JP5050260B2 - Frequency difference measuring device - Google Patents

Frequency difference measuring device Download PDF

Info

Publication number
JP5050260B2
JP5050260B2 JP2006014534A JP2006014534A JP5050260B2 JP 5050260 B2 JP5050260 B2 JP 5050260B2 JP 2006014534 A JP2006014534 A JP 2006014534A JP 2006014534 A JP2006014534 A JP 2006014534A JP 5050260 B2 JP5050260 B2 JP 5050260B2
Authority
JP
Japan
Prior art keywords
signal
frequency difference
phase
input
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006014534A
Other languages
Japanese (ja)
Other versions
JP2007198764A (en
Inventor
真也 柳町
謙一 渡部
憲 萩本
健 池上
正樹 雨宮
理人 今江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006014534A priority Critical patent/JP5050260B2/en
Publication of JP2007198764A publication Critical patent/JP2007198764A/en
Application granted granted Critical
Publication of JP5050260B2 publication Critical patent/JP5050260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Description

本発明は、周波数差が0.1Hz以下の発振器間の周波数差を測定する周波数差測定装置に関する。   The present invention relates to a frequency difference measuring apparatus that measures a frequency difference between oscillators having a frequency difference of 0.1 Hz or less.

現在、国家的な時間・周波数標準は高い周波数安定度(例えば、1秒間で10-12から10-13、1日で10-15)を示す発振器を用いて実現されている。これを実現するために、例えば、1台の発振器に依存する代表時計方式が考えられる。しかし、この方式は発振器の性能の劣化や故障時の対応の難しさから採用されることは少ない。一般的には各国の標準研究所に高安定な発振器が複数台(通常は3台以上)管理され、常時、発振器間の位相差(時間変位差)の計測が行われ、その周波数差が監視されるという群管理方式がとられる。それにより時間・周波数標準の信頼性や安定性の向上が図られている。さらに、群管理方式で得られた時間変位差のデータは国際度量衡局(BIPM)に送られ、国際的な時系である国際原子時(TAI)の運用に貢献している。そのため、高い周波数安定度を示す発振器間の周波数差を高精度に算出することが非常に重要となっている。 Currently, national time and frequency standards are implemented using oscillators that exhibit high frequency stability (eg, 10 -12 to 10 -13 per second, 10 -15 per day). In order to realize this, for example, a representative clock system that depends on one oscillator can be considered. However, this method is rarely adopted due to the deterioration of the performance of the oscillator and the difficulty in dealing with the failure. Generally, multiple highly stable oscillators (usually 3 or more) are managed by standard laboratories in each country, and the phase difference (time displacement difference) between the oscillators is always measured and the frequency difference is monitored. A group management system is adopted. As a result, the reliability and stability of the time / frequency standard are improved. Furthermore, the data of the time displacement difference obtained by the group management method is sent to the International Bureau of Weights and Measures (BIPM), which contributes to the operation of the international atomic time (TAI). Therefore, it is very important to calculate the frequency difference between the oscillators exhibiting high frequency stability with high accuracy.

Figure 0005050260
る方法としてDual Mixer Time Difference (DMTD)法(非特許文献1)が広く普及している。このDMTD法は、時間・周波数標準によく利用される10MHz信号間の周波数差の測定に関しては最高精度を示し、その性能は1秒当たりで10-14秒台の分解能を有する。
Figure 0005050260
As a method for this, the Dual Mixer Time Difference (DMTD) method (Non-patent Document 1) is widely used. This DMTD method shows the highest accuracy for measuring the frequency difference between 10 MHz signals often used for time and frequency standards, and its performance has a resolution of 10-14 seconds per second.

図7は、DMTD法による周波数差測定装置の一例を示す図である。
同図に示すように、この周波数差測定装置は、まず入力部3に入力した正弦波信号6に位相同期している置換発振器、正弦波信号6と置換発振器から出力されている正弦波信号7の位相差信号(周波数差は1Hzから100Hzの間をとることが多い。)となる正弦波信号9を出力するダブルバランスミキサー3(以下、DBM3という)、入力部4に入力した正弦波信号8と置換発振器からの正弦波信号7の位相差信号となる正弦波信号10を出力するダブルバランスミキサー4(以下、DBM4という)、正弦波信号9を矩形波信号11に変換する正弦波−矩形波変換器1(以下、s-r変換器1という)、正弦波信号10を矩形波信号12に変換する正弦波−矩形波変換器2(以下、s-r変換器2という)、矩形波信号11をスタートトリガ、矩形波信号12をストップトリガとして時間間隔を測定するタイムインターバルカウンタ(以下、TICという)から構成される。
FIG. 7 is a diagram illustrating an example of a frequency difference measurement apparatus using the DMTD method.
As shown in the figure, this frequency difference measuring device is configured to first replace a sine wave signal 6 input to the input unit 3 with a sine wave signal 6 and a sine wave signal 7 output from the replacement oscillator. A double balance mixer 3 (hereinafter referred to as DBM3) that outputs a sine wave signal 9 that is a phase difference signal (frequency difference is often between 1 Hz and 100 Hz), and a sine wave signal 8 input to the input unit 4 And a double balance mixer 4 (hereinafter referred to as DBM4) that outputs a sine wave signal 10 that is a phase difference signal of the sine wave signal 7 from the replacement oscillator, and a sine wave-rectangular wave that converts the sine wave signal 9 into a rectangular wave signal 11 Converter 1 (hereinafter referred to as sr converter 1), sine wave to rectangular wave converter 2 (hereinafter referred to as sr converter 2) for converting sine wave signal 10 into rectangular wave signal 12, and rectangular wave signal 11 as a start trigger Time interval measurement using the square wave signal 12 as a stop trigger Bal counter (hereinafter, referred to as TIC) consists.

以下に、この周波数差測定装置において、入力部3、4から正弦波信号6、8が入力され、

Figure 0005050260
正弦波信号6、正弦波信号7、正弦波信号8の位相変化量はそれぞれ
Figure 0005050260
Figure 0005050260
Below, in this frequency difference measuring device, sine wave signals 6 and 8 are input from the input units 3 and 4,
Figure 0005050260
The amount of phase change of sine wave signal 6, sine wave signal 7, and sine wave signal 8 is respectively
Figure 0005050260
Figure 0005050260

Figure 0005050260
となる。
Figure 0005050260
It becomes.

次に上記(7)、(8)式で示される位相を持つ正弦波信号9,10がs-r変換器1,2で矩形波信号11、12に変換される。なお、正弦波信号を矩形波信号に変換するのは、TCIに入力する信号が0電圧レベルを横切る時のスリューレートを大きくしてトリガが正確にかかるようにし、時間差計測をより正確に行うためである(例えば、正弦波信号を矩形波信号に変換する理由はTIMING SOLUTIONS社製TSC5110A の取扱説明書Section Vのpage2-3に説明されている)。   Next, the sine wave signals 9 and 10 having the phases shown in the above equations (7) and (8) are converted into rectangular wave signals 11 and 12 by the sr converters 1 and 2. Note that the sine wave signal is converted to a rectangular wave signal by increasing the slew rate when the signal input to the TCI crosses the 0 voltage level so that the trigger is applied accurately, and the time difference measurement is performed more accurately. (For example, the reason for converting a sine wave signal to a rectangular wave signal is described in page 2-3 of the instruction manual Section V of TIMING SOLUTIONS TSC5110A).

図8はTICにおける周波数差測定を説明するための図である。
同図において、矩形波信号11をスタートトリガ、矩形波信号12をストップトリガとし

Figure 0005050260
Figure 0005050260
FIG. 8 is a diagram for explaining frequency difference measurement in TIC.
In the figure, rectangular wave signal 11 is a start trigger and rectangular wave signal 12 is a stop trigger.
Figure 0005050260
Figure 0005050260

Figure 0005050260
のように求めることができる。
Figure 0005050260
Can be obtained as follows.

D.W. Allan, Picosecond Timedifference Measurement System, Proc. 29th Annu. Symp. On Freq.Contrl., pp. 404-411, May 1975D.W.Allan, Picosecond Timedifference Measurement System, Proc.29th Annu.Symp.On Freq.Contrl., Pp. 404-411, May 1975 “周波数と時間−原子時計の基礎/原子時の仕組み−”,電気情報通信学会(平成元年10月1日初版発行:ISBN4-88552-085-1)、p14-15“Frequency and Time-Basics of Atomic Clocks / Mechanism of Atomic Times”, The Institute of Electrical, Information and Communication Engineers (October 1, 1989, first edition published: ISBN4-88552-085-1), p14-15

Figure 0005050260
Figure 0005050260
って、スリューレートが大きい矩形波信号11,12に変換する必要があった。さらに、それらの時間差を測定するために高価なTICを必要とする欠点があった。
Figure 0005050260
Figure 0005050260
Therefore, it was necessary to convert the signals into rectangular wave signals 11 and 12 having a large slew rate. Furthermore, there is a drawback that an expensive TIC is required to measure the time difference between them.

本発明の目的は、上記の問題点に鑑み、s-r変換器や高価なTICを用いることなく、規

Figure 0005050260
程度の精度で測定することのできる周波数差測定装置を提供することにある。 In view of the above problems, an object of the present invention is to provide a standard without using an sr converter or an expensive TIC.
Figure 0005050260
An object of the present invention is to provide a frequency difference measuring apparatus capable of measuring with a degree of accuracy.

本発明は、上記の課題を解決するために、下記の手段を採用した。
第1の手段は、第1の入力部に入力した第1の信号に位相同期している置換発振器と、
前記第1の信号と前記置換発振器から出力されている第2の信号との位相差信号となる第4の信号を出力する第1のダブルバランスミキサーと、第2の入力部に入力した第3の信号と前記置換発振器から出力されている第2の信号との位相差信号となる第5の信号を出力する第2のダブルバランスミキサーと、前記第4の信号をAD変換する第1のADコンバータと、前記第5の信号をAD変換する第2のADコンバータと、前記第1のコンバータと前記第2のコンバータでAD変換されたデータを解析し、離散的フーリエ変換を施して、第1の信号と第3の信号の周波数差を出力する演算部とからなることを特徴とする周波数差測定装置である。
第2の手段は、第1の入力部に入力した第1の信号に位相同期している置換発振器と、

Figure 0005050260
Figure 0005050260
Figure 0005050260
Figure 0005050260
置である。 The present invention employs the following means in order to solve the above problems.
The first means includes a replacement oscillator that is phase-synchronized with the first signal input to the first input unit;
A first double balance mixer that outputs a fourth signal that is a phase difference signal between the first signal and the second signal that is output from the replacement oscillator, and a third input that is input to a second input unit A second double-balance mixer that outputs a fifth signal that is a phase difference signal between the first signal and the second signal output from the replacement oscillator, and a first AD that performs AD conversion on the fourth signal A converter, a second AD converter for AD converting the fifth signal, and analyzing the AD converted data by the first converter and the second converter, performing a discrete Fourier transform, A frequency difference measuring apparatus comprising: an arithmetic unit that outputs a frequency difference between the first signal and the third signal.
The second means includes a replacement oscillator that is phase-synchronized with the first signal input to the first input unit;
Figure 0005050260
Figure 0005050260
Figure 0005050260
Figure 0005050260
It is a position.

Figure 0005050260
いるので、離散的フーリエ変換の打切り誤差が無視できるようになり、従来のDMTD法においで必要であったs-r変換器やTICが必要でなくなり、簡便な方法でDMTD法と同程度の測定分解能を有する周波数差測定装置を得ることができる。
Figure 0005050260
Therefore, the truncation error of the discrete Fourier transform can be ignored, and the sr converter and TIC, which were necessary in the conventional DMTD method, are no longer necessary. The frequency difference measuring apparatus which has can be obtained.

