JP5047271B2 - Manufacturing method of vegetable insulating oil and vegetable insulating oil manufactured by the manufacturing method - Google Patents

Manufacturing method of vegetable insulating oil and vegetable insulating oil manufactured by the manufacturing method Download PDF

Info

Publication number
JP5047271B2
JP5047271B2 JP2009507572A JP2009507572A JP5047271B2 JP 5047271 B2 JP5047271 B2 JP 5047271B2 JP 2009507572 A JP2009507572 A JP 2009507572A JP 2009507572 A JP2009507572 A JP 2009507572A JP 5047271 B2 JP5047271 B2 JP 5047271B2
Authority
JP
Japan
Prior art keywords
oil
weight
parts
insulating oil
vegetable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009507572A
Other languages
Japanese (ja)
Other versions
JP2009535763A (en
Inventor
ロ、ジェイ−クウィー
ロ、チュング−ソウク
ロ、ヒョ−サク
パク、イェウング−ホ
Original Assignee
ドング ナム ペトロレアム インダストリー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ドング ナム ペトロレアム インダストリー カンパニー リミテッド filed Critical ドング ナム ペトロレアム インダストリー カンパニー リミテッド
Publication of JP2009535763A publication Critical patent/JP2009535763A/en
Application granted granted Critical
Publication of JP5047271B2 publication Critical patent/JP5047271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Insulating Materials (AREA)
  • Fats And Perfumes (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Description

本発明は、電気絶縁油に関するもので、より詳細には、植物油を利用して酸化安定性が優秀で、使用後自然生態系で容易に分解される生分解性を有する植物性電気絶縁油に関するものである。   The present invention relates to an electrical insulating oil, and more particularly to a vegetable electrical insulating oil having excellent oxidative stability using a vegetable oil and having biodegradability that is easily degraded in a natural ecosystem after use. Is.

産業革命以後、機械の発達と共に油の需要が急激に増加し、潤滑剤の使用条件が過酷になるにつれ、より優秀な油の性質が要求され始めた。   Since the industrial revolution, the demand for oil has increased rapidly with the development of machinery, and as the conditions of use of lubricants have become harsh, better oil properties have begun to be required.

これによって、鉱油系列の油がいろいろな産業分野で広範囲に使用されているが、鉱油は生分解性が劣り、使用中の漏洩や使用後の廃棄時に提起される根本的な環境問題を有している。   As a result, mineral oils are widely used in various industrial fields, but mineral oils are inferior in biodegradability and have fundamental environmental problems raised during use and disposal after use. ing.

電気絶縁油は、各種電気機器が高電圧化及び大容量化する傾向に伴い、それに対応する性能が要求されており、その要求によって主に鉱油を基本にして各種の添加物が添加され、その要求条件に相応する絶縁油として開発使用されてきた。   As electrical insulation oil tends to have higher voltages and larger capacities of various electrical equipment, performance corresponding to it is required, and various additives are mainly added based on mineral oil according to the demand. It has been developed and used as an insulating oil that meets the requirements.

その例として、大韓民国特許公報公告番号特1994−0003803号公報は、鉱油系絶縁油に二重結合を有する直鎖状炭化水素化合物、菜種油、エステル化合物の中から選択された化合物を添加して、絶縁破壊電圧特性が優秀な絶縁油を公開しており、日本国特公昭63−4286号公報では、鉱油系絶縁油にフッ素系有機化合物を添加して、絶縁破壊電圧特性を向上させる技術を公開しており、同特開昭69−84714号公報では、鉱油に燐酸エステルの界面活性剤を添加する技術を公開している。   As an example, Korean Patent Gazette Publication No. 1994-0003803 adds a compound selected from a linear hydrocarbon compound having a double bond, a rapeseed oil and an ester compound to a mineral oil-based insulating oil, Insulating oil with excellent dielectric breakdown voltage characteristics is disclosed. Japanese Patent Publication No. 63-4286 discloses a technique for improving dielectric breakdown voltage characteristics by adding a fluorinated organic compound to mineral oil-based insulating oil. JP-A-69-84714 discloses a technique for adding a phosphate ester surfactant to mineral oil.

前述したように、鉱油を主原料とし、各種の添加剤を添加して絶縁破壊電圧特性などを向上させる技術の開発によって、鉱油系電気絶縁油の電気的特性に多くの発展がなされ、電気絶縁油の寿命延長などに多くの寄与があったが、電気絶縁油の場合、十分な使用後には変圧器などから劣化された電気絶縁油を回収し、回収された電気絶縁油を精製及び再生処理して新しい絶縁油と混用して使用したり廃棄しなければならない。   As described above, the development of technology that uses mineral oil as the main raw material and adds various additives to improve the dielectric breakdown voltage characteristics, etc., has led to many developments in the electrical characteristics of mineral oil-based electrical insulating oils. Although many contributions were made to extending the life of oil, in the case of electrical insulation oil, after sufficient use, the deteriorated electrical insulation oil is recovered from transformers, etc., and the recovered electrical insulation oil is purified and regenerated. It must be mixed with new insulating oil and discarded.

再生が不可能で廃棄される電気絶縁油の場合、添加剤として添加される抗酸化剤などのため容易に燃焼されず、また燃焼させる場合、ダイオキシンなどの公害物質が発生して環境汚染を起こすという問題があった。   In the case of electrical insulating oil that cannot be regenerated and discarded, it is not easily combusted due to antioxidants added as additives, and when it is combusted, pollutants such as dioxins are generated, causing environmental pollution There was a problem.

従って、近来は環境に親しい電気絶縁油の開発が要求されているのが実情であり、そのような要求に従い、米国特許第5,958,851号では、オレイン酸を含有する大豆油を主原料とし、これを水素化またはメチルエステル化して酸化防止剤を添加し、トランス油として用いる技術を公開している。   Therefore, in recent years, there is a demand for the development of environmentally friendly electrical insulating oils. In accordance with such demands, US Pat. No. 5,958,851 uses soybean oil containing oleic acid as the main raw material. And a technique for hydrogenating or methylesterifying it, adding an antioxidant and using it as a trans oil.

しかし、大豆油は、酸化安定性が低いという問題点と、低温で結晶が形成され、高温で固化が生じるという問題点を内包しており、実用的な適用が難しい点があるということを共に公開しているが、この発明は、大豆油などの植物油が電気絶縁油として代替可能であることを示してくれた効果があると言えるだろう。   However, soybean oil has both the problem of low oxidative stability and the problem that crystals are formed at low temperature and solidification occurs at high temperature. Although disclosed, it can be said that this invention has the effect of showing that vegetable oils such as soybean oil can be substituted as electrical insulating oils.

また、米国特許第5,949,017号では、75%以上のオレイン酸トリグリセリドと炭素水16ないし22の不飽和脂肪酸、炭素水16ないし22の飽和脂肪酸及び抗酸化剤で構成される植物油を鉱油などと混合してトランス油として使用することを公開しており、このようなオレイン酸を含有する植物油としてひまわり油、オリーブ油、紅花油などを例に挙げている。   In US Pat. No. 5,949,017, vegetable oil composed of 75% or more oleic acid triglyceride, unsaturated fatty acid of carbon water 16-22, saturated fatty acid of carbon water 16-22 and antioxidant is used as mineral oil. As a vegetable oil containing oleic acid, sunflower oil, olive oil, safflower oil and the like are given as examples.

前記米国特許第5,949,017号で公知された絶縁油は、オレイン酸トリグリセリドのようなエステル化合物を含有しており、高温で水と接触する場合は、加水分解に対する安定性が落ちるという問題点を内包しており、価格が高いという問題があるが、植物油を鉱油などと混合して生分解性を向上させたという効果がある。   The insulating oil known in US Pat. No. 5,949,017 contains an ester compound such as oleic acid triglyceride, and has a problem that the stability to hydrolysis decreases when it comes into contact with water at a high temperature. Although it has a problem that it contains a point and is expensive, it has the effect of improving biodegradability by mixing vegetable oil with mineral oil.

しかし、高電圧の電気絶縁油については、まだ植物油だけで使用されていないのが現実で、植物油が電気絶縁油として高電圧に耐えるために、酸化安定性と低い流動点が確保される必要がある。   However, high-voltage electrical insulating oil is not yet used only with vegetable oil, and in order for vegetable oil to withstand high voltage as an electrical insulating oil, it is necessary to ensure oxidation stability and a low pour point. is there.

本発明は、電気絶縁油として使用されることのできる植物油の配合と化学反応によって、高い酸化安定性、高い絶縁破壊電圧と低い流動点を有する植物性絶縁油を製造して、親環境的な電気絶縁油を供給することを目的とする。   The present invention produces a vegetable insulating oil having a high oxidation stability, a high dielectric breakdown voltage and a low pour point by blending and chemical reaction of a vegetable oil that can be used as an electric insulating oil. The purpose is to supply electrical insulating oil.

前記の目的を達成するための本発明は、大豆油40重量部ないし50重量部と菜種油60重量部ないし50重量部でなった混合植物油を、アルミノケイ酸塩触媒存在下でエチルアルコールと反応させてエステル化させることを特徴とする植物性絶縁油の製造方法を提供することで達成されることができる。   In order to achieve the above object, the present invention comprises a reaction of a mixed vegetable oil comprising 40 to 50 parts by weight of soybean oil and 60 to 50 parts by weight of rapeseed oil with ethyl alcohol in the presence of an aluminosilicate catalyst. This can be achieved by providing a method for producing a vegetable insulating oil characterized by esterification.

前記で大豆油と菜種油を混合する理由は、大豆油だけを使用する場合、低温で結晶が生成される問題があり、高温では固化が生じるという問題があるだけでなく、酸化安定性にも問題があり、菜種油を混合することによって、低いヨード価と低い全酸価、低い流動点及び金属との相互安定性が優秀で、温度変化による粘度の変化を減らすことができるという利点があり、この時菜種油の含量を60重量%以上にする場合は、安定性が落ちて容易に加水分解されて酸化され、非鉄金属を腐食させる原因となり、50重量部以下で使用する場合は、流動点の上昇をもたらし、冬場の使用に問題があるだけでなく、流動点を低めるために流動点降下剤などを添加することになり、流動点降下剤の添加は、生分解性の低下につながるという問題があるので、混合植物油の配合比率は、大豆油40重量部ないし50重量部と菜種油60重量部ないし50重量部にするのが好ましい。   The reason why soybean oil and rapeseed oil are mixed as described above is that when only soybean oil is used, there is a problem that crystals are generated at a low temperature, and there is a problem that solidification occurs at a high temperature. By mixing rapeseed oil, there is the advantage that low iodine number and low total acid number, low pour point and mutual stability with metal are excellent, and change in viscosity due to temperature change can be reduced. When the rapeseed oil content is 60% by weight or more, the stability is lowered and it is easily hydrolyzed and oxidized, causing corrosion of non-ferrous metals. When used at 50 parts by weight or less, the pour point is increased. In addition to the problem of use in winter, pour point depressant is added to lower the pour point, and the addition of pour point depressant leads to a decrease in biodegradability. is there In, mixing ratio of the mixed vegetable oil, preferably soybean oil 40 parts by weight to 50 parts by weight of rapeseed oil 60 parts by weight to 50 parts by weight.

