JP5054019B2 - 高周波数動作においてアプリケーションを分離するのに適したトレンチキャパシタ装置 - Google Patents

高周波数動作においてアプリケーションを分離するのに適したトレンチキャパシタ装置 Download PDF

Info

Publication number
JP5054019B2
JP5054019B2 JP2008539563A JP2008539563A JP5054019B2 JP 5054019 B2 JP5054019 B2 JP 5054019B2 JP 2008539563 A JP2008539563 A JP 2008539563A JP 2008539563 A JP2008539563 A JP 2008539563A JP 5054019 B2 JP5054019 B2 JP 5054019B2
Authority
JP
Japan
Prior art keywords
substrate
capacitor
capacitor device
recess
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008539563A
Other languages
English (en)
Other versions
JP2009515356A (ja
Inventor
マターズ−カメラー マリオン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
NXP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP BV filed Critical NXP BV
Publication of JP2009515356A publication Critical patent/JP2009515356A/ja
Application granted granted Critical
Publication of JP5054019B2 publication Critical patent/JP5054019B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、キャパシタ装置、及び信号線とグラウンド接触との間に並列に連結されたキャパシタ装置を備える電子回路に関する。
トレンチキャパシタは、回路構成における、本明細書においてバイパスキャパシタとも称する分離キャパシタとして電子回路に使用されており、該キャパシタは、信号線とグラウンド電位との間に並列に挿入されている。
このような構成において、トレンチキャパシタは、下記式:
Z=1/jωC (1)
で示されるインピーダンスが小さいという利益をもたらすものである。
ここで、Zはインピーダンスを表し、ωは円振動数であり、信号の振動数fに比例し、ω=2πfであり、Cはキャパシタンスであり、jは周知の虚数単位の数である。トレンチキャパシタは通常大きなキャパシタンス値を有し、それ故に交流(AC)信号について信号線とグラウンド電位との間にほぼ完全な短絡を示す。方程式(1)は、キャパシタンスが高くなるにつれて、グラウンドへの短絡が良好となることを示す。
図1は、高キャパシタンス値を達成するための既知のトレンチキャパシタ構造100を示す。このトレンチキャパシタ構造は、非特許文献1に記載されている。図1のトレンチキャパシタ100は、シリコン基板102に埋め込まれており、連結した層状構造のアレイを備え、層状構造104〜112を断面図にて示す。層状構造は、基板102の最上面114及び底面116と垂直な平面においてU字形状の断面分布の配列からなる。U字形状の層状構造は同一であり、層状構造の相当する層は互いと接続されている。層状構造は、n+−シリコン層で形成された第1の下方の電極118を備える。このn+-層はn--ドープしたシリコン基板上に存在する。誘電体層120は、例えば30nm厚さの酸化物/窒化物/酸化物層の積層であってもよく、該誘電体層120は、下方の電極118を、n+ポリシリコン層から作製される上方の電極122から絶縁する。金属の最上の電極124が上方の電極122上に堆積されている。
U字形状の層状構造118〜112は、通常、2μmの直径と20〜30μmの深さ102を有するポア内で形成することができる。面積に対する典型的なキャパシタンス密度は、25nF/mm2〜75nF/mm2であり、図1に示すキャパシタ装置で達成されるものである。
図2は、信号線とグラウンド電位との間のバイパスキャパシタとして用いられる先行技術のトレンチキャパシタ202を有する回路配置200を概略的に示す。図1のトレンチキャパシタ構造100は、その大きいキャパシタンスにより、キャパシタ装置202にて使用するのに適している。しかしながら、本回路構成においてバイパスキャパシタとして使用するためには、図2において符号206が付されているグラウンド接触を基板102の底面116上にもたらさなければならない。グラウンド接触206をグラウンド電位に接続する。キャパシタ装置202は、更に、信号線に接続可能である信号入力及び出力について2つのポート204.1及び204.2を有する接触構造204を備える(図示せず)。理論的には、キャパシタ装置202が完全な短絡をグラウンドにもたらした場合、ポート1 204.1から入る信号電波は十分に反射される。したがって、ポート2 204.2はポート1 204.1から完全に分離される。
しかしながら、既知のトレンチキャパシタの性能は周波数に依存し、図2の回路構成においてグラウンドに完全な短絡をもたらすものとは言えない。このことを、図3を参照して以下に説明する。図3は、周波数の機能としての先行技術のトレンチキャパシタのS21トランスミッション係数の依存を示す図である。周波数がヘルツ(Hz)で対数目盛でプロットされている。トランスミッション係数S21はdBの単位で示されている。3つの測定した曲線をそれぞれ2.2nF、22nF及び380nFのキャパシタンスを有する3つの異なるトレンチキャパシタについて示す。すべての3つの曲線は、1MHz及び約50MHzの間の周波数の範囲(「範囲1」と付されている)においてトランスミッション係数S21の減少を示す。示されているトランスミッション特性の共振効果が各曲線について見られ、100MHzから1GHzの間に生じ、キャパシタンス値に依存している。
示されている周波数依存は、トレンチキャパシタの自己インダクタンスによるものである。自己共振周波数において、トレンチキャパシタのキャパシタンスC及び自己インダクタンスLselfは共振状態にある。ここで、キャパシタの動作が最もよい、例えば最大の信号の抑制が生じるが、GHzの範囲内での抑制は、別個のSMD設置キャパシタのものよりはるかに優れている。
下記の表1は、いくつかの先行技術のトレンチキャパシタにおける表面積、キャパシタンス,C、抵抗,R、及び自己インダクタンス,Lselfの値を示す。
Figure 0005054019

