an aluminum alloy and has a thickness of 1 mm. The injection center hole 2 a has a diameter of 0.8 mm and a height of 0.7 mm, and has an inner diameter of 1.2 mm, an outer diameter of 2.0 mm, and a depth. The 0.7 mm groove part 3 is formed concentrically, and the through-hole part 4 is formed in four places of the groove part 3. The liquid injection center hole 2a, the groove 3 and the through hole 4 are formed by pressing or the like. As shown in FIG. 3, the sealing plug 6 includes a flange portion 6a that covers the groove portion 3 of the liquid injection port 2 and a protruding portion 6b that fits in the liquid injection center hole 2a.

このとき貫通孔部4の合計面積Sは、封止栓6を注液口2に挿入するとき、フランジ当接部8が蓋体1から脱落することがないこと、および、電解液の落下を容易にすることを考慮して、円環状の溝部3の面積Sのうち貫通孔がない部分の面積(S−S)が、貫通孔部4の合計面積Sと等しくなるようにした。すなわち、S/S=0.5とした。 At this time, the total area S 1 of the through-hole portion 4 is determined so that the flange abutting portion 8 does not fall off from the lid 1 when the sealing plug 6 is inserted into the liquid injection port 2, and the electrolyte falls. The area (S 2 −S 1 ) of the portion having no through hole in the area S 2 of the annular groove 3 is made equal to the total area S 1 of the through hole 4. I made it. That is, S 1 / S 2 = 0.5.

次に、図3のように、注液口2より電解液5を電池缶内部に注液するが、注液中心孔2aの高さについては封止栓6の挿入時にフランジ部6aと密着する高さとすることが望ましい。注液口2への封止栓6の挿入時に、注液中心孔2aと溝部3の間の壁上(フランジ当接部8)あるいは溝部3に付着した電解液5は溝部3の壁面を落下し貫通孔部4から電池内部に落下する。封止栓6の挿入時、あるいは、挿入後、注液口2より飛び出した電解液5についても溝部3の貫通孔部4から電池内部に落下する。そして封止栓6と蓋体1とをレーザ光7にて溶接し本実施例の密閉型電池を得た。このときレーザ溶接は良好になされ、注液口への封止栓の溶接は容易であった。   Next, as shown in FIG. 3, the electrolytic solution 5 is injected into the battery can through the injection port 2, and the height of the injection center hole 2a is in close contact with the flange portion 6a when the sealing plug 6 is inserted. It is desirable to have a height. When the sealing plug 6 is inserted into the liquid injection port 2, the electrolyte 5 on the wall between the liquid injection center hole 2 a and the groove portion 3 (flange contact portion 8) or attached to the groove portion 3 falls on the wall surface of the groove portion 3. And falls into the battery from the through-hole portion 4. When the sealing plug 6 is inserted or after insertion, the electrolytic solution 5 that has jumped out from the liquid injection port 2 also falls into the battery from the through hole portion 4 of the groove portion 3. And the sealing plug 6 and the cover body 1 were welded with the laser beam 7, and the sealed battery of the present Example was obtained. At this time, laser welding was satisfactorily performed, and welding of the sealing plug to the liquid injection port was easy.

(実施例2)
図4に本実施例に係る注液口の構造を示す。図4(a)はその平面図、図4(b)はそのB−B断面図(貫通孔を通らない切断面による図)、図4(c)はそのC−C断面図(貫通孔を通る切断面による図)である。
(Example 2)
FIG. 4 shows the structure of the liquid injection port according to the present embodiment. 4 (a) is a plan view thereof, FIG. 4 (b) is a sectional view taken along line BB (a view taken along a cut surface not passing through a through hole), and FIG. It is the figure by the cut surface which passes.

本実施例2は貫通孔部4が実施例1のものと僅かに異なるが、他は共通である。すなわち、実施例1の場合には、図2のように、円環状の溝部3の幅に対して、少し狭い幅で円弧状の貫通孔を形成したが、本実施例2では、図4(a)、図4(b)のように、円環状の溝部3の幅と等しい幅で円弧状の貫通孔を形成した。この貫通孔形状では、実施例1と比較して、機械的強度がやや低下するが、封止栓の挿入時にフランジ当接部8および溝部3に付着した電解液の落下が容易になる。   The second embodiment is slightly different from the first embodiment in the through-hole portion 4, but the other is common. That is, in the case of the first embodiment, as shown in FIG. 2, the arc-shaped through hole is formed with a slightly narrower width than the width of the annular groove portion 3, but in the second embodiment, as shown in FIG. a) As shown in FIG. 4B, arc-shaped through-holes having a width equal to the width of the annular groove 3 were formed. With this through hole shape, the mechanical strength is slightly reduced as compared with the first embodiment, but the electrolyte attached to the flange contact portion 8 and the groove portion 3 is easily dropped when the sealing plug is inserted.