前記エステル化反応時に使用可能な触媒として、アルカリ触媒及びアルミノケイ酸塩系触媒が使用されることができ、好ましくは、ゼオライト触媒が使用される。   As a catalyst that can be used during the esterification reaction, an alkali catalyst and an aluminosilicate catalyst can be used, and a zeolite catalyst is preferably used.

前記でエステル化反応時の反応温度は、140℃ないし170℃にするのが好ましく、反応時間は3時間ないし5時間が良い。   The reaction temperature during the esterification reaction is preferably 140 ° C. to 170 ° C., and the reaction time is preferably 3 hours to 5 hours.

エチルアルコールとのエステル化反応で反応温度を140℃以下に進行する場合は、エステル化反応が完全に行われず、残留溶剤が植物油と混合された状態で存在することになるという問題が発生し、170℃を超過する温度でエステル化反応を進行させると、高温による製造物の色及び劣化による製造物の性状低下を起こすという問題を発生させることになるので、反応温度を140℃ないし170℃にするのが好ましい。   When the reaction temperature proceeds to 140 ° C. or lower in the esterification reaction with ethyl alcohol, the esterification reaction is not performed completely, and there is a problem that the residual solvent is present in a state mixed with vegetable oil. If the esterification reaction proceeds at a temperature exceeding 170 ° C, the color of the product due to high temperature and the problem of deterioration of the properties of the product due to deterioration may occur, so the reaction temperature is increased to 140 ° C to 170 ° C. It is preferable to do this.

また、このような温度条件下で反応時間を3時間以下で終了する場合は、低いエステル化によって反応が完全に行われず、流動点及び酸化安定性に問題があり、5時間を超過して反応させると、長時間の高温反応によって色及び製造物の性状低下を起こし、原価上昇の一要因として作用するので、3時間ないし5時間の範囲内で反応を終了させるのが好ましい。   In addition, when the reaction time is completed in 3 hours or less under such temperature conditions, the reaction is not completely performed due to low esterification, and there is a problem in the pour point and oxidation stability. In this case, the color and product properties are lowered by the high-temperature reaction for a long time, which acts as a factor of the cost increase. Therefore, the reaction is preferably terminated within the range of 3 hours to 5 hours.

通常のエステル化反応には、硫酸、塩酸などの酸触媒、または、水酸化ナトリウム、ナトリウムメトキシド、水酸化カリウムなどのアルカリ触媒が多く使用されているが、酸触媒の場合は、層分離現象を起こすことになり、界面で反応が起きることになるので、反応速度が遅く、反応を促進させるために激烈な攪拌と界外に水を除去しなければならないという煩わしさが伴い、アルカリ触媒を使用する場合は、比較的高い収率で得ることができ、安定して反応を進行させることができるが、植物油のアルカリによる鹸化のため、注意を傾けないと収率が低くなるという問題がある。   In ordinary esterification reactions, an acid catalyst such as sulfuric acid or hydrochloric acid, or an alkali catalyst such as sodium hydroxide, sodium methoxide, or potassium hydroxide is often used. Because the reaction occurs at the interface, the reaction rate is slow, and the use of an alkali catalyst is accompanied by intense stirring and the trouble of removing water outside the field to promote the reaction. In this case, a relatively high yield can be obtained and the reaction can proceed stably. However, because of the saponification of the vegetable oil with an alkali, there is a problem that the yield decreases unless care is taken.

しかし、本発明で使用されるアルミノケイ酸塩系触媒の場合は、層分離現象及び鹸化などが起こらないため、高い収率による反応物を得られるという長所と共に、反応後生成物から触媒の除去が容易になるという長所があり、このような系統の化合物として、ゼオライト、ベントナイトなどを使用することができる。   However, in the case of the aluminosilicate catalyst used in the present invention, since the layer separation phenomenon and saponification do not occur, the catalyst can be removed from the product after the reaction, with the advantage that the reaction product can be obtained in a high yield. There is an advantage that it becomes easy, and zeolite, bentonite and the like can be used as compounds of such a system.

植物油とエステルを形成するために多様な種類のアルコールを使用することができるが、粘度流動点、全酸価などを鑑みると、エチルアルコールを使用するのが好ましい。   Various types of alcohol can be used to form an ester with the vegetable oil, but it is preferable to use ethyl alcohol in view of viscosity pour point, total acid value, and the like.

<実施例1> <Example 1>

大豆油と菜種油を表1に示すように混合し、混合植物油に対する粘度(KS M 2014による)、流動点(KS M 2016による)、引火点(KS M 2010による)を測定し、表1に示した。

Figure 0005047271
Soybean oil and rapeseed oil were mixed as shown in Table 1, and the viscosity (according to KS M 2014), pour point (according to KS M 2016), and flash point (according to KS M 2010) of the mixed vegetable oil were measured and shown in Table 1. It was.
Figure 0005047271

前記表1から、大豆油と菜種油の混合比率で、菜種油の重量比を相対的に高く設定する場合は、粘度は上昇しているが、流動点と引火点が低くなり、菜種油の重量比を低く設定する場合は、反対に粘度は低くなり、流動点と引火点は上昇していることを確認することができる。   From Table 1 above, when the weight ratio of rapeseed oil is set relatively high in the mixing ratio of soybean oil and rapeseed oil, the viscosity is increased, but the pour point and flash point are lowered, and the weight ratio of rapeseed oil is On the other hand, when it is set low, the viscosity becomes low, and it can be confirmed that the pour point and the flash point are increased.

混合植物油の流動点の上昇は、エステル化反応後、流動点の上昇を加速化させることになり、冬場の使用の問題、流動点を低めるための降下剤の添加及び流動点降下剤の添加による生分解性の低下の問題が発生する可能性が高く、また、引火点を考慮するなら、混合比率を大豆油40重量部ないし50重量部と菜種油60重量部ないし50重量部の配合比に設定するのが好ましいことが分かる。

<実施例2>
The rise of the pour point of mixed vegetable oil will accelerate the rise of the pour point after the esterification reaction, which is due to the problems of use in winter, the addition of a depressant to lower the pour point and the addition of the pour point depressant. There is a high possibility that the problem of biodegradability will decrease, and if the flash point is taken into consideration, the mixing ratio is set to 40 to 50 parts by weight of soybean oil and 60 to 50 parts by weight of rapeseed oil It can be seen that this is preferable.

<Example 2>

実施例1から得られたデータを根拠に、最も良い結果をもたらす大豆油40重量部と菜種油60重量部で混合された混合植物油100重量部に対して、ゼオライト触媒0.4重量部を添加し、アルコールを表2のような条件で反応容器に入れ、170℃で400rpmの速度で攪拌しながら5時間にわたってエステル化反応させた後、実施例1と同一な方法で粘度と流動点を測定し、下記の方法で全酸価をKS M 2004に従い測定し、その結果を表2に示した。

Figure 0005047271
Based on the data obtained from Example 1, 0.4 parts by weight of zeolite catalyst was added to 100 parts by weight of mixed vegetable oil mixed with 40 parts by weight of soybean oil and 60 parts by weight of rapeseed oil, which gave the best results. The alcohol was put in a reaction vessel under the conditions shown in Table 2, and the esterification reaction was carried out for 5 hours while stirring at a rate of 400 rpm at 170 ° C. Then, the viscosity and pour point were measured by the same method as in Example 1. The total acid value was measured according to KS M 2004 by the following method, and the results are shown in Table 2.

Figure 0005047271

前記表2から確認されるように、エステル化反応の結果、エチルアルコールの場合が最も低い粘度と流動点と全酸価を示していることを確認することができ、アルコールの使用量に関連しても、エチルアルコールの場合が粘度、流動点及び全酸価で安定的な結果を示していることを確認することができる。

<実施例3>
As can be seen from Table 2 above, as a result of the esterification reaction, it can be confirmed that ethyl alcohol shows the lowest viscosity, pour point and total acid value, and is related to the amount of alcohol used. However, it can be confirmed that ethyl alcohol shows stable results in terms of viscosity, pour point and total acid number.

<Example 3>

前記実施例1及び実施例2の結果に基づいて、大豆油と菜種油の混合比率及び触媒を表3のようにし、エチルアルコールを混合植物油100重量部に対して10重量部添加し、170℃で5時間の間反応させて製造された絶縁油に対して、流動点、引火点及び全酸価を実施例1及び実施例2での方法と同一な方法で測定し、その結果を表3に示した。

Figure 0005047271
Based on the results of Example 1 and Example 2, the mixing ratio of soybean oil and rapeseed oil and the catalyst were as shown in Table 3, and 10 parts by weight of ethyl alcohol was added to 100 parts by weight of the mixed vegetable oil. For the insulating oil produced by reacting for 5 hours, the pour point, flash point and total acid number were measured by the same method as in Example 1 and Example 2, and the results are shown in Table 3. Indicated.

Figure 0005047271

前記表3から確認されるように、触媒量の増加によって流動点が低くなり、引火点が高くなり、全酸価が減るという点を発見することができて、触媒の添加がエステル化反応に相当なる影響を及ぼしていることを確認することができ、無添加である場合は、全酸価が0.102mgKOH/g、0.110mgKOH/g及び0.115mgKOH/gと相当高く現れており、このような高い全酸価は、変圧器の投入使用時、早期にスラッジを生成させ、電気絶縁油の抵抗率の低下と共に変圧器の損傷が生じる原因となり、電気絶縁油の生命である絶縁能力の低下問題を発生させるので、触媒の存在下に反応させるのが好ましいということが確認できる。

<実施例4>
As can be seen from Table 3, it can be found that increasing the amount of catalyst lowers the pour point, raises the flash point, and reduces the total acid value. It can be confirmed that it has a considerable influence, and when it is not added, the total acid value appears to be quite high as 0.102 mgKOH / g, 0.110 mgKOH / g and 0.115 mgKOH / g, Such a high total acid value generates sludge early when the transformer is used, causing damage to the transformer along with a decrease in the resistivity of the electrical insulating oil, and the insulation capacity that is the life of the electrical insulating oil It can be confirmed that the reaction is preferably performed in the presence of a catalyst.

<Example 4>

大豆油40重量部と菜種油60重量部でなった混合植物油に、ゼオライト触媒を混合植物油100重量部に対して0.4重量部とになるように添加し、添加されるエチルアルコールの量を表4のように変化させながら、170℃で5時間にわたってエステル化反応を進行させた後、引火点、流動点及び全酸価を前述した実施例のような方法で測定し、その結果を表4に示した。

Figure 0005047271
A zeolite catalyst is added to mixed vegetable oil composed of 40 parts by weight of soybean oil and 60 parts by weight of rapeseed oil so that the amount of ethyl alcohol is 0.4 parts by weight with respect to 100 parts by weight of mixed vegetable oil. 4, the esterification reaction was allowed to proceed for 5 hours at 170 ° C., and then the flash point, pour point, and total acid value were measured by the methods described in the previous examples, and the results are shown in Table 4. It was shown to.

Figure 0005047271

前記表4から確認されるように、エチルアルコールの添加量が3重量部未満である場合、引火点については問題がないが、高い流動点による添加剤投入量過多による生分解性の低下が発生し、また、全酸価も上昇し、電気絶縁油の生命である絶縁能力が低下するという問題を起こす可能性があるので、5重量部以上添加するのが好ましいが、15重量部以上添加する場合は、引火点、流動点及び全酸価に大きな変化がないので、しいて過量に添加する必要はなく、かえって未反応のエチルアルコールを除去しなければならないという不便が伴うことになる。

<実施例5>
As can be seen from Table 4 above, when the amount of ethyl alcohol added is less than 3 parts by weight, there is no problem with the flash point, but the biodegradability decreases due to the excessive amount of additive added due to the high pour point. In addition, since the total acid value also rises and there is a possibility that the insulation ability that is the life of the electrical insulating oil is lowered, it is preferable to add 5 parts by weight or more, but 15 parts by weight or more is added. In this case, there is no significant change in the flash point, pour point and total acid value, so there is no need to add an excessive amount, but there is an inconvenience that unreacted ethyl alcohol must be removed.

<Example 5>

大豆油45重量部と菜種油55重量部でなった混合植物油100重量部に対して、ゼオライト触媒0.4重量部とエチルアルコールの添加量と反応温度を下記の表5のように変化させながら、5時間の間エステル化反応を進行させた後、引火点、流動点及び全酸価を前述した実施例のような方法で測定し、その結果を表5に示した。

Figure 0005047271
With respect to 100 parts by weight of mixed vegetable oil consisting of 45 parts by weight of soybean oil and 55 parts by weight of rapeseed oil, while adding 0.4 parts by weight of zeolite catalyst, the amount of ethyl alcohol and the reaction temperature as shown in Table 5 below, After the esterification reaction was allowed to proceed for 5 hours, the flash point, pour point and total acid value were measured by the method as in the above-mentioned Examples, and the results are shown in Table 5.

Figure 0005047271

表5で確認されるように、反応温度が130℃である場合は、引火点が著しく低く、流動点と全酸価が高くあらわれた点から、十分な反応が行われなかったことを確認することができ、反応温度が180℃である場合は、全酸価が0.083mgKOH/g、0.089mgKOH/gに上昇することを確認することができ、全酸価の上昇は、絶縁能力の低下と直接的な関連を有することになるので、本発明の範囲である140℃ないし170℃にエステル反応温度を設定するのが好ましい。   As confirmed in Table 5, when the reaction temperature is 130 ° C., the flash point is remarkably low, and from the point that the pour point and the total acid value appear high, it is confirmed that sufficient reaction has not been performed. When the reaction temperature is 180 ° C., it can be confirmed that the total acid number increases to 0.083 mg KOH / g and 0.089 mg KOH / g. It is preferable to set the ester reaction temperature to 140 ° C. to 170 ° C., which is the range of the present invention, since it has a direct relationship with the decrease.

前記実施例1ないし実施例5の結果から確認されるように、大豆油と菜種油の配合比率は40ないし50重量部:60ないし50重量部の比率で混合されるのが好ましいことが分かり、植物油の混合物とエステル化反応に使用されるアルコールとしては、エチルアルコールが混合植物油100重量部に対して5重量部ないし20重量部の範囲で使用されるのが好ましく、エステル化反応触媒としては、アルミノケイ酸塩系の触媒であるゼオライトが混合植物油100重量部に対して0.2重量部ないし0.6重量部使用されるのが好ましく、反応温度においては、140℃ないし170℃が適当なものであることを確認することができた。   As confirmed from the results of Examples 1 to 5, it was found that the blending ratio of soybean oil and rapeseed oil is preferably 40 to 50 parts by weight: 60 to 50 parts by weight. As the alcohol used in the esterification reaction with a mixture of the above, ethyl alcohol is preferably used in the range of 5 to 20 parts by weight with respect to 100 parts by weight of the mixed vegetable oil. It is preferable to use 0.2 to 0.6 parts by weight of zeolite which is an acid-based catalyst with respect to 100 parts by weight of mixed vegetable oil, and a reaction temperature of 140 to 170 ° C. is appropriate. I was able to confirm that there was.

前記で確認されたように、本発明による電気絶縁油は、混合植物油をエステル化して製造されたもので、電気絶縁油として高い引火点と低い全酸価を維持しているだけでなく、適当な粘度を維持でき、変圧器などの電気絶縁油として効果的に使用できるが、一般的に、植物油は、酸化安定性が鉱油に比べて劣るので、電気絶縁油に添加されるブチル化ヒドロキシトルエン(Buthylated hydroxytoluene;BHT)、ターシャリーブチルヒドロキノン(Tertiary Buthylhydroquinone;TBHQ)などの酸化安定剤を通常的に添加される量添加すれば、酸化安定性が補強され、電気絶縁油としてより長期間使用することもできる。

<実験例> 絶縁破壊電圧
As confirmed above, the electrical insulating oil according to the present invention is produced by esterifying a mixed vegetable oil, which not only maintains a high flash point and a low total acid number as an electrical insulating oil, but is also suitable. However, vegetable oil is generally inferior to mineral oil in terms of oxidation stability, so that butylated hydroxytoluene added to the electrical insulating oil can be maintained. (Buthylated hydroxytoluene; BHT), Tertiary Buthylhydroquinone (TBHQ) and other oxidation stabilizers can be added to increase oxidation stability and use for longer periods as electrical insulating oil You can also.

<Experimental example> Dielectric breakdown voltage

大豆油40重量部と菜種油60重量部でなった混合植物油100重量部に対して、ゼオライト触媒0.4重量部とエチルアルコールの添加量を10重量部にし、最適の反応温度である140℃から170℃まで変化させながら、5時間の間エステル化反応を進行させた後、KS C ISO 60156に基づき絶縁破壊電圧を測定し、その結果を表6に示した。

Figure 0005047271
For 100 parts by weight of mixed vegetable oil consisting of 40 parts by weight of soybean oil and 60 parts by weight of rapeseed oil, 0.4 parts by weight of zeolite catalyst and 10 parts by weight of ethyl alcohol are added, and the optimum reaction temperature is 140 ° C. The esterification reaction was allowed to proceed for 5 hours while changing the temperature to 170 ° C., and then the dielectric breakdown voltage was measured based on KS C ISO 60156. The results are shown in Table 6.

Figure 0005047271

前記表6から確認されるように、本発明の方法によって製造された植物性絶縁油の絶縁破壊電圧は、73KVないし80KVを示しており、これは韓国工業規格で定めている鉱油系電気絶縁油規格である1種2号、1種4号絶縁油の絶縁破壊電圧である30KV、40KVを遥かに上回っていることが分かる。

<実験例> 生分解性試験
As can be seen from Table 6, the dielectric breakdown voltage of the plant insulating oil produced by the method of the present invention is 73 KV to 80 KV, which is a mineral oil-based electric insulating oil defined by Korean Industrial Standards. It can be seen that it is far higher than the standard breakdown voltage 30 KV and 40 KV of Type 1 No. 2 and Type 1 No. 4 insulating oil.

<Experimental example> Biodegradability test

植物性絶縁油の生分解性試験は、アメリカの環境庁試験法(EPA OPPTS 835.3100)で提示した装置と方法を利用して実施した。
まず三つのフラスコに各々絶縁油の生分解性実験のために接種液100MLにテスト試薬1、テスト試薬2及びテスト試薬3を各々1MLずつ含有する脱イオン水(deionized water)900MLを混合して製造された試験培養液を入れて1Lに調節し、14日間放置した後、ここに試験資料として実施例5から得た結果を土台に、大豆油45重量部と菜種油55重量部でなった混合植物油100重量部に対して、ゼオライト触媒0.4重量部とエチルアルコールの10重量部を添加し、170℃で5時間の間エステル化反応を進行させて製造した植物性絶縁油を使用した。
The biodegradability test of the vegetable insulating oil was carried out by using the apparatus and method presented in the American Environmental Agency test method (EPA OPPTS 835.3100).
First, in order to test the biodegradability of insulating oil in each of three flasks, inoculum 100ML is mixed with 900ml of deionized water (deionized water) containing 1ml each of test reagent 1, test reagent 2 and test reagent 3. The test culture broth was added, adjusted to 1 L, allowed to stand for 14 days, and then mixed vegetable oil consisting of 45 parts by weight soybean oil and 55 parts by weight rapeseed oil based on the results obtained from Example 5 as test data. A vegetable insulating oil produced by adding 0.4 parts by weight of a zeolite catalyst and 10 parts by weight of ethyl alcohol to 100 parts by weight and allowing the esterification reaction to proceed at 170 ° C. for 5 hours was used.

生分解性試験では、0.2ノルマル濃度の水酸化バリウム溶液10ccを入れた中間容器を設置した三角フラスコを使用したが、三つのフラスコに前記試験培養液を入れた後、これらに植物性絶縁油153MLを投入したもの(試験区)と、クエン酸ナトリウム35.8mg添加したもの(対照区)及び何も添加していないもの(無添加区)に各々製造した。   In the biodegradability test, an Erlenmeyer flask equipped with an intermediate container containing 10 cc of a 0.2 normal concentration barium hydroxide solution was used. After the test culture solution was put into three flasks, plant insulation was added thereto. Oil 153ML was added (test group), sodium citrate added 35.8 mg (control group) and nothing added (non-added group).

各フラスコにCO2を含有しない空気(CO2 free air)でパージ(Purge)して密封処理した後、攪拌器に入れて25℃、125RPMで攪拌しながら30日から45日間生分解されるようにした。   Each flask was purged with CO2 free air (CO2 free air) and sealed, and then placed in a stirrer and allowed to biodegrade for 30 to 45 days with stirring at 25 ° C and 125 RPM. .

生分解期間中一定時間間隔に各フラスコの中間容器に入っている水酸化バリウム溶液10MLを採取した後、ここに脱イオン水10MLとフェノールフタレイン0.2MLを添加した後、0.1N HCIに滴定し、下記の数学式を利用して発生されたCO2量を算出し、表7に示した。
After collecting 10 ml of barium hydroxide solution contained in the intermediate container of each flask at a certain time interval during the biodegradation period, 10 ml of deionized water and 0.2 ml of phenolphthalein were added thereto, and then 0.1N HCI was added. Titration was performed, and the amount of CO 2 generated was calculated using the following mathematical formula.

数学式1Mathematical Formula 1

Figure 0005047271
Figure 0005047271

前記数学式1で、TFは試験区または対照区のBa(OH)2の滴定に使用された0.1N HCIのMLを意味し、CFは無添加区のBa(OH)2の滴定に使用された0.1N HCIのMLを意味する。

Figure 0005047271
In Formula 1, TF means 0.1N HCI ML used for titration of Ba (OH) 2 in the test group or control group, and CF is used for titration of Ba (OH) 2 in the additive-free group. Means 0.1N HCI ML.

Figure 0005047271

前記表7で時間の流れによってCO2の発生量が増加して30日が経過した場合は、製造された植物性絶縁油を入れた試験区から、理論的CO2発生量の96.4%が発生されるのが確認されたが、標準試料であるクエン酸ナトリウムから発生された64.8%より遥かに多い量で、製造された植物性絶縁油の生分解性が優秀であることを見せている。   In Table 7, when 30 days have passed since the amount of CO2 generated increased with the passage of time, 96.4% of the theoretical amount of CO2 generated was generated from the test plot containing the plant insulation oil produced. It was confirmed that the biodegradability of the plant insulating oil produced was much better than 64.8% generated from the standard sample sodium citrate. Yes.

ここで、生分解性実験に使用された各種溶液は、次のような方法によって製造されたものである。

<接種液の製造>
Here, the various solutions used for the biodegradability experiment were manufactured by the following methods.

<Manufacture of inoculum>

下水終末処理場から入手した活性汚泥液25MLと京畿道ヨジュ市野山、江原道平沢市野山及び安山市半月公団で地表面から20cmの深さに存在する土壌を採取して均等に混合した後、直径5mmのふるいにかけ、その中1gを取って脱イオン水1Lと混合してろ過したろ過液を三角フラスコに入れ、上部入口を塞いだ状態で25℃で14日間順応期間を経た後使用した。

<テスト試薬の製造>
After collecting and mixing evenly the soil that is present at a depth of 20cm from the ground surface at 25ml of activated sludge obtained from the sewage sewage treatment plant and Nosan, Yeosu City, Gangwon Province The filtrate was filtered through a sieve with a diameter of 5 mm, 1 g of which was mixed with 1 L of deionized water, put into an Erlenmeyer flask, and used after passing through an acclimatization period at 25 ° C. for 14 days with the upper inlet closed. .

<Manufacture of test reagents>

テスト試薬1の製造;NH4Cl 35g、KNO3 15g、K2HPO43H2O 75g、NaH2PO4H2O 25gを蒸留水に入れて1Lにする。   Preparation of test reagent 1: NH4Cl 35g, KNO3 15g, K2HPO43H2O 75g, NaH2PO4H2O 25g are put into distilled water to make 1L.

テスト試薬2の製造;KCl 10g、MgSO4 20g、FeSO47H2O 1gを蒸留水に入れて1Lにする。   Preparation of test reagent 2: KCl 10g, MgSO4 20g, FeSO47H2O 1g are put in distilled water to 1L.

テスト試薬3の製造;CaCl2 5g、ZnCl2 0.05g、MnCl24H2O 0.5g、CuCl2 0.05g、CoCl2 0.001g、H3BO3 0.001g、MoO3 0.004gを蒸留水に入れて1Lにする。   Preparation of test reagent 3: CaCl2 5g, ZnCl2 0.05g, MnCl24H2O 0.5g, CuCl2 0.05g, CoCl2 0.001g, H3BO3 0.001g, MoO3 0.004g are made up to 1L.

前記で見たように、本発明の方法によって製造された電気絶縁油は、自然状態で自然界に存在する微生物によって容易に分解されることができるので、漏出または廃棄時微生物による分解が容易で、絶縁破壊電圧、引火点、酸化安定性などが優秀で電気的劣化にも優秀な結果を示しており、変圧器などの電気絶縁油として優秀な発明だといえる。   As seen above, the electrical insulating oil produced by the method of the present invention can be easily decomposed by microorganisms existing in nature in the natural state, so that it is easily decomposed by microorganisms at the time of leakage or disposal, The dielectric breakdown voltage, flash point, oxidation stability, etc. are excellent, and it shows excellent results in electrical degradation. It can be said that this is an excellent invention as an electrical insulating oil for transformers.

Claims (3)

植物から採取された植物油を利用した絶縁油の製造方法において、大豆油40重量部ないし50重量部と菜種油60重量部ないし50重量部でなった混合植物油100重量部に対して、アルミノケイ酸塩触媒であるゼオライト触媒0.2重量部ないし0.6重量部を添加するとともにエチルアルコールと140℃ないし170℃の反応温度で3時間ないし5時間の範囲内で反応させてエステル化させることを特徴とする植物性絶縁油の製造方法。  In an insulating oil manufacturing method using vegetable oil collected from a plant, an aluminosilicate catalyst is used for 100 parts by weight of mixed vegetable oil comprising 40 to 50 parts by weight of soybean oil and 60 to 50 parts by weight of rapeseed oil. And 0.2 parts by weight to 0.6 parts by weight of the zeolite catalyst is added, and the esterification is performed by reacting with ethyl alcohol at a reaction temperature of 140 ° C. to 170 ° C. for 3 hours to 5 hours. To produce vegetable insulating oil. 植物から採取された植物油を利用した植物性絶縁油において、大豆油40重量部ないし50重量部と菜種油60重量部ないし50重量部でなった混合植物油100重量部に対して、アルミノケイ酸塩触媒であるゼオライト触媒0.2重量部ないし0.6重量部を添加するとともにエチルアルコールと140℃ないし170℃の反応温度で3時間ないし5時間の範囲内で反応させてエステル化させて製造された絶縁油を含有することを特徴とする植物性絶縁油。  In a vegetable insulating oil using vegetable oil collected from plants, an aluminosilicate catalyst is used for 100 parts by weight of mixed vegetable oil comprising 40 to 50 parts by weight of soybean oil and 60 to 50 parts by weight of rapeseed oil. Insulation produced by adding 0.2 to 0.6 parts by weight of a zeolite catalyst and reacting with ethyl alcohol at a reaction temperature of 140 ° C. to 170 ° C. for 3 hours to 5 hours for esterification A vegetable insulating oil characterized by containing oil. 前記植物性絶縁油が酸化防止剤を含有することを特徴とする請求項2に記載の植物性絶縁油。  The vegetable insulating oil according to claim 2, wherein the vegetable insulating oil contains an antioxidant.
JP2009507572A 2006-05-03 2007-03-08 Manufacturing method of vegetable insulating oil and vegetable insulating oil manufactured by the manufacturing method Active JP5047271B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0040064 2006-05-03
KR1020060040064A KR100705296B1 (en) 2006-05-03 2006-05-03 Manufacturing method of insulating oil used vegetable oil and the isolating oil by the method
PCT/KR2007/001142 WO2007126207A1 (en) 2006-05-03 2007-03-08 Vegetable-based electric insulation oil and preparation thereof

Publications (2)

Publication Number Publication Date
JP2009535763A JP2009535763A (en) 2009-10-01
JP5047271B2 true JP5047271B2 (en) 2012-10-10

Family

ID=38601300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009507572A Active JP5047271B2 (en) 2006-05-03 2007-03-08 Manufacturing method of vegetable insulating oil and vegetable insulating oil manufactured by the manufacturing method

Country Status (5)

Country Link
JP (1) JP5047271B2 (en)
KR (1) KR100705296B1 (en)
CN (1) CN101438356B (en)
HK (1) HK1130559A1 (en)
WO (1) WO2007126207A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042588A1 (en) * 2007-09-21 2009-04-01 Universita'degli Studi Di Milano Process for the esterification and transesterification of fats
KR101384267B1 (en) 2007-11-26 2014-04-11 에스케이종합화학 주식회사 Vegetable insulating oil composition
JP5532562B2 (en) * 2008-09-02 2014-06-25 株式会社明電舎 Insulating polymer material composition
KR101451289B1 (en) * 2012-05-03 2014-10-17 한국생산기술연구원 Enviromentally affinitive vegetable insulating oil composition
CN102827675B (en) * 2012-09-21 2013-09-04 西安卓源电力科技有限公司 Method for preparing environment-friendly insulating oil by taking plant oil or recovered oil as raw materials
KR101411026B1 (en) * 2012-12-12 2014-06-25 주식회사 지코스 Vegetable oil based insulation oil
JP6166092B2 (en) * 2013-04-19 2017-07-19 愛知電機株式会社 Degradation diagnosis method for vegetable insulating oil
KR101636742B1 (en) * 2014-04-30 2016-07-07 한국생산기술연구원 Vegetable dialectic fluid, method therof and electric power machine comprising the same
CN113671326B (en) * 2021-08-23 2023-11-28 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Insulation oil low-temperature breakdown test method for oil immersed current transformer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004132B (en) * 1985-07-04 1989-05-10 中国科学院广州化学研究所 Method for esterification
JPH06313188A (en) * 1993-04-28 1994-11-08 Kao Corp Production of fatty acid ester
US6398986B1 (en) * 1995-12-21 2002-06-04 Cooper Industries, Inc Food grade vegetable oil based dielectric fluid and methods of using same
US6037537A (en) * 1995-12-21 2000-03-14 Cooper Industries, Inc. Vegetable oil based dielectric coolant
JP3145301B2 (en) * 1996-03-21 2001-03-12 株式会社関西テック Electrical insulating oil and method for producing the same
US5912215A (en) * 1997-10-16 1999-06-15 Electric Fluids, Llc. Food grade dielectric fluid
KR20020028119A (en) * 2000-10-07 2002-04-16 최재경 Process for Preparing Fatty Acid Ester Using Synthetic Zeolite Catalyst
JP4278910B2 (en) 2002-03-13 2009-06-17 花王株式会社 Esters manufacturing method
DE602004013166T2 (en) * 2003-08-27 2009-03-19 Japan Ae Power Systems Corporation BASE FOR ELECTRICALLY INSULATED OIL
CN1276962C (en) * 2004-12-23 2006-09-27 大连理工大学 Process for coupling producing bioloigical diesel oil and 1,3-propylene glycol

Also Published As

Publication number Publication date
WO2007126207A1 (en) 2007-11-08
HK1130559A1 (en) 2009-12-31
CN101438356B (en) 2011-12-07
KR100705296B1 (en) 2007-08-10
CN101438356A (en) 2009-05-20
JP2009535763A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5047271B2 (en) Manufacturing method of vegetable insulating oil and vegetable insulating oil manufactured by the manufacturing method
CN101300644B (en) Low viscosity vegetable oil-based dielectric fluids
JP6130363B2 (en) Dielectric fluids containing estolide compounds and methods of making and using the same
KR102061376B1 (en) Lubricant composition of matter and methods of preparation
KR101320413B1 (en) A process for the preparation of hydrocarbon fuel
AU2012271213A1 (en) Dielectric fluids comprising estolide compounds and methods of making and using the same
EP2758969B1 (en) Dielectric fluids comprising polyol esters, methods for preparing mixtures of polyol esters, and electrical apparatuses comprising polyol ester dielectric fluids
JPWO2008053837A1 (en) fuel
WO2009130999A1 (en) Composition for insulating oil
RU2516470C2 (en) Electric equipment, containing dielectric oil with erucic acid
WO2013037017A1 (en) Enzymatic process for the synthesis of estolides
JP2010121088A (en) Method for producing monoglyceride-containing composition for gas oil additive
Ali et al. Rheological review on potential of bio-lubricants
AU2013204677A1 (en) Low Viscosity Vegetable Oil-Based Dielectric Fluids
CN110903913A (en) Polyester derivative grease based on waste cooking oil and preparation method thereof
JP2010077338A (en) Method for producing long chain fatty acid triglyceride
KR20240107116A (en) Uses of biodegradable lubricating base and method of manufacturing the same
KR101446018B1 (en) Antioxidant composition for biodisel
NZ588606A (en) Low viscosity mono-unsaturated acid-containing non-vegetable oil-based dielectric fluids
KR20240045662A (en) Ester based compound having a low traction coefficient, lubricating base oil comprising thereof, and lubricant composition comprising thereof
KR20120002646A (en) Vegetable insulating oil composition for transformer and the method for producing thereof
AU2006301929A1 (en) Low viscosity vegetable oil-based dielectric fluids
JP2010189502A (en) Biodegradable lubricating base oil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250