JP5052778B2 - Expandable material, cement composition, and cement concrete using the same - Google Patents

Expandable material, cement composition, and cement concrete using the same Download PDF

Info

Publication number
JP5052778B2
JP5052778B2 JP2005325585A JP2005325585A JP5052778B2 JP 5052778 B2 JP5052778 B2 JP 5052778B2 JP 2005325585 A JP2005325585 A JP 2005325585A JP 2005325585 A JP2005325585 A JP 2005325585A JP 5052778 B2 JP5052778 B2 JP 5052778B2
Authority
JP
Japan
Prior art keywords
less
material according
specific gravity
expansion
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005325585A
Other languages
Japanese (ja)
Other versions
JP2007131484A (en
Inventor
健太郎 栖原
隆行 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005325585A priority Critical patent/JP5052778B2/en
Publication of JP2007131484A publication Critical patent/JP2007131484A/en
Application granted granted Critical
Publication of JP5052778B2 publication Critical patent/JP5052778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、主に土木・建築分野において使用される膨張材、セメント組成物、及びそれを用いたセメントコンクリートに関するものである。   The present invention relates to an expansion material, a cement composition, and cement concrete using the same, mainly used in the field of civil engineering and construction.

コンクリート構造物のひび割れ抑制は、耐久性の向上、美観、及び維持補修コストの低減などの面から重要である。
これまでに、コンクリートのひび割れを抑制する方法が種々提案されており、中でも膨張材はその中心的な役割を担っている。
Inhibiting cracks in concrete structures is important from the standpoints of improving durability, aesthetics, and reducing maintenance and repair costs.
So far, various methods for suppressing cracks in concrete have been proposed, and in particular, the expandable material plays a central role.

コンクリート用の膨張材としては、例えば、遊離石灰−アウイン−無水石膏系や遊離石灰−カルシウムシリケート−無水石膏系が一般的に知られており、最近では、従来よりも少ない添加量でコンクリートのひび割れを低減できる高性能型膨張材も開発されている(特許文献1、特許文献2、特許文献3、及び特許文献4参照)。   As expansion materials for concrete, for example, free lime-auin-anhydrite system and free lime-calcium silicate-anhydrite system are generally known. High-performance expansion material that can reduce the above has been developed (see Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).

これら従来の膨張材は、コンクリートに添加すると初期の流動性を損ねることがあり、減水剤の添加量を調整する必要があった。
また添加した膨張材が凝集していたりすると、局所的に大きな膨張力がはたらき、コンクリート表面が剥離する、いわゆる、ポップアウト現象等が問題となっていた。
さらに、これら膨張材は比較的高価なため、より少ない添加量で膨張性を付与できるものが求められている。
When these conventional expanding materials are added to concrete, the initial fluidity may be impaired, and it is necessary to adjust the amount of the water reducing agent added.
Moreover, when the added expansion material is agglomerated, a large expansion force acts locally and the concrete surface peels off, so-called pop-out phenomenon has been a problem.
Furthermore, since these expansion | swelling materials are comparatively expensive, what can provide expansibility with a smaller addition amount is calculated | required.

特公昭42−021840号公報Japanese Patent Publication No.42-021840 特公昭53−031170号公報Japanese Examined Patent Publication No. 53-031170 特開平07−232944号公報Japanese Patent Application Laid-Open No. 07-232944 特開2000−316147号公報JP 2000-316147 A

本発明者は、特定の粒度構成を付与した膨張材を使用することによって、前記課題が種々解決することができることを知見し、本発明を完成させるに至った。   The present inventor has found that the above problems can be variously solved by using an expansion material having a specific particle size configuration, and has completed the present invention.

即ち、本発明は5μm未満の粒子含有率が5%以下及び150μm以上の粒子を含有してなり、かつ、150μm以上の粒子含有率が3%以下である膨張材であり、90μm以上の粒子含有率が3%以下である該膨張材であり、20μm未満の粒子含有率が20%以下である該膨張材であり、5μm以上、90μm未満の粒子含有率が92%以上である該膨張材であり、20μm以上、90μm未満の粒子含有率が77%以上である該膨張材であり、下記方法により測定した凝集度が20%未満である該膨張材であり、
(1)下から、44μm、74μm、及び149μmの各篩目を持つ篩いを重ね、振動台にセットし、試料2gを入れ、振幅が1mmとなるよう振動を与える。
(2)振動を与える時間T(秒)は、動的見かけ比重Wとの関係式 T=20+(1.6−W)/0.016から求める。
ただし、W=(P−A)×(C/100)+A から求める。
ここで、Pは固め見かけ比重、Aはゆるみ見かけ比重、Cは圧縮度(%)である。
固め見かけ比重Pは、試料100ccを所定の容器に入れ、180回のタッピングを行った状態の試料の単位容積質量であり、ゆるみ見かけ比重Aは、試料を自由落下させて容器に詰めたときの単位容積質量であり、圧縮度Cは、固め見かけ比重とゆるみ見かけ比重とから、C(%)=100×(P−A)/Pの式で求める。
(3)上記の操作終了後、各篩いに残った粉体質量を測定し、凝集度(%)を次のように計算する。
凝集度(%)=(44μmの篩に残った粉体質量/2g)×(1/5)×100+(74μmの篩に残った粉体質量/2g)×(3/5)×100+(149μmの篩に残った粉体質量/2g)×100
膨張材が、アウインと無水石膏とを主成分とする、遊離石灰と無水石膏を主成分とする、遊離石灰と、アウイン、カルシウムシリケート、又は、カルシウムアルミノフェライトと、無水石膏とを主成分とする該膨張材であり、遊離石灰含有量が、10〜70%である該膨張材であり、CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料からなる群のうちの1種又は2種以上を配合し、1,100〜1,600℃で熱処理温度して製造してなる該膨張材であり、セメントと該膨張材を含有してなるセメント組成物であり、該セメント組成物を用いてなるセメントコンクリートであり、ポリカルボン酸塩系高性能AE減水剤を含有してなる該セメントコンクリートである。
That is, the present invention, the particle content of less than 5μm is contained 5% or less and 150μm or more particles, and a expansion member 150μm or more particle content of not more than 3%, 90 [mu] m or more particles The expandable material having a content of 3% or less, the expandable material having a particle content of less than 20 μm of 20% or less, and the expandable material having a particle content of 5 μm or more and less than 90 μm of 92% or more The particle content of 20 μm or more and less than 90 μm is 77% or more, and the degree of aggregation measured by the following method is less than 20%.
(1) From below, sieves having respective sieves of 44 μm, 74 μm, and 149 μm are stacked, set on a vibration table, sample 2 g is put, and vibration is applied so that the amplitude is 1 mm.
(2) The vibration application time T (seconds) is obtained from the relational expression T = 20 + (1.6−W) /0.016 with the dynamic apparent specific gravity W.
However, W = (P−A) × (C / 100) + A.
Here, P is the solid apparent specific gravity, A is the loose apparent specific gravity, and C is the degree of compression (%).
The solid apparent specific gravity P is a unit volume mass of a sample in a state where 100 cc of a sample is put in a predetermined container and tapped 180 times, and the loose apparent specific gravity A is a value obtained when the sample is freely dropped and packed in the container. It is a unit volume mass, and the degree of compression C is obtained from the solid apparent specific gravity and the loose apparent specific gravity by the formula C (%) = 100 × (PA) / P.
(3) After the above operation is completed, the mass of the powder remaining on each sieve is measured, and the degree of aggregation (%) is calculated as follows.
Aggregation degree (%) = (Mass of powder remaining on 44 μm sieve / 2 g) × (1/5) × 100 + (Mass of powder remaining on 74 μm sieve / 2 g) × (3/5) × 100 + (149 μm Mass of powder remaining on the sieve of No./2g)×100
The expansion material is mainly composed of Auin and anhydrous gypsum, mainly composed of free lime and anhydrous gypsum, mainly composed of free lime, Auin, calcium silicate, or calcium aluminoferrite, and anhydrous gypsum. The expandable material, the expanded material having a free lime content of 10 to 70%, and a group consisting of a CaO raw material, an Al 2 O 3 raw material, an Fe 2 O 3 raw material, an SiO 2 raw material, and a CaSO 4 raw material 1 or 2 or more of the above, an expansion material produced by heat treatment at 1,100 to 1600 ° C., a cement composition comprising cement and the expansion material, and the cement Cement concrete using the composition, which is a cement concrete containing a polycarboxylate-based high-performance AE water reducing agent.