本発明の一実施形態を図1ないし図6を用いて説明する。
図1は、本実施形態の発明に係る周波数差測定装置の構成の概略を示す図である。
同図に示すように、この周波数差測定装置は、入力部1に入力した信号1に位相同期している置換発振器と、信号1と置換発振器から出力されている信号2の位相差信号となる信号4を出力するダブルバランスミキサー1(以下、DBM1という)と、入力部2に入力した信号3と置換発振器から出力されている信号2の位相差信号となる信号5を出力するダブルバランスミキサー2(以下、DBM2という)と、信号4をAD変換するADコンバータ1(以下、ADC1という)と、信号5をAD変換するADコンバータ2(以下、ADC2という)と、

Figure 0005050260
される。 An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing an outline of the configuration of a frequency difference measuring apparatus according to the invention of this embodiment.
As shown in the figure, this frequency difference measurement device is a phase difference signal between a substitution oscillator that is phase-synchronized with the signal 1 input to the input unit 1 and a signal 2 that is output from the signal 1 and the substitution oscillator. Double balance mixer 1 that outputs signal 4 (hereinafter referred to as DBM1), and double balance mixer 2 that outputs signal 5 that is a phase difference signal between signal 3 input to input unit 2 and signal 2 output from the replacement oscillator (Hereinafter referred to as DBM2), AD converter 1 (hereinafter referred to as ADC1) for AD conversion of signal 4, AD converter 2 (hereinafter referred to as ADC2) for AD conversion of signal 5;
Figure 0005050260
Is done.

以下に、この周波数差測定装置において、入力部1、2に入力される信号1、3の時間変位

Figure 0005050260
Below, in this frequency difference measuring device, the time displacement of the signals 1 and 3 input to the input units 1 and 2
Figure 0005050260

Figure 0005050260
となる。ここまではDMTD法の構成と同じである。
Figure 0005050260
It becomes. Up to this point, the configuration is the same as that of the DMTD method.

図2は、ADC1、2におけるAD変換と演算部における離散的フーリエ変換による周波数差測定を説明するための図である。
同図に示すように、(22)式で示される位相を持つ信号4と(23)式で示される信号5がサ

Figure 0005050260
Figure 0005050260
FIG. 2 is a diagram for explaining frequency difference measurement by AD conversion in ADCs 1 and 2 and discrete Fourier transform in the calculation unit.
As shown in the figure, signal 4 having the phase shown by equation (22) and signal 5 shown by equation (23) are supported.
Figure 0005050260
Figure 0005050260

Figure 0005050260
Figure 0005050260
として演算部で計算することにより得ることが出来る。
Figure 0005050260
Figure 0005050260
As follows.

図1に示した周波数差測定装置は最良の構成を示すものであるが、測定分解能が従来技術と同程度であるかを確かめるための実験装置を図3に示す。
同図において、2つの入力部1、2に同一の発振器から作り出される同一の信号1、3が入力される。それらの信号1、3が上記の周波数差測定装置において記述した同様の方法で低周波信号にビートダウンされ、2つの信号を同時にAD変換する2チャンネルADコンバー

Figure 0005050260
上記において、2つの入力部1、2に同一の信号を入力するのは、信号間の時間変位差が0の一定値にならなければいけないことを利用できるためである。実際には、ケーブル長の差や、信号を分割する装置の特性により、一定の時間変位差のオフセットが発生するが、その値がどの程度一定かで分解能が評価される。時間周波数分野ではこのような目的にお
Figure 0005050260
The frequency difference measuring apparatus shown in FIG. 1 shows the best configuration, but FIG. 3 shows an experimental apparatus for confirming whether the measurement resolution is comparable to that of the prior art.
In the figure, the same signals 1 and 3 generated from the same oscillator are input to two input sections 1 and 2. These signals 1 and 3 are beat-down to a low-frequency signal in the same way as described in the frequency difference measurement device above, and a 2-channel AD converter that AD converts two signals simultaneously
Figure 0005050260
In the above description, the same signal is input to the two input units 1 and 2 because it is possible to use that the time displacement difference between the signals must be a constant value of zero. Actually, an offset of a certain time displacement difference occurs depending on the difference in cable length and the characteristics of the device that divides the signal, but the resolution is evaluated according to how constant the value is. In the time frequency field,
Figure 0005050260