表1 n--基板におけるいくつかの先行技術のトレンチキャパシタにおける表面積、キャパシタンス、抵抗及び自己インダクタンスの比較
F. Roozeboom et. al., "High-Density, Low-Loss MOS Capacitors for Integrated RF Decoupling", Int. J. Microcircuits and Electronic Packaging, 24(3)(2001) pp. 182-196.
しかしながら、工業的には、グラウンドへの接触が正面に存在する。キャパシタ及びインダクタのネットワークを提供するためには、基板の抵抗率が1kΩcm以上のオーダーである高オームの基板を使用する必要がある。基板を介した底面116への電流パスは、はるかに大きい抵抗を有し、したがって、あまり適切ではない自己インダクタンスを有する。
しかしながら、広帯域用途への傾向が現在存在している。これは、例えばGSMより広い帯域幅を有するUMTSプロトコルの結果である。また、IEEE 802.16プロトコルによっても奨励されている。さらに、バンドの数が、特に2GHzを超えて、すなわちBluetooth、W-LAN及び他のワイヤレス規格において上昇する。そのような広帯域用途において、自己インダクタンスが低いことが必要である。明らかに、広帯域は共振周波数を超える位置(「範囲2」)を概して含む。ここでは、ポート1 204.1及びポート2 204.2の間の信号抑制はあまり有効ではなく、入射波の有意な量がポート2へ伝送される。自己インダクタンスが高くなるほど、信号抑制が有効でなくなる。また、正面でのグラウンドへの接触を有するトレンチキャパシタは、グラウンドへのパスが長くなりがちであるため適切ではない。
そこで、本発明の目的は、信号線とグラウンド電位との間のバイパスキャパシタとして使用した際に、幅広い範囲の周波数にわたって良好な信号抑制をもたらすキャパシタ装置を提供することにある。
本発明の他の目的は、信号線とグラウンド電位との間のバイパスキャパシタとして使用した際に、幅広い範囲の周波数にわたって良好な信号抑制をもたらすキャパシタ装置を形成する方法を提供することにある。
本発明の第1の態様において、キャパシタ装置が提供され、該キャパシタ装置は、基板を備え、該基板は第1の基板の面と反対側の第2の基板の面とを有する。キャパシタ装置は、更に、第1及び第2の接触構造を有し、第2の接触構造は、第2の基板の面上に存在する。キャパシタ装置のキャパシタ領域は基板に埋め込まれており、互いから電気的に絶縁されている第1及び第2のキャパシタ電極を有し、かつ第1及び第2の基板の面と垂直な平面におけるU字形状の断面分布を有する少なくとも1つの層状構造を含む。第1及び第2のキャパシタ電極は、第1及び第2の接触構造にそれぞれ電気的に接続されている。
本発明のキャパシタ装置において、電流パス領域は、キャパシタ電極の1つから各接触構造まで広がる。電流パス領域は電流のためのパスをもたらすように構成されている。
また、基板は、第1の基板の面上に、キャパシタ領域を含む基板の側方の部分においてリセスを備え、該リセスは、第1の接触構造の一部である接触要素を有する底面を有し、それ故にキャパシタ領域及び電流パス領域が接触要素と第2の接触構造との間に配置されている。
本発明の本態様のキャパシタ装置は、電流パス領域においてインピーダンスの減少を示すという利点を有する。このインピーダンスの減少は、キャパシタ装置の電流パス領域によって引き起こされる低い自己インダクタンスを意味するものである。低い自己インダクタンスによって、例えば本発明のキャパシタ装置を信号線とグラウンド電位との間のバイパスキャパシタとして使用する回路構成において広範囲のスペクトル域にわたって信号抑制の向上がもたらされる。
それに加えて、キャパシタ装置は、IMAPSの論文においてRoozeboomらが述べているような非工業化の構造を効果的に改変したものである。広帯域特性を向上させるために、基板にリセスを設けて、有効な電流パス領域を短縮する。重要なことは、リセスの存在によって、基板の取り扱いが悪影響を受けないことである。このことは、基板の取り扱いが必要な場合、特に、電力増幅器、集積回路、インピーダンス・マッチング・ネットワーク及びフィルターなどの更なる電気装置を有する積層した構成に使用する場合、関連した要件である。
第1の接触構造が第2の基板の面にも存在する工業化構造と比較して、本発明の装置は、第1の接触構造、特にグラウンドへのパスが短縮されるという利点を有する。さらに、該パスが直線かつ直接的であり、それによって寄生的な誘導性及び容量性の相互作用の発生を防ぐ。
本発明の利点は、広帯域用途のための比較的小さいキャパシタンスを有するキャパシタ装置の使用を可能にすることである。先行技術では、広帯域用途に使用するのに充分低い自己インダクタンスに達するために、最も大きいキャパシタンス値を使用することが必要であった。しかしながら、必要とされる広帯域の主要な部分を構成する高周波数においてインピーダンスが既に非常に低いため、実際には、そのような大きい自己キャパシタンス自体は必要ではない。そのような大きいキャパシタを使用することは、より大きいキャパシタがより大きい表面積を必要とし、それ故に小さいものより高価であるので、明らかに商業的に不利益である。例えば、380nFのキャパシタンスを有するトレンチキャパシタは非常に大きく、典型的には、約20mm2のウエハ領域を必要とする。0.102mm2のキャパシタの表面を有する2.2nFのキャパシタと比較すると、これは、約200倍のコストの増加である。
したがって、本発明のキャパシタ装置の構造は、キャパシタの自己インダクタンス及び抵抗が基板を通る電流パスによって支配されているという一般的な認識に基づく。電流パス領域は、電流パス領域に電気的に接続されている第1の電極と第1の接触構造との間に位置する。電流パスの長さは、電流パス領域によって測られる距離が短いことから、既知のキャパシタ装置構造と比較して強く減少する。後に図15について示すように、所定のキャパシタ面積において、2つの理由:a)基板の厚さにわたるキャパシタの直径の比率で示されるキャパシタのアスペクト比がより小さくなることから、長さ当たりのインダクタンスが減少すること、及びb)電流パスの全長が減少することから、キャパシタのインダクタンスはより薄い基板において減少する。
好ましくは、電流パス領域の長さは多くても50ミクロンである。より好ましくは、該長さは、キャパシタ領域の長さと同じオーダーである。最も適しているのは、リセスした(recessed)側方領域における基板の全厚が50ミクロン以下である。これは、電流パス領域が350ミクロンのオーダーである上述した論文の構造に対する主要な改良点となるものである。この範囲において、アスペクト比は、2nFのオーダーの非常に小さいキャパシタンスでさえも、以前は380nFのキャパシタのみで得られたものである自己インダクタンスが4pH以下となるようなものである。したがって、本発明に従う小さいキャパシタは、共振周波数を超える信号抑制に有効に使用することができ、その上、広帯域の信号抑制のためのバイパスキャパシタとして非常に適している。
以下、本発明の第1の態様のキャパシタ装置の好ましい実施態様について説明する。異なる実施態様が本発明を実施する代替方法を形成することが明記されていない限り、当然のことながら、以下に記載されている実施態様の更なる特徴を互いに組み合わせることができる。
好ましい一実施態様において、第1の接触構造には、互いに電気的に接続されており、一方は入力として、もう一方は出力として動作する少なくとも2つの信号ポートが設けられている一方で、第2の接触構造はグラウンド接続である。リセスの底面上の接触要素を介する第1の接触構造の信号ポートの接続は、接触構造においてより大きいインダクタンスを存在させることができることを示す。これは、信号ポートとリセスの底面上の接触要素との間の必要な接続ラインによって引き起こされる。しかしながら、容量性構造の自己インダクタンス自体は非常に小さく、このことは本発明に従う信号抑制のためのキャパシタ装置の使用可能な周波数範囲を広げるのに決め手となることに留意すべきである。接触構造の比較的大きいインダクタンスはそれには貢献しない。