本発明の膨張材を使用することによって、コンクリートの流動性を損ねることが無く、また、コンクリート表面が剥離するポップアウト現象が生じず、従来の膨張材よりもさらに少ない添加量で同等以上の膨張性を付与できる。   By using the expandable material of the present invention, the fluidity of the concrete is not impaired, and the pop-out phenomenon in which the concrete surface peels does not occur, and the expansion is equal to or greater than that of the conventional expandable material. Sex can be imparted.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定のない限り質量基準で示す。
また、本発明でいうセメントコンクリートとは、セメントペースト、モルタル、及びコンクリートを総称するものである。
Hereinafter, the present invention will be described in detail.
In the present invention, “part” and “%” are based on mass unless otherwise specified.
Moreover, the cement concrete as used in this invention is a general term for cement paste, mortar, and concrete.

本発明で使用する膨張材は、5μm未満の粒子含有率が5%以下である。5μm未満の粒子含有率が5%を超えるとコンクリートの流動性を損なったり、膨張材の粒子が凝集しやすくなりポップアウトが生じる場合がある。
また、本発明で使用する膨張材は、150μm以上の粒子含有率が3%以下である。150μm以上の粒子含有率が3%を超えるとポップアウト現象を生じる場合がある。
さらに、本発明では、5μm未満の粒子含有率が5%以下で、150μm以上の粒子含有率が3%以下であることが、また、90μm以上の粒子含有率が3%以下であることが、さらに、20μm未満の粒子含有率が20%以下であることがより好ましい。
また、本発明では、5μm以上、90μm未満の粒子含有率が92%以上であることが、さらに、20μm以上、90μm未満の粒子含有率が77%以上であることが、膨張材の少ない使用量でより高い膨張性とひび割れ抵抗性を得る面でより好ましい。
The expandable material used in the present invention has a particle content of less than 5 μm of 5% or less. If the particle content of less than 5 μm exceeds 5%, the fluidity of the concrete may be impaired, or the particles of the expansion material may easily aggregate and cause pop-out.
Further, the expansion material used in the present invention has a particle content of 150 μm or more of 3% or less. If the particle content of 150 μm or more exceeds 3%, a pop-out phenomenon may occur.
Furthermore, in the present invention, the content of particles less than 5 μm is 5% or less, the content of particles of 150 μm or more is 3% or less, and the content of particles of 90 μm or more is 3% or less. Furthermore, it is more preferable that the particle content of less than 20 μm is 20% or less.
Further, in the present invention, the amount of the expanded material used is that the particle content of 5 μm or more and less than 90 μm is 92% or more, and the particle content of 20 μm or more and less than 90 μm is 77% or more. It is more preferable in terms of obtaining higher expansibility and crack resistance.

膨張材の粒度の測定方法には、光の散乱強度を測定する動的光散乱法、粒子の大きさと沈降速度の関係から算出する粒径遠心沈降法、電解質溶液中で電気回路を粒子が横切る際の電気抵抗の変動を測定する電気的検知体法など種々あるが、最も一般的な方法は、レーザー回折・散乱法である。
レーザー回折・散乱法は、(1)粒子の輪郭での回折、(2)粒子の内側と外側両表面での反射、(3)分散媒と粒子の間の界面で起こる屈折、(4)粒子内部での光吸収の4つの相互作用を利用するもので、散乱光の強度パターンが粒子径とともに変化し、この変化を捉えて粒子径を測定する方法である。
この原理を利用した装置は種々市販されており、いずれも使用が可能であり、例えば、レーザー回折式粒度分布測定装置、HORIBA社製商品名「LA920」を使用することが可能である。
サンプルは、膨張材試料をエタノールなどの分散媒に加えて、透過度が80〜90%となるように調整し、装置に投入する。超音波を照射して充分に分散させた後、測定を行う。測定結果は粒子径と頻度の関係で示される。
なお、相対屈折率は、分散媒の屈折率に対する膨張材試料の屈折率の比で決定される値を用いた。
また、使用する装置は粒度構成が明らかになっているAl2O3標準試料などを用いて校正する必要があり、校正を行えば他のレーザー回折式粒度分布測定装置を用いることも可能である。
The method for measuring the particle size of the expanding material includes a dynamic light scattering method for measuring the light scattering intensity, a particle size centrifugal sedimentation method calculated from the relationship between the particle size and the settling velocity, and particles traversing the electric circuit in the electrolyte solution. There are various methods such as an electrical detector method for measuring fluctuations in electrical resistance, but the most common method is a laser diffraction / scattering method.
Laser diffraction / scattering methods are: (1) diffraction at the contour of the particle, (2) reflection at both the inside and outside surfaces of the particle, (3) refraction at the interface between the dispersion medium and the particle, (4) particle This is a method that uses four interactions of light absorption inside, and the intensity pattern of scattered light changes with the particle diameter, and this change is captured to measure the particle diameter.
Various apparatuses using this principle are commercially available, and any of them can be used. For example, a laser diffraction particle size distribution measuring apparatus, trade name “LA920” manufactured by HORIBA can be used.
The sample is added to a dispersion medium such as ethanol by adding an expansion material sample so that the permeability is 80 to 90%, and then is put into the apparatus. Measurement is carried out after sufficient dispersion by irradiation with ultrasonic waves. The measurement result is shown by the relationship between the particle size and the frequency.
For the relative refractive index, a value determined by the ratio of the refractive index of the expansion material sample to the refractive index of the dispersion medium was used.
In addition, the equipment to be used must be calibrated using an Al 2 O 3 standard sample whose particle size configuration has been clarified, and other laser diffraction particle size distribution measuring devices can be used if calibration is performed. .