(実施例3)
本実施例3の注液口の構造は、貫通孔が小さくなった点を除き、実施例2のものと共通であるので、図4を参照して説明する。蓋体1はアルミニウム合金からなり厚さが1mmであり、注液中心孔2aは直径φ0.8mmで高さを0.7mmとし、その周囲に内径φ1.4mm、外径φ2.0mm、深さ0.7mmの溝部3を同心円状に形成し、溝部3の4箇所に貫通孔部4を形成した。このとき、1つの貫通孔のフランジ当接部の円弧方向の長さを約0.2mmとし、貫通孔部4の4つの合計面積S1と溝部3の面積S2との比S1/S2を0.1とした。
(Example 3)
The structure of the liquid injection port of Example 3 is the same as that of Example 2 except that the through-hole is reduced, and will be described with reference to FIG. The lid 1 is made of an aluminum alloy and has a thickness of 1 mm. The injection hole 2a has a diameter of 0.8 mm and a height of 0.7 mm, and an inner diameter of 1.4 mm, an outer diameter of 2.0 mm, and a depth around the periphery. The 0.7 mm groove part 3 was formed concentrically, and the through-hole part 4 was formed in four places of the groove part 3. FIG. At this time, the length in the arc direction of the flange contact portion of one through hole is set to about 0.2 mm, and the ratio S 1 / S between the four total areas S 1 of the through holes 4 and the area S 2 of the grooves 3 2 was set to 0.1.

本実施例では、注液口の機械的強度は十分に高く保たれ、かつ封止栓の挿入時に電解液がレーザ溶接部分に侵入することはなく、良好な封止状態が得られた。   In this example, the mechanical strength of the liquid injection port was kept sufficiently high, and the electrolyte did not enter the laser welded portion when the sealing plug was inserted, and a good sealed state was obtained.

以上、本発明を実施するための最良の形態および実施例を説明したが、電解液注液口は蓋体以外にも電池缶に設けても良いなど、当業者であればなし得るであろう各種形態・修正も本発明に含まれる。   As mentioned above, although the best form and Example for implementing this invention were demonstrated, the electrolyte solution injection port may be provided in a battery can other than a cover body, and various kinds which those skilled in the art could do. Forms and modifications are also included in the present invention.

本発明の一実施の形態での密閉型電池を示し、図1(a)はその平面図、図1(b)は図1(a)のA−A線で切断した断面図。1 shows a sealed battery according to an embodiment of the present invention, in which FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA of FIG. 本発明の一実施の形態での注液口部分を示す平面図。The top view which shows the injection hole part in one embodiment of this invention. 本発明の一実施の形態での密閉型電池の電解液注入から注液口封止に至る製造工程を示し、図3(a)は電解液注入工程の断面図、図3(b)は封止栓挿入工程の断面図、図3(c)はレーザ溶接工程の模式的な断面図。FIGS. 3A and 3B show a manufacturing process from injection of an electrolyte solution to sealing of a liquid inlet in an embodiment of the present invention, FIG. 3A is a sectional view of the electrolyte injection process, and FIG. FIG. 3C is a schematic cross-sectional view of the laser welding process. 実施例2に係る注液口の構造を示し、図4(a)はその平面図、図4(b)はそのB−B断面図、図4(c)はそのC−C断面図。The structure of the injection hole which concerns on Example 2 is shown, FIG. 4 (a) is the top view, FIG.4 (b) is the BB sectional drawing, FIG.4 (c) is the CC sectional drawing. 従来の角形密閉型電池の製造工程を示し、図5(a)は電解液注入工程の模式的断面図、図5(b)は封止栓挿入工程の模式的断面図、図5(c)はレーザ溶接工程の模式的断面図。FIG. 5 (a) is a schematic cross-sectional view of an electrolytic solution injection process, FIG. 5 (b) is a schematic cross-sectional view of a sealing plug insertion process, and FIG. Is a schematic sectional view of a laser welding process.

符号の説明Explanation of symbols

1 蓋体
2 注液口
2a 注液中心孔
3 溝部
4 貫通孔部
5 電解液
6 封止栓
6a フランジ部
6b 突出部
7 レーザ光
8 フランジ当接部
9 電極端子
DESCRIPTION OF SYMBOLS 1 Cover body 2 Injection port 2a Injection center hole 3 Groove part 4 Through-hole part 5 Electrolyte 6 Seal plug 6a Flange part 6b Projection part 7 Laser beam 8 Flange contact part 9 Electrode terminal

Claims (2)

