JP5053645B2 - Medicinal product carrying device and method for producing the same - Google Patents

Medicinal product carrying device and method for producing the same Download PDF

Info

Publication number
JP5053645B2
JP5053645B2 JP2006552996A JP2006552996A JP5053645B2 JP 5053645 B2 JP5053645 B2 JP 5053645B2 JP 2006552996 A JP2006552996 A JP 2006552996A JP 2006552996 A JP2006552996 A JP 2006552996A JP 5053645 B2 JP5053645 B2 JP 5053645B2
Authority
JP
Japan
Prior art keywords
angle
convex portion
array
shape
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006552996A
Other languages
Japanese (ja)
Other versions
JPWO2006075716A1 (en
Inventor
浩児 大道
研介 島
宗久 藤巻
誠治 徳本
博敏 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisamitsu Pharmaceutical Co Inc
Original Assignee
Hisamitsu Pharmaceutical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisamitsu Pharmaceutical Co Inc filed Critical Hisamitsu Pharmaceutical Co Inc
Priority to JP2006552996A priority Critical patent/JP5053645B2/en
Publication of JPWO2006075716A1 publication Critical patent/JPWO2006075716A1/en
Application granted granted Critical
Publication of JP5053645B2 publication Critical patent/JP5053645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/150282Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150977Arrays of piercing elements for simultaneous piercing
    • A61B5/150984Microneedles or microblades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • A61B5/14514Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dermatology (AREA)
  • Anesthesiology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、生体への医薬物の投与、または生体からの血液の吸引抽出等の医薬物運搬システムに使用する医薬物運搬用器具に係わり、特に無痛で皮膚下に挿通可能とするとともに、効果的な医薬物供与を広範囲に渡って行うことができる医薬物運搬用器具に関する。
本願は、2005年1月14日に出願された特願2005−7327号に対し優先権を主張し、その内容をここに援用する。
The present invention relates to a drug delivery device for use in a drug delivery system such as administration of a drug to a living body, or suction extraction of blood from a living body, and is particularly painless and can be inserted under the skin. The present invention relates to a drug delivery device that can perform a wide range of drug supply over a wide range.
This application claims priority with respect to Japanese Patent Application No. 2005-7327 for which it applied on January 14, 2005, and uses the content here.

近年、医薬物の過剰投与および副作用を抑制せしめて、より安全に、効果的に医薬物を投与するために、「必要最小限の医薬物を、必要な場所に、必要なときに供給する」ことを命題としたドラッグデリバリーシステム(Drug Delivery System:以下、DDS)の研究が活発に行われている。そして、このDDSには、(1)医薬物を一定期間にわたって一定速度で放出する、いわゆる「医薬物の徐放化」、(2)医薬物を目的とする患部に選択的に輸送する、いわゆる「ターゲッティング」の大きな2つの目標命題を有している。   In recent years, in order to suppress drug overdose and side effects, and to administer the drug more safely and effectively, "suppliing the minimum necessary drug to the required place when needed" Research on drug delivery systems (hereinafter referred to as “DDS”) has been actively conducted. And in this DDS, (1) so-called “sustained release of a pharmaceutical product” that releases a pharmaceutical product at a constant rate over a certain period of time, (2) so-called “slow release of the pharmaceutical product”, so-called “slow delivery of the pharmaceutical product” It has two major propositions of “targeting”.

ところで、これらの目標命題を達成して実用化するには、医薬物の改良だけでは困難であり、医薬物を担持、搬送する運搬用器具類の開発が不可欠である。
例えば、経皮吸収治療システム(Transdermal Therapeutic System:TTS)と総称される、皮膚から医薬物を投与し、体内の一部もしくは全身に前記医薬物の作用発現を実現させる技術がある。従来、このTTSに適用できる医薬物はニトログリセリン、硝酸イソソルビド、クロニジン等に代表される皮膚透過性の高いものに限られていた。しかしながら近年、前記皮膚透過性の高い医薬物をより効果的に体内に吸収させたり、皮膚透過性が低い医薬物をTTSに適用させる要求が高まっており、これらを実現するための医薬物運搬器具が提案されている。
非特許文献1には、基部となるSiの表面をSFとOの混合ガスによるドライエッチングプロセスにて加工し、高さ100μm程度のアレイ状針状体(非特許文献1では、マイクロニードルと記載されている)を形成して得られる医薬物運搬用器具が開示されている。この非特許文献1には、このアレイ状針状体を用いて皮膚を穿刺し、針状体より医薬物を運搬し人体に輸送することが開示されている(非特許文献1参照)。
By the way, in order to achieve these target propositions and put them to practical use, it is difficult only by improving the pharmaceuticals, and it is indispensable to develop transporting devices for carrying and transporting the pharmaceuticals.
For example, there is a technique of administering a pharmaceutical product from the skin, generally called a transdermal therapeutic system (TTS), and realizing the action of the pharmaceutical product in a part of the body or the whole body. Conventionally, pharmaceuticals applicable to this TTS have been limited to those having high skin permeability typified by nitroglycerin, isosorbide nitrate, clonidine and the like. However, in recent years, there has been an increasing demand to absorb the drug with high skin permeability into the body more effectively, and to apply the drug with low skin permeability to TTS. Has been proposed.
In Non-Patent Document 1, the surface of Si serving as a base is processed by a dry etching process using a mixed gas of SF 6 and O 2 to form an array of needles having a height of about 100 μm (in Non-Patent Document 1, microneedles A device for transporting a pharmaceutical product is disclosed. This non-patent document 1 discloses that the array of needles is used to puncture the skin, and a pharmaceutical product is transported from the needles and transported to the human body (see non-patent document 1).

また、特許文献1〜3には、アレイ状針状体(特許文献1では、微小針と記載されている)を形成する技術が開示されている。さらに特許文献1には前記針状体の中心に基部裏面より表面へ貫通する貫通孔路を形成し、中空状針状体(特許文献1では、中空微小針と記載されている)とする技術が開示されている。(特許文献1〜3参照)。
D.V. McAllister et al.,“MICROFABRICATED MICRONEEDLES: A NOVEL APPROACH TO TRANSDERMALDRUG DELIVERY”, Proceed. Int'l. Symp. Control. Rel. Bioact. Mater., 25(1998) Controlled Release Society,Inc. 国際公開第99/64580号パンフレット 国際公開第00/05166号パンフレット 特許第3696513号
Patent Documents 1 to 3 disclose a technique for forming an array-like needle-like body (described as a microneedle in Patent Document 1). Furthermore, in Patent Document 1, a through-hole passage penetrating from the back surface of the base to the surface is formed at the center of the needle-shaped body to form a hollow needle-shaped body (described as a hollow microneedle in Patent Document 1). Is disclosed. (See Patent Documents 1 to 3).
DV McAllister et al., “MICROFABRICATED MICRONEEDLES: A NOVEL APPROACH TO TRANSDERMALDRUG DELIVERY”, Proceed. Int'l. Symp. Control. Rel. Bioact. Mater., 25 (1998) Controlled Release Society, Inc. WO99 / 64580 pamphlet International Publication No. 00/05166 Pamphlet Japanese Patent No. 3696513

しかしながら、非特許文献1に開示されているアレイ状針状体は、実際に医薬物を運搬する構造が明らかにされていない。
また、特許文献1〜3に開示されている中空状針状体では、貫通孔路を通して医薬物や血液を運搬する手段を開示しているが、本技術では開口径が小さい(実施例では直径15μm)ものに限られている。通常の医薬物や血液は非常に粘度が高いため、このように開口径が小さな貫通孔路では流動しないという問題がある。開口径を大きくする(例えば直径50μm)ことは本技術でも容易に行えるが、本技術の場合、針状体先端径も大きくなることを意味し、皮膚を穿刺することが不可能となってしまう。
これらの従来技術において、針状体先端径を小さくするためには、さらに2つの問題点がある。即ち、針状部の肉厚が制限されるために針状体の機械的強度が弱い点、前記肉厚の制限のため貫通孔路の位置精度の許容範囲が小さくなってしまい歩留まりが非常に悪い点、である。
However, the array-like needle-like body disclosed in Non-Patent Document 1 does not reveal a structure for actually transporting a pharmaceutical product.
In addition, the hollow needle-like bodies disclosed in Patent Documents 1 to 3 disclose means for transporting a medicine or blood through a through-hole, but the present technology has a small opening diameter (in the examples, the diameter is a diameter). 15 μm). Since ordinary medicines and blood have a very high viscosity, there is a problem that they do not flow in a through-hole having such a small opening diameter. Increasing the opening diameter (for example, 50 μm in diameter) can be easily performed with the present technology, but in the case of the present technology, it means that the tip diameter of the needle-like body also increases, and it becomes impossible to puncture the skin. .
In these conventional techniques, there are two further problems in order to reduce the needle tip diameter. That is, since the thickness of the needle-like portion is limited, the mechanical strength of the needle-like body is weak, and the tolerance of the position accuracy of the through hole is reduced due to the limitation of the thickness, and the yield is very high. It is a bad point.

本発明は前記事情に鑑みてなされ、医薬物を一定期間にわたって一定速度に調節して放出する「医薬物の徐放化」と、医薬物を目的とする患部に選択的に輸送する「医薬物のターゲッティング」とを可能にし、特に無痛で皮膚下に挿通可能とするとともに、効率よく医薬物投与または血液吸引抽出を行うことができる医薬物運搬用器具の提供を目的とする。   The present invention has been made in view of the circumstances described above, and “slow release of a pharmaceutical product” that releases a pharmaceutical product at a constant rate over a certain period of time, and “a pharmaceutical product that selectively transports the pharmaceutical product to a target affected area” It is an object of the present invention to provide a device for transporting a pharmaceutical product that can be inserted into the skin without pain, and can be efficiently administered or blood-sucked and extracted.

前記目的を達成するため、本発明は、基部と、その表面に対して第一の角度と、該第一の角度とは異なる第二の角度とをもって立設された略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部とを有し、前記第一の角度は70度〜90度であり、前記第二の角度は50度〜80度であり、前記基部及び前記凸部がポリ乳酸素材により構成されており、基部裏面より凸部先端へ貫通する貫通孔路が形成され、かつ前記貫通孔路の開口面積が2×10 −3 mm 以上であることを特徴とする医薬物運搬用器具を提供する。 In order to achieve the above object, the present invention provides a substantially columnar shape and a substantially frustum shape that are erected with a base, a first angle with respect to the surface thereof, and a second angle different from the first angle. , possess a convex portion constituting a shape selected from the group consisting of substantially conical, the first angle is 70 degrees to 90 degrees, the second angle is 50 degrees to 80 degrees, the The base part and the convex part are made of a polylactic acid material, a through hole passage penetrating from the back surface of the base part to the tip of the convex part is formed, and an opening area of the through hole path is 2 × 10 −3 mm 2 or more. An instrument for transporting a pharmaceutical product is provided.

本発明の医薬物運搬用器具において、前記第二の角度は、前記第一の角度よりも小さいことが好ましい In the drug delivery device of the present invention, it is preferable that the second angle is smaller than the first angle .

また本発明は、凸部を形成するための細孔を有する型と基材とを対向して配置し、該型と該基材の少なくともいずれか一方を加熱したうえで基材に圧力を加えて型の形状を基材に転写させる工程と、冷却して基材を離型する工程とを有することを特徴とする医薬物運搬用器具の製造方法を提供する。   In the present invention, a mold having pores for forming a convex portion and a substrate are arranged to face each other, and at least one of the mold and the substrate is heated, and pressure is applied to the substrate. There is provided a method for producing a pharmaceutical product transporting device, comprising: a step of transferring the shape of a mold to a base material; and a step of cooling and releasing the base material.

本発明の医薬物運搬用器具は、基部と、その表面に対して第一の角度と該第一の角度とは異なる第二の角度とをもって立設された略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部とを有する構成としたので、凸部先端を鋭く形成でき、皮膚への穿刺性を向上させることができる。
また、略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部に、皮膚への穿刺性を損なうことなく大きな開口径を備えた貫通孔路を形成できるため、医薬物を体内に効果的に運搬できる。また、適用できる医薬物の種類も増加する。さらに、この時形成する凸部の肉厚によらず、穿刺性を維持することができる。
また、略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部に、第二の角度をもつ傾斜面が形成された構成としたので、凸部下底部の肉厚が厚くなり、機械的強度がより向上する。
The pharmaceutical product transporting device of the present invention comprises a base, a substantially columnar shape, a substantially frustum-like shape, a substantially frustum-like shape, which is erected with a first angle with respect to the surface and a second angle different from the first angle. Since it has the structure which has the convex part which makes the shape selected from the group which consists of cones, the convex part front-end | tip can be sharply formed and the puncture property to skin can be improved.
In addition, since a through-hole having a large opening diameter can be formed on the convex portion having a shape selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially pyramidal shape without impairing the puncture property to the skin, The drug can be effectively transported into the body. In addition, the types of pharmaceutical products that can be applied also increase. Further, the puncture property can be maintained regardless of the thickness of the convex portion formed at this time.
In addition, since the convex portion having a shape selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially frustum shape is formed with an inclined surface having a second angle, the thickness of the bottom portion of the convex portion Increases the mechanical strength.

本発明の第1実施形態に係るアレイ状無痛針の平面図である。1 is a plan view of an array of painless needles according to a first embodiment of the present invention. 図1A中のA−B間断面図である。It is sectional drawing between AB in FIG. 1A. 図1Aの凸部の拡大斜視図である。It is an expansion perspective view of the convex part of FIG. 1A. 第1実施形態のアレイ状無痛針の各部a〜e及び角度θ1,θ2を示す図である。It is a figure which shows each part ae of the array-shaped painless needle | hook of 1st Embodiment, and angle (theta) 1, (theta) 2. 第1実施形態のアレイ状無痛針の製造工程を順に示す断面図である。It is sectional drawing which shows the manufacturing process of the array-shaped painless needle of 1st Embodiment in order. 図3中の工程Cに用いるドライエッチング装置の一例を示す構成図である。It is a block diagram which shows an example of the dry etching apparatus used for the process C in FIG. 本発明の第2実施形態に係るアレイ状無痛針の平面図である。It is a top view of an array-like painless needle concerning a 2nd embodiment of the present invention. 図5A中のA−B間断面図である。It is sectional drawing between AB in FIG. 5A. 図5Aの凸部の拡大斜視図である。It is an expansion perspective view of the convex part of Drawing 5A. 第2実施形態のアレイ状無痛針の各部f〜j及び角度θ1,θ2を示す図である。It is a figure which shows each part fj and angle (theta) 1, (theta) 2 of the array-shaped painless needle of 2nd Embodiment. 第2実施形態のアレイ状無痛針の製造工程を順に示す断面図である。It is sectional drawing which shows the manufacturing process of the array-shaped painless needle of 2nd Embodiment in order. 図7中の工程C´に用いる集束イオンビームエッチング装置の一例を示す構成図である。It is a block diagram which shows an example of the focused ion beam etching apparatus used for process C 'in FIG. 本発明の第3実施形態に係るアレイ状無痛針の平面図である。It is a top view of an array-like painless needle concerning a 3rd embodiment of the present invention. 図9A中のA−B間断面図である。It is sectional drawing between AB in FIG. 9A. 図9Aの凸部の拡大斜視図である。It is an expansion perspective view of the convex part of FIG. 9A. 第3実施形態のアレイ状無痛針の各部k〜p及び角度θ1,θ2を示す図である。It is a figure which shows each part kp of the array-shaped painless needle | hook of 3rd Embodiment, and angle (theta) 1, (theta) 2. 第3実施形態のアレイ状無痛針の製造工程を順に示す断面図である。It is sectional drawing which shows the manufacturing process of the array-shaped painless needle of 3rd Embodiment in order. 第4実施形態のアレイ状無痛針の製造工程を順に示す断面図である。It is sectional drawing which shows the manufacturing process of the array-shaped painless needle of 4th Embodiment in order. 第4実施形態のアレイ状無痛針の製造工程を順に示す断面図である。It is sectional drawing which shows the manufacturing process of the array-shaped painless needle of 4th Embodiment in order. 第4実施形態のアレイ状無痛針の製造工程を順に示す断面図である。It is sectional drawing which shows the manufacturing process of the array-shaped painless needle of 4th Embodiment in order.

符号の説明Explanation of symbols

1,12,19,32…アレイ状無痛針(医薬物用運搬器具)、2,13,20,33…基部、3,14,21,34…凸部、3A,14A,21A,34A…傾斜面、22…貫通孔路、θ1…第一の角度、θ2…第二の角度。   1, 12, 19, 32 ... array-shaped painless needles (medicine carrying device), 2, 13, 20, 33 ... base, 3, 14, 21, 34 ... convex, 3A, 14A, 21A, 34A ... inclined Surface, 22 ... through hole, θ1 ... first angle, θ2 ... second angle.

以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の各実施例に限定されるものではなく、例えばこれら実施例の構成要素同士を適宜組み合わせてもよい。
図1A〜Cは、本発明の第1実施形態を示す図であり、図1Aは平面図、図1Bは図1A中のA−B間断面図、図1Cは図1Aの凸部の拡大斜視図である。本実施形態では、本発明の医薬物運搬用器具の一例として、アレイ状無痛針を例示している。図1A〜C中、符号1はアレイ状無痛針、2は基材、3は凸部、3Aは傾斜面である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and for example, the constituent elements of these embodiments may be appropriately combined.
1A to 1C are views showing a first embodiment of the present invention, in which FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along a line AB in FIG. 1A, and FIG. 1C is an enlarged perspective view of a convex portion in FIG. FIG. In the present embodiment, an array of painless needles is illustrated as an example of the drug delivery device of the present invention. 1A to 1C, reference numeral 1 denotes an array of painless needles, 2 denotes a base material, 3 denotes a convex portion, and 3A denotes an inclined surface.