この好ましい実施態様は、信号ポートがキャパシタ領域の近くの基板の面に存在し、グラウンド接続がキャパシタ領域から遠い基板の面に存在するRoozeboomらによる先行技術の構造とは実質的に異なるものである。このような改変は、第1の実施態様において積層ダイアセンブリにおける装置の構成に影響を与える。この第1の実施態様において、後述するように、トレンチキャパシタは基板の第2の面上にそれらの開口を有する。グラウンド接続もこの面に存在する。好ましくは、グラウンド接続は、ラミネート、プリント回路のリードフレームなどのキャリアに直接接続されている。したがって、キャパシタはキャリアに面する面に存在する。
更なる装置の組立のために、第1の面上又は第2の面上のいずれかという2つの主な選択肢が考えられる。更なる装置を第2の面に組み立てる場合、信号ポートに相当する接触構造は第1から第2の面に変更される。これは、他の接触ラインの基板を貫通する接触ビアによって達成することができる。
更なる装置を第1の面に組み立てる場合、そのような基板を貫通する接触ビアは、ボンド・ワイヤ又はその種の他のものを使用する代わりに、キャリアへの更なる装置の連結のためにキャパシタ装置に存在することができる。その結果、第1の面は接触構造の規定のみならず、インダクタなどの他の要素にも用いることができる。第1の面上のコンダクタが比較的大きい寸法を有する場合にも、インダクタを該第1の面に適切に組み入れることができる。これらは、スクリーンプリントされたマスクのみこの第1の面に設け、その後、コンダクタをスパッタリング、電気メッキなどの既知の技術によって設けるという点で、フォトリソフラフィーを用いずに製造することができる。
好ましくは、リセスの側面を、接触要素と第1の基板の面のリセスしていない部分との間の第1のリセス部分におけるリセスの底面に対して90°以上のアングルで傾斜させる。第2のリセス部分において、リセスの側面は好ましくはリセスの底面に対して90°の角度である。この後者の部分は接触要素で満たされている。本実施態様の構造によって、リセスの底面上の接触要素と第2の基板の面上の接触構造との間の距離をさらに減少させることができる。したがって、キャパシタ装置の抵抗率及び自己インダクタンスをさらに減少させることができる。
以下、キャパシタ領域がリセスの下部に形成されている別の実施態様について説明する。
第1の別の実施態様において、電流パス領域は、第1の基板の面上のリセスの底面とキャパシタ領域との間に配置されている導電性基板領域によって形成される。先に述べた断面分布図において、U字形状の底はリセスの底面に向いている。それは、底面として第2の基板の面を示し、基板の最上面として第1の基板の面を示すこの断面図において、キャパシタのトレンチが逆U字形状を有することを意味する。したがって、「U字」の底は、電流パス領域によってリセスの底面から分離されている。この第1の別の実施態様において、トレンチキャパシタは第2の基板の面から製造される。
トレンチの断面分布の正確なU字形状からの変化が可能であることに留意すべきである。U字に類似している長方形形状又は「V字」に類似している形状は実行可能な代替物を形成するものであり、U字形状と言う場合に含まれるものである。他のバリエーションとしては、断面図において正確な直線から逸脱するトレンチの側面が挙げられる。例えば、トレンチの側面は側方方向においてリセスを有することができる。このようなバリエーションのタイプもU字形状と言う場合に含まれるものである。
好ましくは、導電性基板領域は基板の低抵抗率領域である。低抵抗率は、低抵抗の電流パス領域を達成するための必要条件である。基板全体が低い抵抗率を有する場合、電流パス領域の低抵抗率をもたらすことに関して特定の指標は全く必要ではない。しかしながら、基板が高抵抗率の基板である場合、低い抵抗率の電流パス領域を得るために、電流パス領域を、好ましくは適した濃度で適したドーパントを用いてドープする。低抵抗率とは、数ミリオーム*cm〜数オーム*cmの抵抗率の値を指す。高抵抗率の値は典型的には1〜数キロオーム*cmの範囲である。
先の実施態様に代わるものを形成するバリエーションにおいて、電流パス領域を、リセスの底面を覆い、かつ接触要素によって覆われる不動態化層によって形成する。したがって、不動態化層は、先の実施態様と同様に、キャパシタ領域と接触要素との間に配置される。しかしながら、基板材料の代わりに、不動態化層を電流パス領域に用いる。不動態化層は通常は二酸化ケイ素で形成されるが、二酸化ケイ素は絶縁材料であり、小さい抵抗率を有する高周波数の電流パスは、充分に小さい厚さの不動態化層を用いて形成することができる。約10nmの厚さが本目的に適している。この実施態様を、例えば30μm以上の特に長い深さを有するトレンチを用いるか、又は基板を、ポアの長さ及び不動態化層の厚さの合計に等しい、リセスにおける特に低い厚さの値、例えば25〜40μmに薄くすることによって実現することができる。
基板材料においてリセスを用いる第2の別の実施態様において、電流パス領域を、キャパシタ領域と第2の基板の面上の第2の接触構造との間に配置する。断面分布における本実施態様において、U字形状の底は第2の基板の面に向いている。
前記別の実施態様及びそのバリエーションと異なり、本実施態様は、第1の基板の面から、すなわちリセスの底に形成されたトレンチキャパシタを使用する。先に規定した断面図における頂上及び底についての基板の方向を再び参照すると、各トレンチは、基板において直立した「U字」を形成する。したがって、電流パス領域は、トレンチキャパシタの底と基板の底面との間に配置される。
留意すべきことは、リセスの底にトレンチを形成する場合、標準的なエッチング処理をここでは用いることができないので、エッチングによるトレンチキャパシタの形成が本実施態様においてはより複雑であることである。しかしながら、本実施態様の利点は、すべての加工を、前述したように、例えば、ICにおいて、他の回路配置も含む基板の最上面を典型的には形成する第1の基板の面から行うことができることである。
「逆U字」のトレンチ構造を用いる実施態様のバリエーションと同様に、本実施態様のバリエーションにおいて、電流パス領域を不動態化層によって形成する。不動態化層をトレンチの底面と第2の基板の面上の第2の接触構造との間に配置する。このバリエーションは、リセスの下部の逆「U字」のトレンチ配置を用いる先の実施態様について説明したものと同様のものである。
以下、パッケージングの異なる形状を可能にする接触構造を配置する異なる方法を提供する別の実施態様について説明する。
一実施態様において、第1の接触構造の信号ポートを第2の基板の面上に配置する。信号ポートを、第1及び第2の基板の面と垂直である基板の第3及び第4の面に沿って広がる接触ラインを介して、リセスの底面上の接触要素に接続する。本実施態様は、独立型の構成要素を形成するパッケージされた超低インピーダンスのトレンチキャパシタに特に適している。
本実施態様の装置は、同じ(第2の又は底の)基板の面上に該装置の信号ポート及び第2の接触構造を有する。これによって、単一の基板の面上で接触させることができるので、キャパシタのパッケージングがより容易となる。パッケージングの代替物の1つは、例えば、キャリア基板にキャパシタ装置を取り付けることによって達成される。しかしながら、実際には、本実施態様のキャパシタ装置を異なる種類のキャリアに取り付けることができ、それによって異なるシステム・イン・パッケージ技術においてこのキャパシタ構造の利用可能性が拡大される。例えば、キャパシタ装置を、ラジオ周波数(RF)ラミネート、又は低温同時焼成セラミックス(Low-Temperature Cofired Ceramics,LTCC)キャリア基板、又はICウエハ上に取り付けることができる。
第2の基板の面又は基板の底面上に信号ポートを設ける別の方法は、リセスしていない基板の部分において基板を貫通して第1の基板の面から第2の基板の面まで広がる基板を貫通する接触ビアを用いて、接触ラインを介して、信号ポートをリセスの底面上の接触要素に接続することである。好ましくは、本実施態様を、トレンチキャパシタを第2の基板の面上に形成する加工スキームにて使用する。本実施態様のキャパシタ装置の第2の基板の面は、装置の製造中に加工する基板の面として用いることができる。しかしながら、SiPにおけるキャパシタ装置のパッケージングのために、キャリア基板上に装置を取り付ける際に、加工する又は第2の基板の面を底面として用いる。
別の代替の実施態様は、第1の接触構造の信号ポートを、リセスしていない基板の部分における第1の(又は最上の)基板の面上に設置する。本実施態様において、先の2つの実施態様に対して、第1及び第2の接触構造を異なる基板の面上に設置する。しかしながら、第2の基板の面上の信号ポートを用いる他の配置と同様に、信号ポートを、リセスの底面上の接触要素に接続する。