本発明で規定する凝集度とは、粉粒体の物理特性を表す指標の一つである。
凝集度を測定する方法としては、例えば、下から、44μm、74μm、及び149μmの各篩目を持つ篩いを重ね、振動台にセットし、試料2gを入れ、振幅が1mmとなるよう振動を与える。振動を与える時間T(秒)は、動的見かけ比重Wとの関係式 T=20+(1.6−W)/0.016 ただし、W=(P−A)×(C/100)+A から求めた。
ここで、Pは固め見かけ比重、Aはゆるみ見かけ比重、Cは圧縮度(%)である。
固め見かけ比重Pは、試料100ccを所定の容器に入れ、180回のタッピングを行った状態の試料の単位容積質量であり、ゆるみ見かけ比重Aは、試料を自由落下させて容器に詰めたときの単位容積質量であり、圧縮度Cは、固め見かけ比重とゆるみ見かけ比重とから、C(%)=100×(P−A)/Pの式で求めたものである。
上記の操作終了後、各篩いに残った粉体質量を測定し、凝集度(%)を次のように計算する。
凝集度(%)=(44μmの篩に残った粉体質量/2g)×(1/5)×100+(74μmの篩に残った粉体質量/2g)×(3/5)×100+(149μmの篩に残った粉体質量/2g)×100
凝集度測定装置としては、例えば、ホソカワミクロン社製のパウダーテスターなどを用いることが可能である。
本発明の凝集度は20%未満が好ましい。20%以上ではコンクリートの流動性が低下したり、膨張材がコンクリート中に均一に分散されず、結果としてポップアウトが生じる場合がある。
The agglomeration degree defined in the present invention is one of indices indicating the physical characteristics of the granular material.
As a method for measuring the degree of aggregation, for example, from the bottom, 44 μm, 74 μm, and 149 μm sieves having respective meshes are stacked, set on a vibration table, sample 2 g is put, and vibration is applied so that the amplitude is 1 mm. . The vibration application time T (seconds) was obtained from the relational expression T = 20 + (1.6−W) /0.016 with dynamic apparent specific gravity W where W = (P−A) × (C / 100) + A.
Here, P is the solid apparent specific gravity, A is the loose apparent specific gravity, and C is the degree of compression (%).
The solid apparent specific gravity P is a unit volume mass of a sample in a state where 100 cc of a sample is put in a predetermined container and tapped 180 times, and the loose apparent specific gravity A is a value obtained when the sample is freely dropped and packed in the container. It is a unit volume mass, and the degree of compression C is determined by the formula of C (%) = 100 × (P−A) / P from the firm apparent specific gravity and the loose apparent specific gravity.
After the above operation is completed, the powder mass remaining on each sieve is measured, and the degree of aggregation (%) is calculated as follows.
Aggregation degree (%) = (Mass of powder remaining on 44 μm sieve / 2 g) × (1/5) × 100 + (Mass of powder remaining on 74 μm sieve / 2 g) × (3/5) × 100 + (149 μm Mass of powder remaining on the sieve of No./2g)×100
As a coagulation degree measuring apparatus, for example, a powder tester manufactured by Hosokawa Micron Corporation can be used.
The aggregation degree of the present invention is preferably less than 20%. If it is 20% or more, the fluidity of the concrete may be lowered, or the expansion material may not be uniformly dispersed in the concrete, resulting in pop-outs.

本発明で使用する膨張材は、CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料等を所定量配合して、熱処理し、アウインと無水石膏とを含有する、また、遊離石灰と、アウイン、カルシウムシリケート、又はカルシウムアルミノフェライトの水硬性化合物と、無水石膏とを含有するクリンカーを合成する。遊離石灰、水硬性化合物、及び無水石膏を混合しても、本発明の膨張材として使用可能であるが、優れた膨張性能を得るためには、遊離石灰、水硬性化合物、及び無水石膏全部を一度に熱処理してクリンカーとすることが好ましい。 The expansion material used in the present invention contains a predetermined amount of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, CaSO 4 raw material, etc., heat treated, and contains Auin and anhydrous gypsum In addition, a clinker containing free lime, a hydraulic compound of Auin, calcium silicate, or calcium aluminoferrite, and anhydrous gypsum is synthesized. Even if free lime, hydraulic compound, and anhydrous gypsum are mixed, they can be used as the expansion material of the present invention, but in order to obtain excellent expansion performance, free lime, hydraulic compound, and anhydrous gypsum are all added. It is preferable to heat-treat at once to make a clinker.

ここで、CaO原料としては石灰石や消石灰等が挙げられ、Al2O3原料としてはボ−キサイトやアルミ残灰等が挙げられ、Fe2O3原料としては銅カラミ、鉄粉、及び市販の酸化鉄等が挙げられ、SiO2原料としては市販の二酸化ケイ素や珪石等が挙げられ、CaSO4原料としては二水石膏、半水石膏、及び無水石膏などが挙げられる。
これら原料中には各種の不純物が存在することももちろん可能である。その具体例としては、Na2O、K2O、MgO、TiO2、及びP2O5などが挙げられ、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。
本発明の膨張材に使用されるクリンカーを製造する際の熱処理温度は、1,100〜1,600℃が好ましく、1,200〜1,500℃がより好ましい。1,100℃未満では得られた膨張材の膨張性能が充分でなく、1,600℃を超えると無水石膏が分解する場合がある。
Here, examples of the CaO raw material include limestone and slaked lime, examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash, and examples of the Fe 2 O 3 raw material include copper calami, iron powder, and commercially available products. Examples of the SiO 2 raw material include commercially available silicon dioxide and silica stone, and examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum.
Of course, various impurities can be present in these raw materials. Specific examples thereof include Na 2 O, K 2 O, MgO, TiO 2 , and P 2 O 5, and are not particularly problematic as long as the object of the present invention is not substantially inhibited.
The heat treatment temperature for producing the clinker used for the expansion material of the present invention is preferably 1,100 to 1,600 ° C, more preferably 1,200 to 1,500 ° C. When the temperature is lower than 1,100 ° C, the expansion performance of the obtained expansion material is not sufficient, and when it exceeds 1,600 ° C, anhydrous gypsum may decompose.

本発明の膨張材は、アウインと無水石膏、又は、遊離石灰と、アウイン、カルシウムシリケート、若しくはカルシウムアルミノフェライトの水硬性化合物と、無水石膏とを含有するものが好ましい。
本発明では、カルシウムフェライトも水硬性化合物として使用可能である。
The expansion material of the present invention preferably contains Auin and anhydrous gypsum, or free lime, a hydraulic compound of Auin, calcium silicate, or calcium aluminoferrite, and anhydrous gypsum.
In the present invention, calcium ferrite can also be used as the hydraulic compound.

ここでアウインとは、一般的に、3CaO・3Al2O3・CaSO4で表されるものである。
また、カルシウムシリケート(以下、C3Sという)とは、CaO−SiO2系を総称するものであり特に限定されるものではないが、一般的に、2CaO・SiO2や3CaO・SiO2がよく知られている。通常は、3CaO・SiO2として存在していると考えられる。
さらに、カルシウムアルミノフェライト(以下、C4AFという)とは、CaO−Al2O3−Fe2O3系を総称するものであり特に限定されるものではないが、一般的に、4CaO・Al2O3・Fe2O3や6CaO・Al2O3・2Fe2O3などの化合物がよく知られている。通常は、4CaO・Al2O3・Fe2O3として存在していると考えられる。
そして、カルシウムフェライト(以下、C2Fという)とは、CaO−Fe2O3系を総称するものであり特に限定されるものではないが、2CaO・Fe2O3などの化合物がよく知られている。
本発明では、水硬性化合物として、アウイン、C3S、C4AF、及びC2Fの一種又は又は二種以上を使用することが可能である。
Here, the Auin is generally represented by 3CaO.3Al 2 O 3 .CaSO 4 .
Calcium silicate (hereinafter referred to as C 3 S) is a general term for CaO—SiO 2 system and is not particularly limited, but generally 2CaO · SiO 2 and 3CaO · SiO 2 are often used. Are known. Usually, it is considered to exist as 3CaO · SiO 2 .
Further, calcium aluminoferrite (hereinafter referred to as C 4 AF) is a generic term for the CaO—Al 2 O 3 —Fe 2 O 3 system and is not particularly limited, but generally 4CaO · Al compounds such as 2 O 3 · Fe 2 O 3 and 6CaO · Al 2 O 3 · 2Fe 2 O 3 are well known. Normally, it is considered to be present as 4CaO · Al 2 O 3 · Fe 2 O 3.
Calcium ferrite (hereinafter referred to as C 2 F) is a general term for CaO-Fe 2 O 3 system and is not particularly limited, but compounds such as 2CaO · Fe 2 O 3 are well known. ing.
In the present invention, one or more of Auin, C 3 S, C 4 AF, and C 2 F can be used as the hydraulic compound.

本発明で使用する無水石膏は特に限定されるものではなく、I型、II型、又はIII型のいずれの形態のものも使用可能である。   The anhydrous gypsum used in the present invention is not particularly limited, and any form of type I, type II, or type III can be used.

本発明では、膨張材100部中の、アウイン、無水石膏、遊離石灰、カルシウムシリケート、カルシウムアルミノフェライト、及びカルシウムフェライトの含有量は、用途によって異なるため特に限定されるものではないが、アウインは5〜50部が好ましく、10〜30部がより好ましい。また、カルシウムシリケート、カルシウムアルミノフェライト、又はカルシウムフェライトは5〜20部が好ましく、10〜15部がより好ましい。この範囲より少ない場合には貯蔵安定性が悪くなる場合があり、この範囲より多いと膨張量が不足する場合がある。
また、遊離石灰の含有量は、膨張材100部中、0〜70部が好ましく、30〜50部がより好ましい。70部を超えるとコンクリートの流動性が低下する場合がある。
さらに、無水石膏の含有量は、膨張材100部中、10〜50部が好ましく、20〜40部がより好ましい。この範囲外では優れた膨張性能が得られない場合がある。
In the present invention, the content of Auin, anhydrous gypsum, free lime, calcium silicate, calcium aluminoferrite, and calcium ferrite in 100 parts of the expansion material is not particularly limited because it varies depending on the application. -50 parts are preferred, and 10-30 parts are more preferred. The calcium silicate, calcium aluminoferrite, or calcium ferrite is preferably 5 to 20 parts, and more preferably 10 to 15 parts. When the amount is less than this range, the storage stability may be deteriorated. When the amount is more than this range, the expansion amount may be insufficient.
Moreover, 0-70 parts are preferable in 100 parts of expansion | swelling materials, and, as for content of free lime, 30-50 parts is more preferable. If it exceeds 70 parts, the fluidity of the concrete may decrease.
Furthermore, the content of anhydrous gypsum is preferably 10 to 50 parts, more preferably 20 to 40 parts, in 100 parts of the expansion material. Outside this range, an excellent expansion performance may not be obtained.

本発明の膨張材に所定量の鉱物が含有量されているかどうかは、次に示すX線回折リートベルト法などよって定量可能である。
例えば、粉砕した膨張材に、酸化アルミニウムや酸化マグネシウムなどの内部標準物質を所定量添加し、めのう乳鉢で充分混合したのち、粉末X線回折測定を実施する。測定結果を定量ソフトで解析する。定量ソフトには、Sietronics社の「SIROQUANT」を用いた。
Whether or not the expansion material of the present invention contains a predetermined amount of mineral can be quantified by the following X-ray diffraction Rietveld method or the like.
For example, a predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to the pulverized expansion material, and after sufficient mixing in an agate mortar, powder X-ray diffraction measurement is performed. Analyze the measurement results with quantitative software. Sietronics “SIROQUANT” was used as the quantitative software.