フランジ部付きの封止栓を注液口に装着する密閉型電池において、
前記注液口の中心孔の周囲には前記封止栓のフランジ部に当接し前記中心孔と同心の環状のフランジ当接部が設けられ、
このフランジ当接部の周囲には前記中心孔と同心の環状の溝部が設けられ、
この溝部には電池内部に貫通する貫通孔が設けられたことを特徴とする密閉型電池。
In a sealed battery that attaches a sealing plug with a flange to the injection port,
Around the center hole of the liquid injection port, an annular flange contact portion concentric with the center hole is provided in contact with the flange portion of the sealing plug,
Around the flange contact portion is provided an annular groove concentric with the center hole,
A sealed battery, wherein the groove is provided with a through-hole penetrating into the battery.
前記貫通孔の合計面積S1と、前記溝部の面積S2との面積比S1/S2が、0.1以上で0.5以下であることを特徴とする請求項1に記載の密閉型電池。 2. The hermetic seal according to claim 1, wherein an area ratio S 1 / S 2 between the total area S 1 of the through holes and the area S 2 of the groove is 0.1 or more and 0.5 or less. Type battery.
JP2006298993A 2006-11-02 2006-11-02 Sealed battery Active JP5058562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298993A JP5058562B2 (en) 2006-11-02 2006-11-02 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298993A JP5058562B2 (en) 2006-11-02 2006-11-02 Sealed battery

Publications (2)

Publication Number Publication Date
JP2008117605A JP2008117605A (en) 2008-05-22
JP5058562B2 true JP5058562B2 (en) 2012-10-24

Family

ID=39503370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298993A Active JP5058562B2 (en) 2006-11-02 2006-11-02 Sealed battery

Country Status (1)

Country Link
JP (1) JP5058562B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097767A (en) * 2017-12-01 2018-06-01 宁波市江北义盈工贸有限公司 A kind of flange fixing installation of combined machine part

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110091765A1 (en) * 2009-10-19 2011-04-21 Samsung Sdi Co., Ltd. Secondary battery including sealing structure for electrolyte injection hole and method of manufacturing the secondary battery
US9118061B2 (en) * 2010-08-13 2015-08-25 Samsung Sdi Co., Ltd. Secondary battery
JP5940284B2 (en) 2011-01-25 2016-06-29 株式会社東芝 Secondary battery and method for manufacturing secondary battery
JP5382205B2 (en) * 2011-04-01 2014-01-08 トヨタ自動車株式会社 Power storage device
KR102572693B1 (en) * 2015-10-02 2023-08-31 삼성에스디아이 주식회사 Secondary Battery
JP6913442B2 (en) * 2016-06-09 2021-08-04 株式会社東芝 Secondary battery
CN106784519B (en) * 2017-01-16 2023-08-11 河南创力新能源科技股份有限公司 Automatic limiting short-circuit-preventing supplementary liquid system for storage battery pack
DE112018003611T5 (en) 2017-07-14 2020-05-20 Gs Yuasa International Ltd. ENERGY STORAGE
JP2019029208A (en) * 2017-07-31 2019-02-21 株式会社Gsユアサ Power storage element
WO2019026779A1 (en) * 2017-07-31 2019-02-07 株式会社Gsユアサ Power storage element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021437A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Manufacture of sealed battery
JP2005190776A (en) * 2003-12-25 2005-07-14 Nec Tokin Tochigi Ltd Sealed type battery
JP2007103158A (en) * 2005-10-04 2007-04-19 Nec Tokin Corp Square sealed battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097767A (en) * 2017-12-01 2018-06-01 宁波市江北义盈工贸有限公司 A kind of flange fixing installation of combined machine part

Also Published As

Publication number Publication date
JP2008117605A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5058562B2 (en) Sealed battery
JP6138963B2 (en) Square battery
KR100973739B1 (en) Sealed battery
JP2007018915A (en) Sealed battery
JP5520721B2 (en) Sealed battery
KR20100087374A (en) Method of producing welded structure and method of producing battery
JP2011204396A (en) Sealed battery and method for manufacturing the same
CN104641487A (en) Rectangular secondary battery
JP2007103158A (en) Square sealed battery
JP2007066600A (en) Sealed battery
US20140004411A1 (en) Sealed battery
JP2006324160A (en) Sealing structure of battery cabinet and battery with the structure
JP6052056B2 (en) Power storage device
KR100965718B1 (en) Secondary Battery
JP2008147069A (en) Sealed battery
JP2015219962A (en) Method of manufacturing hermetically sealed battery
JP2002358948A (en) Enclosed battery
JP2005190776A (en) Sealed type battery
JP2007035343A (en) Sealed battery
JP6014161B2 (en) Method for manufacturing rectangular energy storage device
JP6115094B2 (en) Power storage device and method for manufacturing power storage device
JP2007328940A (en) Manufacturing method of battery and valve member
JP2014022095A (en) Sealed battery, and method for manufacturing sealed battery
JP5879373B2 (en) Prismatic secondary battery
JP2005158267A (en) Sealed type secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250