本発明の第2の態様において、電子回路が提供され、該電子回路は、本発明の第1の態様に従うキャパシタ装置、又は該キャパシタ装置の上述した実施態様の1つに従うキャパシタ装置を備える。本発明の第2の態様の電子回路において、キャパシタ装置は信号線とグラウンド接触との間に並列に結合されている。キャパシタ装置は、第1の接触構造を介して信号線に、かつ第2の接触構造を介してグラウンド接触に接続されている。
本発明の本態様の電子回路によって、本発明の第1の態様のキャパシタ装置によってもたらされる利点による、非常に広い周波数範囲にわたる信号抑制の増大が達成される。
本発明の電子回路は、ラジオ周波数のフロント・エンド・モジュールに必要な包括的な機能をもたらす。例えば、本発明の第2の態様の電子回路は、GSM(Global System of Mobile Communication)、Bluetooth又はWLAN(Wireless Local Area Network)基準に従うラジオ周波数信号のための増幅回路であってもよい。12GHzの衛星通信又は24GHzもしくは77GHzの自動車レーダーのようなより高い周波数での用途を実現させるために、本発明の第2の態様の電子回路は、広帯域・ミリメートル波バイパス機能をもたらすことができる。接地及びバイパスをつけることは、波−波の周波数において達成するのに必須であり、かつ非常に複雑であるので、本発明の本態様の電子回路は、波−波の周波数範囲にまで設計及び加工の能力を拡張するのに重要な構成部品である。
本発明の第3の態様において、電子部品が提供される。該電子部品は、キャリア基板と、該キャリア基板に固定された本発明の第1の態様又は本発明の第1の態様のキャパシタ装置の実施態様の1つに従うキャパシタ装置とを備える。本発明の第3の態様の電子部品は、本発明の第1の態様のキャパシタ装置の利点と本発明の第2の態様の電子回路の利点とを合わせ持つ。
本発明の電子部品の一実施態様において、集積回路をキャリア基板とキャパシタ装置との間に配置する。集積回路は、本実施態様においてキャパシタ装置の第2の基板の面上に信号ポートを備える本発明のキャパシタ装置の第1の接触構造の第1及び第2の信号ポートに電気的に連結されている信号ポートを有する。好ましくは、キャパシタ装置は、前述した、基板を貫通する接触ビアを有する実施態様において提供されたものである。
本発明の第4の態様において、キャパシタ装置を製造する方法が提供される。該方法は、
第1の基板の面と反対側の第2の基板の面とを有する基板を用意する工程と、
キャパシタ領域を含む基板の側方部分において元の基板の厚さから減少した基板の厚さ まで基板を薄くする工程と、
互いに絶縁されている第1及び第2のキャパシタ電極を有し、かつ第1及び第2の基板の面と垂直な平面におけるU字形状の断面分布を有する少なくとも1つの層状構造を製造することによって、基板の所定の側方部分に埋め込まれたキャパシタ領域を形成する工程と、
第1の接触構造を形成し、第2の接触構造を形成する工程と、
基板の薄くした側方部分に電流パス領域を設け、それによって所定のキャパシタ電極の1つを各接触構造に電気的に連結する工程とを有する。
以下、本発明の更なる実施態様を図面を参照して説明する。
図1は、先行技術に従うトレンチキャパシタの概略的な三次元断面図である。
図2は、先行技術に従うトレンチキャパシタを使用する、信号線とグラウンド電位との間のバイパスキャパシタ装置として用いたキャパシタ装置の概略図である。
図3は、図2の回路構成における、ポート1にて入射し、ポート2に伝送される信号電波のS21トランスミッション係数の周波数依存性を表す図である。
図4は、先行技術におけるキャパシタ装置の概略図である。
図5は、本発明に従うキャパシタ装置の第1の実施態様の簡略化し、概略した断面図を示す。
図6は、図5のキャパシタ装置の概略平面図である。
図7は、図5及び図6のキャパシタ装置の等価回路図である。
図8は、本発明のキャパシタ装置の第2の実施態様の簡略化し、概略した断面図である。
図9は、本発明のキャパシタ装置の第3の実施態様の簡略化し、概略した断面図である。
図10は、本発明のキャパシタ装置の第4の実施態様の一部の簡略化し、概略した断面図である。
図11は、本発明のキャパシタ装置の第5の実施態様の簡略化し、概略した断面図である。
図12は、本発明に従うキャパシタ装置の第6の実施態様を備える電子部品の概略図である。
図13は、本発明に従うキャパシタ装置の第7の実施態様の概略図である。
図14は、図1の先行技術のキャパシタについて、トレンチキャパシタの測定した自己インダクタンスと分析的に予測した自己インダクタンスとの比較を示す図である。
図15は、キャパシタ装置中のトレンチキャパシタの、電流パス領域の長さにわたるキャパシタの直径の比率として定義されるアスペクト比Aの関数として計算した長さ当たりのインダクタンスκを示す図である。
図4は、先行技術に従うキャパシタ装置400の概略図である。キャパシタ装置400は、低抵抗率のシリコン基板402で作製される。図4の図において最上面を形成する第1の基板の面404上には、入力ポート408、出力ポート410及び接触要素412とともに信号接触構造406が設けられている。接触要素は金属電極であり、キャパシタ領域414中の多数のトレンチキャパシタの電極層と接続されている。トレンチキャパシタを、本図において多数の長方形として概略的にのみ示す。
図4の図において基板の底面416を形成する第2の基板の面上には、第2の接触構造が設けられており、グラウンド電位420に接続されている。
図4の先行技術のキャパシタ装置は、一方の面上のポート1 408とポート410に接続されている信号線と、他方の面上のグラウンド電位420との間のバイパスキャパシタとして用いた場合、キャパシタ装置400のインピーダンス及び自己インダクタンスによって決定される伝送性能を示す。インピーダンスの値は、キャパシタ範囲414とグラウンド接触418との間の電流パスの長さによって決定される。20〜30μmの基板402における典型的なトレンチ深さと200〜500μmの典型的な基板の厚さと仮定すると、基板の厚さに依存して、電流パス領域は少なくとも150μmになり、450μmにさえなる可能性がある。したがって、先行技術のキャパシタ装置400の電流パス領域422は非常に長く、前述したように、高い自己インダクタンスをもたらす。
図5は、本発明に従うキャパシタ装置の第1の実施態様500の簡略化し、概略した断面図を示す。低抵抗率シリコン基板502において、リセス504が形成されている。リセスは、例えば基板502の最上面506からのミクロ機械加工によって製造することができる。図6中のキャパシタ装置500の平面図に示すように、接触ライン508及び510が2つの側面512及び514上にそれぞれ設けられている。接触ライン508及び510は、入力ポート(又はより一般的に言えばポート1)516と出力ポート(又はより一般的に言えばポート2)518を接触要素520を介して接続している。接触要素520は、リセス504の底の金属プレートという形を取る。実際には、接続ライン508及び510は、キャビティの側面512及び514上に位置する一方で、接触要素520は、リセス504の底面522上に配置されている。入力及び出力のポート516、518、接触ライン508、510並びに接触要素520は、第1の接触構造を形成する。
リセス504によって、リセスしていない部分、例えばポート1 516において見られる元の基板の厚さと比較して、底面522(及び接触要素520)の下部の基板の厚さが減少している。リセスしていない部分と比較して減少した厚さを二重矢印dで示す。厚さdは最大50μmまでの範囲内である。
キャパシタ領域524が、図1を参照して説明したものなどのトレンチキャパシタの配列によって形成される。しかしながら、本キャパシタ装置500において、トレンチは基板の底面526から形成される。トレンチキャパシタは、互いに絶縁された2つの導電層を有し、図5の図における逆U字形状を有する層状構造をそれぞれ含む。相当するトレンチの導電層が接続されて各キャパシタ電極を形成する。電極は、ONO層(酸化物−窒化物−酸化物層の積層)などの絶縁層によって絶縁されている。
キャパシタ電極の1つはグラウンド接触528に接続されている。グラウンド528は、底面526上に設けられた金属メッキであり、図2に示したものに相当する回路構成においてグラウンド電位に接続することができる。