図4は上記の実験装置と従来技術の装置の実験結果を示す図である。同図において、横

Figure 0005050260
ており、実用的には問題ない。このような差は1つの信号を2つに分割する装置や、信号を送信するケーブルの特性の時間的な変動に起因するものと考えられる。よって、図4の結果から、本発明に係る実験装置と従来技術に係るDMTD法によるものと同程度の分解能で時間変位差を測定し、それに基づいて周波数値を算出することが可能であると結論付けることが出来る。 FIG. 4 is a diagram showing experimental results of the experimental apparatus and the conventional apparatus. In the figure, horizontal
Figure 0005050260
There is no problem in practical use. Such a difference is considered to be caused by a temporal variation in characteristics of a device that divides one signal into two and a cable that transmits the signal. Therefore, from the results of FIG. 4, it is possible to measure the time displacement difference with the same degree of resolution as the experimental device according to the present invention and the DMTD method according to the prior art, and to calculate the frequency value based on it. You can conclude.

実際に2つの入力部に周波数の異なる信号を入力して、時間変位差を測定して正しい周波数差が算出されるかどうかの実験を行った。図5はその実験装置を示す図であり、入力

Figure 0005050260
Figure 0005050260
An experiment was conducted to determine whether the correct frequency difference was calculated by actually measuring the time displacement difference by inputting signals with different frequencies to the two input sections. Fig. 5 is a diagram showing the experimental apparatus.
Figure 0005050260
Figure 0005050260

本発明の周波数差測定装置で提案した手法によるものと、DMTD法を用いたTSC5110Aによる結果を図6の表に示す。

Figure 0005050260
能な範囲まで、拡張することができる。 The result of TSC5110A using the method proposed by the frequency difference measuring apparatus of the present invention and the TSC5110A using the DMTD method are shown in the table of FIG.
Figure 0005050260
It can be extended to the extent possible.

本発明に係る周波数差測定装置の構成を示す図である。It is a figure which shows the structure of the frequency difference measuring apparatus which concerns on this invention. AD変換と離散的フーリエ変換による周波数差測定を説明するための図である。It is a figure for demonstrating the frequency difference measurement by AD conversion and discrete Fourier transform. 分解能を評価するための本発明に係る周波数差測定装置の実験装置の構成を示す図である。It is a figure which shows the structure of the experimental apparatus of the frequency difference measuring apparatus based on this invention for evaluating resolution | decomposability. 本発明に係る周波数差測定装置と従来技術に係るDMTD法による周波数差測定装置の分解能を評価したグラフを示す図である。It is a figure which shows the graph which evaluated the resolution of the frequency difference measuring apparatus which concerns on this invention, and the frequency difference measuring apparatus by DMTD method which concerns on a prior art. 時間変位差計測を用いた本発明に係る周波数差測定装置の実験装置の構成を示す図である。It is a figure which shows the structure of the experimental apparatus of the frequency difference measuring apparatus based on this invention using a time displacement difference measurement. 本発明に係る周波数差測定装置と従来技術に係る周波数差測定装置において異なる周波数を入力したときの実験結果を示す表である。It is a table | surface which shows the experimental result when a different frequency is input in the frequency difference measuring apparatus which concerns on this invention, and the frequency difference measuring apparatus which concerns on a prior art. 従来技術に係るDMTD法を用いた周波数差測定装置の構成を示す図である。It is a figure which shows the structure of the frequency difference measuring apparatus using DMTD method based on a prior art. 来技術に係るDMTD法を用いた周波数差測定装置のTICによる周波数測定を説明するための図である。It is a figure for demonstrating the frequency measurement by TIC of the frequency difference measuring apparatus using DMTD method which concerns on a prior art.

Claims (1)

第1の入力部に入力した第1の信号に位相同期している置換発信器と、
前記第1の信号の位相信号
Figure 0005050260
と前記置換発信器から出力されている第2の位相信号
Figure 0005050260
から位相差信号
Figure 0005050260
となる第4の信号を出力する第1のダブルバランスミキサーと、
第2の入力部に入力した第3の信号の位相信号
Figure 0005050260
と前記置換信号発信器から出力されている第2の信号の位相信号
Figure 0005050260
から位相差信号
Figure 0005050260
となる第5の信号を出力する第2のブルバランスミキサーと、
さらにx(t)=x(t)およびfbeat=f−fであることから、前記第1のダブルバランスミキサーから
Figure 0005050260
が出力され、前記第2のダブルバランスミキサーから
Figure 0005050260
が出力され、
ここで、周波数差fbeatとサンプリング長Tが
Figure 0005050260
の関係にあり、前記
Figure 0005050260

Figure 0005050260
をそれぞれサンプリング長T、サンプリング数n、m回目にAD変換されたデータを経過時間(j/n)×T(jはj=0,1,…n−1となる整数)で表し、データ列
Figure 0005050260
を出力する第1のADコンバータと、
データ列
Figure 0005050260
を出力する第2のADコンバータと、
前記データ列a(j,m)、a(j,m)に離散的フーリエ変換を施して、kはフーリエ変換で得られた複素振幅スペクトルの次数を示し
Figure 0005050260
なる複素振幅スペクトルP(m,k)、P(m,k)を得、さらに得られた2つの複素振幅スペクトルP(m,k)、P(m,k)から
Figure 0005050260
を得、これらからm回目に算出される前記第1の信号と前記第3の信号の時間変位差
Figure 0005050260
を得、さらにm+1回目に測定される時間変位差Δx(m+1)も同様に得て、前記第1の信号と前記第3の信号の周波数差
Figure 0005050260
を得る演算部と、
からなることを特徴とする周波数差測定装置。
A replacement transmitter that is phase-synchronized with the first signal input to the first input;
Phase signal of the first signal
Figure 0005050260
And the second phase signal output from the replacement transmitter
Figure 0005050260
From phase difference signal
Figure 0005050260
A first double balance mixer that outputs a fourth signal,
Phase signal of the third signal input to the second input unit
Figure 0005050260
And the phase signal of the second signal output from the replacement signal transmitter
Figure 0005050260
From phase difference signal
Figure 0005050260
A second double balanced mixer for outputting a fifth signal as a,
Since it is further x 2 (t) = x 1 (t) and f beat = f 0 -f c, from the first double balanced mixer
Figure 0005050260
Is output from the second double balance mixer
Figure 0005050260
Is output,
Here, the frequency difference f beat and the sampling length T are
Figure 0005050260
In relation to
Figure 0005050260
When
Figure 0005050260
Is represented by the elapsed time (j / n) × T (where j is an integer such that j = 0, 1,..., N−1), and is a data string.
Figure 0005050260
A first AD converter that outputs
Data column
Figure 0005050260
A second AD converter that outputs
The data string a 1 (j, m), a 2 (j, m) is subjected to discrete Fourier transform, and k represents the order of the complex amplitude spectrum obtained by the Fourier transform.
Figure 0005050260
The complex amplitude spectra P 1 (m, k) and P 2 (m, k) are obtained, and from the obtained two complex amplitude spectra P 1 (m, k) and P 2 (m, k)
Figure 0005050260
And the time displacement difference between the first signal and the third signal calculated from the mth time
Figure 0005050260
Further, a time displacement difference Δx (m + 1) measured at the (m + 1) th time is obtained in the same manner, and the frequency difference between the first signal and the third signal is obtained.
Figure 0005050260
An arithmetic unit for obtaining
A frequency difference measuring apparatus comprising:
JP2006014534A 2006-01-24 2006-01-24 Frequency difference measuring device Expired - Fee Related JP5050260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014534A JP5050260B2 (en) 2006-01-24 2006-01-24 Frequency difference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014534A JP5050260B2 (en) 2006-01-24 2006-01-24 Frequency difference measuring device

Publications (2)

Publication Number Publication Date
JP2007198764A JP2007198764A (en) 2007-08-09
JP5050260B2 true JP5050260B2 (en) 2012-10-17

Family

ID=38453521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014534A Expired - Fee Related JP5050260B2 (en) 2006-01-24 2006-01-24 Frequency difference measuring device

Country Status (1)