本発明の膨張材の配合量は目的によって異なるため特に限定されるものではないが、通常、セメントと膨張材の合計100部中、2〜10部が好ましく、5〜7部がより好ましい。膨張材の配合量が多すぎると膨張量が大きすぎて強度低下を引き起こす場合があり、逆に、少なすぎると所定のひび割れ抑制効果が得られない場合がある。   The blending amount of the expanding material of the present invention is not particularly limited because it varies depending on the purpose, but usually 2 to 10 parts are preferable and 5 to 7 parts are more preferable in a total of 100 parts of cement and the expanding material. If the amount of the expansion material is too large, the expansion amount may be too large and the strength may be reduced. Conversely, if the amount is too small, the predetermined crack suppression effect may not be obtained.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等各種ポルトランドセメント、これらポルトランドセメントに、高炉水砕スラグ、高炉徐冷スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末等を混合したフィラーセメント、並びに、エコセメントなどが挙げられ、これらのうちの一種又は二種以上が使用可能である。   As the cement used in the present invention, various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, mixed with blast furnace granulated slag, blast furnace slow-cooled slag, fly ash, or silica are mixed with these Portland cements. Various mixed cements, filler cements mixed with limestone powder, and eco-cement can be used, and one or more of these can be used.

本発明では、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、粉末ポリマ−、凝結調整剤、デキストリンなどの糖類、セメント急硬材、ベントナイトやゼオライトなどの粘土鉱物、及びハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance AE water reducing agent, a fluidizing agent, an antifoaming agent, a thickening agent, a rust preventive agent, a defrosting agent, a shrinkage reducing agent, a polymer emulsion, and a powder One or more of polymers, setting modifiers, sugars such as dextrin, cement hardeners, clay minerals such as bentonite and zeolite, and anion exchangers such as hydrotalcite, etc. It is possible to use in the range which does not inhibit substantially.

本発明の膨張材をコンクリートと配合する際の混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサなどが挙げられる。   Any existing apparatus can be used as a mixing apparatus for blending the expandable material of the present invention with concrete. Examples thereof include a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer.

本発明のコンクリートの養生方法は特に限定されるものではなく、屋外養生、水中養生、気中乾燥養生、蒸気養生、及びオートクレーブ養生などを採用することが可能である。   The concrete curing method of the present invention is not particularly limited, and outdoor curing, underwater curing, air drying curing, steam curing, autoclave curing, and the like can be employed.

以下、実施例、比較例をあげてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

実験例1
CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料を所定量配合して、混合粉砕した後、電気炉を用いて、1,350℃で3時間熱処理し、遊離石灰50部、アウイン10部、C3S5部、C4AF5部、及び無水石膏30部のクリンカ−を合成し、表1に示す粒度構成に粉砕し、膨張材を調製した。
各材料の単位量を、水170kg/m3、セメント298kg/m3、膨張材20kg/m3、細骨材807kg/m3、及び粗骨材997kg/m3とし、水結合材比53.5%、細骨材率45%、及び空気量4.5%とし、減水剤をセメントと膨張材の合計100部に対して0.4部配合したものをコンクリート試料とし、練り上がったコンクリートを5mm篩いでスクリーニングして得られたものをモルタル試料とした。
長さ変化率、凝集度、ポップアウトの有無、及びひび割れ抑制効果を評価した。結果を表1に併記する。
Experimental example 1
After mixing a predetermined amount of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material, mixing and pulverizing, heat treatment is performed at 1,350 ° C for 3 hours using an electric furnace, and free A clinker of 50 parts of lime, 10 parts of Auin, 5 parts of C 3 S, 5 parts of C 4 AF and 30 parts of anhydrous gypsum was synthesized and pulverized to the particle size constitution shown in Table 1 to prepare an expansion material.
The unit quantity of each material, water 170 kg / m 3, cement 298 kg / m 3, the expansion member 20 kg / m 3, fine aggregates 807kg / m 3, and a coarse aggregate 997kg / m 3, water binder ratio 53.5% The concrete sample is a fine aggregate ratio of 45% and an air volume of 4.5%, and a mixture of 0.4 parts water-reducing agent for 100 parts of cement and expansive material. What was obtained was used as a mortar sample.
The length change rate, the degree of aggregation, the presence or absence of pop-out, and the crack suppression effect were evaluated. The results are also shown in Table 1.

<使用材料>
CaO原料 :試薬1級炭酸カルシウム
Al2O3原料 :試薬1級酸化アルミニウム
Fe2O3原料 :試薬1級酸化第二鉄
SiO2原料 :試薬1級二酸化ケイ素
CaSO4原料 :試薬1級二水石膏
セメント :普通ポルトランドセメント、電気化学工業社製
細骨材 :姫川水系産川砂、比重2.62
粗骨材 :姫川水系産川砂利、比重2.65
減水剤 :市販ポリカルボン酸塩系高性能AE減水剤
水 :水道水
<Materials used>
CaO raw material: Reagent primary calcium carbonate
Al 2 O 3 raw material: Reagent primary aluminum oxide
Fe 2 O 3 raw material: Reagent primary ferric oxide
SiO 2 raw material: Reagent grade 1 silicon dioxide
CaSO 4 raw material: Reagent grade 1 dihydrate gypsum cement: Ordinary Portland cement, fine aggregate made by Denki Kagaku Kogyo Co., Ltd .: Himekawa water system river sand, specific gravity 2.62
Coarse aggregate: Himekawa water system river gravel, specific gravity 2.65
Water reducing agent: Commercially available polycarboxylate-based high-performance AE water reducing agent water: Tap water

<測定方法>
長さ変化率:モルタル試料を用い、JIS A 6202に準じて材齢3日と7日の長さ変化率を測定
凝集度 :ホソカワミクロン社製パウダテスタ商品名「TYPE PT-E」を用い、下から44μm、74μm、及び149μmの各篩目を持つ標準篩いを重ね、振動台にセットし、試料2gを入れ、振幅が1mmとなるよう振動を与えた。振動を与える時間T(秒)は、動的見かけ比重Wとの次の関係式から求めた。
T=20+(1.6−W)/0.016 W=(P−A)×(C/100)+A
ここで、Pは固め見かけ比重、Aはゆるみ見かけ比重、Cは圧縮度(%)である。
固め見かけ比重Pは、試料100ccを所定の容器に入れ、180回のタッピングを行った状態の試料の単位容積質量であり、ゆるみ見かけ比重Aは、試料を自由落下させて容器に詰めたときの単位容積質量であり、圧縮度Cは、固め見かけ比重とゆるみ見かけ比重とから、C(%)=100×(P−A)/Pの式で求めた。
所定の振動を与え、各篩いに残った粉体質量を測定し、下記の式から凝集度を求めた。
凝集度=(下段44μmの篩いに残った粉体質量/2g)×(1/5)×100+(中段74μmの篩いに残った粉体質量/2g)×(3/5)×100+(上段149μmの篩いに残った粉体質量/2g)×100
ポップアウトの有無:モルタル試料を幅20cm、長さ20cm、高さ4cmの型枠に詰め、表面観察より、ポップアウトの有無を確認した。
ひび割れ抑制効果:コンクリート試料をJIS A 6202 B法の型枠に詰め、所定養生終了後、拘束端板を除去し、JIS A 1106の曲げ試験を実施した。ひび割れ抑制効果は、膨張材無混和のコンクリートの曲げ強度に対する比で表記した。
<Measurement method>
Length change rate: Using a mortar sample, measure the length change rate of 3 days and 7 days of age according to JIS A 6202. Cohesion: From the bottom using the powder tester brand name “TYPE PT-E” manufactured by Hosokawa Micron Standard sieves having respective sieves of 44 μm, 74 μm, and 149 μm were stacked, set on a vibration table, 2 g of a sample was put, and vibration was applied so that the amplitude was 1 mm. The vibration application time T (seconds) was obtained from the following relational expression with the dynamic apparent specific gravity W.
T = 20 + (1.6-W) /0.016 W = (PA) × (C / 100) + A
Here, P is the solid apparent specific gravity, A is the loose apparent specific gravity, and C is the degree of compression (%).
The solid apparent specific gravity P is a unit volume mass of a sample in a state where 100 cc of a sample is put in a predetermined container and tapped 180 times, and the loose apparent specific gravity A is a value obtained when the sample is freely dropped and packed in the container. It is a unit volume mass, and the degree of compressibility C was determined by the formula C (%) = 100 × (PA) / P from the solid apparent specific gravity and the loose apparent specific gravity.
Predetermined vibration was given, the mass of the powder remaining on each sieve was measured, and the degree of aggregation was determined from the following formula.
Aggregation degree = (Mass of powder remaining on sieve of 44 μm in lower stage) × (1/5) × 100 + (Mass of powder remaining on sieve of 74 μm of middle stage / 2 g) × (3/5) × 100 + (Upper stage of 149 μm Of powder remaining on the sieve (2g) × 100
Presence / absence of pop-out: Mortar samples were packed in a 20 cm wide, 20 cm long and 4 cm high formwork, and the presence or absence of pop-out was confirmed by surface observation.
Crack suppression effect: Concrete samples were packed in a JIS A 6202 B method mold, and after the end of prescribed curing, the restrained end plate was removed and a JIS A 1106 bending test was performed. The effect of suppressing cracking is expressed as a ratio to the bending strength of the concrete not containing the expansion material.

Figure 0005052778
Figure 0005052778







実験例2
CaO原料、Al2O3原料、及びCaSO4原料を所定量配合して、遊離石灰30部、アウイン30部、及び無水石膏40部を含有するクリンカ−を合成し、表2に示す粒度構成に粉砕し、膨張材を調製した。
各材料の単位量を、水170kg/m3、セメント288kg/m3、膨張材30kg/m3、細骨材807kg/m3、及び粗骨材997kg/m3とし、練り上がり直後のスランプが15cm±1cmの流動性を示すように減水剤添加率を調整したこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
A predetermined amount of CaO raw material, Al 2 O 3 raw material, and CaSO 4 raw material is blended to synthesize a clinker containing 30 parts of free lime, 30 parts of auin, and 40 parts of anhydrous gypsum, and has a particle size configuration shown in Table 2. The expanded material was pulverized.
The unit quantity of each material, water 170 kg / m 3, cement 288 kg / m 3, expansive 30kg / m 3, the fine aggregate 807kg / m 3, and coarse aggregate 997kg / m 3, the slump immediately after the rising kneading The experiment was conducted in the same manner as in Experimental Example 1 except that the water reducing agent addition rate was adjusted so as to show fluidity of 15 cm ± 1 cm. The results are also shown in Table 2.

Figure 0005052778
Figure 0005052778







実験例3 Experimental example 3

CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料を所定量配合して、表3に示すクリンカーを合成し、粉砕し、5μm未満2%、5μm以上20μm未満47%、20μm以上90μm未満38%、90μm以上150μm未満11%、及び150μm以上2%の粒度構成の膨張材を調製したこと以外は実験例2と同様に行った。結果を表3に併記する。 A predetermined amount of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material are blended, and the clinker shown in Table 3 is synthesized, pulverized, less than 5 μm, 2%, 5 μm to 20 μm Less than 47%, 20 μm or more and less than 90 μm, 38%, 90 μm or more and less than 150 μm, 11%, and 150 μm or more and 2% of the expansion material were prepared in the same manner as in Experimental Example 2. The results are also shown in Table 3.

Figure 0005052778
Figure 0005052778

実験例4
CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料を所定量配合して、遊離石灰50部、アウイン10部、C3S5部、C4AF5部、及び無水石膏30部を含有するクリンカ−を合成し、表4に示す粒度構成に粉砕して膨張材を調製し、表4に示す凝集度となるよう配合したこと以外は実験例2と同様に行った。結果を表4に併記する。
Experimental Example 4
A predetermined amount of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material is blended, and 50 parts of free lime, 10 parts of Auin, 5 parts of C 3 S, 5 parts of C 4 AF, and A clinker containing 30 parts of anhydrous gypsum was synthesized, pulverized to the particle size composition shown in Table 4 to prepare an expansion material, and the same procedure as in Experimental Example 2 was carried out except that the agglomeration degree shown in Table 4 was blended. It was. The results are also shown in Table 4.

Figure 0005052778
Figure 0005052778

実験例5
CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料を所定量配合して、遊離石灰50部、アウイン10部、C3S5部、C4AF5部、及び無水石膏30部を含有するクリンカ−を合成し、5μm未満0%、5μm以上20μm未満19%、20μm以上90μm未満81%、90μm以上150μm未満0%、及び150μm以上0%の粒度構成の膨張材を調製した。
調製した膨張材を、セメントと膨張材の合計100部中、表5に示す量配合したこと以外は実験例1と同様に行った。結果を表5に併記する。
なお、長さ変化率は、コンクリート試料を用いて、JIS A 6202 B法に準じて測定した。
市販の膨張材を使用して同様に実験を行った。結果を表5に併記する。
Experimental Example 5
A predetermined amount of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material is blended, and 50 parts of free lime, 10 parts of Auin, 5 parts of C 3 S, 5 parts of C 4 AF, and A clinker containing 30 parts of anhydrous gypsum was synthesized and expanded with a particle size composition of less than 5 μm 0%, 5 μm or more but less than 20 μm 19%, 20 μm or more but less than 90 μm 81%, 90 μm or more but less than 150 μm 0%, and 150 μm or more less than 0%. Was prepared.
The same procedure was performed as in Experimental Example 1 except that the prepared expansion material was blended in an amount shown in Table 5 in 100 parts of cement and expansion material. The results are also shown in Table 5.
In addition, the length change rate was measured according to JIS A 6202 B method using a concrete sample.
A similar experiment was performed using a commercially available expansion material. The results are also shown in Table 5.

<使用材料>
膨張材A :エトリンガイト系膨張材、市販品
膨張材B :石灰−エトリンガイト複合系膨張材、市販品
<Materials used>
Expansion material A: Ettlingite expansion material, commercial product expansion material B: Lime-etringite composite expansion material, commercial product

Figure 0005052778
Figure 0005052778







本発明の膨張材を用いることによって、減水剤の添加量を抑えることができ、またコンクリート表面が剥離するポップアウト現象が生じにくくコンクリート表面の仕上がりが良好で、さらに従来の膨張材よりも少ない添加量で同等以上の膨張性を付与することが可能であることが分かる。またひび割れ抑制効果も高くコンクリートを使用する土木・建築分野で利用できる。   By using the expansion material of the present invention, the amount of water reducing agent added can be suppressed, the pop-out phenomenon that the concrete surface peels off hardly occurs, the finish of the concrete surface is good, and the addition is less than that of the conventional expansion material It can be seen that it is possible to impart an expansiveness equal to or greater than the amount. In addition, it is highly effective in suppressing cracks and can be used in the civil engineering and construction fields that use concrete.

Claims (16)

5μm未満の粒子含有率が5%以下及び150μm以上の粒子を含有してなり、かつ、150μm以上の粒子含有率が3%以下である膨張材。 An expanded material having a particle content of less than 5 μm and containing particles of 5% or less and 150 μm or more, and a particle content of 150 μm or more of 3% or less. 90μm以上の粒子含有率が3%以下である請求項に記載の膨張材。 The expansion material according to claim 1 , wherein the content of particles of 90 µm or more is 3% or less. 20μm未満の粒子含有率が20%以下である請求項1〜請求項の膨張材。 The expansion material according to claim 1 or 2 , wherein the content of particles less than 20 µm is 20% or less. 5μm以上、90μm未満の粒子含有率が92%以上である請求項1〜請求項の膨張材。 The inflatable material according to claims 1 to 3 , wherein a particle content of 5 µm or more and less than 90 µm is 92% or more. 20μm以上、90μm未満の粒子含有率が77%以上である請求項1〜請求項のうちのいずれか1項に記載の膨張材。 The expandable material according to any one of claims 1 to 4 , wherein a content of particles of 20 µm or more and less than 90 µm is 77% or more. 下記方法により測定した凝集度が20%未満である請求項1〜請求項のうちのいずれか1項に記載の膨張材。
(1)下から、44μm、74μm、及び149μmの各篩目を持つ篩いを重ね、振動台にセットし、試料2gを入れ、振幅が1mmとなるよう振動を与える。
(2)振動を与える時間T(秒)は、動的見かけ比重Wとの関係式 T=20+(1.6−W)/0.016から求める。
ただし、W=(P−A)×(C/100)+A から求める。
ここで、Pは固め見かけ比重、Aはゆるみ見かけ比重、Cは圧縮度(%)である。
固め見かけ比重Pは、試料100ccを所定の容器に入れ、180回のタッピングを行った状態の試料の単位容積質量であり、ゆるみ見かけ比重Aは、試料を自由落下させて容器に詰めたときの単位容積質量であり、圧縮度Cは、固め見かけ比重とゆるみ見かけ比重とから、C(%)=100×(P−A)/Pの式で求める。
(3)上記の操作終了後、各篩いに残った粉体質量を測定し、凝集度(%)を次のように計算する。
凝集度(%)=(44μmの篩に残った粉体質量/2g)×(1/5)×100+(74μmの篩に残った粉体質量/2g)×(3/5)×100+(149μmの篩に残った粉体質量/2g)×100
The expansion material according to any one of claims 1 to 5 , wherein the degree of aggregation measured by the following method is less than 20%.
(1) From below, sieves having respective sieves of 44 μm, 74 μm, and 149 μm are stacked, set on a vibration table, sample 2 g is put, and vibration is applied so that the amplitude is 1 mm.
(2) The vibration application time T (seconds) is obtained from the relational expression T = 20 + (1.6−W) /0.016 with the dynamic apparent specific gravity W.
However, W = (P−A) × (C / 100) + A.
Here, P is the solid apparent specific gravity, A is the loose apparent specific gravity, and C is the degree of compression (%).
The solid apparent specific gravity P is a unit volume mass of a sample in a state where 100 cc of a sample is put in a predetermined container and tapped 180 times, and the loose apparent specific gravity A is a value obtained when the sample is freely dropped and packed in the container. It is a unit volume mass, and the degree of compression C is obtained from the solid apparent specific gravity and the loose apparent specific gravity by the formula C (%) = 100 × (PA) / P.
(3) After the above operation is completed, the mass of the powder remaining on each sieve is measured, and the degree of aggregation (%) is calculated as follows.
Aggregation degree (%) = (Mass of powder remaining on 44 μm sieve / 2 g) × (1/5) × 100 + (Mass of powder remaining on 74 μm sieve / 2 g) × (3/5) × 100 + (149 μm Mass of powder remaining on the sieve of No./2g)×100
膨張材が、アウインと無水石膏とを主成分とする請求項1〜請求項のうちのいずれか1項に記載の膨張材。 The inflatable material according to any one of claims 1 to 6 , wherein the inflatable material is mainly composed of Auin and anhydrous gypsum. 膨張材が、遊離石灰と無水石膏とを主成分とする請求項1〜請求項のうちのいずれか1項に記載の膨張材。 The inflatable material according to any one of claims 1 to 6 , wherein the inflatable material is mainly composed of free lime and anhydrous gypsum. 膨張材が、遊離石灰、アウイン、及び無水石膏を主成分とする請求項1〜請求項のうちのいずれか1項に記載の膨張材。 The inflatable material according to any one of claims 1 to 6 , wherein the inflatable material is mainly composed of free lime, auin, and anhydrous gypsum. 膨張材が、遊離石灰、カルシウムシリケート、及び無水石膏を主成分とする請求項1〜請求項のうちのいずれか1項に記載の膨張材。 The inflatable material according to any one of claims 1 to 6 , wherein the inflatable material is mainly composed of free lime, calcium silicate, and anhydrous gypsum. 膨張材が、遊離石灰、カルシウムアルミノフェライト、及び無水石膏を主成分とする請求項1〜請求項のうちのいずれか1項に記載の膨張材。 The inflatable material according to any one of claims 1 to 6 , wherein the inflatable material comprises free lime, calcium aluminoferrite, and anhydrous gypsum as main components. 遊離石灰含有量が、10〜70%である請求項8〜請求項11のうちのいずれか1項に記載の膨張材。 The expansion material according to any one of claims 8 to 11 , wherein the free lime content is 10 to 70%. 膨張材が、CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料からなる群のうちの1種又は2種以上を配合し、1,100〜1,600℃で熱処理温度して製造してなる請求項1〜請求項12のうちのいずれか1項に記載の膨張材。 The expansion material contains one or more members selected from the group consisting of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material, and heat treatment temperature at 1,100-1600 ° C The expansion material according to any one of claims 1 to 12 , wherein the expansion material is manufactured as described above. セメントと、請求項1〜請求項13のうちのいずれか1項に記載の膨張材を含有してなるセメント組成物。 A cement composition comprising cement and the expansion material according to any one of claims 1 to 13 . 請求項14に記載のセメント組成物を用いてなるセメントコンクリート。 Cement concrete using the cement composition according to claim 14 . ポリカルボン酸塩系高性能AE減水剤を含有してなる請求項15に記載のセメントコンクリート。 The cement concrete according to claim 15 , comprising a polycarboxylate-based high-performance AE water reducing agent.
JP2005325585A 2005-11-10 2005-11-10 Expandable material, cement composition, and cement concrete using the same Active JP5052778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325585A JP5052778B2 (en) 2005-11-10 2005-11-10 Expandable material, cement composition, and cement concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325585A JP5052778B2 (en) 2005-11-10 2005-11-10 Expandable material, cement composition, and cement concrete using the same

Publications (2)

Publication Number Publication Date
JP2007131484A JP2007131484A (en) 2007-05-31
JP5052778B2 true JP5052778B2 (en) 2012-10-17

Family

ID=38153448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325585A Active JP5052778B2 (en) 2005-11-10 2005-11-10 Expandable material, cement composition, and cement concrete using the same

Country Status (1)

Country Link
JP (1) JP5052778B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113610B2 (en) * 2008-04-25 2013-01-09 電気化学工業株式会社 Cement admixture and cement composition for mass concrete
JP5909178B2 (en) * 2010-03-19 2016-04-26 デンカ株式会社 Injection material for repairing cracks in concrete, method for manufacturing the same, and injection method using the same
JP5785429B2 (en) * 2011-04-25 2015-09-30 電気化学工業株式会社 Cement admixture and cement composition
JP6133596B2 (en) * 2012-12-28 2017-05-24 太平洋マテリアル株式会社 Expanded material and expanded concrete
JP6420142B2 (en) * 2014-12-26 2018-11-07 太平洋マテリアル株式会社 Expandable admixture
JP6826456B2 (en) * 2017-02-16 2021-02-03 太平洋マテリアル株式会社 Expansion material for inseparable concrete in water, inseparable concrete composition in water and its cured product
KR101913694B1 (en) * 2017-08-16 2018-11-01 (주)베스트로드 A rapid-hardening binder containing low-heat cement and copper slag powder, and polymer modified concrete composition
JP7181779B2 (en) * 2018-12-10 2022-12-01 太平洋マテリアル株式会社 Cement admixture and concrete using it
JP7337674B2 (en) * 2019-12-03 2023-09-04 デンカ株式会社 Method for manufacturing cement material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135748A (en) * 1981-02-12 1982-08-21 Chichibu Cement Kk Manufacture of cement expanding material
JP3549707B2 (en) * 1997-06-16 2004-08-04 電気化学工業株式会社 Cement admixture, cement composition, and chemical prestressed concrete using the same
JP2001122649A (en) * 1999-10-22 2001-05-08 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP4462466B2 (en) * 2000-05-17 2010-05-12 電気化学工業株式会社 Non-shrink mortar composition and fast-curing non-shrink mortar composition
JP4338884B2 (en) * 2000-08-22 2009-10-07 電気化学工業株式会社 Cement admixture and cement composition
JP4567211B2 (en) * 2001-01-29 2010-10-20 電気化学工業株式会社 Expandable material and cement composition
JP2004210551A (en) * 2002-12-26 2004-07-29 Taiheiyo Material Kk Expansive clinker mineral and expansive composition containing the same
JP2005162564A (en) * 2003-12-05 2005-06-23 Taiheiyo Material Kk Expansion material for mortar concrete and concrete using it
JP5010119B2 (en) * 2005-08-10 2012-08-29 株式会社デイ・シイ Cement product expandable admixture and cement composition

Also Published As

Publication number Publication date
JP2007131484A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP5052778B2 (en) Expandable material, cement composition, and cement concrete using the same
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP3894780B2 (en) Cement grout composition
JP5923104B2 (en) Early mold release material and method for producing concrete product
JP2007269608A (en) Polymer cement grouting material composition and grouting material
EP3875444B1 (en) Cement admixture, expansion material, and cement composition
JP2007197286A (en) Grout composition, mortar or concrete using same and grouting material
JP4679534B2 (en) Expandable material, cement composition, and cement concrete using the same
JP6234739B2 (en) Method for producing hardened cement and hardened cement
JP6568291B1 (en) Cement admixture, expansion material, and cement composition
JP2007269609A (en) Polymer cement grouting material composition and grouting material
JP4809278B2 (en) Intumescent material, cement composition, and hardened cement body using the same
JP2001163651A (en) Grouting cement admixture and cement composition
JP2002037651A (en) Admixture and cement composition for heavy weight grout mortar and heavy weight grout mortar
JP2004210557A (en) Grout composition
JP6641057B1 (en) Cement admixture, expander, and cement composition
JP4567211B2 (en) Expandable material and cement composition
KR102255380B1 (en) Cement composition and method for preparing cement composition
JP4606632B2 (en) Cement admixture and cement composition
JP7083637B2 (en) Concrete and its manufacturing method
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
JP4606631B2 (en) Cement admixture and cement composition
JP4459380B2 (en) Cement admixture and cement composition
JP4173780B2 (en) Hydraulic cement composition
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R151 Written notification of patent or utility model registration

Ref document number: 5052778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250