トレンチキャパシタの第2の電極(図示せず)は、電流パス領域530を介して接触要素520に接続されている。第2電極は、接触要素520に最も近接して堆積される導電性トレンチ層によって形成される。したがって、電流パス領域530は、電極とリセス504の底面上の接触要素520との間の距離を埋めるものである。本実施態様において、トレンチ電極層と接触要素520との間の電流パス領域の長さは、約15μmとなる。
次に、キャパシタ装置500の利点を図7を参照して説明する。図7は、図5及び6のキャパシタ装置の等価回路図である。図7は、図2に示す回路配置の等価図を示すが、キャパシタ装置200の代わりにキャパシタ装置500を用いている。キャパシタ装置500は、グラウンド電位702に接続されている。図7の等価回路図において、接続ライン510及び512のインダクタンスが、それぞれLline1及びLline2とラベルした記号によって示されている。電流パス領域530によるインダクタンスLcapacitorが、それに相当する記号で示されている。トレンチキャパシタ領域524が、Ccapacitorとラベルしたキャパシタの記号で示されている。等価回路図に示すように、入力及び出力の接続ライン508及び510は、それぞれ特定のインダクタンスを示す。シリコン基板502の内側の、トレンチキャパシタ電極層とリセス504の底上の接触要素520との間の電流パスも特定のインピーダンスを示す。電流パス領域530のインダクタンスLcapacitorは、この距離によって決定される。グラウンドへのパスにおけるこのインダクタンスLcapacitorが、キャパシタの性能を制限するのであって、ラインLline1及びLline2のインダクタンスではない。したがって、キャパシタ装置500のキャパシタのレイアウトは、基板における短い電流パスとキャパシタへのより長い接続ラインを有することによってキャパシタの小さいインダクタンスを選択するものである。しかしながら、キャパシタ自体のインダクタンスは非常に小さいので、キャパシタ装置500は、有用なより幅広い周波数の範囲を有する。キャパシタ装置500と以下に説明する実施態様の利点についての更なる詳細を、図13及び14を参照して以下に記載する。
図8は、本発明のキャパシタ装置の第2の実施態様800の簡略化し、概略した断面図である。キャパシタ装置800の構造は、図5及び6に示したキャパシタ装置500のものと非常によく似ており、以下、先の実施態様に対する独特の特徴に関してのみ説明する。キャパシタ装置500と異なり、キャパシタ装置800は、高抵抗率シリコン基板802で作製されている。キャパシタ領域824とリセス804の底上の接触要素820との間の電流パス領域830のインピーダンス及び自己インダクタンスはできるかぎり低いものであるべきなので、本実施態様においては電流パス領域830をドープして、低抵抗率の電流パスを達成する。このように、高抵抗率の基板を用いていても、キャパシタ装置800の性能はキャパシタ装置500のものと同等の利益を有する。
図9は、本発明のキャパシタ装置の第3の実施態様900の簡略し、概略した断面図である。
この場合も先と同様に、キャパシタ装置900の構造はキャパシタ装置500のものと非常に似ている。以下、図5及び6のキャパシタ装置に対して独特な特徴のみ説明する。
図8の実施態様と同様に、キャパシタ装置900は、高抵抗率の基板902で作製される。さらに、接触要素920とグラウンド928との間でのキャパシタ領域924と電流パス領域930の配置の順序が逆である。それは、キャパシタ領域924のトレンチキャパシタが、接触要素920の堆積前にリセス904の底から形成されていることを意味する。したがって、キャパシタ領域924のトレンチは、本実施態様において直立の「U字」の形状を示す。接触要素920は、これらのトレンチにおいて形成される第1の電極層に接続されている。グラウンド電極928は、電流パス領域930を介してトレンチの第2の電極層に接続されている。電流パス領域930は、図8の実施態様と同様に、基板902の底面926から選択的にドープすることによって達成される低抵抗率の領域である。
本実施態様において、既知の接触マスクを用いる標準的なエッチング処理が本実施態様において利用できないので、トレンチのエッチングはより複雑である。しかしながら、本実施態様の利点は、すべての加工を基板902の最上面から行うことができることである。
図10は、本発明のキャパシタ装置の第4の実施態様1000の一部の簡略化し、概略した断面図である。図8及び9に示した先の実施態様と同様に、以下の説明は、先の実施態様のものとキャパシタ装置1000を区別する構造要素に集中したものである。
本実施態様において、電流パス領域1030は、接触要素1020の形成前にリセス1004の底面1022上に堆積した不動態化層1034によって形成されている。不動態化層1034は、リセス1004の側面上にも堆積されている。
さらに、本実施態様において、キャパシタ領域1024は、図10の図において「逆」U字形状を有するトレンチによって形成されている。したがって、トレンチが、基板1002の底面1028から形成されている。これは、図5及び8の実施態様と似ている。しかしながら、キャパシタ領域1024のトレンチは、基板において、底からリセス1004の底の不動態化層にまで広がる。このように、電流パス1002は、いずれの基板材料も含まない。このように、基板を介する電流パスの長さはさらに減少する。
不動態化層は、典型的には二酸化ケイ素で作製される。不動態化層の厚さは10nmの範囲内である。本実施態様は、低抵抗率又は高抵抗率のシリコン基板1002において実現することができる。
図示していない別の実施態様において、接触要素1020とグラウンド接触1026との間の不動態化層及びキャパシタ領域の配置を逆にする。本実施態様において、不動態化層を基板1002の底面1028上に形成する。トレンチを、接触要素1020の堆積前に、リセス1004の底面1022から基板1002の最上面上に形成する。
エッチングによってトレンチの形成を行い、不動態化層1034に達した際に終了する。
図11は、本発明のキャパシタ装置の第5の実施態様1100の簡略化し、概略した断面図である。本実施態様において、キャパシタ1100は独立した構成部品を形成する。キャパシタ装置1100のパッケージングは、キャリア接触底面1128上にキャパシタ装置を取り付けるのに適する。リセス1104の底面の接触要素1120を、入力ポート(又はポート1)1116及び出力ポート(又はポート2)1118に接続ライン1108及び1110を介してそれぞれ接続する。しかしながら、図5の実施態様とは異なり、接続ライン1108及び1110を、最上面1106に沿って、かつ左及び右の面1136及び1138に沿って、それらの各ポート構造1116及び1118へそれぞれ通す。信号ポート1116及び1118は、キャパシタ装置1100をキャリア基板(図示せず)上に取り付けるためのフリップチップボール1140を備える。キャパシタ装置1100は、異なるSiP技術に適用可能であるという利点を有する。例えば、該装置をRFラミネート又はLTCCキャリア基板又はICウエハ上に取り付けることができる。
図12は、本発明に従うキャパシタ装置の第6の実施態様1200を備える電子部品の概略図である。図12に示すパッケージングのスキーマは、金属ボール1252及び1254を用いてキャリア基板1250上に取り付けられたキャパシタ装置1200を含む。該キャパシタ装置は、リセスしていない基板部分に基板の全厚を貫通して広がるビア1256及び1258を介して接触ライン1208及び1210を通していることによって図11に示すものとは異なる。ビアは、周囲の基板から電気的に絶縁されているが、金属で充填されて、接触要素1220と、基板1202の底面1208上の信号ポート1216及び1218との間に電気的な接続をもたらす。
金属ボール1252及び1254を適切な大きさで設けることによって、キャリア基板1250とキャパシタ装置1200との間に、キャリア基板1250の最上面とキャパシタ装置1200の底面1228との間の集積回路1260を設けるのに充分な空間が存在する。キャパシタ装置1200の信号ポート1216及び1218と集積回路1260上の信号ポートとの間の接続は、金属ボール1262及び1264によって達成される。グラウンド接触1226は、キャリア基板のグラウンド基準に電気的に接続される。
図13は、本発明に従うキャパシタ装置の第7の実施態様1300の概略図である。図13のキャパシタ装置1300は、典型的には200〜500μmの元の基板の厚さから約50μmの減少した基板の厚さまで基板全体を薄くするという点で図5〜12の実施態様とは異なる。接触要素1320に接続されている信号ポート1316及び1318は、単純なワイヤー接触として作製することができる。
それ以外は、本実施態様は図5のものと似ている。しかしながら、キャパシタ及び電流パス領域の形成についての図8〜10の他の構成を、同様にこのタイプのキャパシタ装置に用いることができる。
図14は、トレンチキャパシタ装置におけるキャパシタ領域の直径の関数として、トレンチキャパシタ装置の測定した自己インダクタンスと先行技術の分析的に予測した自己インダクタンスとの比較を示す図である。パラメータ「直径」は、キャパシタ装置が、互いの間に与えられた距離を有する多数のポアの円形配列からなるキャパシタ領域を有するという仮定を意味するものである。したがって、この直径は、1のポアのものではなく、キャパシタ領域の全体の側長を指す。ポアは、典型的には約2μmの直径を有するが、典型的には、その何千ものポアが互いに隣接して設置されている。
図14において、測定した自己インダクタンス値を菱形で示し、計算された自己インダクタンス値を四角で示す。計算は、低抵抗シリコンにおけるグラウンドに対するキャパシタのインダクタンスLcapacitorを与える以下の等式:
Figure 0005054019
に従って行う。
ここで、κ(A)は、長さ当たりのインダクタンスであり、hsubstrateは、基板の厚さであり、Aは、基板の厚さにわたるキャパシタ領域の直径の比率によって示されるアスペクト比Aであり、μ0は、磁界定数である。等式(2)は、グラウンドに対する貫通ビアのインダクタンスの計算から既知である(M.E. Goldfarb, R.A. Pucel, "Modeling Via Hole Grounds in Microstrip", IEEE Microwave and guided wave letters, Vol. 1, No. 6, June 1991)。測定した値と計算した値との比較が示すように、ここでは、図14に示すように、低抵抗率シリコンにおけるトレンチキャパシタのインダクタンスの計算への適用に成功している。留意すべきことは、四角の全体形状でのポアの配置を仮定した場合に等式の結果が得られることである。
式(2)による測定したインダクタンス値のモデリングの成功は、トレンチキャパシタ装置の基板における電流パスの長さをできる限り短くすることによって自己インダクタンスの減少を達成するという本発明の根底にあるコンセプトを立証するものである。等式(2)によれば、明らかに、インダクタンスは基板の高さ及びアスペクト比Aのみに依存している。
図15は、キャパシタ装置におけるトレンチキャパシタのアスペクト比の関数として計算した長さ当たりのインダクタンスκを示す図である。この場合も同様に、等式(2)を用いて計算を行った。
図15に示すように、κ(A)は、アスペクト比が大きい場合はるかに低い。本発明においてこのような有利なコンステレーション(constellation)は、低い基板の厚さ及びキャパシタの大きい直径に相当するものである。したがって、所与のキャパシタ領域について、キャパシタのインダクタンスは、2つの理由:a)キャパシタのアスペクト比がより小さくなることにから、κ(A)が減少すること、及びb)電流パスの全長が減少することにより、より薄い基板のために減少する。
基板の厚さが減少したことによるインダクタンスの全体の減少は著しく、例えば、300μmから50μmまで基板の高さを減少させると、400μm/400μmのキャパシタにおいて25pHからL=0.7pHまでインダクタンスが減少し、これはインダクタンスの35倍の減少を示すものである。
要するに、本発明は、キャパシタ装置(500)、キャパシタ装置を備える電子回路、電子部品、及びキャパシタ装置を形成する方法に関する。本発明のキャパシタ装置において、電流パス領域(530)が、2つのトレンチキャパシタ電極の1つから各接触構造(520)まで広がる。本発明のキャパシタ装置の電流パス領域は、第1及び第2の接触構造を形成する前に、キャパシタ領域を含む基板の側方部分において又は基板の側方に広がる部分の全体にわたって元の基板の厚さから減少した基板の厚さまで基板を薄くすることによって得ることができる。本発明のキャパシタ装置は、電流パス領域におけるインダクタンスの減少を示すという利点を有する。このインピーダンスの減少は、キャパシタ装置の電流パス領域によって引き起こされる低い自己インダクタンス及び自己抵抗を意味するものである。低い自己インダクタンスによって、信号線とグラウンド電位との間のバイパスキャパシタとして本発明のキャパシタ装置を用いる回路構成において広範囲のスペクトル域にわたる信号抑制の向上をもたらす。
図1は、先行技術のトレンチキャパシタの概略的な三次元断面図である。 図2は、先行技術に従うトレンチキャパシタを使用する、信号線とグラウンド電位との間のバイパスキャパシタ装置として用いたキャパシタ装置の概略図である。 図3は、図2の回路配置におけるポート1にて入射し、ポート2に伝送される信号電波のS21トランスミッション係数の周波数依存性を表す図である。 図4は、先行技術におけるキャパシタ装置の概略図である。 図5は、本発明に従うキャパシタ装置の第1の実施態様の簡略化し、概略した断面図を示す。 図6は、図5のキャパシタ装置の概略的な平面図である。 図7は、図5及び図6のキャパシタ装置の等価回路図である。 図8は、本発明のキャパシタ装置の第2の実施態様の簡略化し、概略した断面図である。 図9は、本発明のキャパシタ装置の第3の実施態様の簡略化し、概略した断面図である。 図10は、本発明のキャパシタ装置の第4の実施態様の一部の簡略化し、概略した断面図である。 図11は、本発明のキャパシタ装置の第5の実施態様の簡略化し、概略した断面図である。 図12は、本発明に従うキャパシタ装置の第6の実施態様を備える電子部品の概略図である。 図13は、本発明に従うキャパシタ装置の第7の実施態様の概略図である。 図14は、図1の先行技術のキャパシタにおいてトレンチキャパシタの測定した自己インダクタンスと分析的に予測した自己インダクタンスとの比較を示す図である。 図15は、キャパシタ装置中のトレンチキャパシタの、電流パス領域の長さに対するキャパシタ直径の比率として定義されるアスペクト比Aの関数として計算した長さ当たりのインダクタンスκを示す図である。
符号の説明
100、200、300、400、500、800、900、1000、1100、1200、1300 キャパシタ装置
102、202、402、502、802、902、1002、1102、1202、1302 基板
104、106、108、110,112 層状構造
114 基板の最上面
116 基板の底面
118 下方の電極
120 誘電体層
122 上方の電極
124 最上の電極
204 接触構造
204.1 ポート1
204.2 ポート2
206 グラウンド接触
404 第1の基板の面
406 接触構造
408 入力ポート
410 出力ポート
412 接触要素
414 キャパシタ領域
416 基板の底面
418 グラウンド接触
420 グラウンド電位
422 電流パス領域
504、804、904、1004、1104、1204 リセス
506、1106 第1の基板の面
508、510、1108、1110、1208、1210 接触ライン
512、514 側面
516、1116 入力ポート
518、1118 出力ポート
520、820、920、1020、1120、1220、1320 接触要素
522、1022 リセスの底面
524、824、924、1024、1224 キャパシタ領域
526、926 基板の底面
528、928 グラウンド接触
530、830、930、1030、1230、1330 電流パス領域
702 グラウンド電位
1026、1226 グラウンド接触
1028、1228 基板の底面
1034 不動態化層
1128 キャリア接触底面
1136 左面
1138 右面
1140 フリップチップボール
1216、1218、1316、1318 信号ポート
1250 キャリア基板
1252、1254 金属ボール
1256、1258 ビア
1260 集積回路
1262、1264 金属ボール

Claims (17)

  1. 第1の基板の面(506)及び反対側の第2の基板の面(526)を有する基板(502;802;902;1002;1102;1202;1302)と、
    該基板に埋め込まれ、互いと電気的に絶縁されている第1及び第2のキャパシタ電極を有し、かつ前記第1及び第2の基板の面と垂直な平面におけるU字型の断面分布を有する少なくとも1つの層状構造を備え、前記第1及び第2のキャパシタ電極は第1(508、510,516、518、520)及び第2(528)の接触構造にそれぞれ電気的に接続されているキャパシタ領域(524)と、
    前記第1のキャパシタ電極(524)前記第1の接触構造(520;820;928;1020)の間に設けられる層で形成され、該第1のキャパシタ電極から該第1の接触構造まで広がり、かつ電流のためのパスを提供するように構成された電流パス領域(530;830;930;1030)とを備え、
    前記基板が、第1の基板の面上に、前記キャパシタ領域(524;824;924;1024;1124;1224)を含む基板の側方部分にリセス(504;804;904;1004;1104;1204)を備え、前記リセスが、第1の接触構造の一部である接触要素(520)を有する底面(522)を有し、それにより、前記キャパシタ領域(524;824;924;1024)及び前記電流パス領域(530;830;930;1030)が、前記接触要素(520)と前記第2の基板の面(526)上の第2の接触構造(526;826;926;1026)との間に配置されていることを特徴とするキャパシタ装置(500;800;900;1000;1100;1200;1300)。
  2. 前記第1の接触構造に、互いに電気的に接続され、一方が入力として、他方が出力として動作する少なくとも2つの信号ポート(516,518)が設けられ、第2の接触構造がグラウンド接続である請求項1記載のキャパシタ装置。
  3. リセスした(recessed)基板の側方部分が50ミクロン以下の厚さを有する請求項1記載のキャパシタ装置。
  4. 前記リセスの側面(512,514)が、前記接触要素(520)と前記第1の基板の面のリセスしていない(unrecessed)部分との間の第1のリセス部分(504)における前記リセスの底面(522)に対し90°以上の角度で、かつ前記接触要素(520)で満たされている第2のリセス部分において90°の角度で傾斜している請求項1記載のキャパシタ装置。
  5. 前記電流パス領域が、前記第1の基板の面上のリセス(504,804,1204)の底面とキャパシタ領域(524,824,1224)との間の導電性の基板の領域(530,830,1230)によって形成されており、かつ断面分布において、前記U字形状の底面が前記リセスの底面に向いている請求項1記載のキャパシタ装置。
  6. 前記電流パス領域(1030)が、リセス(1004)の底面を覆い、かつ接触要素(1020)で覆われている不動態化層(1022)によって形成されている請求項1記載のキャパシタ装置。
  7. 前記電流パス領域(930)が、前記キャパシタ領域(924)と前記第2の基板の面(926)上の前記第2の接触構造(928)との間に配置され、かつ断面分布において、U字形状の底面が第2の基板の面(926)に向いている請求項1記載のキャパシタ装置。
  8. 前記電流パス領域(530;830;930;1030;1330)の側方へ伸びる部分が前記キャパシタ領域(514;824;924;1230;1330)の側方へ伸びる部分に等しく、かつ前記電流パス領域が、前記基板(502,802,902,1002,1302)の側方に隣接した領域より低い電気抵抗率を有する請求項1記載のキャパシタ装置。
  9. 前記第1の接触構造の前記信号ポート(508,510)が、前記第1の基板の面(506)上のリセスしていない部分に配置され、かつリセス(504)の底面上の接触要素(520)に接続されている請求項2記載のキャパシタ装置。
  10. 前記第1の接触構造の信号ポート(1116,1118;1216,1218)が、前記第2の基板の面上に配置され、かつ前記第1から第2の基板の面まで広がる接触ライン(1108,1110)を介してリセス(1104;1204)の底面上の接触要素(1120;1220)に接続されている請求項2記載のキャパシタ装置。
  11. 少なくとも1つの周波数における信号を処理する半導体装置と、バイパスキャパシタとして請求項1〜10のいずれか1項に記載のキャパシタ装置とを備える広帯域システム。
  12. 前記キャパシタ装置が複数の接着パッドと相互接続ラインとを備え、前記半導体装置が前記基板の第1の面に組み立てられている請求項11記載の広帯域システム。
  13. 貫通するビアが、基板を通じて基板の第1から第2の面まで広がり、それにより、前記基板をその第2の面によってキャリアに取り付けることが可能である請求項11又は12記載の広帯域システム。
  14. 請求項5又は6記載のキャパシタ装置が存在する請求項11、12又は13記載の広帯域システム。
  15. キャリア基板(1250)と、該キャリア基板上に取り付けられた請求項1記載のキャパシタ装置を備える電子部品(1200)。
  16. キャパシタ装置を製造する方法であって、
    第1の基板の面と反対側の第2の基板の面とを有する基板を用意する工程と、
    キャパシタ領域を含む基板の側方部分において元の基板の厚さから減少した基板の厚さ まで基板を薄くする工程と、
    互いと絶縁されている第1及び第2のキャパシタ電極を有し、かつ第1及び第2の基板の面と垂直な平面におけるU字形状の断面分布を有する少なくとも1つの層状構造を製造することによって、基板の所定の側方部分に埋め込まれたキャパシタ領域を形成する工程と、
    第1の接触構造を形成し、第2の接触構造を形成する工程と、
    基板の薄くした側方部分に、前記第1のキャパシタ電極と前記第1の接触構造とは別の層で形成される電流パス領域を設け、それによって所定のキャパシタ電極の1つを各接触構造に電気的に連結する工程とを有する、キャパシタ装置を製造する方法。
  17. 前記基板を薄くする工程が、底面を有するリセスを第1の基板の面上に形成することを含み、
    前記第1の接触構造を形成する工程が、前記リセスの底面上の接触要素を介してその信号ポートを互いに接続することを含み、
    前記電流パス領域を設ける工程が、前記リセスの底面上の前記接触要素と前記第2の基板の面上の第2の接触構造との間に前記電流パス領域を設けることを含む請求項16記載の方法。
JP2008539563A 2005-11-08 2006-11-03 高周波数動作においてアプリケーションを分離するのに適したトレンチキャパシタ装置 Active JP5054019B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05110471.9 2005-11-08
EP05110471 2005-11-08
PCT/IB2006/054102 WO2007054870A1 (en) 2005-11-08 2006-11-03 Trench capacitor device suitable for decoupling applications in high-frequency operation

Publications (2)

Publication Number Publication Date
JP2009515356A JP2009515356A (ja) 2009-04-09
JP5054019B2 true JP5054019B2 (ja) 2012-10-24

Family

ID=37814260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008539563A Active JP5054019B2 (ja) 2005-11-08 2006-11-03 高周波数動作においてアプリケーションを分離するのに適したトレンチキャパシタ装置

Country Status (6)

Country Link
US (1) US7839622B2 (ja)
EP (1) EP1949419A1 (ja)
JP (1) JP5054019B2 (ja)
CN (1) CN101305448B (ja)
TW (1) TWI416590B (ja)
WO (1) WO2007054870A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145351A1 (en) * 2007-05-10 2010-01-20 Ipdia Integration substrate with a ultra-high-density capacitor and a through-substrate via
US7986184B2 (en) * 2009-12-18 2011-07-26 Nxp B.V. Radio frequency amplifier with effective decoupling
US8492260B2 (en) 2010-08-30 2013-07-23 Semionductor Components Industries, LLC Processes of forming an electronic device including a feature in a trench
US8502340B2 (en) 2010-12-09 2013-08-06 Tessera, Inc. High density three-dimensional integrated capacitors
US8742541B2 (en) 2010-12-09 2014-06-03 Tessera, Inc. High density three-dimensional integrated capacitors
BR112013026489A2 (pt) * 2011-04-14 2016-12-27 Sage Wise 66 Pty Ltd caminho de fluxo elétrico, condutor, circuito, dispositivo eletrônico, e, caminho de fluxo elétrico lateral
US9608130B2 (en) 2011-12-27 2017-03-28 Maxim Integrated Products, Inc. Semiconductor device having trench capacitor structure integrated therein
US9196672B2 (en) 2012-01-06 2015-11-24 Maxim Integrated Products, Inc. Semiconductor device having capacitor integrated therein
TWI489529B (zh) * 2012-06-01 2015-06-21 Macronix Int Co Ltd 積體電路電容器及方法
US8981533B2 (en) 2012-09-13 2015-03-17 Semiconductor Components Industries, Llc Electronic device including a via and a conductive structure, a process of forming the same, and an interposer
US8969170B2 (en) * 2013-03-14 2015-03-03 Globalfoundries Inc. Method of forming a semiconductor structure including a metal-insulator-metal capacitor
US9882075B2 (en) 2013-03-15 2018-01-30 Maxim Integrated Products, Inc. Light sensor with vertical diode junctions
CN103579305A (zh) * 2013-09-23 2014-02-12 瑞昱半导体股份有限公司 金属沟渠去耦合电容结构及其形成方法
US9412806B2 (en) 2014-06-13 2016-08-09 Invensas Corporation Making multilayer 3D capacitors using arrays of upstanding rods or ridges
WO2016008690A1 (en) * 2014-07-17 2016-01-21 Koninklijke Philips N.V. Ultrasound transducer arrangement and assembly, coaxial wire assembly, ultrasound probe and ultrasonic imaging system
DE102015011718A1 (de) 2014-09-10 2016-03-10 Infineon Technologies Ag Gleichrichtervorrichtung und Anordnung von Gleichrichtern
US9306164B1 (en) 2015-01-30 2016-04-05 International Business Machines Corporation Electrode pair fabrication using directed self assembly of diblock copolymers
US9397038B1 (en) 2015-02-27 2016-07-19 Invensas Corporation Microelectronic components with features wrapping around protrusions of conductive vias protruding from through-holes passing through substrates
US9812354B2 (en) 2015-05-15 2017-11-07 Semiconductor Components Industries, Llc Process of forming an electronic device including a material defining a void
CN108122856B (zh) * 2016-11-29 2021-05-14 京瓷株式会社 半导体元件搭载基板
CN106653568B (zh) * 2016-12-02 2019-04-16 昆山纳尔格信息科技有限公司 一种低干扰电感结构的制造方法
CN106783019B (zh) * 2016-12-02 2018-08-28 江苏贺鸿电子有限公司 一种低干扰电感结构
FR3063387B1 (fr) 2017-02-24 2021-05-21 Commissariat Energie Atomique Composant electronique muni d'un transistor et de doigts interdigites pour former au moins une partie d'un composant capacitif au sein du composant electronique
EP3432360A1 (en) * 2017-07-17 2019-01-23 Murata Manufacturing Co., Ltd. Distributed rc termination
WO2019107130A1 (ja) * 2017-11-30 2019-06-06 株式会社村田製作所 キャパシタ
US10586844B2 (en) * 2018-01-23 2020-03-10 Texas Instruments Incorporated Integrated trench capacitor formed in an epitaxial layer
KR102068808B1 (ko) * 2018-01-31 2020-01-22 삼성전기주식회사 커패시터 부품
JP7178187B2 (ja) 2018-06-27 2022-11-25 太陽誘電株式会社 トレンチキャパシタ
US20230018448A1 (en) * 2021-07-14 2023-01-19 Qualcomm Incorporated Reduced impedance substrate
CN114157257A (zh) * 2021-12-03 2022-03-08 电子科技大学 一种集成lc滤波器及其制造方法
WO2023181803A1 (ja) * 2022-03-23 2023-09-28 株式会社村田製作所 電子部品及び回路装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1221363B (de) * 1964-04-25 1966-07-21 Telefunken Patent Verfahren zum Verringern des Bahnwiderstands von Halbleiterbauelementen
US4224734A (en) 1979-01-12 1980-09-30 Hewlett-Packard Company Low electrical and thermal impedance semiconductor component and method of manufacture
JPS6334974A (ja) * 1986-07-29 1988-02-15 Mitsubishi Electric Corp 半導体装置
DE4418430C1 (de) * 1994-05-26 1995-05-11 Siemens Ag Verfahren zur Herstellung eines Siliziumkondensators
JPH0897367A (ja) * 1994-09-27 1996-04-12 Murata Mfg Co Ltd 半導体装置
US5847951A (en) * 1996-12-16 1998-12-08 Dell Usa, L.P. Method and apparatus for voltage regulation within an integrated circuit package
US5939782A (en) * 1998-03-03 1999-08-17 Sun Microsystems, Inc. Package construction for integrated circuit chip with bypass capacitor
US6346743B1 (en) * 2000-06-30 2002-02-12 Intel Corp. Embedded capacitor assembly in a package
JP2002299462A (ja) * 2001-01-26 2002-10-11 Nokia Mobile Phones Ltd 半導体装置
US6706584B2 (en) * 2001-06-29 2004-03-16 Intel Corporation On-die de-coupling capacitor using bumps or bars and method of making same
US6818469B2 (en) * 2002-05-27 2004-11-16 Nec Corporation Thin film capacitor, method for manufacturing the same and printed circuit board incorporating the same
WO2005088699A1 (en) * 2004-03-10 2005-09-22 Koninklijke Philips Electronics N.V. Method of manufacturing an electronic device and a resulting device

Also Published As

Publication number Publication date
EP1949419A1 (en) 2008-07-30
JP2009515356A (ja) 2009-04-09
WO2007054870A1 (en) 2007-05-18
US20080291603A1 (en) 2008-11-27
TW200731328A (en) 2007-08-16
TWI416590B (zh) 2013-11-21
US7839622B2 (en) 2010-11-23
CN101305448A (zh) 2008-11-12
CN101305448B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5054019B2 (ja) 高周波数動作においてアプリケーションを分離するのに適したトレンチキャパシタ装置
US20230317591A1 (en) Bonded structures with integrated passive component
CN106169913B (zh) 具有集成电流路径的射频放大器输出电路装置及其制造方法
US7397128B2 (en) Semiconductor device and method of manufacturing the same
US9793340B2 (en) Capacitor structure
US9589927B2 (en) Packaged RF amplifier devices with grounded isolation structures and methods of manufacture thereof
US7960773B2 (en) Capacitor device and method for manufacturing the same
JP5060550B2 (ja) パワーアンプ・アセンブリ
US6535098B1 (en) Integrated helix coil inductor on silicon
EP1143517A2 (en) Integrated vertical spiral inductor on semiconductor chip material
US20070217122A1 (en) Capacitor
US6924725B2 (en) Coil on a semiconductor substrate and method for its production
US20080169883A1 (en) LC resonant circuit
US7911026B2 (en) Chip carrier with reduced interference signal sensitivity
JP2010205941A (ja) 半導体チップ及び半導体装置
KR100744464B1 (ko) 집적형 인덕터 및 그 제조방법
US6813138B1 (en) Embedded microelectronic capacitor equipped with geometrically-centered electrodes and method of fabrication
US20220254717A1 (en) Semiconductor Device And Manufacturing Method Therefor
US20060125046A1 (en) Integrated inductor and method of fabricating the same
WO2023181803A1 (ja) 電子部品及び回路装置
TW200416986A (en) Structure for bond pad of integrated circuit and the forming method thereof
JP2007027518A (ja) 高周波回路モジュール及び積層型高周波回路モジュール
US20060097346A1 (en) Structure for high quality factor inductor operation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120305

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5054019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250