Country Link
JP (1) JP5050260B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572590B2 (en) * 2011-05-26 2014-08-13 アンリツ株式会社 PHASE CHARACTERISTIC ESTIMATION DEVICE, PHASE CORRECTION DEVICE, SIGNAL GENERATING DEVICE, AND PHASE CHARACTERISTIC ESTIMATION METHOD INCLUDING THE SAME
US9025714B2 (en) * 2013-04-30 2015-05-05 Raytheon Company Synchronous data system and method for providing phase-aligned output data
JP2016163194A (en) * 2015-03-02 2016-09-05 国立研究開発法人産業技術総合研究所 Time signal comparison system and time signal comparison device
CN111220846B (en) * 2020-03-10 2022-04-19 星汉时空科技(北京)有限公司 High-speed sampling full-digitalization frequency stability testing equipment and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172257A (en) * 1981-04-16 1982-10-23 Fujitsu Ltd High accuracy measuring method of integer multiple frequency of 1khz
JPS61116669A (en) * 1984-11-12 1986-06-04 Mitsubishi Electric Corp Derivation of frequency function value for power system
JP2598013B2 (en) * 1987-03-30 1997-04-09 株式会社東芝 Waveform processing method
JPS63317779A (en) * 1987-06-22 1988-12-26 Anritsu Corp Signal analyser
JP2645374B2 (en) * 1987-10-14 1997-08-25 東洋通信機株式会社 Phase difference or relative frequency deviation measuring device
JPH05249161A (en) * 1992-03-09 1993-09-28 Toshiba Corp Jitter measuring device
JP3218093B2 (en) * 1992-07-30 2001-10-15 アジレント・テクノロジーズ・インク Atomic clock and method for controlling microwave source of atomic clock
JP2692723B2 (en) * 1993-03-22 1997-12-17 郵政省通信総合研究所長 Carrier frequency difference measurement method
JP2505707B2 (en) * 1993-11-12 1996-06-12 株式会社近計システム Frequency measurement method by Fourier analysis
JPH11118838A (en) * 1997-10-16 1999-04-30 Japan Storage Battery Co Ltd Ac voltage measurement device
JP2002156396A (en) * 2000-11-17 2002-05-31 Advantest Corp Time-frequency measuring device

Also Published As

Publication number Publication date
JP2007198764A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US8441379B2 (en) Device and method for digitizing a signal
JPWO2010098460A1 (en) Phase measuring device and frequency measuring device
JP7435983B2 (en) Current sensor configuration and calibration
JP5050260B2 (en) Frequency difference measuring device
CN110007150B (en) Linear phase comparison method for direct digital phase processing
CN106124033B (en) Large-trigger-delay accumulated calibration method for laser vibration measurement calibration
WO2007068972B1 (en) Measuring electrical impedance at various frequencies
JP2008139100A (en) Position measuring system
KR101422211B1 (en) Signal generating appartus and signal generating method
US11290197B2 (en) Calibration device, conversion device, calibration method, and computer-readable medium having recorded thereon calibration program
JP4707161B2 (en) AC power measuring apparatus and program
JP5035815B2 (en) Frequency measuring device
EP3225985B1 (en) Two-frequency measurement system comprising a delay line surface acoustic wave sensor
JP6519776B2 (en) Field device with built-in frequency counter and frequency counter
JP4041635B2 (en) Signal measurement method and position determination method using symmetrical sampling method
US9726702B2 (en) Impedance measurement device and method
RU88157U1 (en) INFORMATION-MEASURING SYSTEM FOR ELECTRIC ENERGY QUALITY CONTROL
JP5274428B2 (en) Measuring and testing equipment
JP2009063382A (en) Coriolis mass flowmeter
CN101536551B (en) Method of determining the harmonic and inharmonic portions of a response signal of a device
US20110267056A1 (en) Digital waveform synthesizer for nmr phase control
US20100033361A1 (en) System, in particular for digitizing a time-continuous and value-continuous periodic signal with a firmly predefined number of samples per period
KR20220166259A (en) Circuitry for converting signals between digital and analog
JP5176545B2 (en) Signal measuring device
US11784729B2 (en) Calibration device, conversion device, calibration method, and non-transitory computer-readable medium having recorded thereon calibration program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees