JP5057569B2 - Evaporative air conditioner - Google Patents

Evaporative air conditioner Download PDF

Info

Publication number
JP5057569B2
JP5057569B2 JP2007224983A JP2007224983A JP5057569B2 JP 5057569 B2 JP5057569 B2 JP 5057569B2 JP 2007224983 A JP2007224983 A JP 2007224983A JP 2007224983 A JP2007224983 A JP 2007224983A JP 5057569 B2 JP5057569 B2 JP 5057569B2
Authority
JP
Japan
Prior art keywords
container
heat
heat exchanger
casing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007224983A
Other languages
Japanese (ja)
Other versions
JP2009058165A (en
Inventor
正昭 今井
良則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2007224983A priority Critical patent/JP5057569B2/en
Publication of JP2009058165A publication Critical patent/JP2009058165A/en
Application granted granted Critical
Publication of JP5057569B2 publication Critical patent/JP5057569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は,水等のように蒸発性を有する液体における蒸発及び凝縮を利用して,少なくとも冷房を行うように構成した蒸発式の空調装置に関するものである。   The present invention relates to an evaporative air conditioner configured to perform at least cooling using evaporation and condensation in a liquid having evaporability such as water.

先行技術としての特許文献1には,
「密閉した第1容器及び第2容器と,間接式の冷暖房用熱交換器と,間接式の放吸熱用熱交換器と,前記第1容器及び第2容器内を大気圧よりも低い減圧にする手段とから成り,水等のような蒸発性液体を前記第1容器と前記冷暖房用熱交換器との間を循環する第1循環手段と,同じく水等のような蒸発性液体を前記第2容器と前記放吸熱用熱交換器との間を循環する第2循環手段とを備え,更に,前記第1容器内と前記第2容器内とを接続する蒸気ダクト中にルーツ式圧縮機を設けて成る蒸発式空調装置。」
が記載されている。
Patent Document 1 as a prior art includes:
“The sealed first and second containers, an indirect air-conditioning heat exchanger, an indirect heat-dissipating heat exchanger, and the first and second containers are depressurized lower than atmospheric pressure. And a first circulation means for circulating an evaporable liquid such as water between the first container and the heat exchanger for cooling and heating, and an evaporable liquid such as water as well. and a second circulation unit that circulates between the heat absorbing heat exchanger discharge the two containers, further, the roots compressor to the steam in the duct that connects the first said and container second container Evaporation type air conditioner.
Is described.

この先行技術の蒸発式空調装置においては,
「冷房の場合には,前記ルーツ式圧縮機を,前記第1容器内で発生した蒸気を吸引して圧縮する方向に回転する。
In this prior art evaporative air conditioner,
“In the case of cooling, the roots compressor is rotated in a direction to suck and compress the steam generated in the first container.

これにより,前記第1容器内は前記ルーツ式圧縮機による吸引にて減圧度が高くなり,この第1容器内の蒸発性液体は,減圧状態で沸騰蒸発することで冷却されて前記冷暖房用熱交換器に送られたのち再び前記第1容器内に戻るという循環をするから,冷暖房箇所を冷房する。   As a result, the degree of vacuum in the first container is increased by suction by the Roots-type compressor, and the evaporating liquid in the first container is cooled by boiling and evaporating in a reduced pressure state, so that the heat for heating and cooling is reduced. After being sent to the exchanger, it circulates again in the first container, so that the air-conditioning location is cooled.

一方,前記ルーツ式圧縮機にて圧縮された蒸気は,前記第2容器内に入り,ここで,当該第2容器と前記放吸熱用熱交換器との間を循環する蒸発性液体にて冷やされて凝縮し,この蒸気の凝縮にて温度が高くなった蒸発性液体は,この第2容器内から前記放吸熱用熱交換器に送られたのち再び前記第2容器内に戻るという循環をするから,放吸熱箇所で放熱を行う。   On the other hand, the steam compressed by the Roots type compressor enters the second container, where it is cooled by the evaporative liquid circulating between the second container and the heat-dissipating heat exchanger. Then, the evaporating liquid that has been condensed and whose temperature has been increased by the condensation of the vapor is sent to the heat exchanger for heat release and absorption from the second container and then returns to the second container again. Therefore, heat is dissipated at the endothermic heat release point.

また,暖房の場合には,前記ルーツ式圧縮機を,前記第2容器内で発生した蒸気を吸引して圧縮するように逆方向に回転する。   In the case of heating, the Roots compressor is rotated in the reverse direction so as to suck and compress the steam generated in the second container.

これにより,今度は,前記第2容器内がルーツ式圧縮機の逆回転による吸引にて減圧度が高くなり,この第2容器内の蒸発性液体は減圧状態で沸騰蒸発し,ここに発生した蒸気は,前記ルーツ式圧縮機にて圧縮されたのち前記第1容器内に入り,ここで当該第1容器と前記冷暖房用熱交換器との間を循環する蒸発性液体にて冷やされて凝縮し,この蒸気の凝縮にて温度が高くなった蒸発性液体は,この第1容器内から前記冷暖房用熱交換器に送られたのち再び前記第1容器内に戻るという循環をするから,前記冷暖房箇所を暖房する。   As a result, the pressure in the second container is increased due to the suction by the reverse rotation of the roots compressor, and the evaporating liquid in the second container is boiled and evaporated under reduced pressure. The steam is compressed by the roots compressor and then enters the first container, where it is cooled and condensed by the evaporating liquid circulating between the first container and the air conditioner heat exchanger. Then, the evaporating liquid whose temperature is increased by the condensation of the vapor circulates such that the evaporating liquid is returned from the first container to the cooling / heating heat exchanger and then returned to the first container. Heat the air-conditioning area.

一方,前記第2容器内において沸騰蒸発にて温度が下がった蒸発性液体は,この第2容器内から前記放吸熱用熱交換器に送られたのち再び前記第2容器内に戻るという循環をするから,前記放吸熱箇所で吸熱を行う。」
というものである。
特開2006−97989号公報
On the other hand, the evaporating liquid whose temperature has decreased in the second container due to boiling evaporation is circulated from the second container to the second container after being sent to the heat-dissipating heat exchanger. Therefore, heat is absorbed at the endothermic heat absorption location. "
That's it.
Japanese Patent Application Laid-Open No. 2006-97989

ところで,前記先行技術の蒸発式空調装置において使用されているルーツ式圧縮機は,正逆回転可能であるから冷房及び暖房の両方を行うことできることに加えて,蒸気の圧縮比を,遠心式圧縮機を使用して蒸気の圧縮を行う場合よりも大幅に高くできるから,前記第1容器と第2容器との間における温度差を大きくできるという利点を有する。   By the way, the roots compressor used in the prior art evaporative air conditioner can rotate both forward and reverse, and in addition to being able to perform both cooling and heating, the compression ratio of the steam is determined by centrifugal compression. Since it can be made much higher than when steam is compressed using a machine, the temperature difference between the first container and the second container can be increased.

しかし,その反面,このルーツ式圧縮機は,従来から良く知られているように,楕円形断面のケーシング内に,繭型断面にした二つのロータを互いに位相をずらせて配設し,この二つのロータを互いに逆方向に回転するという構成であって,その圧縮比を高くすると,これに応じて圧縮後の蒸気における過熱度が高くなって,その温度が上昇することにより,前記ケーシング内で回転する両ロータは熱膨張し,この熱膨張により,両ロータの相互間,及び両ロータとケーシングの内面とが直接に摩擦することになるから,その部分における摩耗が増大するばかりか,駆動動力の損失の増大,ひいては,焼付きが発生することになる。   On the other hand, this Roots compressor, as is well known in the art, has two rotors with a saddle-shaped cross section arranged in an elliptical cross section casing out of phase with each other. The two rotors rotate in opposite directions. When the compression ratio is increased, the degree of superheat in the compressed steam increases correspondingly, and the temperature rises. Both rotating rotors thermally expand, and this thermal expansion causes direct friction between the rotors and between the rotors and the inner surface of the casing. This will increase the loss of seizure and eventually seize.

このために,前記ルーツ式圧縮機における圧縮比の上限には,前記両ロータの相互間,及び両ロータとケーシングの内面との直接的な摩擦を回避しなければならないことに起因して,限界値が存在し,圧縮比をこの上限の限界値以上に高くすることができないのであった。   For this reason, the upper limit of the compression ratio in the Roots compressor is limited because the direct friction between the rotors and between the rotors and the inner surface of the casing must be avoided. There was a value, and the compression ratio could not be increased beyond this upper limit.

本発明は,前記先行技術の蒸発式空調装置において,そのルーツ式圧縮機における圧縮比の上限値を,冷房及び暖房のうちいずれか一方又は両方における能力の低下を招来することなく,一層高くできるようにすることを技術的課題とするものである。   According to the present invention, in the prior art evaporative air conditioner, the upper limit value of the compression ratio in the roots compressor can be further increased without incurring a decrease in capacity in one or both of cooling and heating. This is a technical issue.

この技術的課題を達成するため本発明の請求項1は,
「密閉した第1容器及び第2容器と,間接式の冷暖房用熱交換器と,間接式の放吸熱用熱交換器と,前記第1容器及び第2容器内を大気圧よりも低い減圧にする手段とから成り,蒸発性液体を前記第1容器と前記冷暖房用熱交換器との間を循環する第1循環手段と,同じく蒸発性液体を前記第2容器と前記放吸熱用熱交換器との間を循環する第2循環手段とを備え,更に,前記第1容器内と前記第2容器内とを接続する蒸気ダクト中にルーツ式圧縮機を設けて成る蒸発式空調装置において,
前記ルーツ式圧縮機におけるケーシングに,当該ケーシング内への注水口を設けて,この注水口に,前記第1容器側における蒸発性液体の一部,又は前記第2容器側における蒸発性液体の一部を導くように構成し,更に,前記注水口を,前記ケーシングのうち軸線方向に沿った複数箇所に設ける。」
ことを特徴としている。
In order to achieve this technical problem, claim 1 of the present invention provides:
“The sealed first and second containers, an indirect air-conditioning heat exchanger, an indirect heat-dissipating heat exchanger, and the first and second containers are depressurized lower than atmospheric pressure. And a first circulation means for circulating the evaporable liquid between the first container and the air conditioner heat exchanger, and the second container and the heat release heat exchanger for evaporating liquid. An evaporative air conditioner comprising a root-type compressor in a steam duct connecting the inside of the first container and the inside of the second container.
The casing in the Roots compressor is provided with a water inlet into the casing, and a part of the evaporating liquid on the first container side or one of the evaporating liquid on the second container side is provided in the water inlet. The water injection port is provided at a plurality of locations along the axial direction in the casing . "
It is characterized by that.

本発明の請求項2は,
「前記請求項1の記載において,前記注水口に,前記ルーツ式圧縮機を第1容器の蒸気を吸引・圧縮するように回転しているときには,前記第2容器側における蒸発性液体を導くように構成する。」
ことを特徴としている。
Claim 2 of the present invention includes:
“In the first aspect of the present invention, when the Roots compressor is rotated to suck and compress the vapor of the first container, the evaporating liquid on the second container side is guided to the water inlet. To configure. "
It is characterized by that.

請求項1の記載によると,ルーツ式圧縮機におけるケーシング内には,第1容器内における蒸発性液体か当該第1容器と冷暖房用熱交換器との間を循環する蒸発性液体,つまり,第1容器側における蒸発性液体の一部,又は,第2容器内における蒸発性液体か当該第2容器と放吸熱用熱交換器との間を循環する蒸発性液体,つまり,第2容器側おける蒸発性液体の一部が,当該ケーシングに設けた注水口より導入されることにより,この蒸発性液体にて,前記ケーシング内において回転する二つロータを冷却できて,両ロータにおける熱膨張を確実に抑制することができるとともに,前記ケーシング内に導入した蒸発性液体にて,両ロータの相互間及び両ロータとケーシングの内面との間における確実なシーリング及び潤滑を図ることができるから,前記ルーツ式圧縮機における圧縮比をより高くすることができて,装置全体の小型化と,高い能力化とを達成できる。   According to the first aspect of the present invention, in the casing of the Roots compressor, the evaporating liquid in the first container or the evaporating liquid circulating between the first container and the heat exchanger for cooling and heating, A part of the evaporating liquid on the one container side, or the evaporating liquid in the second container or the evaporating liquid circulating between the second container and the heat-dissipating heat exchanger, that is, on the second container side When a part of the evaporating liquid is introduced from the water inlet provided in the casing, the evaporating liquid can cool the two rotors rotating in the casing, and the thermal expansion in both rotors is ensured. With the evaporative liquid introduced into the casing, reliable sealing and lubrication between the rotors and between the rotors and the inner surface of the casing can be achieved. From it can be made higher compression ratio in the roots compressor, the miniaturization of the entire apparatus, and a high capacity of achievable.

ところで,前記ルーツ式圧縮機のケーシング内における両ロータの温度上昇は,例えば,特開平9−236093号公報に記載されているように,前記ルーツ式圧縮機における吸い込み側に,水を噴霧注入することによって防止することができる。   Incidentally, the temperature rise of both rotors in the casing of the Roots compressor is caused by spraying water on the suction side of the Roots compressor as described in, for example, Japanese Patent Laid-Open No. 9-236093. Can be prevented.

しかし,この構成によると,ルーツ式圧縮機への吸い込み側に噴霧注入した水は,その多くがケーシング内に入るまでの間に気化(ガス化)して大きく体積膨張することになる。このように噴霧注入水が大きく体積膨張することに起因して,前記ルーツ式圧縮機に吸い込まれる蒸気も体積膨張することにより,前記ケーシング内に両ロータの回転にて吸い込まれて圧縮される実際の蒸気量は,前記噴霧注入水が大きく体積膨張する分だけ少なくなるから,冷房能力又は暖房能力の低下を招来することになる。   However, according to this configuration, most of the water sprayed and injected into the suction side of the Roots compressor is vaporized (gasified) and greatly expanded in volume before entering the casing. Due to the large volume expansion of the spray injection water in this way, the steam sucked into the Roots compressor is also volume expanded, and is actually sucked and compressed by the rotation of both rotors in the casing. Since the amount of the steam is reduced by the volume expansion of the spray injection water, the cooling capacity or the heating capacity is reduced.

これに対し,前記請求項1に記載したように,ルーツ式圧縮機におけるケーシングに当該ケーシング内への注水口を設けて,この注水口から第1容器側における蒸発性液体の一部,又は第2容器側における蒸発性液体の一部を注入することにより,前記ケーシング内に注入した蒸発性液体の大部分は,気化(ガス化)することなく,液体の状態のままで冷却及びシーリング並びに潤滑に供することができるから,前記ルーツ式圧縮機において圧縮される実際の蒸気量が減少すること,ひいては,冷房能力又は暖房能力が低下することを確実に回避できる。 On the other hand, as described in the first aspect, the casing in the Roots compressor is provided with a water inlet into the casing, and a part of the evaporating liquid on the first container side from the water inlet, 2 By injecting a part of the evaporating liquid on the container side, most of the evaporating liquid injected into the casing is not vaporized (gasified), and is cooled, sealed and lubricated in the liquid state. Therefore, it is possible to reliably avoid a reduction in the actual amount of steam compressed in the Roots compressor and, consequently, a decrease in cooling capacity or heating capacity.

この場合において,前記注水口を,請求項1に記載したように,ケーシングのうち軸線方向に沿った複数箇所に設けることにより,軸線方向の各所について的確な冷却及びシーリング並びに潤滑を,少ない量の蒸発性液体の注水によって確実に達成できる。 In this case, as described in claim 1 , by providing the water injection port at a plurality of locations along the axial direction in the casing, accurate cooling, sealing, and lubrication can be performed at small locations in the axial direction. This can be reliably achieved by injection of evaporating liquid.

また,前記請求項1の記載した構成において,前記ルーツ式圧縮機を,冷房運転に際して第1容器内の蒸気を吸引・圧縮するように回転するときには,第1容器が温度の低い蒸発側で,第2容器が温度の高い凝縮側であるから,前記冷房運転の際に,前記ルーツ式圧縮機におけるケーシング内に第1容器側における温度の低い蒸発性液体を注入することは,熱量のロスを招来する。   In the configuration described in claim 1, when the Roots compressor is rotated so as to suck and compress the vapor in the first container during the cooling operation, the first container is on the evaporation side where the temperature is low, Since the second container is on the condensing side having a high temperature, injecting the evaporating liquid having a low temperature on the first container side into the casing of the Roots compressor during the cooling operation will cause a loss of heat. Invite you.

そこで,請求項2に記載した構成のように,冷房運転の際には,前記ルーツ式圧縮機におけるケーシング内に,第2容器の凝縮側において蒸気の凝縮で温度が高くなった状態の蒸発性液体を注入することにより,前記ケーシング内への注水による熱量のロスを低減できて,熱効率の向上を達成できる。 Therefore, as in the configuration described in claim 2, during the cooling operation, the evaporability in a state in which the temperature is increased due to the condensation of the vapor on the condensation side of the second container in the casing of the Roots compressor. By injecting the liquid, it is possible to reduce the heat loss due to the water injection into the casing and to achieve the improvement of the thermal efficiency.

以下,本発明の実施の形態を図面について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は,第1の実施の形態を示す。   1 and 2 show a first embodiment.

図1及び図2において,符号1は,密閉構造にした第1容器を,符号2は,同じく密閉構造にした第2容器を各々示し,これら両容器1,2のうちいずれか一方又は両方には,当該両容器1,2内を大気圧より低い減圧にするための真空ポンプ3等の真空発生装置が接続されており,また,前記両容器1,2の相互間は,その各々に入れた水等の蒸発性液体が互いに往来するように連通管路4にて接続されている。   1 and 2, reference numeral 1 denotes a first container having a sealed structure, and reference numeral 2 denotes a second container having the same sealed structure. Either one or both of these containers 1 and 2 are shown. Is connected to a vacuum generator such as a vacuum pump 3 for reducing the pressure inside the containers 1 and 2 to be lower than the atmospheric pressure. The evaporative liquid such as water is connected through the communication pipe 4 so as to come and go.

符号5は,間接熱交換型の冷暖房用熱交換器を示し,この冷暖房用熱交換器5と,前記第1容器1との間を,循環ポンプ6を備えた第1循環管路7を介して接続することにより,前記第1容器1内における水等の蒸発性液体を,前記冷暖房用熱交換器4に送り,次いで,この冷暖房用熱交換器4から前記第1容器内の上部に設けたノズル8に送り,このノズル8から第1容器1内に噴出するように戻すという循環を行う構成にしている。   Reference numeral 5 denotes an indirect heat exchange type air conditioner heat exchanger. The air conditioner heat exchanger 5 and the first container 1 are connected via a first circulation line 7 having a circulation pump 6. The evaporative liquid such as water in the first container 1 is sent to the cooling / heating heat exchanger 4 and then provided from the cooling / heating heat exchanger 4 to the upper part in the first container. The nozzle 8 is fed to the nozzle 8 and returned to the nozzle 1 so as to be ejected into the first container 1.

この場合,前記冷暖房用熱交換器5は,室内等のような冷暖房箇所9に,当該冷暖房箇所9における空気と間接的に熱交換するように設置されている。   In this case, the heat exchanger 5 for cooling / heating is installed in a cooling / heating location 9 such as a room so as to indirectly exchange heat with air in the cooling / heating location 9.

次に,符号10は,間接熱交換型の放吸熱用熱交換器を示し,この放吸熱用熱交換器10と,前記第2容器2との間を,循環ポンプ11を備えた第2循環管路12を介して接続することにより,前記第2容器2内における水等の蒸発性液体を,前記放吸熱用熱交換器10に送り,次いで,この放吸熱用熱交換器10から前記第2容器2内の上部に設けたノズル13に送り,このノズル13から第2容器2内に噴出するように戻すという循環を行う構成にしている。   Next, reference numeral 10 denotes an indirect heat exchange type heat release heat absorption heat exchanger, and a second circulation provided with a circulation pump 11 between the heat release heat absorption heat exchanger 10 and the second container 2. By connecting via the pipe line 12, evaporating liquid such as water in the second container 2 is sent to the heat-absorbing / heat-absorbing heat exchanger 10 and then from the heat-absorbing / heat-absorbing heat exchanger 10 The two containers 2 are fed to a nozzle 13 provided in the upper portion, and the circulation is performed such that the nozzle 13 returns to be ejected into the second container 2.

この場合,前記放吸熱用熱交換器10は,放吸熱用容器14内に設けられており,地面に掘削の汲み上げ用井戸15よりポンプ15aにて汲み上げた地下水を,前記放吸熱用容器14内に供給したのち,この放吸熱用容器14から排出して,同じく地面に掘削の還元用井戸16を介して地中に戻すように構成している。 In this case, the heat absorbing heat exchanger 10 release is provided in discharge within the heat-absorbing container 14, the ground water pumped up by the pump 15a from the pumping for wells 15 drilled in the ground, the release in the heat absorbing container 14 Then, it is discharged from the heat-absorbing / heat-absorbing container 14 and returned to the ground through the excavation reduction well 16.

そして,前記第1容器1の上部と,前記第2容器2の上部との間は,蒸気ダクト17を介して接続され,この蒸気ダクト17には,図示しない伝動モータ又は内燃機関等の動力源にて回転駆動されるルーツ式圧縮機18が設けられている。   The upper part of the first container 1 and the upper part of the second container 2 are connected via a steam duct 17, and a power source such as a transmission motor or an internal combustion engine (not shown) is connected to the steam duct 17. A roots compressor 18 is provided which is rotationally driven at.

このルーツ式圧縮機18は,従来から良く知られているように,楕円形断面のケーシング18a内に,繭型断面にした二つのロータ18b,18cを互いに位相をずらせて配設し,この二つのロータ18b,18cを互いに逆方向に回転するという構成であり,前記ケーシング18aには,当該ケーシング18a内に開口するように構成した注水口19が,図2に示すように,軸線方向に沿った複数箇所に設けられている。 As is well known in the art , this Roots type compressor 18 has two rotors 18b and 18c having a saddle-shaped cross section disposed in a casing 18a having an oval cross section, with their phases shifted from each other. The two rotors 18b and 18c are configured to rotate in directions opposite to each other, and a water injection port 19 configured to open into the casing 18a is provided in the casing 18a along the axial direction as shown in FIG. It is provided at multiple locations.

前記各注水口19には,前記第1循環管路7から分岐した冷却用管路20がバルブ21を介して接続されているとともに,前記第2循環管路12から分岐した冷却用管路22がバルブ23を介して接続されている。   A cooling pipe 20 branched from the first circulation pipe 7 is connected to each water inlet 19 via a valve 21 and a cooling pipe 22 branched from the second circulation pipe 12. Are connected via a valve 23.

この構成において,冷房を行う場合には,前記ルーツ式圧縮機18を,図1に実線矢印Aで示すように,前記第1容器1内で発生した蒸気を吸引して圧縮する方向に回転駆動する。   In this configuration, when cooling is performed, the Roots compressor 18 is rotationally driven in a direction in which the vapor generated in the first container 1 is sucked and compressed as indicated by a solid arrow A in FIG. To do.

これにより,前記第1容器1内は前記ルーツ式圧縮機18による吸引にて減圧度が高くなり,この第1容器1内の蒸発性液体は,減圧状態で沸騰蒸発することで冷却されて前記冷暖房用熱交換器5に送られ,ここで温度上昇したのち再び前記第1容器1内に戻るというように,第1容器1と冷暖房用熱交換器5との間を第1循環管路7を介して循環するから,冷暖房箇所9を冷房する。   As a result, the inside of the first container 1 has a high degree of decompression due to suction by the Roots compressor 18, and the evaporating liquid in the first container 1 is cooled by boiling and evaporating in a decompressed state, and the The first circulation line 7 is sent between the first container 1 and the air conditioner heat exchanger 5 so that it is sent to the air conditioner heat exchanger 5 where the temperature rises and then returns to the first container 1 again. Since it circulates through, the air-conditioning location 9 is cooled.

一方,前記ルーツ式圧縮機18にて圧縮された蒸気は,前記第2容器2内に入り,ここで,当該第2容器2と前記放吸熱用熱交換器10との間を循環する蒸発性液体にて冷やされて凝縮し,この蒸気の凝縮にて温度が高くなった蒸発性液体は,この第2容器2内から前記放吸熱用熱交換器10に送られたのち再び前記第2容器2内に戻るというように,第2容器2と放吸熱用熱交換器10との間を第2循環管路12を介して循環することにより,放吸熱用容器14において,地下水への放熱を行う。   On the other hand, the steam compressed by the Roots compressor 18 enters the second container 2 where it evaporates between the second container 2 and the heat exchanger 10 for releasing heat. The evaporable liquid which has been cooled by the liquid and condensed and whose temperature has increased due to the condensation of the vapor is sent from the second container 2 to the heat exchanger 10 for heat release and absorption, and then again the second container. 2 is circulated between the second container 2 and the heat-dissipating heat exchanger 10 through the second circulation line 12 so that the heat radiation to the groundwater is released in the heat-absorbing / heat-absorbing container 14. Do.

この冷房に際しては,前記第2循環管路12から分岐した冷却用管路22におけるバルブ23のみを開くことにより,前記第2容器2において,蒸気の凝縮で温度が高くなった水等の蒸発性液体の一部が,前記ルーツ式圧縮機18におけるケーシング18a内のうちロータ18b,18cが回転する部分に,当該ケーシング18aに設けた各注水口19より導入されるから,この蒸発性液体にて,前記ケーシング18a内において回転する二つロータ18b,18cを冷却できて,両ロータ18b,18cにおける熱膨張を確実に抑制することができ,しかも,両ロータ18b,18cの相互間及び両ロータ18b,18cとケーシング18aの内面との間を,軸線方向の各所について確実にシーリングできるとともに,確実に潤滑することができる。 At the time of cooling, only the valve 23 in the cooling pipe 22 branched from the second circulation pipe 12 is opened, so that evaporability of water or the like whose temperature has increased in the second container 2 due to vapor condensation. A part of the liquid is introduced into each portion of the casing 18a of the Roots compressor 18 where the rotors 18b and 18c rotate through the water injection ports 19 provided in the casing 18a. The two rotors 18b and 18c rotating in the casing 18a can be cooled, and the thermal expansion in both the rotors 18b and 18c can be reliably suppressed, and between the rotors 18b and 18c and between the rotors 18b. , 18c and the inner surface of the casing 18a can be securely sealed at various points in the axial direction and reliably lubricated. It can be.

なお,前記冷房の場合においては,前記ケーシング18aにおける各注水口19に,前記第2容器2内における蒸発性液体の一部を直接に導くという構成にしても良い。   In the case of the cooling, a configuration may be adopted in which a part of the evaporating liquid in the second container 2 is directly guided to each water inlet 19 in the casing 18a.

つまり,冷房の場合においては,前記したように,前記ケーシング18aにおける各注水口19に,第2容器2側における温度の高い蒸発性液体を導入することにより,この分だけ,熱量のロスを低減できる。   In other words, in the case of cooling, as described above, by introducing an evaporating liquid having a high temperature on the second container 2 side into each water inlet 19 in the casing 18a, the loss of heat is reduced by this amount. it can.

次に,暖房を行う場合には,前記ルーツ式圧縮機18を,図1に点線矢印Bで示すように,前記第2容器2内で発生した蒸気を吸引して圧縮するように逆方向に回転する。   Next, in the case of heating, the Roots compressor 18 is moved in the reverse direction so as to suck and compress the steam generated in the second container 2 as indicated by a dotted arrow B in FIG. Rotate.

これにより,今度は,前記第2容器2内がルーツ式圧縮機18の逆回転による吸引にて減圧度が高くなり,この第2容器2内の蒸発性液体は減圧状態で沸騰蒸発し,ここに発生した蒸気は,前記ルーツ式圧縮機18にて圧縮されたのち前記第1容器1内に入り,ここで当該第1容器1と前記冷暖房用熱交換器5との間を循環する蒸発性液体にて冷やされて凝縮し,この蒸気の凝縮にて温度が高くなった蒸発性液体は,この第1容器1内から前記冷暖房用熱交換器5に送られたのち再び前記第1容器内に戻るという循環をするから,前記冷暖房箇所を暖房する。   As a result, this time, the inside of the second container 2 becomes higher in the degree of decompression due to suction by the reverse rotation of the Roots-type compressor 18, and the evaporating liquid in the second container 2 evaporates in a reduced pressure state. Vapor generated in the air is compressed by the roots compressor 18 and then enters the first container 1 where it evaporates between the first container 1 and the heat exchanger 5 for cooling and heating. The evaporable liquid which has been cooled by the liquid and condensed and whose temperature has increased due to the condensation of the vapor is sent from the first container 1 to the heat exchanger 5 for cooling and heating, and then again in the first container. Therefore, the air-conditioning part is heated.

一方,前記第2容器2内において沸騰蒸発にて温度が下がった蒸発性液体は,この第2容器2内から前記放吸熱用熱交換器10に送られたのち再び前記第2容器2内に戻るというように,第2容器2と放吸熱用熱交換器10との間を第2循環管路12を介して循環することにより,放吸熱用容器14において,地下水からの吸熱を受ける。   On the other hand, the evaporating liquid whose temperature has been lowered by boiling evaporation in the second container 2 is sent from the second container 2 to the heat-dissipating heat exchanger 10 and then again into the second container 2. As it returns, by circulating between the 2nd container 2 and the heat release heat exchanger 10 via the 2nd circulation line 12, the heat absorption container 14 receives heat absorption from groundwater.

この暖房に際しては,前記第1循環管路7から分岐した冷却用管路20におけるバルブ21のみを開くことにより,前記第1容器1において,蒸気の凝縮で温度が高くなった水等の蒸発性液体の一部が,前記ルーツ式圧縮機18におけるケーシング18a内に,当該ケーシング18aに設けた各注水口19より導入されるから,この蒸発性液体にて,前記ケーシング18a内において回転する二つロータ18b,18cを冷却できて,両ロータ18b,18cにおける熱膨張を確実に抑制することができ,しかも,両ロータ18b,18cの相互間及び両ロータ18b,18cとケーシング18aの内面との間を,軸線方向の各所について確実にシーリングできるとともに,確実に潤滑することができる。   During this heating, only the valve 21 in the cooling pipe 20 branched from the first circulation pipe 7 is opened, so that evaporability of water or the like whose temperature has increased due to condensation of steam in the first container 1. A part of the liquid is introduced into the casing 18a of the roots compressor 18 from each water inlet 19 provided in the casing 18a. The rotors 18b and 18c can be cooled, and the thermal expansion in both the rotors 18b and 18c can be reliably suppressed, and between the rotors 18b and 18c and between the rotors 18b and 18c and the inner surface of the casing 18a. Can be reliably sealed at various locations in the axial direction, and can be reliably lubricated.

なお,前記暖房の場合においては,前記ケーシング18aにおける各注水口19に,前記第1容器1内における蒸発性液体の一部を直接に導くという構成にしても良い。   In the case of the heating, a part of the evaporating liquid in the first container 1 may be directly guided to each water inlet 19 in the casing 18a.

また,前記暖房の場合においては,前記したように,前記ケーシング18aにおける各注水口19に,第1容器1側における温度の高い蒸発性液体を導入することにより,熱量のロスを低減できる。   In the case of the heating, as described above, the loss of heat can be reduced by introducing the evaporating liquid having a high temperature on the first container 1 side into each water inlet 19 in the casing 18a.

しかし,前記暖房の際に,第2容器2側における温度の低い蒸発性液体を導入する場合における熱量のロスは,冷房の際に第1容器1側における温度の低い蒸発性液体を導入することによる熱量のロスよりも遥かに少ないので,前記暖房の際には,第1容器1側における蒸発性液体を導入することに代えて,第2容器2側における蒸発性液体を導入するか,或いは,第1容器1側における蒸発性液体及び第2容器2側における蒸発性液体の両方を導入するという構成にすることができる。   However, when the evaporating liquid having a low temperature on the second container 2 side is introduced during the heating, the loss of heat amount is caused by introducing the evaporating liquid having a low temperature on the first container 1 side during cooling. Much less than the loss of heat due to the above, so that instead of introducing the evaporative liquid on the first container 1 side during the heating, the evaporative liquid on the second container 2 side is introduced, or , Both evaporable liquid on the first container 1 side and evaporable liquid on the second container 2 side can be introduced.

前記した実施の形態は,冷房に際しての放熱,及び暖房に際しての吸熱に地下水を利用した場合であったが,本発明は,これに限らず,地下水に代えて他の工業用水を使用することができるほか,以下の図3に示す第2の実施の形態にするか,或いは,図4に示す第3の実施の形態に構成することにより,冷房に際しての放熱及び暖房に際しての吸熱に大気空気を利用することができる。   In the above-described embodiment, groundwater is used for heat dissipation during cooling and heat absorption during heating. However, the present invention is not limited to this, and other industrial water may be used instead of groundwater. In addition, by adopting the second embodiment shown in FIG. 3 below or the third embodiment shown in FIG. 4, atmospheric air is used for heat dissipation during cooling and heat absorption during heating. Can be used.

すなわち,図3は,前記第2循環管路10における放吸熱用熱交換器10を内蔵する放吸熱用容器14に,フアン24による強制通風の通風塔25内の底に溜まる水等の蒸発性液体をポンプ26にて供給し,この放吸熱用容器14から排出される蒸発性液体を,前記通風塔25内に設けたラシヒリング等の充填層27に対して散布して,大気空気と接触するという循環を行うように構成したものである。   That is, FIG. 3 shows the evaporability of water or the like that accumulates in the bottom of the ventilation tower 25 for forced ventilation by the fan 24 in the heat absorption / absorption heat container 14 including the heat absorption / absorption heat exchanger 10 in the second circulation line 10. The liquid is supplied by the pump 26, and the evaporating liquid discharged from the heat dissipation / absorption heat container 14 is sprayed on a packed bed 27 such as a Raschig ring provided in the ventilation tower 25 to come into contact with the atmospheric air. It is constructed so as to perform the circulation.

また,図4は,前記第2循環管路10における放吸熱用熱交換器10を,フアン28による強制通風の通風塔29内に配設し,この通風塔29内の底に溜まる水等の蒸発性液体をポンプ30にて汲み出して,前記放吸熱用熱交換器10に対してノズル31にて散布するという循環を行うように構成したものである。   4 shows that the heat exchanger 10 for releasing and absorbing heat in the second circulation pipe 10 is arranged in a ventilation tower 29 for forced ventilation by a fan 28, and the water etc. accumulated at the bottom in the ventilation tower 29 The evaporative liquid is pumped out by the pump 30 and is circulated through the nozzle 31 to the heat-absorbing / heat-absorbing heat exchanger 10.

これら図3及び図4の構成によると,大気空気を利用して冷房時における放熱と,暖房時における吸熱とを行うことかできる。   According to the configurations of FIGS. 3 and 4, it is possible to perform heat radiation during cooling and heat absorption during heating using atmospheric air.

第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment. 図1のII−II視断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 1. 第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment. 第3の実施の形態を示す図である。It is a figure which shows 3rd Embodiment.

符号の説明Explanation of symbols

1 第1容器
2 第2容器
3 真空ポンプ
4 連通管路
5 冷暖房用熱交換器
7 第1循環管路
9 冷暖房箇所
10 放吸熱用熱交換器
12 第2循環管路
17 蒸気ダクト
18 ルーツ式圧縮機
18a ルーツ式圧縮機のケーシング
18b,18c ルーツ式圧縮機のロータ
19 注水口
20,22 冷却用管路
21,23 バルブ
DESCRIPTION OF SYMBOLS 1 1st container 2 2nd container 3 Vacuum pump 4 Communication pipe line 5 Heat exchanger for air conditioning 7 First circulation pipe 9 Heating / cooling location 10 Heat exchanger for heat dissipation 12 Second circulation pipe 17 Steam duct 18 Roots type compression Machine 18a Roots compressor casing 18b, 18c Roots compressor rotor 19 Water inlet 20, 22 Cooling pipe 21, 23 Valve

Claims (2)

密閉した第1容器及び第2容器と,間接式の冷暖房用熱交換器と,間接式の放吸熱用熱交換器と,前記第1容器及び第2容器内を大気圧よりも低い減圧にする手段とから成り,蒸発性液体を前記第1容器と前記冷暖房用熱交換器との間を循環する第1循環手段と,同じく蒸発性液体を前記第2容器と前記放吸熱用熱交換器との間を循環する第2循環手段とを備え,更に,前記第1容器内と前記第2容器内とを接続する蒸気ダクト中にルーツ式圧縮機を設けて成る蒸発式空調装置において,
前記ルーツ式圧縮機におけるケーシングに,当該ケーシング内への注水口を設けて,この注水口に,前記第1容器側における蒸発性液体の一部,又は前記第2容器側における蒸発性液体の一部を導くように構成し,更に,前記注水口を,前記ケーシングのうち軸線方向に沿った複数箇所に設けることを特徴とする蒸発式空調装置。
The closed first and second containers, an indirect air-conditioning heat exchanger, an indirect heat-release heat exchanger, and the first and second containers are depressurized lower than atmospheric pressure. And a first circulation means for circulating the evaporable liquid between the first container and the heat exchanger for cooling and heating, and the second container and the heat release heat exchanger for the evaporable liquid, respectively. An evaporative air conditioner comprising a root compressor in a steam duct connecting the inside of the first container and the inside of the second container.
The casing in the Roots compressor is provided with a water inlet into the casing, and a part of the evaporating liquid on the first container side or one of the evaporating liquid on the second container side is provided in the water inlet. An evaporative air conditioner characterized in that the water inlet is provided at a plurality of locations along the axial direction in the casing .
前記請求項1の記載において,前記注水口に,前記ルーツ式圧縮機を第1容器の蒸気を吸引・圧縮するように回転しているときには,前記第2容器側における蒸発性液体を導くように構成することを特徴とする蒸発式空調装置。 In the first aspect of the present invention, when the Roots-type compressor is rotated to suck and compress the vapor of the first container, the evaporative liquid on the second container side is guided to the water injection port. evaporative air conditioner which is characterized in that configuration.
JP2007224983A 2007-08-31 2007-08-31 Evaporative air conditioner Expired - Fee Related JP5057569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224983A JP5057569B2 (en) 2007-08-31 2007-08-31 Evaporative air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224983A JP5057569B2 (en) 2007-08-31 2007-08-31 Evaporative air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012136556A Division JP5627035B2 (en) 2012-06-18 2012-06-18 Evaporative air conditioner

Publications (2)

Publication Number Publication Date
JP2009058165A JP2009058165A (en) 2009-03-19
JP5057569B2 true JP5057569B2 (en) 2012-10-24

Family

ID=40554062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224983A Expired - Fee Related JP5057569B2 (en) 2007-08-31 2007-08-31 Evaporative air conditioner

Country Status (1)

Country Link
JP (1) JP5057569B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230267A (en) * 2009-03-27 2010-10-14 Sanki Eng Co Ltd Steam compression refrigerator system
JP5395712B2 (en) * 2010-03-17 2014-01-22 東京電力株式会社 refrigerator
JP5647879B2 (en) * 2010-12-13 2015-01-07 新日本空調株式会社 Adsorption refrigeration system
JP5923739B2 (en) 2011-04-28 2016-05-25 パナソニックIpマネジメント株式会社 Refrigeration equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627991A (en) * 1985-06-27 1987-01-14 Anretsuto:Kk Water sealing type roots blower
JP4573263B2 (en) * 2004-07-27 2010-11-04 三建設備工業株式会社 Heating and cooling system using steam compression refrigerator
JP2007093141A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Refrigerating device

Also Published As

Publication number Publication date
JP2009058165A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US6186755B1 (en) Scroll fluid machine having a heat pipe inside the drive shaft
US11585245B2 (en) Power generation system and method to generate power by operation of such power generation system
EP2652333B1 (en) Motor cooling system
TW200819692A (en) System and method for reducing windage losses in compressor motors
JP5923739B2 (en) Refrigeration equipment
JP5057569B2 (en) Evaporative air conditioner
JP6064259B2 (en) Refrigeration cycle equipment
JP2007278666A (en) Binary refrigerating device
CN111480009A (en) Speed type compressor and refrigeration cycle device
CN104823360A (en) Motor rotor and air gap cooling
JP5305099B2 (en) Water cooling equipment
US9970293B2 (en) Liquid ring rotating casing steam turbine and method of use thereof
JP2004190928A (en) Boiling cooling medium forcible circulation type semiconductor cooling device
JP5627035B2 (en) Evaporative air conditioner
JP6669887B2 (en) Heat pump with motor cooler
JP2020193587A (en) Dynamic compressor, refrigeration cycle device, and method for operating dynamic compressor
JP2019100695A (en) Refrigeration cycle device and method for driving refrigeration cycle device
KR20000009209A (en) Freezing cycle
KR102127893B1 (en) Absorption refrigeration system by using compressor
JPH11257817A (en) Cooling system
KR100414104B1 (en) Turbo compressor cooling structure
WO2019111690A1 (en) Refrigeration cycle system and method for driving refrigeration cycle system
DK178705B1 (en) A heat pump system using water as the thermal fluid
KR20100013483A (en) Compressor for heat pump
KR101029323B1 (en) Heat pump including synthetic heat regenerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees