JP5057634B2 - Fuel cell structure - Google Patents

Fuel cell structure Download PDF

Info

Publication number
JP5057634B2
JP5057634B2 JP2003323817A JP2003323817A JP5057634B2 JP 5057634 B2 JP5057634 B2 JP 5057634B2 JP 2003323817 A JP2003323817 A JP 2003323817A JP 2003323817 A JP2003323817 A JP 2003323817A JP 5057634 B2 JP5057634 B2 JP 5057634B2
Authority
JP
Japan
Prior art keywords
fuel cell
flow
fluid
flow path
cell assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003323817A
Other languages
Japanese (ja)
Other versions
JP2004111395A5 (en
JP2004111395A (en
Inventor
ロナルド・スコット・バンカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2004111395A publication Critical patent/JP2004111395A/en
Publication of JP2004111395A5 publication Critical patent/JP2004111395A5/ja
Application granted granted Critical
Publication of JP5057634B2 publication Critical patent/JP5057634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は一般に燃料電池等の発電機器に関し、特に、燃料電池、例えば、固体酸化物燃料電池の熱管理に関する。   The present invention relates generally to power generation equipment such as fuel cells, and more particularly to thermal management of fuel cells, such as solid oxide fuel cells.

燃料電池は、イオン電導層を介して燃料とオキシダント(酸化体)を電気化学的に組み合わせることにより電気を発生するエネルギー変換装置である。高温燃料電池束、例えば、固体酸化物燃料電池束は、通常、平面形状を有する平坦な個々の部材から構成される。平面燃料電池は逆流、交差流及び平行流という異なる種類で実現可能である。典型的な平面燃料電池は、電池から電池へと電流を供給し、立方体構造又はスタックの内部に気体流路を提供する3層陽極/電解質/陰極構成要素を具備する。   A fuel cell is an energy conversion device that generates electricity by electrochemically combining a fuel and an oxidant (oxidant) via an ion conductive layer. A high temperature fuel cell bundle, for example, a solid oxide fuel cell bundle, is usually composed of flat individual members having a planar shape. Planar fuel cells can be realized in different types: backflow, crossflow and parallel flow. A typical planar fuel cell comprises a three layer anode / electrolyte / cathode component that supplies current from cell to cell and provides a gas flow path within a cubic structure or stack.

固体酸化物燃料電池等の燃料電池は発電に関して効率が良く、汚染が少ないという潜在能力を持つことが実証されているが、温度管理に関連する問題、特に燃料電池構成要素の熱勾配を調整する場合の問題が残されている。燃料電池における動作温度を維持するためには、燃料とオキシダントの反応によって燃料電池で発生する熱エネルギーを除去するか、又は内部で使用することが必要である。燃料電池における冷却流路は、スタック温度を規定の限界以下に維持し且つ所定の熱勾配を維持するように廃熱を燃料電池からオキシダントへ伝達又は除去するのを助けるために、通常は空気等のオキシダントを使用する。燃料電池構体とオキシダント等の流体との温度差は、流体流路を通過して流れる流体と燃料電池構体で発生する熱流束との熱伝達特性として機能する。しかしながら、従来の燃料電池に適用するときに使用されるそのような流体流路の場合、流体流路とそこを流れる流体との間の対流熱伝達係数は低い。
米国特許4977041号明細書 米国特許出願10/212541号明細書 米国特許5993985号明細書 米国特許出願公開2004/0197633号明細書
Fuel cells, such as solid oxide fuel cells, have been proven to have the potential to be efficient in generating electricity and less polluted, but regulate the problems associated with temperature management, especially the thermal gradients of fuel cell components If the problem is left. In order to maintain the operating temperature in the fuel cell, it is necessary to remove the heat energy generated in the fuel cell due to the reaction between the fuel and the oxidant or to use it internally. The cooling flow path in the fuel cell is typically air or the like to help transfer or remove waste heat from the fuel cell to the oxidant to maintain the stack temperature below a specified limit and maintain a predetermined thermal gradient. Use the oxidant. A temperature difference between the fuel cell assembly and a fluid such as an oxidant functions as a heat transfer characteristic between the fluid flowing through the fluid flow path and the heat flux generated in the fuel cell assembly. However, for such fluid flow paths used when applied to conventional fuel cells, the convective heat transfer coefficient between the fluid flow path and the fluid flowing therethrough is low.
US Pat. No. 4,977041 US Patent Application No. 10/212541 US Pat. No. 5,993,985 US Patent Application Publication No. 2004/0197633

従って、当該技術においては、改善された熱伝達特性を提供する改善された流体流路を有する燃料電池が必要である。   Accordingly, there is a need in the art for a fuel cell having an improved fluid flow path that provides improved heat transfer characteristics.

本発明の一実施例は、少なくとも1つの燃料電池を備える燃料電池構体を提供する。燃料電池は、陽極、陰極及びそれらの間に配置された電解質と、燃料電池に流体を送るために少なくとも1つの燃料電池の内部に配置された少なくとも1つの流体流路と、陽極、陰極又は電解質に接触する流れ分断器の少なくとも1つのアレイ(配列)を具備する。流れ分断器は、流体が流体流路に導入されると流体の流れを分断し且つ流体と燃料電池構体との間の熱伝達率を向上させるように流体流路の中へ突出する。
One embodiment of the present invention provides a fuel cell assembly comprising at least one fuel cell. A fuel cell includes an anode, a cathode and an electrolyte disposed therebetween, at least one fluid flow path disposed within at least one fuel cell for delivering fluid to the fuel cell, and an anode, cathode or electrolyte. contacting the comprising at least one array of flow disruptors (SEQ). The flow breaker protrudes into the fluid flow path so as to break the flow of the fluid and improve the heat transfer rate between the fluid and the fuel cell assembly when the fluid is introduced into the fluid flow path.

本発明の以上の特徴、面及び利点、並びにその他の特徴、面及び利点は、以下の説明、請求の範囲及び添付の図面を参照することにより更に良く理解されるであろう。   The foregoing features, aspects and advantages of the present invention, as well as other features, aspects and advantages will be better understood with reference to the following description, claims and appended drawings.

本発明は、典型的には、少なくとも1つの燃料電池50を備える燃料電池アレイ、燃料電池束又は燃料電池スタックを具備する燃料電池構体10、例えば、固体酸化物燃料電池(以下「SOFC」という)構体を提供する(図1を参照)。各燃料電池50は、直列又は並列に、あるいは直列及び並列に積層することができ、電気エネルギー出力を生成可能な燃料電池スタックシステム又は燃料電池スタック構造を構築する繰り返し燃料電池ユニット50である。   The present invention typically includes a fuel cell array 10 comprising at least one fuel cell 50, a fuel cell bundle or a fuel cell stack, such as a solid oxide fuel cell (hereinafter "SOFC"). A structure is provided (see FIG. 1). Each fuel cell 50 is a repetitive fuel cell unit 50 that builds a fuel cell stack system or fuel cell stack structure that can be stacked in series or in parallel, or in series and in parallel, and can generate electrical energy output.

燃料電池50は、固体酸化物燃料電池、プロトン交換膜燃料電池、溶融炭酸塩燃料電池、リン酸燃料電池、アルカリ燃料電池、ダイレクトメタノール燃料電池、再生燃料電池、亜鉛空気燃料電池又はプロトニックセラミック燃料電池等の、流路を必要とするどのような種類の燃料電池であっても良い。   The fuel cell 50 is a solid oxide fuel cell, a proton exchange membrane fuel cell, a molten carbonate fuel cell, a phosphoric acid fuel cell, an alkaline fuel cell, a direct methanol fuel cell, a regenerative fuel cell, a zinc air fuel cell or a protonic ceramic fuel. Any type of fuel cell that requires a flow path, such as a battery, may be used.

燃料電池50、例えば、固体酸化物燃料電池の一例を図1に示す。例えば、空気等のオキシダント38は陰極30に供給される。陰極30で発生した酸素イオン(O2-)は陽極20と陰極30との間に配置された電解質40を介して搬送される。例えば、天然ガス等の燃料34は陽極20に供給される。陽極20の側にある燃料34は、電解質40を通過して陽極20へ搬送されてきた酸素イオン(O2-)と反応する。酸素イオン(O2-)は脱イオンされて、外部電気回路(図示せず)に対して電子を放出する。従って、電子の流れは外部電気回路(図示せず)を介して直流電気を発生させる。その結果、この電気発生プロセスは一定の排気ガス及び廃熱を発生する。 An example of a fuel cell 50, such as a solid oxide fuel cell, is shown in FIG. For example, an oxidant 38 such as air is supplied to the cathode 30. Oxygen ions (O 2− ) generated at the cathode 30 are transported through the electrolyte 40 disposed between the anode 20 and the cathode 30. For example, a fuel 34 such as natural gas is supplied to the anode 20. The fuel 34 on the anode 20 side reacts with oxygen ions (O 2− ) that have passed through the electrolyte 40 and have been transported to the anode 20. Oxygen ions (O 2− ) are deionized and emit electrons to an external electrical circuit (not shown). Thus, the flow of electrons generates direct current electricity through an external electrical circuit (not shown). As a result, this electricity generation process generates certain exhaust gases and waste heat.

陽極20は、通常、燃料電池50に導入される燃料ガスの電気化学的酸化のための反応場所を提供する。従って、陽極20は燃料還元環境の中で安定していることが望ましく、適切な電子電導率を有することが望ましい。更に、陽極20は、燃料電池50の動作条件における燃料ガスの反応に対して触媒作用を促進することが望ましく、反応場所へのガス搬送を可能にする十分な多孔率を有することが望ましい。これらの特性を有する陽極20として適する材料は金属ニッケル、ニッケル合金、銀、銅、コバルト、ルテニウム、ニッケル−イットリア安定化ジルコニアサーメット(Ni−YSZサーメット)、銅−イットリア安定化ジルコニアサーメット(Cu−YSZサーメット)、Ni−酸化セリウムサーメット、セラミック又はそれらの組み合わせを含むが、それらには限定されない。   The anode 20 typically provides a reaction site for electrochemical oxidation of fuel gas introduced into the fuel cell 50. Accordingly, the anode 20 is desirably stable in the fuel reduction environment, and desirably has an appropriate electronic conductivity. Furthermore, the anode 20 desirably promotes catalytic action against the reaction of the fuel gas under the operating conditions of the fuel cell 50, and desirably has a sufficient porosity that enables gas transport to the reaction site. Suitable materials for anode 20 having these characteristics are metallic nickel, nickel alloy, silver, copper, cobalt, ruthenium, nickel-yttria stabilized zirconia cermet (Ni-YSZ cermet), copper-yttria stabilized zirconia cermet (Cu-YSZ). Cermet), Ni-cerium oxide cermet, ceramic or combinations thereof, but is not limited thereto.

陰極30は、通常、オキシダントの電気化学的還元のための反応場所を提供する。従って、陰極30は酸化環境の中で安定していることが望ましく、十分な電子電導率を有することが望ましい。更に、陰極30は、燃料電池50の動作条件におけるオキシダント気体の反応に対して触媒作用を促進することが望ましく、反応場所までのガス搬送を可能にする十分な多孔率を有することが望ましい。以上のような特性を有する陰極30として適する材料は灰チタン石添加マンガン酸ランタン(LaMnO3)、ストロンチウム添加LaMnO4(SLM)、スズ添加酸化インジウム(In23)、ストロンチウム添加PrMnO3、LaFeO3-LaCoO3 RuO2-イットリア安定化ジルコニア(YSZ)、ランタン輝コバルト鉱及びそれらの組み合わせを含むが、これらには限定されない。 Cathode 30 typically provides a reaction site for the electrochemical reduction of oxidants. Therefore, the cathode 30 is desirably stable in an oxidizing environment and desirably has a sufficient electronic conductivity. Furthermore, the cathode 30 desirably promotes catalytic action against the reaction of oxidant gas under the operating conditions of the fuel cell 50, and desirably has a sufficient porosity that enables gas transport to the reaction site. Suitable materials for the cathode 30 having the above-described characteristics are perovskite-doped lanthanum manganate (LaMnO 3 ), strontium-doped LaMnO 4 (SLM), tin-doped indium oxide (In 2 O 3 ), strontium-doped PrMnO 3 , LaFeO. Including, but not limited to, 3- LaCoO 3 RuO 2- yttria stabilized zirconia (YSZ), lanthanum cobaltite and combinations thereof.