本実施形態において、アレイ状無痛針1は、基部2と、その表面に対して第一の角度θ1と該第一の角度θ1とは異なる第二の角度θ2とをもって立設された略錐状をなす凸部3とを有する構成になっている。本例示において、第一の角度θ1は基部2表面に対してほぼ直角であり、凸部3の一部にこのθ1と異なる第二の角度θ2を適当に設定して傾斜面3Aを形成することにより、凸部3の先端を鋭利に形成している。   In the present embodiment, the array of painless needles 1 has a substantially conical shape that is erected with a base 2 and a first angle θ1 and a second angle θ2 different from the first angle θ1 with respect to the surface thereof. It has the structure which has the convex part 3 which makes | forms. In this example, the first angle θ1 is substantially perpendicular to the surface of the base 2 and the inclined surface 3A is formed on a part of the convex portion 3 by appropriately setting a second angle θ2 different from θ1. Thus, the tip of the convex portion 3 is sharply formed.

このアレイ状無痛針1において、図2中の各部の寸法a〜eは、例えば次の範囲に設定することができる。図2中、(a)はこのアレイ状無痛針1の要部断面図、(b)は凸部3の斜視図である。
・基部厚さa:200〜1000μm。
・凸部高さb:50〜500μm。
・凸部の形成ピッチc:30〜1000μm(但し、c>dである。)。
・凸部下底d:φ20〜100μm。
・凸部上底e:φ3μm以下。
なお、本発明においては特に器具の寸法に関して制限される部分は少なく、最初の設計及びその製造プロセスにより如何様にも寸法を変更することが可能である。
In the array of painless needles 1, the dimensions a to e of each part in FIG. 2 can be set within the following range, for example. 2A is a cross-sectional view of the main part of the array of painless needles 1, and FIG. 2B is a perspective view of the convex portion 3.
Base thickness a: 200 to 1000 μm.
-Convex part height b: 50-500 micrometers.
-Pitch formation pitch c: 30 to 1000 μm (provided that c> d).
-Projection lower base d: φ20-100 μm.
-Convex upper base e: φ3 μm or less.
In the present invention, there are few parts that are particularly limited with respect to the dimensions of the instrument, and the dimensions can be changed in any way depending on the initial design and the manufacturing process.

また、図2(b)に示す凸部3の例示にあっては、第一の角度θ1が約90度、第二の角度θ2が約70度としているが、これらの角度は一例に過ぎず、本発明は本例示に限定されない。本発明において、これらの角度θ1,θ2は、第一の角度θ1>第二の角度θ2の関係を有していることが好ましく、さらに第一の角度θ1は70度〜90度の範囲であり、第二の角度θ2は50度〜80度であることがより好ましい。   Further, in the example of the convex portion 3 shown in FIG. 2B, the first angle θ1 is about 90 degrees and the second angle θ2 is about 70 degrees, but these angles are only examples. The present invention is not limited to this example. In the present invention, these angles θ1 and θ2 preferably have a relationship of first angle θ1> second angle θ2, and the first angle θ1 is in the range of 70 degrees to 90 degrees. The second angle θ2 is more preferably 50 to 80 degrees.

図3は、前記アレイ状無痛針1の製造方法の一例を工程順に示す断面図である。この図3に示す通り、前記アレイ状無痛針1は、Si基材4の表面に対して第一の角度θ1をもって立設された略柱状の凸部8を形成する工程Bと、該凸部8に、前記第一の角度θ1と異なる第二の角度θ2をもつ傾斜面3Aを形成し、図1(c)に示すように先端が尖った形状の凸部3に加工する工程Cとを有している。
さらに前記工程Bは、(a)Si基材を用意し、(b)その表面にCr層を形成し、(c)Cr層上にフォトリソグラフィー技術によってフォトレジストを形成して凸部パターニングを行い、(d)このフォトレジストをマスクとしてCr層をウェットエッチングしてCrパターンを形成し、(e)Crパターンをマスクとして略柱状の凸部を形成する各工程により行われる。
この図3(a)〜(f)に従って第1実施形態のアレイ状無痛針1を製造する一例を、次の製造例1に詳述するが、この製造例1は単なる例示であり、本発明を限定するためのものではない。
なお、以降の実施形態の例示において、基材とは凸部と基部を構成するための素材であることを示し、医薬物運搬用器具の一構成部である基部とは、定義が異なる。
FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the array of painless needles 1 in the order of steps. As shown in FIG. 3, the array of painless needles 1 includes a step B of forming a substantially columnar convex portion 8 erected with a first angle θ1 with respect to the surface of the Si base material 4, and the convex portion. 8, forming a slope 3 </ b> A having a second angle θ <b> 2 different from the first angle θ <b> 1, and processing into a convex portion 3 having a sharp tip as shown in FIG. Have.
Further, in the step B, (a) a Si base material is prepared, (b) a Cr layer is formed on the surface, (c) a photoresist is formed on the Cr layer by photolithography, and patterning is performed. (D) The Cr layer is wet-etched using this photoresist as a mask to form a Cr pattern, and (e) a substantially columnar projection is formed using the Cr pattern as a mask.
An example of manufacturing the array-shaped painless needle 1 of the first embodiment in accordance with FIGS. 3A to 3F will be described in detail in the following Manufacturing Example 1. This Manufacturing Example 1 is merely an example, and the present invention. It is not intended to limit.
In the illustration of the following embodiments, the base material indicates a material for constituting the convex portion and the base portion, and the definition is different from the base portion which is one component part of the drug delivery device.

(製造例1)
図3(a)は、製造例1で基材として使用する、片面をミラー研磨した厚さ1000μmの単結晶シリコン(Si)ウェーハ(以下、Si基材4と記す。)である。以下、ミラー研磨された面を表面と称する。
(Production Example 1)
FIG. 3A shows a 1000 μm thick single crystal silicon (Si) wafer (hereinafter referred to as Si substrate 4) used as a substrate in Production Example 1 and having one surface mirror-polished. Hereinafter, the mirror-polished surface is referred to as a surface.

図3(b)は、Si基材4の表面に、エッチングマスクとなるCr層5の形成を表したものである。スパッタリング法により、Si基材4の表面に約1μmのCr層5を形成する。   FIG. 3B shows the formation of a Cr layer 5 serving as an etching mask on the surface of the Si base material 4. A Cr layer 5 of about 1 μm is formed on the surface of the Si substrate 4 by sputtering.

図3(c)は、凸部のフォトレジストパターンの形成を表したもので、フォトリソグラフィー技術により、Si基材4の表面に凸部のネガパターン、即ち、凸部にフォトレジスト6を残し、非凸部のフォトレジストを除去したパターンを形成する。この製造例1においては、フォトレジスト6の直径を50μmとした。   FIG. 3 (c) shows the formation of a photoresist pattern on the convex portion, and the negative pattern of the convex portion on the surface of the Si substrate 4 by the photolithography technique, that is, the photoresist 6 is left on the convex portion, A pattern is formed by removing the non-convex photoresist. In this Production Example 1, the diameter of the photoresist 6 was 50 μm.

図3(d)は、Crパターンの形成を表したもので、前記(c)工程で形成したフォトレジスト6をマスクとし、フォトレジスト6下部に配置されたCr層5をエッチングし、Crパターン7を形成する。Crのエッチングは、硝酸第二セリウム塩と過塩素酸を主成分とする水溶液を用いたウェットエッチングにより行った。   FIG. 3D shows the formation of a Cr pattern. Using the photoresist 6 formed in the step (c) as a mask, the Cr layer 5 disposed under the photoresist 6 is etched to obtain a Cr pattern 7. Form. Etching of Cr was performed by wet etching using an aqueous solution mainly composed of ceric nitrate and perchloric acid.

図3(e)は、凸部形成を表したもので、前記(d)工程で形成したCrパターン7をマスクとし、Si基材4の表面に略柱状の凸部8を形成する。この凸部8の形成はドライエッチングプロセスにより行う。Crパターン7を形成したSi基材4をドライエッチング装置のチャンバー内に設置し、真空排気を行った後、エッチングガスとしてSFとOの混合ガスを用いてエッチングを行った。
Siエッチング速度は約6μm/minであることを鑑みてエッチング時間を25分とした結果、エッチング深さ(凸部高さ)約150μmの凸部8を形成できた。なお、約150μmエッチングした後でも、マスクであるCr層は0.7μm以上の厚さがあった。SiとCrのエッチング速度の比(選択比)は、500:1以上ということになる。
なお、この時のエッチング条件(例えば、プロセス圧力、エッチングガス流量、高周波への投入電力量)により、凸部8の形状を略円柱状から略円錐状まで変化させることができる。本製造例1においては、凸部8を直径50μmの略円柱状に形成した。
最後に硝酸第二セリウム塩と過塩素酸を主成分とする水溶液を用いたウェットエッチングによりSi表面に残存するCrパターン7を除去した。
FIG. 3 (e) shows the formation of convex portions, and the substantially columnar convex portions 8 are formed on the surface of the Si substrate 4 using the Cr pattern 7 formed in the step (d) as a mask. The projection 8 is formed by a dry etching process. The Si base material 4 on which the Cr pattern 7 was formed was placed in a chamber of a dry etching apparatus, evacuated, and then etched using a mixed gas of SF 6 and O 2 as an etching gas.
In consideration of the fact that the Si etching rate is about 6 μm / min, the etching time was set to 25 minutes. As a result, a convex portion 8 having an etching depth (convex height) of about 150 μm could be formed. Even after etching about 150 μm, the Cr layer as a mask had a thickness of 0.7 μm or more. The etching rate ratio (selection ratio) between Si and Cr is 500: 1 or more.
Note that the shape of the convex portion 8 can be changed from a substantially cylindrical shape to a substantially conical shape depending on the etching conditions (for example, the process pressure, the etching gas flow rate, and the input power amount to the high frequency). In Production Example 1, the convex portion 8 was formed in a substantially cylindrical shape having a diameter of 50 μm.
Finally, the Cr pattern 7 remaining on the Si surface was removed by wet etching using an aqueous solution mainly composed of ceric nitrate and perchloric acid.

図3(f)は、凸部加工から器具(アレイ状無痛針1)完成を表したものであり、この(f)凸部加工の工程は、凸部8を形成したSi基材4をイオンガス流に対して任意角度傾けた状態で配置してドライエッチングすることにより行った。図4は、そのドライエッチング装置の概要を示す構成図であり、図4中、符号9はドライエッチング装置のチャンバー、10は高周波電源、11は任意角度傾けるための治具である。このチャンバー9は真空排気系に接続され、内部を真空排気することが可能である。またチャンバー9には、イオンガス源であるアルゴン(Ar)ガスを電極間に流入するArガス供給配管が設けられている。図4に示すように、ドライエッチング装置のチャンバー9内に、凸部8を形成したSi基材4を電極に対して任意角度傾けて配置する。このSi基材4を任意角度傾けるための治具11としては、アルミニウム(Al)等の導電性材料で構成されていれば、如何なるものでも構わない。
治具11に略円柱状の凸部8を形成したSi基材4を設置し、該チャンバー9を真空排気した後、エッチングガスとしてArガスを用いてエッチングを行った。
Arイオンは化学的に不活性のため、ArイオンがSi基材4の表面に衝突する際の物理的エネルギーでのみエッチングされる。Arイオンは電極に対して垂直にイオン入射するため、Si基材4を傾けることにより選択的に前記凸部の一面をエッチングすることができる。
FIG. 3 (f) shows the completion of the instrument (array-shaped painless needle 1) from the convex processing, and in this (f) convex processing, the Si substrate 4 on which the convex 8 is formed is ionized. This was performed by performing dry etching by placing the film at an arbitrary angle with respect to the gas flow. FIG. 4 is a block diagram showing an outline of the dry etching apparatus. In FIG. 4, reference numeral 9 denotes a chamber of the dry etching apparatus, 10 denotes a high-frequency power source, and 11 denotes a jig for tilting at an arbitrary angle. The chamber 9 is connected to an evacuation system, and the inside can be evacuated. The chamber 9 is provided with an Ar gas supply pipe through which argon (Ar) gas, which is an ion gas source, flows between the electrodes. As shown in FIG. 4, the Si base material 4 on which the convex portions 8 are formed is disposed at an arbitrary angle with respect to the electrode in the chamber 9 of the dry etching apparatus. As the jig 11 for tilting the Si base material 4 at an arbitrary angle, any material may be used as long as it is made of a conductive material such as aluminum (Al).
The Si base material 4 on which the substantially cylindrical convex portion 8 was formed was placed on the jig 11, the chamber 9 was evacuated, and then etching was performed using Ar gas as an etching gas.
Since Ar ions are chemically inert, etching is performed only with physical energy when Ar ions collide with the surface of the Si substrate 4. Since Ar ions are incident perpendicularly to the electrodes, it is possible to selectively etch one surface of the convex portion by tilting the Si base 4.

以上の工程を経て、基部2の表面に対して、第一の角度θ1(例えば、約90度)とそれよりも小さい第二の角度θ2(例えば、約70度)とをもって立設された略錐状をなす凸部3を有するアレイ状無痛針1が形成できる。   Through the above-described steps, the surface of the base portion 2 is erected with a first angle θ1 (for example, about 90 degrees) and a second angle θ2 (for example, about 70 degrees) smaller than the first angle θ1 (for example, about 70 degrees). The array-shaped painless needle 1 having the convex portion 3 having a conical shape can be formed.

本実施形態のアレイ状無痛針1は、基部2と、その表面に対して第一の角度θ1とそれよりも小さい第二の角度θ2とをもって立設された略錐状をなす凸部3とを有する構成としたので、第一の角度θと第二の角度θ2を適宜設定することで、凸部3の先端を鋭く形成でき、皮膚への穿刺性を向上させることができる。   The array of painless needles 1 of the present embodiment includes a base 2, and a convex portion 3 having a substantially conical shape standing with a first angle θ1 and a smaller second angle θ2 with respect to the surface thereof. Therefore, by appropriately setting the first angle θ and the second angle θ2, the tip of the convex portion 3 can be formed sharply, and the puncture property to the skin can be improved.

図5A〜Cは、本発明の第2実施形態を示す図であり、図5Aは平面図、図5Bは図5A中のA−B間断面図、図5Cは図5Aの凸部の拡大斜視図である。本実施形態では、本発明の医薬物運搬用器具の一例として、アレイ状無痛針を例示している。図5A〜C中、符号12はアレイ状無痛針、13は基部、14は凸部、14Aは傾斜面である。   5A to 5C are views showing a second embodiment of the present invention, in which FIG. 5A is a plan view, FIG. 5B is a cross-sectional view taken along a line AB in FIG. 5A, and FIG. 5C is an enlarged perspective view of a convex portion in FIG. FIG. In the present embodiment, an array of painless needles is illustrated as an example of the drug delivery device of the present invention. 5A to 5C, reference numeral 12 denotes an array of painless needles, 13 denotes a base, 14 denotes a convex portion, and 14A denotes an inclined surface.

本実施形態において、アレイ状無痛針12は、基部13と、その表面に対して第一の角度θ1をもって立設された略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部14とを有し、該凸部に、前記第一の角度θ1と異なる第二の角度θ2をもつ傾斜面14Aが形成された構成になっている。   In the present embodiment, the array of painless needles 12 has a shape selected from the group consisting of a base 13 and a substantially columnar shape, a substantially frustum shape, and a substantially conical shape that are erected with a first angle θ1 with respect to the surface thereof. And an inclined surface 14A having a second angle θ2 different from the first angle θ1 is formed on the convex portion.

このアレイ状無痛針12において、図6中の各部の寸法f〜jは、例えば次の範囲に設定することができる。図6中、(a)はこのアレイ状無痛針12の要部断面図、(b)は凸部14の斜視図である。
・基部厚さf:200〜1000μm。
・凸部高さg:50〜500μm。
・凸部の形成ピッチh:30〜1000μm(但し、h>jである。)。
・凸部下底i:φ20〜100μm。
・凸部上底j:φ3μm以下。
なお、本発明においては特に器具の寸法に関して制限される部分は少なく、最初の設計及びその製造プロセスにより如何様にも寸法を変更することが可能である。
In this array of painless needles 12, the dimensions f to j of each part in FIG. 6 can be set within the following range, for example. 6A is a cross-sectional view of the main part of the array of painless needles 12, and FIG. 6B is a perspective view of the convex portion 14.
-Base thickness f: 200-1000 μm.
-Convex part height g: 50-500 micrometers.
Projection pitch h: 30 to 1000 μm (however, h> j).
-Lower bottom i of convex part: φ20-100 μm.
-Convex upper base j: φ3 μm or less.
In the present invention, there are few parts that are particularly limited with respect to the dimensions of the instrument, and the dimensions can be changed in any way depending on the initial design and the manufacturing process.

また、図6(b)に示す凸部14の例示にあっては、第一の角度θ1が約90度、第二の角度θ2が約70度としているが、これらの角度は一例に過ぎず、本発明は本例示に限定されない。本発明において、これらの角度θ1,θ2は、第一の角度θ1>第二の角度θ2の関係を有していることが好ましく、さらに第一の角度θ1は70度〜90度の範囲であり、第二の角度θ2は50度〜80度であることがより好ましい。   6B, the first angle θ1 is about 90 degrees and the second angle θ2 is about 70 degrees. However, these angles are merely examples. The present invention is not limited to this example. In the present invention, these angles θ1 and θ2 preferably have a relationship of first angle θ1> second angle θ2, and the first angle θ1 is in the range of 70 degrees to 90 degrees. The second angle θ2 is more preferably 50 to 80 degrees.

図7は、前記アレイ状無痛針12の製造方法の一例を工程順に示す断面図である。この図7に従って第2実施形態のアレイ状無痛針12を製造する一例を、次の製造例2に詳述するが、この製造例2は単なる例示であり、本発明を限定するためのものではない。なお、前述した製造例1と重複する部分については説明を割愛する。   FIG. 7 is a cross-sectional view showing an example of a method for manufacturing the array of painless needles 12 in the order of steps. An example of manufacturing the arrayed painless needle 12 of the second embodiment according to FIG. 7 will be described in detail in the following Manufacturing Example 2. This Manufacturing Example 2 is merely an example and is not intended to limit the present invention. Absent. In addition, description is omitted about the part which overlaps with the manufacture example 1 mentioned above.

(製造例2)
図7(a)は、Si基材4の表面に略円柱状の凸部8を形成する工程を表すもので、図3(a)〜(e)の各工程と同様にして凸部8を形成することができ、詳細は省略する。製造例1の場合と同じく、図3(a)〜(e)の各工程によって、Si基材4の表面に対して第一の角度θ1をもって立設された略円柱状の凸部8が形成される。
(Production Example 2)
FIG. 7A shows a step of forming a substantially cylindrical convex portion 8 on the surface of the Si base material 4, and the convex portion 8 is formed in the same manner as in each step of FIGS. 3A to 3E. The details can be omitted. As in the case of Production Example 1, the substantially cylindrical convex portion 8 erected with the first angle θ1 with respect to the surface of the Si base 4 is formed by the steps of FIGS. 3A to 3E. Is done.

図7(b)は、凸部加工から器具(アレイ状無痛針12)完成を表すもので、この工程は、図8に概要を示す集束イオンビーム(Focused Ion Beam:FIB)エッチング装置を用いて行う。図8のエッチング装置は、真空排気が可能なチャンバー15内に、XYZ(三次元)精密ステージ16が設けられ、このXYZ精密ステージ16上にSi基材4を任意の角度で傾けて配置するための治具17が設けられている。またチャンバー9に接続されたGaイオンの導入部には、イオン銃シャッター18が該導入部を開閉可能に設けられている。図8に示すように、イオン銃とXYZ精密ステージ16とを備えたFIBエッチング装置のチャンバー15内に、略円柱状の凸部8を形成したSi基材4を配置する。このとき、Si基材4は、治具11を用いてイオン銃に対して任意角度傾けている。この治具11は、Al等の導電性素材で構成させていれば如何なるものでも構わない。
次いで、装置内に設けてある走査型イオン顕微鏡(Scanning Ion Microscope:SIM)とXYZ精密ステージ16により、選択的にイオン照射したい部分(凸部先端)が所定の位置に来るように移動させ、イオン銃よりガリウム(Ga)イオンを照射する。
Gaイオンは化学的に不活性のため、Gaイオンが凸部先端に衝突する際の物理的エネルギーでのみエッチングされる。Gaイオンはイオン銃に対して平行に入射するため、Si基材4を傾けることにより前記凸部の先端部を選択的にエッチングすることができる。
以降、XYZ精密ステージ16による移動と、FIB選択エッチングを繰り返す。すべての凸部8の先端部をエッチングすることにより、略円柱状凸部8の先端部に、第一の角度θ1より小さい第二の角度θ2をもつ傾斜面14Aが形成され、先端が尖った凸部14を有するアレイ状無痛針12が製造される。
FIG. 7B shows the completion of the instrument (arrayed painless needle 12) from the convex processing, and this process is performed using a focused ion beam (FIB) etching apparatus schematically shown in FIG. Do. In the etching apparatus of FIG. 8, an XYZ (three-dimensional) precision stage 16 is provided in a chamber 15 that can be evacuated, and the Si substrate 4 is inclined on the XYZ precision stage 16 at an arbitrary angle. The jig 17 is provided. In addition, an ion gun shutter 18 is provided at a Ga ion introduction portion connected to the chamber 9 so that the introduction portion can be opened and closed. As shown in FIG. 8, the Si base material 4 in which the substantially cylindrical convex portion 8 is formed is disposed in the chamber 15 of the FIB etching apparatus provided with the ion gun and the XYZ precision stage 16. At this time, the Si base 4 is tilted at an arbitrary angle with respect to the ion gun using the jig 11. The jig 11 may be any one as long as it is made of a conductive material such as Al.
Next, the ion ion microscope (Scanning Ion Microscope: SIM) and the XYZ precision stage 16 provided in the apparatus are moved so that the portion (convex tip) to be selectively irradiated with ions comes to a predetermined position. Irradiate gallium (Ga) ions from a gun.
Since Ga ions are chemically inert, etching is performed only with physical energy when Ga ions collide with the tips of the convex portions. Since Ga ions are incident in parallel to the ion gun, the tip of the convex portion can be selectively etched by tilting the Si base 4.
Thereafter, the movement by the XYZ precision stage 16 and the FIB selective etching are repeated. By etching the tips of all the convex portions 8, an inclined surface 14A having a second angle θ2 smaller than the first angle θ1 is formed at the tip of the substantially cylindrical convex portion 8, and the tips are pointed. An array of painless needles 12 having convex portions 14 is manufactured.

この第2実施形態のアレイ状無痛針12は、第一の角度θ1をもって基部に立設された略柱状をなす凸部14に、第一の角度θ1よりも小さい第二の角度θ2をもつ傾斜面14Aが形成された構成としたので、皮膚への穿刺性を損なうことなく、凸部下底部の肉厚が厚い針状部を形成できるため、器具の機械的強度をより向上させることができる。   The array of painless needles 12 according to the second embodiment has a substantially columnar convex portion 14 erected on the base with a first angle θ1 and an inclination having a second angle θ2 smaller than the first angle θ1. Since the surface 14A is formed, it is possible to form a needle-like portion having a thick bottom bottom portion of the convex portion without impairing the puncture property to the skin, so that the mechanical strength of the instrument can be further improved.

図9A〜Cは、本発明の第3実施形態を示す図であり、図9Aは平面図、図9Bは図9A中のA−B間断面図、図9Cは図9Aの凸部の拡大斜視図である。本実施形態では、本発明の医薬物運搬用器具の一例として、アレイ状無痛針を例示している。図9A〜C中、符号19はアレイ状無痛針、20は基部、21は凸部、21Aは傾斜面、22は貫通孔路である。   9A to 9C are views showing a third embodiment of the present invention, in which FIG. 9A is a plan view, FIG. 9B is a cross-sectional view taken along line AB in FIG. 9A, and FIG. 9C is an enlarged perspective view of a convex portion in FIG. FIG. In the present embodiment, an array of painless needles is illustrated as an example of the drug delivery device of the present invention. 9A to C, reference numeral 19 denotes an array of painless needles, 20 denotes a base portion, 21 denotes a convex portion, 21A denotes an inclined surface, and 22 denotes a through hole.

本実施形態において、アレイ状無痛針19は、基部20と、その表面に対して第一の角度θ1と該第一の角度θ1とは異なる第二の角度θ2とをもって立設された略錐状をなす凸部21と、基部20の裏面より凸部21先端へ貫通する貫通孔路22とを有する構成になっている。この貫通孔路22は、基部20裏面より医薬物を供給し、該医薬物を生体内へ運搬する、あるいは、生体内より吸引抽出した血液等の体液を基部20裏面より取り出す目的に使用することができる。   In the present embodiment, the array of painless needles 19 is substantially cone-shaped and is erected with a base 20 and a first angle θ1 and a second angle θ2 different from the first angle θ1 with respect to the surface thereof. And a through-hole path 22 penetrating from the back surface of the base portion 20 to the tip of the convex portion 21. This through-hole path 22 is used for the purpose of supplying a medicine from the back surface of the base 20 and transporting the medicine into the living body or taking out body fluid such as blood aspirated and extracted from the living body from the back surface of the base 20. Can do.

このアレイ状無痛針19において、図10中の各部の寸法k〜pは、例えば次の範囲に設定することができる。図10中、(a)はこのアレイ状無痛針19の要部断面図、(b)は凸部21の斜視図である。
・基部厚さk:200〜1000μm。
・凸部高さl:50〜500μm。
・凸部の形成ピッチm:30〜1000μm(但し、m>nである。)。
・凸部下底n:φ50〜100μm。
・貫通孔路径o:φ50〜80μm。
・凸部上底p:φ3μm以下。
なお、本発明においては特に器具の寸法に関して制限される部分は少なく、最初の設計及びその製造プロセスにより如何様にも寸法を変更することが可能である。
In this array-shaped painless needle 19, the dimensions k to p of each part in FIG. 10 can be set within the following range, for example. 10A is a cross-sectional view of the main part of the array of painless needles 19, and FIG. 10B is a perspective view of the convex portion 21.
-Base thickness k: 200-1000 μm.
-Height of convex part l: 50-500 micrometers.
Projection pitch m: 30 to 1000 μm (provided that m> n).
-Projection bottom bottom n: φ50-100 μm.
-Through-hole path diameter o: φ50 to 80 μm.
-Convex upper base p: φ3 μm or less.
In the present invention, there are few parts that are particularly limited with respect to the dimensions of the instrument, and the dimensions can be changed in any way depending on the initial design and the manufacturing process.

また、図10(b)に示す凸部21の例示にあっては、第一の角度θ1が約90度、第二の角度θ2が約70度としているが、これらの角度は一例に過ぎず、本発明は本例示に限定されない。本発明において、これらの角度θ1,θ2は、第一の角度θ1>第二の角度θ2の関係を有していることが好ましく、さらに第一の角度θ1は70度〜90度の範囲であり、第二の角度θ2は50度〜80度であることがより好ましい。
さらに、前記貫通孔路22の開口面積は2×10−3mm以上であることが好ましい。貫通孔路22の開口面積が2×10−3mm以上あれば、その貫通孔路22を通して効率よく医薬物投与または血液吸引抽出を行うことができる。
10B, the first angle θ1 is about 90 degrees and the second angle θ2 is about 70 degrees, but these angles are merely examples. The present invention is not limited to this example. In the present invention, these angles θ1 and θ2 preferably have a relationship of first angle θ1> second angle θ2, and the first angle θ1 is in the range of 70 degrees to 90 degrees. The second angle θ2 is more preferably 50 to 80 degrees.
Furthermore, the opening area of the through hole path 22 is preferably 2 × 10 −3 mm 2 or more. If the opening area of the through-hole path 22 is 2 × 10 −3 mm 2 or more, it is possible to efficiently administer a pharmaceutical product or extract blood through the through-hole path 22.

図11は、前記アレイ状無痛針19の製造方法の一例を工程順に示す断面図である。この図11に従って第3実施形態のアレイ状無痛針19を製造する一例を、次の製造例3に詳述するが、この製造例3は単なる例示であり、本発明を限定するためのものではない。なお、前述した製造例1と重複する部分については説明を割愛する。   FIG. 11 is a cross-sectional view showing an example of a method for manufacturing the array of painless needles 19 in the order of steps. An example of manufacturing the arrayed painless needle 19 of the third embodiment according to FIG. 11 will be described in detail in the following Manufacturing Example 3. This Manufacturing Example 3 is merely an example and is not intended to limit the present invention. Absent. In addition, description is omitted about the part which overlaps with the manufacture example 1 mentioned above.

(製造例3)
貫通孔路22を有する前記アレイ状無痛針19の製造方法は、貫通孔路22となる開口部24を形成する工程Aと、略柱状、略錐台状、略錐状の群から選択される凸部25を形成し、次いで前記開口部24を貫通孔路22とする工程B′と、前記凸部25の一面に第二の角度をもつ傾斜面21Aを形成する工程Cとからなる。
(Production Example 3)
The method of manufacturing the array of painless needles 19 having the through-hole path 22 is selected from the group A of the step A for forming the opening 24 to be the through-hole path 22 and the substantially columnar shape, the substantially frustum shape, and the substantially conical shape. The process includes a process B ′ in which the convex part 25 is formed and then the opening 24 is formed as the through-hole path 22, and a process C in which an inclined surface 21 A having a second angle is formed on one surface of the convex part 25.

図11(a)は、本製造例3で、基材として使用する両面をミラー研磨した厚さ500μmのSiウェーハ(以下、Si基材23と記す。)である。以下Si基材23の両面を表面A、表面Bとして区別する。   FIG. 11A shows a Si wafer (hereinafter referred to as Si base material 23) having a thickness of 500 μm, which is mirror-polished on both surfaces used as the base material in Production Example 3. Hereinafter, both surfaces of the Si base material 23 are distinguished as a surface A and a surface B.

図11(b)は、貫通孔路22となる開口部24の形成を表したもので、この開口部24の形成は、製造例1において説明したフォトリソグラフィー技術とドライエッチングプロセスを用いて、Si基材23の表面Bに貫通孔路22となる開口部24を形成する(図3中、工程B参照。)。この開口部24を形成するエッチング技術としては、Bocshプロセスとして知られるエッチングガス(例えばSF)と堆積ガス(例えばC)を交互に導入してプラズマ化させ、エッチング工程と堆積工程とを繰り返すプロセスが好適である。また、このとき、製造例1の工程Bで説明したCrマスクは不要となり、レジストをマスクとして開口部24を形成することが可能である。
以上の工程を経て、Si表面Bに開口径50μm、深さ470μm、ピッチ500μmの開口部24を形成した。
FIG. 11B shows the formation of the opening 24 that becomes the through-hole path 22, and this opening 24 is formed by using the photolithography technique and the dry etching process described in Production Example 1. An opening 24 to be a through hole path 22 is formed on the surface B of the base material 23 (see step B in FIG. 3). As an etching technique for forming the opening 24, an etching gas known as a Bocsh process (for example, SF 6 ) and a deposition gas (for example, C 4 F 8 ) are alternately introduced into a plasma to form an etching process and a deposition process. The process of repeating is preferred. At this time, the Cr mask described in Step B of Production Example 1 is not necessary, and the opening 24 can be formed using the resist as a mask.
Through the above steps, openings 24 having an opening diameter of 50 μm, a depth of 470 μm, and a pitch of 500 μm were formed on the Si surface B.

図11(c)は、凸部の形成を表したもので、前述した製造例1の工程Bと同様の工程を経て、Si基材23の表面Aに直径80μm、高さ150μm、ピッチ500μmの凸部25を形成した。このとき、フォトリソグラフィー時にSi基材23のA・B両面パターンの位置合せを行い、開口部24の中心と凸部25の中心が一致するように配置した。   FIG. 11C shows the formation of the convex portion, and after the same process as the process B of Production Example 1 described above, the surface A of the Si base material 23 has a diameter of 80 μm, a height of 150 μm, and a pitch of 500 μm. The convex part 25 was formed. At this time, the alignment of the A / B double-sided pattern of the Si base material 23 was performed during photolithography, and the center of the opening 24 and the center of the convex portion 25 were aligned.

図11(d)は、貫通孔路22の形成を表したもので、Crマスクを除去した後、再度ドライエッチングプロセスにてSi基材23のA面をエッチングすることにより、開口部24が基材裏面より凸部先端へ貫通する貫通孔路22となる。   FIG. 11D shows the formation of the through-hole path 22, and after removing the Cr mask, the A surface of the Si base material 23 is etched again by a dry etching process, whereby the opening portion 24 is formed. The through-hole path 22 penetrates from the back surface of the material to the tip of the convex portion.

図11(e)は、凸部加工から器具(アレイ状無痛針19)完成を表したもので、前述した製造例1の工程Cと同様の処理を行って、基部20の裏面より凸部21先端へ貫通する貫通孔路22が設けられたアレイ状中空無痛針19が得られる。勿論、前述した製造例2に記載した工程C′を用いてもアレイ状中空無痛針19を得ることができる。   FIG. 11E shows the completion of the tool (arrayed painless needle 19) from the convex processing, and the same process as in Step C of Production Example 1 described above is performed, so that the convex 21 from the back surface of the base 20 is obtained. The array-shaped hollow painless needle 19 provided with the through-hole path 22 penetrating to the tip is obtained. Of course, the array of hollow painless needles 19 can also be obtained by using the process C ′ described in Production Example 2 described above.

上記工程を経て作製したアレイ状中空無痛針19では、貫通孔路22の径を大きく(即ち、開口面積を大きく)しても、凸部21先端を尖鋭化することが可能なため、皮膚への穿刺性を維持したまま、医薬物の流動性が高い貫通孔路を形成することができる。
医薬品の流動性を充分確保できる貫通孔路22の開口面積は、医薬物の粘度にもよるが、通常2×10−3mm程度であればよく、本実施形態のように円形状の貫通孔路であれば直径50μm程度でよいことになる。
また、貫通孔路22の径に対して凸部21の径を大きくしても皮膚への穿刺性は変らないので、中空の凸部21の肉厚を大きくすることができ、機械的強度が向上する。
また、フォトリソグラフィー時にSi基材23のA・B両面パターンの位置合わせを行い、開口部24の中心と凸部25の中心とを正確に配置する精度は高いとは言えず、歩留まりを低下させる要因となるが、本発明では貫通孔路22の径に対して凸部21の径を大きくできるため、位置精度の許容が大きくなり、歩留まりが向上する。
In the array of hollow painless needles 19 produced through the above steps, the tip of the convex portion 21 can be sharpened even if the diameter of the through-hole path 22 is increased (that is, the opening area is increased). A through-hole with high fluidity of the pharmaceutical product can be formed while maintaining the puncture property.
The opening area of the through-hole path 22 that can sufficiently ensure the fluidity of the pharmaceutical agent is usually about 2 × 10 −3 mm 2 , although it depends on the viscosity of the pharmaceutical product. If it is a hole, a diameter of about 50 μm is sufficient.
Moreover, since the puncture property to the skin does not change even if the diameter of the convex portion 21 is increased with respect to the diameter of the through-hole path 22, the thickness of the hollow convex portion 21 can be increased, and the mechanical strength is increased. improves.
Further, the alignment of the A / B double-sided pattern of the Si base material 23 is performed during photolithography, and the accuracy of accurately arranging the center of the opening 24 and the center of the convex portion 25 is not high, and the yield is lowered. Although it becomes a factor, since the diameter of the convex part 21 can be enlarged with respect to the diameter of the through-hole path 22 in this invention, the tolerance | permissibility of positional accuracy becomes large and a yield improves.

図12A〜Cは、本発明の第4実施形態である、熱可塑性ポリマ素材で構成されるアレイ状無痛針の製造方法の一例を工程順に示す断面図である。
この図12A〜Cに示す通り、アレイ状無痛針は、凸部を形成するための細孔を有する型と、アレイ状無痛針となる熱可塑性ポリマ基材とを対向して配置し(図12A)、型と熱可塑性ポリマ基材の少なくともいずれか一方を加熱した上で熱可塑性ポリマ基材に圧力をかけた状態で保持し(図12B)、成形後冷却し、次いで熱可塑性ポリマ基材を離型する(図12C)工程により行われる。
12A to 12C are cross-sectional views showing an example of a method for producing an array of painless needles made of a thermoplastic polymer material according to the fourth embodiment of the present invention in the order of steps.
As shown in FIGS. 12A to 12C, in the array of painless needles, a mold having pores for forming convex portions and a thermoplastic polymer base material that becomes the array of painless needles are arranged to face each other (FIG. 12A). ), Heating at least one of the mold and the thermoplastic polymer substrate, holding the thermoplastic polymer substrate under pressure (FIG. 12B), cooling after molding, and then holding the thermoplastic polymer substrate This is performed by a step of releasing (FIG. 12C).

成形に用いる凸部を形成するための細孔を有する型は、以下の方法で作製する。即ち、製造例1で例示した医薬物運搬用器具をマスタ型とし、次いでNi等の金属をスパッタすることでマスタ型表面を導電化し、然る後にNi電鋳によってマスタ型の形状を転写する。   A mold having pores for forming convex portions used for molding is produced by the following method. That is, the pharmaceutical delivery device exemplified in Production Example 1 is set as a master type, and then the surface of the master type is made conductive by sputtering a metal such as Ni, and then the shape of the master type is transferred by Ni electroforming.

転写後、マスタ型を選択的に除去することによって、凸部を形成するための細孔を有する型を作製することができる。   After the transfer, by selectively removing the master mold, a mold having pores for forming convex portions can be produced.

この図12A〜Cに従って、第4の実施形態である熱可塑性ポリマ素材で構成されるアレイ状無痛針を製造する一例を、次の製造例4に詳述するが、この製造例4は単なる例示であり、本発明を限定するためのものではない。   An example of manufacturing an array of painless needles made of the thermoplastic polymer material according to the fourth embodiment according to FIGS. 12A to 12C will be described in detail in the following Manufacturing Example 4. This Manufacturing Example 4 is merely an example. It is not intended to limit the present invention.

(製造例4)
図12Aは、製造例4で型として使用する凸部を形成するための細孔を有するNi電鋳型30と厚さ1000μmの板状ポリ乳酸(以下、ポリ乳酸基材31と記す)である。なお、Ni電鋳型30の作製に用いたマスタ型には、製造例1で例示したアレイ状無痛針1を用いた。
(Production Example 4)
FIG. 12A shows a Ni electroforming mold 30 having pores for forming convex portions used as a mold in Production Example 4 and a plate-like polylactic acid having a thickness of 1000 μm (hereinafter referred to as polylactic acid substrate 31). In addition, the array-shaped painless needle 1 exemplified in Production Example 1 was used as a master mold used for producing the Ni electroforming mold 30.

図12Bは、Ni電鋳型30の形状をポリ乳酸基材31に転写する工程を示す。Ni電鋳型30とポリ乳酸基材31を100℃に加熱した後、Ni電鋳型30上部よりポリ乳酸基材31を10MPa程度の圧力で押圧する。押圧した状態で10分間保持することにより、Ni電鋳型30の形状がほぼ正確にポリ乳酸基材31に転写される。   FIG. 12B shows a process of transferring the shape of the Ni electroforming mold 30 to the polylactic acid base material 31. After heating the Ni electroforming mold 30 and the polylactic acid base material 31 to 100 ° C., the polylactic acid base material 31 is pressed from above the Ni electroforming mold 30 with a pressure of about 10 MPa. By holding for 10 minutes in the pressed state, the shape of the Ni electroforming mold 30 is transferred to the polylactic acid substrate 31 almost accurately.

図12Cは、ポリ乳酸基材を離型する工程を示す。Ni電鋳型30とポリ乳酸基材を50℃に冷却した後、ポリ乳酸基材を離型する。   FIG. 12C shows a step of releasing the polylactic acid base material. After cooling the Ni electroforming mold 30 and the polylactic acid base material to 50 ° C., the polylactic acid base material is released.

以上の工程を経て、ポリ乳酸素材で構成されたアレイ状無痛針32が形成できる。詳細は省略するが、このアレイ状無痛針は、マスタ型であるアレイ状無痛針1の形状と略同形状であり、アレイ状無痛針1と同様に、傾斜面34Aを備えた凸部34と基部33とを有する。   Through the above steps, an array of painless needles 32 made of a polylactic acid material can be formed. Although not described in detail, this array-shaped painless needle has substantially the same shape as that of the array-shaped painless needle 1 that is a master type, and like the array-shaped painless needle 1, a convex portion 34 having an inclined surface 34A is provided. And a base 33.

本製造例に用いる基材は、熱可塑性ポリマであれば基本的にいかなるものでも構わないが、ポリ乳酸は、生体に対して無毒であり、且つ生体吸収性があるため、例えばアレイ状無痛針32の凸部34が折れて体内に残留したとしても、いずれ体内で分解するため、好適である。   The base material used in this production example may be basically any thermoplastic polymer, but polylactic acid is non-toxic to the living body and bioabsorbable. Even if the 32 convex portions 34 are broken and remain in the body, it is preferable because they are decomposed in the body.

なお、前述した各実施形態は本発明の例示に過ぎず、本発明はこれらの実施形態に限定されるものではなく、種々の変更が可能である。
例えば、凸部の形状は前述した各実施形態の例示に限らず、皮膚等に無痛で穿刺できる形状、寸法であれば、如何なるものでも構わない。凸部の形状の他の例としては、略円柱状、略円錐台状、略角柱(三角錐、四角錐等)状、略角錐台状、略角錐状が挙げられる。これらはフォトリソグラフィー時の凸部パターンと、凸部形成時のドライエッチング条件により如何様にも変更可能である。
また、アレイ状中空無痛針に形成する貫通孔路も円状に限らず、角(三角、四角等)状であっても構わない。これも、フォトリソグラフィー時の開口部パターンにより如何様にも変更可能である。
Each embodiment mentioned above is only illustration of the present invention, and the present invention is not limited to these embodiments, and various changes are possible.
For example, the shape of the convex portion is not limited to the above-described embodiments, and any shape can be used as long as it can be punctured without pain in the skin or the like. Other examples of the shape of the convex portion include a substantially cylindrical shape, a substantially truncated cone shape, a substantially prismatic shape (triangular pyramid, quadrangular pyramid, etc.) shape, a substantially truncated pyramid shape, and a substantially truncated pyramid shape. These can be changed in any way depending on the convex pattern at the time of photolithography and the dry etching conditions at the time of forming the convex.
Further, the through-holes formed in the array-shaped hollow painless needles are not limited to a circular shape, and may have a square shape (triangle, square, etc.). This can be changed in any way depending on the opening pattern at the time of photolithography.

Claims (3)

基部と、その表面に対して第一の角度と、該第一の角度とは異なる第二の角度とをもって立設された略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部とを有し、前記第一の角度は70度〜90度であり、前記第二の角度は50度〜80度であり、前記基部及び前記凸部がポリ乳酸素材により構成されており、基部裏面より凸部先端へ貫通する貫通孔路が形成され、かつ前記貫通孔路の開口面積が2×10 −3 mm 以上であることを特徴とする医薬物運搬用器具。The base portion is selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially pyramid shape standing at a first angle with respect to the surface and a second angle different from the first angle. shape possess a convex portion forming the said first angle is 70 degrees to 90 degrees, the second angle is 50 degrees to 80 degrees, the base portion and the convex portion is formed by polylactic acid material An instrument for transporting a pharmaceutical product , wherein a through-hole passage penetrating from the rear surface of the base portion to the tip of the convex portion is formed, and an opening area of the through-hole passage is 2 × 10 −3 mm 2 or more . 前記第二の角度は、前記第一の角度よりも小さいことを特徴とする請求項1に記載の医薬物運搬用器具。  The said 2nd angle is smaller than said 1st angle, The pharmaceutical delivery instrument of Claim 1 characterized by the above-mentioned. 前記凸部を形成するための細孔を有する型と基材とを対向して配置し、前記型と前記基材の少なくともいずれか一方を加熱したうえで基材に圧力を加えて前記型の形状を前記基材に転写させる工程と、冷却して前記基材を離型する工程とを有し、請求項1または2に記載の医薬物運搬用器具を製造することを特徴とする医薬物運搬用器具の製造方法。A mold having pores for forming the convex portions and a substrate are arranged to face each other, and at least one of the mold and the substrate is heated, and pressure is applied to the substrate to a step of transferring the shape to the substrate, cooled to possess a step of releasing the substrate, a pharmaceutical product, which comprises preparing a pharmaceutical product delivery instrument according to claim 1 or 2 A method of manufacturing a transportation device.
JP2006552996A 2005-01-14 2006-01-13 Medicinal product carrying device and method for producing the same Active JP5053645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006552996A JP5053645B2 (en) 2005-01-14 2006-01-13 Medicinal product carrying device and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005007327 2005-01-14
JP2005007327 2005-01-14
JP2006552996A JP5053645B2 (en) 2005-01-14 2006-01-13 Medicinal product carrying device and method for producing the same
PCT/JP2006/300398 WO2006075716A1 (en) 2005-01-14 2006-01-13 Drug delivery instrument and method of producing the same

Publications (2)

Publication Number Publication Date
JPWO2006075716A1 JPWO2006075716A1 (en) 2008-06-12
JP5053645B2 true JP5053645B2 (en) 2012-10-17

Family

ID=36677739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006552996A Active JP5053645B2 (en) 2005-01-14 2006-01-13 Medicinal product carrying device and method for producing the same

Country Status (2)

Country Link
JP (1) JP5053645B2 (en)
WO (1) WO2006075716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009659A1 (en) * 2017-07-07 2019-01-10 경상대학교산학협력단 Micro-needle device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930899B2 (en) * 2006-08-01 2012-05-16 凸版印刷株式会社 Manufacturing method of needle-shaped body
JP4888011B2 (en) * 2006-09-28 2012-02-29 凸版印刷株式会社 Needle-like body and manufacturing method thereof
JP4978243B2 (en) * 2007-03-06 2012-07-18 凸版印刷株式会社 Needle-like body and method for producing needle-like body
JP4978245B2 (en) * 2007-03-08 2012-07-18 凸版印刷株式会社 Needle-shaped body, needle-shaped body manufacturing method, and drug transport device
JP5227558B2 (en) * 2007-09-19 2013-07-03 凸版印刷株式会社 Acicular body
JP5216312B2 (en) * 2007-12-14 2013-06-19 株式会社フジクラ Manufacturing method of medical equipment
JP2009225987A (en) * 2008-03-21 2009-10-08 Toppan Printing Co Ltd Needle shape body
KR101578420B1 (en) 2008-06-30 2015-12-17 히사미쓰 세이야꾸 가부시키가이샤 Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle device
ES2826882T3 (en) 2009-07-23 2021-05-19 Hisamitsu Pharmaceutical Co Microneedle array
JP5568324B2 (en) * 2010-01-15 2014-08-06 凸版印刷株式会社 Microneedle manufacturing method
US8911422B2 (en) 2010-02-24 2014-12-16 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
JP2013090837A (en) * 2011-10-26 2013-05-16 Toppan Printing Co Ltd Method for manufacturing needle-like body and needle-like body
JP6730720B1 (en) * 2019-02-12 2020-07-29 近畿精工株式会社 Microneedle molding method and molding die

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088514A (en) * 2001-07-09 2003-03-25 Lifescan Inc Micro needle and its manufacturing method
WO2003074102A2 (en) * 2002-03-04 2003-09-12 Nano Pass Technologies Ltd. Devices and methods for transporting fluid across a biological barrier
WO2004035105A2 (en) * 2002-10-13 2004-04-29 Nano Pass Technologies Ltd. Polymer microneedles
JP2004148519A (en) * 2002-10-28 2004-05-27 Kuraray Co Ltd Manufacturing method for resin molded product, manufacturing method for metal structure for mold and resin molded product
WO2004062899A2 (en) * 2003-01-16 2004-07-29 Seung-Seob Lee Method for manufacturing of polymer micro needle array with liga process
US20040204677A1 (en) * 2001-09-28 2004-10-14 Ethicon, Inc. Methods and devices for treating diseased blood vessels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064580A1 (en) * 1998-06-10 1999-12-16 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
AU2002250011A1 (en) * 2001-02-05 2002-08-19 Becton, Dickinson And Company Microprotrusion array and methods of making a microprotrusion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088514A (en) * 2001-07-09 2003-03-25 Lifescan Inc Micro needle and its manufacturing method
US20040204677A1 (en) * 2001-09-28 2004-10-14 Ethicon, Inc. Methods and devices for treating diseased blood vessels
WO2003074102A2 (en) * 2002-03-04 2003-09-12 Nano Pass Technologies Ltd. Devices and methods for transporting fluid across a biological barrier
WO2004035105A2 (en) * 2002-10-13 2004-04-29 Nano Pass Technologies Ltd. Polymer microneedles
JP2004148519A (en) * 2002-10-28 2004-05-27 Kuraray Co Ltd Manufacturing method for resin molded product, manufacturing method for metal structure for mold and resin molded product
WO2004062899A2 (en) * 2003-01-16 2004-07-29 Seung-Seob Lee Method for manufacturing of polymer micro needle array with liga process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009659A1 (en) * 2017-07-07 2019-01-10 경상대학교산학협력단 Micro-needle device

Also Published As

Publication number Publication date
WO2006075716A1 (en) 2006-07-20
JPWO2006075716A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5053645B2 (en) Medicinal product carrying device and method for producing the same
JP4908893B2 (en) Medicinal product carrying device, method for producing the same, and method for producing a mold for producing a medicinal product carrying device
US10105524B2 (en) Article with hollow microneedles and method of making
JPWO2006075689A1 (en) Medicinal product carrying device and method for producing the same
JP5020080B2 (en) Manufacturing method of medical equipment
US8137736B2 (en) Fabrication method for hollow microneedles for drug delivery
JP2006341089A (en) Instrument for carrying medicinal material and manufacturing method of the same
US9555229B2 (en) Method for producing silicon microneedle arrays with holes and microneedle array
JP2013165975A (en) Method of manufacturing microneedle
JP2011078617A (en) Stamper for microneedle sheet, and manufacturing method for the same, and manufacturing method for microneedle using the same
JP2011072695A (en) Method of manufacturing microneedle array and micro-needle array structure
JP5285943B2 (en) Needle-shaped body array and method for manufacturing needle-shaped body array
CN114748779A (en) Microneedle and manufacturing process thereof
JP2013153959A (en) Structure of needle shape body
JP4978245B2 (en) Needle-shaped body, needle-shaped body manufacturing method, and drug transport device
JP2008079915A (en) Needle-like body, and manufacturing method thereof
JP5412045B2 (en) Acicular body array and array manufacturing method thereof
JP2013252580A (en) Method for manufacturing microneedle structure
JP5173332B2 (en) Microneedle and microneedle manufacturing method
JP2009220350A (en) Needle-like mold
JP5568234B2 (en) Needle-like body and method for producing needle-like body
JP5216312B2 (en) Manufacturing method of medical equipment
JP5223278B2 (en) Microneedle manufacturing method
JP2013116219A (en) Method of manufacturing needle-like body, and transfer plate for needle-like body
JP2011078654A (en) Microneedle array and method of manufacturing microneedle array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5053645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250