一般に、陽極20と陰極30は電気化学的反応を支援するのに十分な表面積を有する。陽極20及び陰極30に使用される材料は燃料電池構体10の典型的な最低動作温度と最高動作温度、例えば、約600℃から約1300℃の間で熱安定性を有する。   In general, anode 20 and cathode 30 have sufficient surface area to support the electrochemical reaction. The materials used for anode 20 and cathode 30 are thermally stable between typical minimum and maximum operating temperatures of fuel cell assembly 10, for example, between about 600 ° C and about 1300 ° C.

図1において燃料電池50の一例を示す分解等角図に示されるように、電解質40は、通常、陽極20と陰極30との間に配置される。電解質40は、陰極30と陽極20との間で酸素イオン(O2-)等のイオンを搬送する。これに加えて、電解質40は燃料電池50内で燃料34をオキシダント38から分離する。従って、電解質40は燃料還元環境と酸化環境の双方において安定していることが望ましく、反応気体を透過しないことが望ましい。更に、電解質40は、燃料電池50の動作条件において十分な電導率を有することが望ましい。以上のような特性を有する電解質40として適する材料は酸化ジルコニウム、イットリア安定化ジルコニア(YSZ)、不純物添加酸化セリウム、酸化セリウム(CeO2)、三二酸化ビスマス、パイロクロール酸化物、不純物添加ジルコン酸塩、酸化灰チタン石材料及びそれらの組み合わせを含むが、これらには限定されない。 As shown in an exploded isometric view showing an example of the fuel cell 50 in FIG. 1, the electrolyte 40 is usually disposed between the anode 20 and the cathode 30. The electrolyte 40 carries ions such as oxygen ions (O 2− ) between the cathode 30 and the anode 20. In addition, the electrolyte 40 separates the fuel 34 from the oxidant 38 within the fuel cell 50. Therefore, it is desirable that the electrolyte 40 is stable in both the fuel reduction environment and the oxidation environment, and it is desirable that the electrolyte 40 does not permeate the reaction gas. Furthermore, it is desirable that the electrolyte 40 has a sufficient conductivity under the operating conditions of the fuel cell 50. Suitable materials for the electrolyte 40 having the above characteristics are zirconium oxide, yttria stabilized zirconia (YSZ), doped cerium oxide, cerium oxide (CeO 2 ), bismuth sesquioxide, pyrochlore oxide, doped zirconate. , Including, but not limited to, apatite materials and combinations thereof.

配線部24は、一般に、1つの繰り返し可能燃料電池ユニット50の陽極20を隣接する燃料電池ユニット50の陰極30に電気的に接続する(図1を参照)。更に、配線部24は均一な電流分布を示すべきであり、燃料ガス及びオキシダント気体を透過してはならない。配線部24は、燃料還元環境と酸化環境の双方で安定していることが望ましく、燃料電池50の多様な温度において電子流れを支援するために十分な電導率を有することが望ましい。以上のような特性を有する配線部24として適する材料はクロム系フェライトステンレス鋼、輝コバルト鉱、セラミック、クロム酸ランタン(LaCrO3)、重クロム酸コバルト(CoCr24)、Inconel(商標)600、Inconel(商標)601、Hastelloy(商標)X、Hastelloy(商標)−230、Ducrolloy(商標)、Kovar(商標)、Ebrite(商標)及びそれらの組み合わせを含むが、これらには限定されない。 The wiring section 24 generally electrically connects the anode 20 of one repeatable fuel cell unit 50 to the cathode 30 of the adjacent fuel cell unit 50 (see FIG. 1). Furthermore, the wiring portion 24 should exhibit a uniform current distribution and should not be permeable to fuel gas and oxidant gas. The wiring section 24 is desirably stable in both the fuel reduction environment and the oxidation environment, and desirably has a sufficient conductivity to support the electron flow at various temperatures of the fuel cell 50. Suitable materials for the wiring portion 24 having the above characteristics are chromium-based ferritic stainless steel, bright cobalt ore, ceramic, lanthanum chromate (LaCrO 3 ), cobalt dichromate (CoCr 2 O 4 ), Inconel ™ 600 , Inconel ™ 601, Hastelloy ™ X, Hastelloy ™ -230, Ducrolloy ™, Kovar ™, Ebrite ™ and combinations thereof.

図1を参照すると、固体酸化物燃料電池50等の燃料電池50は、陽極20と、陰極30と、それらの間に配置された電解質40とを具備する。少なくとも1つの流体流路95は、燃料電池50内に配置される。図1及び図2を参照すると、流れ分断器25の少なくとも1つのアレイは、陽極20、陰極30又は電解質40に連結する。図3に示す本発明の一実施例において、流れ分断器250、255は、電解質40から陽極20又は陰極30の表面を介して延出する。   Referring to FIG. 1, a fuel cell 50 such as a solid oxide fuel cell 50 includes an anode 20, a cathode 30, and an electrolyte 40 disposed therebetween. At least one fluid flow path 95 is disposed in the fuel cell 50. With reference to FIGS. 1 and 2, at least one array of flow breakers 25 is coupled to anode 20, cathode 30, or electrolyte 40. In one embodiment of the present invention shown in FIG. 3, flow breakers 250, 255 extend from the electrolyte 40 through the surface of anode 20 or cathode 30.

流体流路95は、通常、燃料電池50に配置される少なくとも1つのオキシダント流路28と少なくとも1つの流体流路36とを具備する(図1を参照)。他の実施例において、図4〜図6に示すように、流れ分断器25のアレイは流れ分断器32の第2のアレイを更に含む。流れ分断器25、32は、電解質40から陰極30又は陽極20に延出する。流れ分断器25、32は、一般に、個別のピン、トリップ断片及びバッフル乱流装置を具備するが、これらには限定されない。図1に示すように、これらの流れ分断器25、32は、オキシダント流路28又は燃料流路36の中へ突出し、例えばオキシダント流れ38、燃料流れ34、あるいはその両方の流体流れを分断する。図1に示される燃料電池50において、オキシダント流路28内部の典型的なオキシダント流れ38は、燃料流路36内部の燃料流れ34と同様に、臨界レイノルズ数よりも低いレイノルズ数特性を有する層流又は遷移流のいずれかである。図8に概略図の一例を示すように、流れ分断器25は、通常、各流れ分断器25の背後に非定常ウェーク27を生成する。非定常ウェーク27は、オキシダント流れ38等の流体流れと流れ分断器25との境界層の分離によって生成される。ここで使用される「非定常ウェーク」という用語は、図1に示すオキシダント流路28等の流体流路95を介して流体流路で生成される乱流を表す。オキシダント流路28等の流体流路95を介して流体流路で生成される乱流により、オキシダント流路28等の流体流路95を介して、オキシダント流れ38等の流体流れのヌセルト数が増加する。流体流路95を介して流体流れのヌセルト数が増加することにより、流体と燃料電池50との間の基線層流対流熱伝達特性を著しく超えて、対流熱伝達特性は改善される。熱伝達特性が向上することにより、熱をより効率良く且つより効果的に燃料電池50から除去する能力が向上する。燃料電池50とオキシダント38等の流体との温度差は、流体流路95を介して流れる流体の熱伝達特性として、また、図1の燃料電池50において発生する熱流束として機能する。このような熱伝達特性の向上により、複数の燃料電池50を具備する燃料電池構体10の冷却要求が改善される。また、燃料電池50の熱伝達特性の向上により、燃料電池50全体における所定の均一な熱勾配及び温度レベルの維持が保証される。燃料電池50を介して所定の均一な熱勾配を維持することにより、燃料電池構体10の異なる場所における潜在的な被加熱部の発生を避けることができる。図1の燃料電池構体10において、被加熱部は、燃料電池構体10の熱性能及び寿命を非常に悪化させる。従って、燃料電池構体10の熱伝達特性は、基線層流対流熱伝達特性を有する燃料電池構体と比較して、燃料電池構体10の熱性能及び寿命を著しく改善する。更に、基線層流対流熱伝達特性を有する燃料電池構体は、通常、図1に示されるオキシダント流路28を介したオキシダント流れ38等の流体流れがそれほど増加しない場合には、燃料電池構体10の付加的な冷却要求には対応しない。流れ分断器25、32は、オキシダント流路28を介して流れるオキシダント流れ38等の流体流れを増加させずに、燃料電池構体10の熱性能及び寿命を向上させる。   The fluid channel 95 typically includes at least one oxidant channel 28 and at least one fluid channel 36 disposed in the fuel cell 50 (see FIG. 1). In other embodiments, as shown in FIGS. 4-6, the array of flow breakers 25 further includes a second array of flow breakers 32. The flow breakers 25, 32 extend from the electrolyte 40 to the cathode 30 or the anode 20. The flow breakers 25, 32 generally comprise, but are not limited to, individual pins, trip pieces and baffle turbulence devices. As shown in FIG. 1, these flow breakers 25, 32 project into the oxidant flow path 28 or the fuel flow path 36, for example, to break the fluid flow of the oxidant flow 38, the fuel flow 34, or both. In the fuel cell 50 shown in FIG. 1, a typical oxidant flow 38 inside the oxidant flow path 28 is a laminar flow having a Reynolds number characteristic lower than the critical Reynolds number, like the fuel flow 34 inside the fuel flow path 36. Or a transitional flow. As shown in the schematic diagram of FIG. 8, the flow breaker 25 normally generates an unsteady wake 27 behind each flow breaker 25. The unsteady wake 27 is generated by the separation of the boundary layer between the fluid flow such as the oxidant flow 38 and the flow breaker 25. As used herein, the term “unsteady wake” refers to turbulence generated in a fluid flow path through a fluid flow path 95, such as the oxidant flow path 28 shown in FIG. Due to the turbulent flow generated in the fluid channel via the fluid channel 95 such as the oxidant channel 28, the Nusselt number of the fluid flow such as the oxidant flow 38 increases via the fluid channel 95 such as the oxidant channel 28. To do. Increasing the Nusselt number of the fluid flow through the fluid flow path 95 improves the convective heat transfer characteristics significantly beyond the baseline laminar convection heat transfer characteristics between the fluid and the fuel cell 50. The improved heat transfer characteristics improve the ability to remove heat from the fuel cell 50 more efficiently and more effectively. The temperature difference between the fuel cell 50 and the fluid such as the oxidant 38 functions as a heat transfer characteristic of the fluid flowing through the fluid flow path 95 and as a heat flux generated in the fuel cell 50 of FIG. Due to the improvement of such heat transfer characteristics, the cooling requirement of the fuel cell assembly 10 including the plurality of fuel cells 50 is improved. Further, the improvement of the heat transfer characteristics of the fuel cell 50 ensures the maintenance of a predetermined uniform thermal gradient and temperature level throughout the fuel cell 50. By maintaining a predetermined uniform thermal gradient through the fuel cell 50, it is possible to avoid the occurrence of potential heated parts at different locations of the fuel cell assembly 10. In the fuel cell assembly 10 of FIG. 1, the heated portion greatly deteriorates the thermal performance and life of the fuel cell assembly 10. Therefore, the heat transfer characteristics of the fuel cell assembly 10 significantly improve the thermal performance and life of the fuel cell assembly 10 compared to a fuel cell assembly having baseline laminar convection heat transfer characteristics. Further, a fuel cell assembly having a baseline laminar convection heat transfer characteristic is usually provided when the fluid flow such as the oxidant flow 38 through the oxidant flow path 28 shown in FIG. Does not respond to additional cooling requirements. The flow breakers 25 and 32 improve the thermal performance and life of the fuel cell assembly 10 without increasing the fluid flow such as the oxidant flow 38 that flows through the oxidant flow path 28.

本発明の他の実施例によれば、流れ分断器25、32のアレイは、約0.020インチから約0.25インチの範囲の幅52を有する(図3及び図5を参照)。更なる実施例によれば、流れ分断器25、32は、流れ分断器25、32のアレイ全体にわたる均一の熱伝達特性を一般的に保証するほぼ一定の横断面面積を有する。前述の実施例によれば、流れ分断器25、32は、正方形、長方形、円、楕円、環又は変則的な形状の横断面形状を有するが、これらには限定されない。改善された構造安定性及び構造強度を図1に示す燃料電池50の層に提供するように、当業者は流れ分断器25、32の幅52、横断面形状及び横断面面積を自在に選択できるであろう。更に、流れ分断器25、32は、陽極20、陰極30又は電解質40の層を通過する電気化学的反応速度が向上するように、通常、陽極20、電解質40又は陰極30のインタフェースにおいて増加した表面積を提供する。   In accordance with another embodiment of the present invention, the array of flow breakers 25, 32 has a width 52 in the range of about 0.020 inches to about 0.25 inches (see FIGS. 3 and 5). According to a further embodiment, the flow breakers 25, 32 have a substantially constant cross-sectional area that generally guarantees uniform heat transfer characteristics across the array of flow breakers 25, 32. According to the foregoing embodiments, the flow breakers 25, 32 have, but are not limited to, a square, rectangular, circular, elliptical, ring or irregular cross-sectional shape. One of ordinary skill in the art can freely select the width 52, cross-sectional shape and cross-sectional area of the flow breakers 25, 32 to provide improved structural stability and structural strength to the layers of the fuel cell 50 shown in FIG. Will. Furthermore, the flow breakers 25, 32 typically have an increased surface area at the anode 20, electrolyte 40 or cathode 30 interface so that the electrochemical reaction rate through the anode 20, cathode 30 or electrolyte 40 layer is improved. I will provide a.

本発明の他の実施例によれば、図4〜図6に示すように、流れ分断器25、32のアレイは、通常、インライン構成、千鳥配列構成、均一間隔構成及び変則的な間隔の構成を含む。図4は、流れ分断器25、32のアレイのインライン構成の一例を示す。一実施例において、図5に示されるように、後続の流れ分断器25、32の間の距離51は変則的である。他の実施例において、後続の流れ分断器25、32の間の距離53は、不均一である。本発明の他の実施例において、図6は、流れ分断器25、32のアレイの千鳥配列構成を示す。流れ分断器25、32の構成及び間隔は、望ましい適用に基づいて変化してもよい。図9の一実施例は、アレイパターン251を有し、陽極20、陰極30又は電解質40の表面周辺部に均等に分布する流れ分断器25、32の構成を示す。図10における他の一実施例は、アレイパターン252を有し、陽極20、陰極30又は電解質40の表面にわたって不均等に広がる流れ分断器25、32の構成を示す。また、流れ分断器25、32の構成及び間隔は、図8において、非定常ウェーク27の相互作用又は再循環253の代表的領域を制御する。図8において流れ分断器の流れ特性の概略図の一例に示されるように、各流れ分断器25がオキシダント流れ38又は燃料流れ34にさらされる場合、これらの非定常ウェークは、各流れ分断器25からの流体の境界層分離によって発生する。非定常ウェーク27に対する相互作用又は再循環253の代表的領域の制御は、望ましい位置において、図1における燃料電池50の流体流路95の流体流路を介して、流体分布プロファイルを調整し、熱流体力学的な安定を維持する。従って、流れ分断器25、32の構成、間隔及び横断面形状は、通常、当業者によって、望ましい位置において、図1に示された燃料電池構体10の一例を介して熱勾配を調整するような方法で選択される。燃料電池構体10を介して望ましい位置で調整された熱勾配は、燃料電池構体10を介して望ましい熱ポテンシャルを維持することを保証する。   According to another embodiment of the invention, as shown in FIGS. 4-6, the array of flow breakers 25, 32 is typically in-line configuration, staggered configuration, uniform spacing configuration, and irregular spacing configuration. including. FIG. 4 shows an example of an inline configuration of an array of flow breakers 25,32. In one embodiment, as shown in FIG. 5, the distance 51 between subsequent flow breakers 25, 32 is irregular. In other embodiments, the distance 53 between the subsequent flow breakers 25, 32 is non-uniform. In another embodiment of the present invention, FIG. 6 shows a staggered arrangement of an array of flow breakers 25,32. The configuration and spacing of the flow breakers 25, 32 may vary based on the desired application. One embodiment of FIG. 9 shows a configuration of flow breakers 25 and 32 that have an array pattern 251 and are evenly distributed around the surface of the anode 20, cathode 30 or electrolyte 40. Another embodiment in FIG. 10 shows a configuration of flow breakers 25, 32 that have an array pattern 252 and spread unevenly across the surface of anode 20, cathode 30 or electrolyte 40. Also, the configuration and spacing of the flow breakers 25, 32 control the typical region of the unsteady wake 27 interaction or recirculation 253 in FIG. 8. As shown in the example flow diagram of the flow breaker in FIG. 8, when each flow breaker 25 is exposed to the oxidant stream 38 or the fuel stream 34, these unsteady wakes are associated with each flow breaker 25. Caused by boundary layer separation of fluid from Control of the typical region of interaction or recirculation 253 for the unsteady wake 27 adjusts the fluid distribution profile through the fluid flow path of the fluid flow path 95 of the fuel cell 50 in FIG. Maintain hydrodynamic stability. Thus, the configuration, spacing, and cross-sectional shape of the flow breakers 25, 32 are typically adjusted by those skilled in the art to adjust the thermal gradient through the exemplary fuel cell assembly 10 shown in FIG. Selected by method. The thermal gradient adjusted at the desired location through the fuel cell assembly 10 ensures that the desired thermal potential is maintained through the fuel cell assembly 10.

流れ分断器25、32は、燃料還元環境及び酸化環境の双方において安定していることが望ましく、オキシダント気体を透過しないことが望ましい。更に、流れ分断器は、燃料電池50を通過する熱流束に耐えることが望ましい。一実施例において、流れ分断器25、32は、セラミック材料を含む。他の実施例において、流れ分断器は、陽極20、陰極30又は電解質40としての材料を含む。以上のような特性を有する流れ分断器25、32として適する材料は、金属ニッケル、銀、銅、コバルト、ルテニウム、ニッケル−イットリア安定化ジルコニアサーメット(Ni−YSZサーメット)、銅−イットリア安定化ジルコニアサーメット(Cu−YSZサーメット)、Ni−酸化セリウムサーメット、灰チタン石添加マンガン酸ランタン(LaMnO3)、ストロンチウム添加LaMnO4(SLM)、スズ添加酸化インジウム(In23)、ストロンチウム添加PrMnO3、LaFeO3-LaCoO3 RuO2-イットリア安定化ジルコニア(YSZ)、ランタン輝コバルト鉱、酸化ジルコニア、イットリア安定化ジルコニア(YSZ)、不純物添加酸化セリウム、酸化セリウム(CeO2)、三二酸化ビスマス、パイロクロール酸化物、不純物添加ジルコン酸塩、酸化灰チタン石材料、過フッ化スルホン酸及び複合材料を含むが、これらには限定されない。しかしながら、流体流路95の中へ突出する流れ分断器25、32は、望ましくは、配線部24との電気機械的接触を回避し、燃料電池50を介して起こりうるいかなる電気的短絡も防止するべきである(図1を参照)。 The flow breakers 25, 32 are preferably stable in both the fuel reduction environment and the oxidation environment, and are preferably not permeable to oxidant gas. In addition, the flow breaker desirably resists the heat flux that passes through the fuel cell 50. In one embodiment, flow breakers 25, 32 include a ceramic material. In other embodiments, the flow breaker includes material as the anode 20, cathode 30, or electrolyte 40. Suitable materials for the flow breakers 25 and 32 having the above characteristics are metallic nickel, silver, copper, cobalt, ruthenium, nickel-yttria stabilized zirconia cermet (Ni-YSZ cermet), and copper-yttria stabilized zirconia cermet. (Cu-YSZ cermets), Ni- cerium oxide cermet, perovskite added lanthanum manganate (LaMnO 3), strontium added LaMnO 4 (SLM), tin doped indium oxide (In 2 O 3), strontium added PrMnO 3, LaFeO 3- LaCoO 3 RuO 2- yttria-stabilized zirconia (YSZ), lanthanum cobaltite, zirconia oxide, yttria-stabilized zirconia (YSZ), doped cerium oxide, cerium oxide (CeO 2 ), bismuth sesquioxide, pyrochlore Including but not limited to metal oxides, doped zirconates, perovskite materials, perfluorinated sulfonic acids and composite materials. However, the flow breakers 25, 32 protruding into the fluid flow path 95 desirably avoid electromechanical contact with the wiring section 24 and prevent any electrical shorts that may occur through the fuel cell 50. Should be (see FIG. 1).

本発明は、図1から図6において平面構造を示す一実施例の適用に関して述べているが、このような発明が、管状燃料電池を含むがそれには限定されない燃料電池の他の実施例において利用可能であることが理解されるであろう。例えば、図7は管状燃料電池用の流れ分断器25の構成の一例を示す。   Although the present invention has been described with respect to the application of one embodiment showing a planar structure in FIGS. 1-6, such invention is utilized in other embodiments of fuel cells, including but not limited to tubular fuel cells. It will be understood that this is possible. For example, FIG. 7 shows an example of the configuration of the flow breaker 25 for a tubular fuel cell.

以上、複数の実施例によって本発明を説明した。しかしながら、本発明の範囲を逸脱せずに様々な変形及び変更を行なうことが可能であるため、本発明は上述の実施形態に制限することを必ずしも意図しない。また、特許請求の範囲に記載された符号は、理解容易のためであってなんら発明の技術的範囲を実施例に限縮するものではない。   The present invention has been described with a plurality of embodiments. However, since various modifications and changes can be made without departing from the scope of the present invention, the present invention is not necessarily intended to be limited to the above-described embodiments. Further, the reference numerals described in the claims are for easy understanding, and do not limit the technical scope of the invention to the embodiments.

本発明の一実施例による平面燃料電池の個々のユニットの一例を示す分解等角図。1 is an exploded isometric view showing an example of an individual unit of a planar fuel cell according to one embodiment of the present invention. FIG. 配置された複数の流れ分断器を示す図1における燃料電池構成要素の一例を示す等角図。FIG. 2 is an isometric view showing an example of the fuel cell component in FIG. 1 showing a plurality of flow breakers arranged. 図2におけるX−Xに沿った断面図。Sectional drawing along XX in FIG. 本発明の一実施例による個々の燃料電池における流れ分断器の構成の一例を示す図。The figure which shows an example of a structure of the flow circuit breaker in each fuel cell by one Example of this invention. 本発明の一実施例による個々の燃料電池における流れ分断器の構成の一例を示す図。The figure which shows an example of a structure of the flow circuit breaker in each fuel cell by one Example of this invention. 本発明の一実施例による個々の燃料電池における流れ分断器の構成の一例を示す図。The figure which shows an example of a structure of the flow circuit breaker in each fuel cell by one Example of this invention. 本発明の一実施例による配置された複数の流れ分断器を有する管状燃料電池の一例を示す分解等角図。1 is an exploded isometric view showing an example of a tubular fuel cell having a plurality of flow interrupters arranged according to one embodiment of the present invention. FIG. 流れ分断器の流れ特性の一例を示す概略図。Schematic which shows an example of the flow characteristic of a flow breaker. 本発明の一実施例による個々の燃料電池における流れ分断器のアレイパターンの一例を示す図。The figure which shows an example of the array pattern of the flow breaker in each fuel cell by one Example of this invention. 本発明の他の実施例による個々の燃料電池における流れ分断器のアレイパターンの一例を示す図。The figure which shows an example of the array pattern of the flow breaker in each fuel cell by the other Example of this invention.

符号の説明Explanation of symbols

10…燃料電池構体、20…陽極、25…流れ分断器、30…陰極、40…電解質、50…燃料電池、95…流体流路   DESCRIPTION OF SYMBOLS 10 ... Fuel cell structure, 20 ... Anode, 25 ... Flow breaker, 30 ... Cathode, 40 ... Electrolyte, 50 ... Fuel cell, 95 ... Fluid flow path

Claims (10)

陽極(20)、陰極(30)及びそれらの間に配置された電解質(40)を備える少なくとも1つの燃料電池(50)と、
前記燃料電池(50)に流体を送るために前記少なくとも1つの燃料電池(50)の内部に配置された少なくとも1つの流体流路(95)と、
前記陽極(20)、前記陰極(30)又は前記電解質(40)に接触し、前記流体が前記流体流路(95)に導入されると前記流体の流れを分断し且つ前記流体と燃料電池構体(10)との間の熱伝達率を向上させるように前記流体流路(95)の中へ突出する流れ分断器(25)の少なくとも1つのアレイとを具備する燃料電池構体(10)であって、前記流れ分断器(25、32)が、前記陽極(20)、前記陰極(30)又は前記電解質(40)としての材料からなる、燃料電池構体(10)
At least one fuel cell (50) comprising an anode (20), a cathode (30) and an electrolyte (40) disposed therebetween;
At least one fluid flow path (95) disposed within the at least one fuel cell (50) for delivering fluid to the fuel cell (50);
When the fluid comes into contact with the anode (20), the cathode (30) or the electrolyte (40) and the fluid is introduced into the fluid flow path (95), the fluid flows and the fluid and the fuel cell assembly are separated. (10) a fuel cell assembly (10) comprising at least one array of the fluid flow path to enhance the heat transfer rate of the flow disruptors which project into the (95) (25) between the met The fuel cell assembly (10), wherein the flow breaker (25, 32) is made of a material as the anode (20), the cathode (30) or the electrolyte (40) .
前記流れ分断器(25)のアレイは、前記電解質(40)から前記陰極(30)又は前記陽極(20)に延出する流れ分断器(32)の第2のアレイを更に具備する請求項1記載の燃料電池構体(10)。   The array of flow breakers (25) further comprises a second array of flow breakers (32) extending from the electrolyte (40) to the cathode (30) or the anode (20). A fuel cell assembly (10) as described. 前記燃料電池(50)は、固体酸化物燃料電池、プロトン交換膜燃料電池、溶融炭酸塩燃料電池、リン酸燃料電池、アルカリ燃料電池、ダイレクトメタノール燃料電池、再生燃料電池、亜鉛空気燃料電池及びプロトニックセラミック燃料電池より成る群から選択される請求項1又は2記載の燃料電池構体(10)。   The fuel cell (50) includes a solid oxide fuel cell, a proton exchange membrane fuel cell, a molten carbonate fuel cell, a phosphoric acid fuel cell, an alkaline fuel cell, a direct methanol fuel cell, a regenerative fuel cell, a zinc air fuel cell, and a professional fuel cell. A fuel cell assembly (10) according to claim 1 or 2, selected from the group consisting of tonic ceramic fuel cells. 前記燃料電池(50)は、平面構造を有する少なくとも1つの燃料電池(50)を具備する請求項1乃至3のいずれか1項に記載の燃料電池構体(10)。   The fuel cell assembly (10) according to any one of claims 1 to 3, wherein the fuel cell (50) comprises at least one fuel cell (50) having a planar structure. 前記燃料電池(50)は、管状構造を有する少なくとも1つの燃料電池(50)を具備する請求項1乃至3のいずれか1項に記載の燃料電池構体(10)。   The fuel cell assembly (10) according to any one of claims 1 to 3, wherein the fuel cell (50) comprises at least one fuel cell (50) having a tubular structure. 前記少なくとも1つの流体流路(95)はオキシダント流路(36)及び燃料流路(28)を具備し、前記流れ分断器(25、32)のアレイは前記オキシダント流路(36)又は燃料流路(28)の中へ突出する請求項1乃至5のいずれか1項に記載の燃料電池構体(10)。 The at least one fluid flow path (95) comprises an oxidant flow path (36) and a fuel flow path (28), and the array of flow breakers (25, 32) comprises the oxidant flow path (36) or fuel flow. The fuel cell assembly (10) according to any one of the preceding claims, wherein the fuel cell assembly (10) projects into the passage (28 ). 前記流れ分断器(25、32)は、個別のピン、トリップ断片及びバッフル乱流装置より成る群から選択される請求項1乃至6のいずれか1項に記載の燃料電池構体(10)。   The fuel cell assembly (10) according to any one of the preceding claims, wherein the flow breaker (25, 32) is selected from the group consisting of individual pins, trip pieces and baffle turbulence devices. 前記流れ分断器(25、32)は、一定の横断面面積を有する請求項1乃至7のいずれか1項に記載の燃料電池構体(10)。   The fuel cell assembly (10) according to any one of claims 1 to 7, wherein the flow breaker (25, 32) has a constant cross-sectional area. 前記流れ分断器(25、32)は、正方形、長方形、円、楕円及び環より成る群から選択される横断面形状を有する請求項1乃至8のいずれか1項に記載の燃料電池構体(10)。   The fuel cell assembly (10) according to any one of the preceding claims, wherein the flow breaker (25, 32) has a cross-sectional shape selected from the group consisting of squares, rectangles, circles, ellipses and rings. ). 前記流れ分断器(25、32)は、0.51mm〜6.4mm(0.020インチ〜0.25インチ)の範囲の幅を有する請求項1乃至9のいずれか1項に記載の燃料電池構体(10)。   The fuel cell according to any one of the preceding claims, wherein the flow breakers (25, 32) have a width in the range of 0.51 mm to 6.4 mm (0.020 inches to 0.25 inches). Structure (10).
JP2003323817A 2002-09-18 2003-09-17 Fuel cell structure Expired - Fee Related JP5057634B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/246,066 US7090942B2 (en) 2002-09-18 2002-09-18 Flow disruptor enhanced fuel cell
US10/246,066 2002-09-18

Publications (3)

Publication Number Publication Date
JP2004111395A JP2004111395A (en) 2004-04-08
JP2004111395A5 JP2004111395A5 (en) 2006-11-02
JP5057634B2 true JP5057634B2 (en) 2012-10-24

Family

ID=31946415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323817A Expired - Fee Related JP5057634B2 (en) 2002-09-18 2003-09-17 Fuel cell structure

Country Status (8)

Country Link
US (1) US7090942B2 (en)
EP (1) EP1401043A3 (en)
JP (1) JP5057634B2 (en)
KR (1) KR20040025602A (en)
CN (1) CN1495949A (en)
AU (1) AU2003231695A1 (en)
CA (1) CA2439718A1 (en)
SG (1) SG112891A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261124B2 (en) * 2004-09-10 2007-08-28 General Motors Corporation Bipolar plate channel structure with knobs for the improvement of water management in particular on the cathode side of a fuel cell
JP5252362B2 (en) * 2005-12-28 2013-07-31 独立行政法人産業技術総合研究所 Ceramic electrode
JP2008274929A (en) * 2007-03-30 2008-11-13 Sanyo Electric Co Ltd Fluid transfer device and fuel cell with same
US10161692B2 (en) * 2007-07-25 2018-12-25 Doosan Fuel Cell America, Inc. Tailored heat transfer characteristic of fuel cell coolers
KR101074493B1 (en) 2009-04-09 2011-10-18 인제대학교 산학협력단 PEMFC having a pin type flow channel
US8697301B2 (en) * 2010-01-29 2014-04-15 Formfactor, Inc. Fuel cell using carbon nanotubes
KR101220598B1 (en) * 2010-12-28 2013-01-10 주식회사 포스코 Solid oxide fuel cell and method for manufacturing the same
DE102015226740A1 (en) * 2015-12-28 2017-06-29 Robert Bosch Gmbh fuel cell device
DE102016202080A1 (en) * 2016-02-11 2017-08-17 Robert Bosch Gmbh fuel cell device
DE102016225970A1 (en) * 2016-12-22 2018-06-28 Robert Bosch Gmbh Method for producing a fuel and / or electrolysis cell and a fuel and / or electrolysis cell
CN107785595A (en) * 2017-09-28 2018-03-09 江苏科技大学 One proton exchanging film fuel battery
US11923569B2 (en) 2021-04-26 2024-03-05 General Electric Company High performance fuel cells

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569550B2 (en) * 1987-05-08 1997-01-08 石川島播磨重工業株式会社 Fuel cell temperature distribution improvement method
JPH05159792A (en) * 1991-12-10 1993-06-25 Toshiba Corp Fuel cell generating system
JPH07130388A (en) * 1993-11-02 1995-05-19 Toshiba Corp Fuel cell generation plant
JP3465379B2 (en) * 1994-10-31 2003-11-10 富士電機株式会社 Solid polymer electrolyte fuel cell
US5935725A (en) * 1997-07-18 1999-08-10 Bcs Technology Flow facilitator for improving operation of a fuel cell
JPH11297341A (en) * 1998-04-03 1999-10-29 Murata Mfg Co Ltd Solid electrolyte type fuel cell
US5993985A (en) * 1998-04-09 1999-11-30 Siemens Westinghouse Power Corporation Fuel cell tubes and method of making same
JP2000277132A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Fuel cell
US6475655B1 (en) * 1999-06-23 2002-11-05 Daihatsu Motor Co., Ltd. Fuel cell system with hydrogen gas separation
US6361892B1 (en) 1999-12-06 2002-03-26 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
US6921598B2 (en) * 2000-03-07 2005-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
JP4026302B2 (en) * 2000-07-06 2007-12-26 トヨタ自動車株式会社 Separator for fuel cell
US6953633B2 (en) * 2002-08-06 2005-10-11 General Electric Company Fiber cooling of fuel cells

Also Published As

Publication number Publication date
CA2439718A1 (en) 2004-03-18
EP1401043A2 (en) 2004-03-24
KR20040025602A (en) 2004-03-24
AU2003231695A1 (en) 2004-04-01
CN1495949A (en) 2004-05-12
SG112891A1 (en) 2005-07-28
US7090942B2 (en) 2006-08-15
US20040053094A1 (en) 2004-03-18
EP1401043A3 (en) 2007-02-14
JP2004111395A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US6953633B2 (en) Fiber cooling of fuel cells
US5213910A (en) Solid electrolyte type fuel cell having gas from gas supply ducts impinging perpendicularly on electrodes
EP2675005A1 (en) Gas distribution element for a fuel cell
EP2675007A1 (en) A gas flow dividing element
EP2675006A1 (en) Gas distribution element with a supporting layer
JP5057634B2 (en) Fuel cell structure
JP2014123544A (en) Solid oxide fuel cell and method of manufacturing interconnector
JP2014216297A (en) Single cell for fuel battery, fuel battery, and method for producing single cell for fuel battery
US9059434B2 (en) Structure and method for SOFC operation with failed cell diode bypass
JP3244308B2 (en) Solid oxide fuel cell system
JP5211706B2 (en) Solid oxide fuel cell
US10680270B2 (en) Fuel cell ink trace interconnect
KR101454081B1 (en) Solid oxide fuel cell
JP2006236597A (en) Separator for fuel cell and solid oxide fuel cell
JP5387820B2 (en) Solid oxide fuel cell
US20190157705A1 (en) Multiple fuel cell secondary interconnect bonding pads and wires
US20190157707A1 (en) Secondary interconnect for fuel cell systems
JP2023171007A (en) Solid oxide fuel battery cell
KR101220598B1 (en) Solid oxide fuel cell and method for manufacturing the same
JPH0722038A (en) Flat solid electrolyte fuel cell
JP2019114563A (en) Fuel cell stack
WO2006134867A1 (en) Fuel cell
JP2005166421A (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100706

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100806

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100903

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5057634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees