JP5046199B2 - Method for separating asphalt mixture and apparatus capable of carrying out this method - Google Patents

Method for separating asphalt mixture and apparatus capable of carrying out this method Download PDF

Info

Publication number
JP5046199B2
JP5046199B2 JP2005361747A JP2005361747A JP5046199B2 JP 5046199 B2 JP5046199 B2 JP 5046199B2 JP 2005361747 A JP2005361747 A JP 2005361747A JP 2005361747 A JP2005361747 A JP 2005361747A JP 5046199 B2 JP5046199 B2 JP 5046199B2
Authority
JP
Japan
Prior art keywords
asphalt
container
aggregate
asphalt mixture
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005361747A
Other languages
Japanese (ja)
Other versions
JP2007163351A (en
Inventor
正一 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2005361747A priority Critical patent/JP5046199B2/en
Publication of JP2007163351A publication Critical patent/JP2007163351A/en
Application granted granted Critical
Publication of JP5046199B2 publication Critical patent/JP5046199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working-Up Tar And Pitch (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method that has a removal ratio of asphalt from aggregate and can reuse the separated aggregate and asphalt as a separating method of an asphalt mixture. <P>SOLUTION: The asphalt mixture 2 and water 3 are put into a closed vessel 1, the temperature in the vessel is increased to 300 &deg;C or higher, the pressure is increased to 20 MPa or higher, the asphalt mixture is made to react with water in a subcritical state or super-critical state, then the closed vessel 1 is cooled gradually from its upper part, thereby separating the asphalt mixture into the aggregate and asphalt. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

この発明は、アスファルト混合物を骨材とアスファルトとに分離する方法に関する。   The present invention relates to a method for separating an asphalt mixture into aggregate and asphalt.

道路舗装で使用されるアスファルト混合物は、品質管理上、骨材(砂利や砂)の粒度分布を測定することが義務づけられている。この測定のために、アスファルト混合物を骨材とアスファルトに分離する必要がある。この分離方法として、従来は、アスファルト混合物を溶媒に接触させて、アスファルトを溶媒中に移行させる方法(抽出法)が採用されている。溶媒として以前は1,1,1−トリクロロエタンが用いられていたが、人体や環境に対する安全性への配慮から、最近では柑橘系溶剤が使用されている。しかし、柑橘系溶剤では、アスファルトの種類によっては、良好な抽出結果が得られない場合がある。
そのため、本件の発明者等は、温度が300〜450℃、圧力が30〜45MPaである高温高圧状態の水に、アスファルト混合物を接触させて反応させることで、アスファルトが付着している骨材からアスファルトを除去する研究を行ってきた(下記の非特許文献1および2を参照)。
Asphalt mixtures used in road pavements are required to measure the particle size distribution of aggregates (gravel and sand) for quality control. For this measurement it is necessary to separate the asphalt mixture into aggregate and asphalt. As this separation method, conventionally, a method (extraction method) in which an asphalt mixture is brought into contact with a solvent and the asphalt is transferred into the solvent is employed. In the past, 1,1,1-trichloroethane was used as the solvent, but recently, citrus solvents have been used from the viewpoint of safety for human bodies and the environment. However, with citrus solvents, good extraction results may not be obtained depending on the type of asphalt.
Therefore, the inventors of the present invention are able to contact the asphalt mixture with water in a high temperature and high pressure state at a temperature of 300 to 450 ° C. and a pressure of 30 to 45 MPa, thereby causing the asphalt to adhere to the aggregate. Research has been conducted to remove asphalt (see Non-Patent Documents 1 and 2 below).

秋葉正一、栗谷川裕造、アスファルト混合物のバインダー除去に関する基礎研究、第2回 日本大学生産工学部 学術フロンティア・リサーチ・センター研究発表講演会 講演概要集、日本大学生産工学部生産工学研究所、平成16年8月20日、p.13−14Shoichi Akiba, Yuzo Kuritagawa, Basic research on binder removal of asphalt mixture, 2nd Nihon University College of Production Engineering, Academic Frontier Research Center Research Presentation Lectures, Nihon University College of Production Engineering, Institute of Industrial Science, 2004 August 20, p. 13-14 秋葉正一、栗谷川裕造、アスファルト混合物のバインダー除去に関する基礎研究(その2)、第3回 日本大学生産工学部 学術フロンティア・リサーチ・センター研究発表講演会 講演概要集、日本大学生産工学部生産工学研究所、平成17年3月18日、p.11−12Shoichi Akiba, Yuzo Kuriyagawa, Basic research on binder removal of asphalt mixture (Part 2), 3rd Nihon University College of Production Engineering, Academic Frontier Research Center, Lecture Summary, Institute of Industrial Science, Nihon University , March 18, 2005, p. 11-12

しかしながら、上記各文献に記載された方法では、アスファルトの骨材からの除去率が不十分である。また、アスファルト混合物を骨材とアスファルトとに分離して、両者を共に再利用できるようにするという点で改善の余地がある。
本発明の課題は、アスファルト混合物の分離方法として、アスファルトの骨材からの除去率が高く、分離された骨材とアスファルトが共に再利用できる方法を提供することである。
However, in the methods described in the above documents, the removal rate of asphalt from the aggregate is insufficient. There is also room for improvement in that the asphalt mixture is separated into aggregate and asphalt so that both can be reused together.
An object of the present invention is to provide a method for separating an asphalt mixture, in which the removal rate of asphalt from aggregate is high and the separated aggregate and asphalt can be reused together.

上記課題を解決するために、本発明は、アスファルトと骨材との混合物であるアスファルト混合物と水を密閉容器に入れて、容器内の温度を300℃以上、圧力を20MPa以上にすることで、亜臨界状態または超臨界状態の水とアスファルト混合物を反応させた後に、前記容器の上部から段階的に冷却することにより、アスファルト混合物を骨材とアスファルトとに分離することを特徴とするアスファルト混合物の分離方法を提供する。 In order to solve the above-mentioned problems, the present invention puts an asphalt mixture that is a mixture of asphalt and aggregate and water into a sealed container, and sets the temperature in the container to 300 ° C. or more and the pressure to 20 MPa or more. An asphalt mixture characterized by separating the asphalt mixture into aggregate and asphalt by reacting the subcritical or supercritical water with the asphalt mixture and then cooling in stages from the top of the vessel . A separation method is provided.

本発明の方法によれば、容器内の温度を300℃以上、圧力を20MPa以上にして反応させることで、アスファルトを骨材からほぼ完全に除去することができる。ストレートアスファルトの場合には、特に、温度400℃、圧力20MPaの条件が好ましい。
本発明の方法においては、前記冷却を前記容器の上部から段階的に行うことにより、冷却後の容器内でアスファルトが水面に浮いた状態になるため、アスファルトを容易に回収できる。
なお、本発明の方法を、容器内に、冷却時にアスファルトを付着させる部材(金網など)を、この部材の面が水面の位置になるように設置して行えば、この部材の面に、冷却後に水面に浮いたアスファルトが付着するため、アスファルトの回収を更に容易にすることができる。
According to the method of the present invention, the asphalt can be almost completely removed from the aggregate by reacting at a temperature in the container of 300 ° C. or higher and a pressure of 20 MPa or higher. In the case of straight asphalt, the conditions of a temperature of 400 ° C. and a pressure of 20 MPa are particularly preferable.
In the method of the present invention, by performing the cooling stepwise from the upper part of the container, the asphalt floats on the water surface in the cooled container, so that the asphalt can be easily recovered.
In addition, if the method of the present invention is carried out by installing a member (such as a wire mesh) for attaching asphalt during cooling so that the surface of this member is at the surface of the water surface, the surface of this member is cooled. Since asphalt that floats on the water surface later adheres, the recovery of asphalt can be further facilitated.

本発明はまた、内部の温度を300℃以上に、圧力を20MPa以上に保持でき、内部の温度を検出できるように構成された密閉容器と、この容器を段階的に昇降する昇降装置と、この容器を上側から入れて加熱する加熱装置と、前記容器の冷却装置と、を備えたことを特徴とするアスファルト混合物の分離装置を提供する。
本発明の装置によれば、本発明の方法を容易に実施することができる。
本発明の装置においては、前記容器の蓋の内側に、冷却時にアスファルトを付着させる部材を有することで、冷却後の容器内でアスファルトが前記部材に付着した状態となるため、アスファルトを容易に回収できる。
The present invention also includes an airtight container configured to be able to maintain an internal temperature of 300 ° C. or higher, a pressure of 20 MPa or higher, and to detect the internal temperature, an elevating device that raises and lowers the container in stages, There is provided an asphalt mixture separation device comprising: a heating device that heats a container from above; and a cooling device for the container.
According to the apparatus of the present invention, the method of the present invention can be easily performed.
In the apparatus of the present invention, asphalt adheres to the member in the cooled container by having a member that adheres asphalt during cooling inside the lid of the container, so that the asphalt can be easily recovered. it can.

本発明によれば、アスファルトを骨材からほぼ完全に除去することができ、特に、冷却を容器の上部から段階的に行うことによりアスファルトの回収が容易になるため、分離された骨材とアスファルトを共に再利用できるようになる。   According to the present invention, asphalt can be almost completely removed from the aggregate. In particular, since the asphalt can be easily recovered by performing cooling stepwise from the upper part of the container, the separated aggregate and asphalt are separated. Can be reused together.

以下、本発明の実施形態について説明する。
図1〜3は、この実施形態の「アスファルト混合物の分離方法」の各工程を説明する図である。
この方法では、先ず、図1(A)に示すように、密閉容器1にアスファルト混合物2と水3を入れて密閉する。この密閉容器1は、SUS316L製で、内容積が885cm3 であり、450℃で使用可能であり、許容圧力が45MPaである。
Hereinafter, embodiments of the present invention will be described.
1-3 is a figure explaining each process of the "separation method of an asphalt mixture" of this embodiment.
In this method, first, asphalt mixture 2 and water 3 are put in a sealed container 1 and sealed as shown in FIG. This sealed container 1 is made of SUS316L, has an internal volume of 885 cm 3 , can be used at 450 ° C., and has an allowable pressure of 45 MPa.

この密閉容器1は、上部にフランジ11aを有する円筒状の本体11と、蓋12と、ボルト13からなる。本体11のフランジ11aと蓋12の外縁部にボルト穴が形成され、ここにボルト13を締結することで、蓋12が本体11に固定される。この密閉容器1の内部の温度を検出するための棒状の熱電対14が、蓋12の中心を貫通して固定されている。蓋12の上面には、鎖の両端を固定する一対の円環15が固定されている。また、蓋12の外側に、熱電対14のケーブル16が延びている。   The hermetic container 1 includes a cylindrical main body 11 having a flange 11 a at the top, a lid 12, and bolts 13. Bolt holes are formed in the flange 11 a of the main body 11 and the outer edge of the lid 12, and the lid 12 is fixed to the main body 11 by fastening the bolt 13 therein. A rod-shaped thermocouple 14 for detecting the temperature inside the sealed container 1 is fixed through the center of the lid 12. A pair of circular rings 15 for fixing both ends of the chain are fixed to the upper surface of the lid 12. Further, the cable 16 of the thermocouple 14 extends outside the lid 12.

次に、図1(B)に示すように、円環15に鎖41の両端を固定して、鎖41にクレーンのフック42を掛けて密閉容器1を吊り上げ、加熱槽5の上側まで移動した後、密閉容器1を降下させて加熱槽5内に入れる。
この加熱槽5は、耐圧硝子工業(株)製のソルトバス「TSC−600」であり、ヒーター51と攪拌機52を備え、ここでは溶融塩として硝酸カリウム53が入っている。この加熱槽5は、ヒーター51と攪拌機52の稼働により、温度安定度±0.5℃で、温度を300〜600℃に保持できる。この加熱槽5の硝酸カリウム53に、密閉容器1の本体11がフランジ11aの部分まで浸っている状態とする。
Next, as shown in FIG. 1 (B), both ends of the chain 41 are fixed to the ring 15, and the closed container 1 is lifted by hanging the crane hook 42 on the chain 41 and moved to the upper side of the heating tank 5. Then, the sealed container 1 is lowered and placed in the heating tank 5.
The heating tank 5 is a salt bath “TSC-600” manufactured by Pressure Glass Industrial Co., Ltd., and includes a heater 51 and a stirrer 52, and here contains potassium nitrate 53 as a molten salt. The heating tank 5 can maintain a temperature of 300 to 600 ° C. with a temperature stability of ± 0.5 ° C. by operating the heater 51 and the stirrer 52. The main body 11 of the sealed container 1 is immersed in the potassium nitrate 53 of the heating tank 5 up to the flange 11a.

次に、ヒーター51と攪拌機52を稼働させて加熱槽5の温度を上昇させる。これにより、密閉容器1内の温度が上昇するため、密閉容器1内の温度を熱電対14で常時測定する。密閉容器1内の圧力は、密閉容器1内の温度と、密閉容器1の内容積と、密閉容器1に入れた水の質量(仕込み量)とで決まる。
この密閉容器1の場合は、内容積が885cm3 であるため、圧力と温度と水の仕込み量(g)との関係は、表1に示すようになる。例えば、密閉容器1内の温度を400℃にして圧力を30MPaにするためには、368.18gの水を密閉容器1に入れる。
なお、表1において、温度375℃以上且つ圧力25MPa以上の領域が超臨界領域であり、それ以外の領域が亜臨界領域である。
Next, the heater 51 and the stirrer 52 are operated to raise the temperature of the heating tank 5. Thereby, since the temperature in the airtight container 1 rises, the temperature in the airtight container 1 is always measured with the thermocouple 14. The pressure in the hermetic container 1 is determined by the temperature in the hermetic container 1, the inner volume of the hermetic container 1, and the mass of the water contained in the hermetic container 1 (the amount charged).
In the case of the sealed container 1, since the internal volume is 885 cm 3 , the relationship between the pressure, the temperature, and the charged amount of water (g) is as shown in Table 1. For example, in order to set the temperature in the sealed container 1 to 400 ° C. and the pressure to 30 MPa, 368.18 g of water is put into the sealed container 1.
In Table 1, the region where the temperature is 375 ° C. or higher and the pressure is 25 MPa or higher is the supercritical region, and the other region is the subcritical region.

Figure 0005046199
Figure 0005046199

密閉容器1内の温度が設定温度に到達したら、クレーンを稼働させて、図1(C)に示すように、フック42および鎖41により密閉容器1を吊り上げ、密閉容器1の一部(例えば下側の1/3程度)が硝酸カリウム53に浸っている状態とし、所定時間(例えば10分間)保持することにより、密閉容器1の上側部分のみを冷却する。   When the temperature in the sealed container 1 reaches the set temperature, the crane is operated, and the sealed container 1 is lifted by the hook 42 and the chain 41 as shown in FIG. Only about the upper part of the hermetic container 1 is cooled by maintaining a predetermined time (for example, 10 minutes).

次に、クレーンを稼働させて、図2(A)に示すように、フック42および鎖41により密閉容器1を吊り上げ、密閉容器1全体を加熱槽の外部に出して、空冷装置の送風管6から室温の空気を所定時間(例えば10分間)吹きつけることにより、密閉容器1の上側部分を冷却する。
次に、図2(B)に示すように、密閉容器1の下にタライ等の容器7を置いて、水冷装置の送水管8から、密閉容器1の上側に向けて水を掛ける。これにより、密閉容器1の上側から順に温度が下がるように冷却する。
Next, the crane is operated, and as shown in FIG. 2A, the sealed container 1 is lifted by the hook 42 and the chain 41, the entire sealed container 1 is taken out of the heating tank, and the blower pipe 6 of the air-cooling device. Then, air at room temperature is blown for a predetermined time (for example, 10 minutes) to cool the upper portion of the sealed container 1.
Next, as shown in FIG. 2 (B), a container 7 such as a talai is placed under the sealed container 1 and water is poured from the water supply pipe 8 of the water cooling device toward the upper side of the sealed container 1. Thereby, it cools so that temperature may fall in order from the upper side of the airtight container 1. FIG.

次に、密閉容器1内の温度が室温と同じになった時点で、ボルト13を外して本体11から蓋12を外す。この状態で、密閉容器1内は、図3に示すように、アスファルト混合物が分離されて、骨材21が下に沈み、アスファルト22が水面に浮いた状態になる。
次に、水面に浮いているアスファルト22を棒材等で回収した後に、密閉容器1の内容物を出す。密閉容器1の内容物は骨材21と水であるため、水を乾燥させることで骨材21が回収できる。したがって、分離された骨材21とアスファルト22を共に再利用することができる。
Next, when the temperature in the sealed container 1 becomes the same as the room temperature, the bolt 13 is removed and the lid 12 is removed from the main body 11. In this state, as shown in FIG. 3, the asphalt mixture is separated in the sealed container 1, the aggregate 21 sinks downward, and the asphalt 22 floats on the water surface.
Next, after collecting the asphalt 22 floating on the water surface with a bar or the like, the contents of the sealed container 1 are taken out. Since the contents of the sealed container 1 are the aggregate 21 and water, the aggregate 21 can be recovered by drying the water. Therefore, the separated aggregate 21 and asphalt 22 can be reused together.

なお、図4に示すように、密閉容器1の中に、脚91の付いた円板状の金網9を、金網9の面が水面に合うようにして入れると、冷却後に、この金網9にアスファルトが付着した状態となる。よって、この場合には、図1の場合よりも、アスファルトを容易に回収できる。
また、図5に示すように、密閉容器1の蓋12として、ステンレス板をU字状に成形した部材12aを内側に固定したものを用いると、冷却後に、この部材12aにアスファルトが付着する。よって、この場合には、図1の場合よりも、アスファルトを容易に回収できる。
As shown in FIG. 4, when a disk-shaped wire mesh 9 with legs 91 is placed in the sealed container 1 so that the surface of the wire mesh 9 matches the water surface, after cooling, Asphalt is attached. Therefore, in this case, asphalt can be collected more easily than in the case of FIG.
Further, as shown in FIG. 5, when a lid 12 of the sealed container 1 having a U-shaped member 12a fixed on the inside is used, asphalt adheres to the member 12a after cooling. Therefore, in this case, asphalt can be collected more easily than in the case of FIG.

また、図1(B)の状態で密閉容器1内の温度が設定温度に到達した後に、図1(C)の工程を経ずに、密閉容器1の全体を加熱槽5から上昇させて一気に冷却した場合には、密閉容器1の底に骨材が沈み、アスファルトが水に融けた状態となる。この場合には、骨材の表面にアスファルトが付着しているため、骨材を溶剤で洗浄した後に、粒度測定を行う必要がある。
この実施形態において、フック42および鎖41と図示されないクレーンが、本発明の昇降装置に相当する。ヒーター51と攪拌機52を備え、溶融塩として硝酸カリウム53が入っている加熱槽5が、本発明の加熱装置に相当する。送風管6を含む空冷装置と送水管8を含む水冷装置が、本発明の冷却装置に相当する。
Moreover, after the temperature in the airtight container 1 reaches the set temperature in the state of FIG. 1B, the entire airtight container 1 is raised from the heating tank 5 without going through the process of FIG. When cooled, the aggregate sinks to the bottom of the sealed container 1 and the asphalt is melted in water. In this case, since asphalt adheres to the surface of the aggregate, it is necessary to measure the particle size after washing the aggregate with a solvent.
In this embodiment, the hook 42 and the chain 41 and the crane not shown correspond to the lifting device of the present invention. The heating tank 5 provided with a heater 51 and a stirrer 52 and containing potassium nitrate 53 as a molten salt corresponds to the heating device of the present invention. The air cooling device including the blower pipe 6 and the water cooling device including the water supply pipe 8 correspond to the cooling device of the present invention.

実施形態に記載された方法で実際にアスファルト混合物を分離した例について以下に説明する。
先ず、下記の3種類のアスファルトと下記の骨材を下記の方法でそれぞれ混合して、試験用のアスファルト混合物No. 1〜3を調合した。
<アスファルト>
ストレートアスファルト:昭和シェル(株)製の「ストレートアスファルト60−80」
改質II型アスファルト:ニチレキ(株)製の「ポリファルトSS」
高粘度アスファルト:東亜道路工業(株)製の「パーミバインダー」
An example in which the asphalt mixture is actually separated by the method described in the embodiment will be described below.
First, the following three types of asphalt and the following aggregates were mixed by the following method to prepare test asphalt mixtures Nos. 1 to 3.
<Asphalt>
Straight asphalt: "Straight asphalt 60-80" manufactured by Showa Shell Co., Ltd.
Modified type II asphalt: "Polyphalt SS" manufactured by Nichireki Co., Ltd.
High viscosity asphalt: “Perm Binder” manufactured by Toa Road Industry Co., Ltd.

<骨材成分>
6号砕石:栃木県産硬質砂岩、粒径4.75〜13mm
7号砕石:栃木県産硬質砂岩、粒径4.75〜2.36mm
砕砂:栃木県産硬質砂岩、粒径0.075〜2.36mm
粗目砂:茨城県産洗砂、粒径0.075〜2.36mm
細目砂:茨城県産洗砂、粒径0.075〜2.36mm
石粉(石灰岩微粉末):秩父石灰工業(株)製タンカル「TB149」、粒径0.075mm以下
<骨材の配合比>
骨材の組成(質量比):6号砕石36.5%、7号砕石22%、砕砂26.5%、粗目砂5.5%、細目砂4%、石粉5.5%。
<Aggregate component>
No. 6 crushed stone: Hard sandstone from Tochigi Prefecture, particle size 4.75-13mm
No. 7 crushed stone: Hard sandstone from Tochigi Prefecture, particle size 4.75-2.36mm
Crushed sand: Hard sandstone from Tochigi prefecture, particle size 0.075-2.36mm
Coarse sand: Washed sand produced in Ibaraki, particle size 0.075-2.36mm
Fine sand: Washed sand from Ibaraki Prefecture, particle size 0.075-2.36mm
Stone powder (limestone fine powder): Tancar “TB149” manufactured by Chichibu Lime Industry Co., Ltd., particle size 0.075 mm or less <mixing ratio of aggregate>
Composition (mass ratio) of aggregate: No. 6 crushed stone 36.5%, No. 7 crushed stone 22%, crushed sand 26.5%, coarse sand 5.5%, fine sand 4%, stone powder 5.5%.

<アスファルトと骨材の混合方法>
骨材281.36gと170℃に加熱したストレートアスファルト16.38gを、ミキサーに入れて170℃で混合することにより、ストレートアスファルトを5.5質量%含有するNo. 1のアスファルト混合物297.74gを得た。
骨材281.89gと175℃に加熱した改質II型アスファルト16.41gを、ミキサーに入れて175℃で混合することにより、改質II型アスファルトを5.5質量%含有するNo. 2のアスファルト混合物298.30gを得た。
骨材282.11gと175℃に加熱した高粘度アスファルト16.42gを、ミキサーに入れて175℃で混合することにより、高粘度アスファルトを5.5質量%含有するNo. 3のアスファルト混合物298.53gを得た。
<Method of mixing asphalt and aggregate>
By mixing 281.36 g of aggregate and 16.38 g of straight asphalt heated to 170 ° C. at 170 ° C., 297.74 g of No. 1 asphalt mixture containing 5.5% by mass of straight asphalt was obtained. Obtained.
No. 2 containing 5.5% by mass of modified type II asphalt by mixing 281.89 g of aggregate and 16.41 g of modified type II asphalt heated to 175 ° C. in a mixer at 175 ° C. Asphalt mixture 298.30 g was obtained.
By mixing 282.11 g of aggregate and 16.42 g of high-viscosity asphalt heated to 175 ° C. at 175 ° C. in a mixer, No. 3 asphalt mixture containing 5.5% by mass of high-viscosity asphalt 298. 53 g were obtained.

次に、このようにして得られたNo. 1〜3のアスファルト混合物を用いて、下記の方法で分離試験を行った。
先ず、得られた約300gの各アスファルト混合物から150gを密閉容器1に入れた後に、純水を368g入れて、図1(A)の状態にする。この仕込み水量368gは、表1の「温度を400℃とした時に密閉容器1内の圧力が30MPaになる」ための水の量に相当する。
Next, the separation test was conducted by the following method using the asphalt mixture of Nos. 1 to 3 thus obtained.
First, 150 g of the obtained asphalt mixture of about 300 g is put into the sealed container 1 and then 368 g of pure water is put into the state shown in FIG. This amount of charged water 368 g corresponds to the amount of water for “the pressure in the sealed container 1 becomes 30 MPa when the temperature is 400 ° C.” in Table 1.

次に、加熱槽5のスイッチを入れて、硝酸カリウム53の温度を450℃まで上昇させて、この温度を保持する。この状態で、図1(B)に示すように、加熱槽5内に密閉容器1を入れ、密閉容器1内の温度が400℃になるまで待つ。密閉容器1内の温度が400℃になったら、図1(C)に示すように、密閉容器1を吊り上げて、密閉容器1の下側の1/3程度が硝酸カリウム53に浸っている状態とし、密閉容器1内の温度が350℃となるまでこの状態を保持する。   Next, the heating tank 5 is turned on, the temperature of the potassium nitrate 53 is raised to 450 ° C., and this temperature is maintained. In this state, as shown in FIG. 1 (B), the sealed container 1 is placed in the heating tank 5 and waits until the temperature in the sealed container 1 reaches 400 ° C. When the temperature in the sealed container 1 reaches 400 ° C., as shown in FIG. 1C, the sealed container 1 is lifted so that about 1/3 of the lower side of the sealed container 1 is immersed in potassium nitrate 53. This state is maintained until the temperature in the sealed container 1 reaches 350 ° C.

次に、図2(A)に示すように、密閉容器1を吊り上げ、密閉容器1全体を加熱槽の外部に出して、空冷装置の送風管6から室温の空気を吹きつけて、密閉容器1内の温度を250℃まで下げる。次に、図2(B)に示すように、密閉容器1の下に容器7を置いて、水冷装置の送水管8から、密閉容器1の上側に向けて水道水を掛け、約10分で密閉容器1内の温度を室温まで下げる。   Next, as shown in FIG. 2 (A), the sealed container 1 is lifted, the entire sealed container 1 is taken out of the heating tank, and air at room temperature is blown from the blower pipe 6 of the air-cooling device. Lower the temperature to 250 ° C. Next, as shown in FIG. 2 (B), the container 7 is placed under the sealed container 1, and tap water is poured from the water supply pipe 8 of the water cooling device toward the upper side of the sealed container 1, and in about 10 minutes. The temperature in the sealed container 1 is lowered to room temperature.

次に、密閉容器1内の温度が室温と同じになった時点で、ボルト13を外して本体11から蓋12を外す。この状態で、No. 1〜3のいずれの場合も、密閉容器1内は、図3に示すように、アスファルト混合物が分離されて、骨材21が下に沈み、アスファルト22が水面に浮いた状態になっていて、水は透明であった。
次に、水面に浮いているアスファルト22を棒材で回収した後に、密閉容器1の内容物を出し、水を切って骨材21を回収した。次に、回収した骨材を炉に入れて乾燥させた後、質量を測定した。また、分離前のアスファルト混合物の質量から、回収した骨材の質量を差し引いた値を、「アスファルトの質量」とした。
Next, when the temperature in the sealed container 1 becomes the same as the room temperature, the bolt 13 is removed and the lid 12 is removed from the main body 11. In this state, as shown in FIG. 3, in any case of No. 1 to No. 1-3, asphalt mixture is separated, aggregate 21 sinks down, and asphalt 22 floats on the water surface as shown in FIG. The water was clear and the water was clear.
Next, after collecting the asphalt 22 floating on the water surface with a rod, the contents of the sealed container 1 were taken out, the water was cut off, and the aggregate 21 was collected. Next, the collected aggregate was put into a furnace and dried, and then the mass was measured. Further, a value obtained by subtracting the mass of the recovered aggregate from the mass of the asphalt mixture before separation was defined as “mass of asphalt”.

以上の工程を、残りの各アスファルト混合物についても行い、回収して乾燥させた骨材をそれぞれ混合した後、篩分けを行って粒度を測定した。その結果を下記の表2と図5のグラフに示す。
また、分離後の骨材の質量(2回分の合計)は、No. 1で281.38g、No. 2で281.90g、No. 3で281.20gであり、アスファルトの質量(2回分の合計)は、No. 1で16.36g、No. 2で16.40g、No. 3で17.33gであった。その結果、分離後の「骨材+アスファルト」に対するアスファルトの含有率は、No. 1で5.49質量%、No. 2で5.50質量%、No. 3で5.81質量%であった。
品質管理基準でアスファルト含有率は、設定値に対して±0.9%以内の範囲であれば合格となるが、この結果では、アスファルト混合物のアスファルト含有率5.5質量%との差が、No. 1で「0.01%」、No. 2で「0」、No. 3で「0.31%」となっている。
The above steps were performed for each remaining asphalt mixture, and the aggregates collected and dried were mixed, and then sieved to measure the particle size. The results are shown in Table 2 below and the graph of FIG.
The mass of aggregate after separation (total of 2 times) was 281.38 g for No. 1, 281.90 g for No. 2, and 281.20 g for No. 3, and the mass of asphalt (for 2 times) The total) was 16.36 g for No. 1, 16.40 g for No. 2, and 17.33 g for No. 3. As a result, the asphalt content relative to “aggregate + asphalt” after separation was 5.49% by mass for No. 1, 5.50% by mass for No. 2, and 5.81% by mass for No. 3. It was.
In the quality control standard, the asphalt content is acceptable if it is within ± 0.9% of the set value. In this result, the difference from the asphalt content of 5.5% by mass of the asphalt mixture is No. 1 is “0.01%”, No. 2 is “0”, and No. 3 is “0.31%”.

Figure 0005046199
Figure 0005046199

品質管理基準では、骨材の粒度が「粒径2.3mm以下で設定値の±12%以内、粒径0.075mm以下で設定値の±5%以内」の範囲であれば合格となるが、表2の結果では、アスファルト混合物に配合した骨材と、分離試験後の骨材との差が、粒径2.36mm以下で「1.46%(No. 1)、1.15%(No. 2)、1.06%(No. 3)」、粒径0.075mm以下で「1.29%(No. 1)、1.00%(No. 2)、0.65%(No. 3)」となっている。
これらの結果から分かるように、この実施例の分離方法によれば、ストレートアスファルト、改質II型アスファルト、および高粘度アスファルトのいずれの場合でも、アスファルトを骨材からほぼ完全に除去することができるとともに、十分な精度で骨材の粒度分布を測定することができる。
According to the quality control standard, if the aggregate particle size is within the range of “± 12% of the set value when the particle size is 2.3 mm or less, and within ± 5% of the set value when the particle size is 0.075 mm or less”, it is acceptable. In the results of Table 2, the difference between the aggregate blended in the asphalt mixture and the aggregate after the separation test is “1.46% (No. 1), 1.15% (No. 1) when the particle size is 2.36 mm or less. “No. 2), 1.06% (No. 3)”, “1.29% (No. 1), 1.00% (No. 2), 0.65% (No. 3) ”.
As can be seen from these results, according to the separation method of this example, asphalt can be almost completely removed from the aggregate in any of straight asphalt, modified type II asphalt, and high viscosity asphalt. At the same time, the particle size distribution of the aggregate can be measured with sufficient accuracy.

実施形態の「アスファルト混合物の分離方法」の各工程を説明する図である。It is a figure explaining each process of the "separation method of asphalt mixture" of embodiment. 実施形態の「アスファルト混合物の分離方法」の各工程を説明する図である。It is a figure explaining each process of the "separation method of asphalt mixture" of embodiment. 実施形態の「アスファルト混合物の分離方法」により、容器内でアスファルトと骨材が分離されている状態を示す図である。It is a figure which shows the state by which the asphalt and the aggregate are isolate | separated within the container by the "separation method of asphalt mixture" of embodiment. 「冷却時にアスファルトを付着させる部材」として金網を密閉容器に入れた例を示す図である。It is a figure which shows the example which put the metal mesh in the airtight container as "the member which makes asphalt adhere at the time of cooling." 「冷却時にアスファルトを付着させる部材」を有する密閉容器の蓋の一例を示す図である。It is a figure which shows an example of the lid | cover of an airtight container which has "the member which makes asphalt adhere at the time of cooling." 実施例で、アスファルト混合物に配合した骨材の粒度と、各アスファルト混合物を分離して得られた骨材の粒度を示すグラフである。In an Example, it is a graph which shows the particle size of the aggregate mix | blended with the asphalt mixture, and the particle size of the aggregate obtained by isolate | separating each asphalt mixture.

符号の説明Explanation of symbols

1 密閉容器
11 本体
11a フランジ
12 蓋
12a U字状部材(冷却時にアスファルトを付着させる部材)
13 ボルト
14 熱電対
15 円環
16 熱電対のケーブル
2 アスファルト混合物
21 骨材
22 アスファルト
3 水
41 鎖(昇降装置)
42 クレーンのフック(昇降装置)
5 加熱槽(加熱装置)
51 ヒーター
52 攪拌機
53 硝酸カリウム
6 空冷装置の送風管(冷却装置)
7 容器
8 水冷装置の送水管(冷却装置)
9 金網(冷却時にアスファルトを付着させる部材)
91 金網の脚
DESCRIPTION OF SYMBOLS 1 Airtight container 11 Main body 11a Flange 12 Lid 12a U-shaped member (member which makes asphalt adhere at the time of cooling)
13 Volts 14 Thermocouple 15 Ring 16 Thermocouple Cable 2 Asphalt Mixture 21 Aggregate 22 Asphalt 3 Water 41 Chain (Elevator)
42 Crane hook (lifting device)
5 Heating tank (heating device)
51 Heater 52 Stirrer 53 Potassium Nitrate 6 Air Cooling Device Blower Pipe (Cooling Device)
7 Container 8 Water cooling pipe (cooling device)
9 Wire mesh (member to attach asphalt during cooling)
91 Wire mesh legs

Claims (3)

アスファルトと骨材との混合物であるアスファルト混合物と水を密閉容器に入れて、容器内の温度を300℃以上、圧力を20MPa以上にすることで、亜臨界状態または超臨界状態の水とアスファルト混合物を反応させた後に、前記容器の上部から段階的に冷却することにより、アスファルト混合物を骨材とアスファルトとに分離することを特徴とするアスファルト混合物の分離方法。 Asphalt mixture, which is a mixture of asphalt and aggregate, and water are put into a closed container, and the temperature in the container is set to 300 ° C. or higher and the pressure is set to 20 MPa or higher, so that the water and asphalt mixture in the subcritical state or supercritical state are mixed. After the reaction, the asphalt mixture is separated into aggregate and asphalt by cooling stepwise from the upper part of the container . 内部の温度を300℃以上に、圧力を20MPa以上に保持でき、内部の温度を検出できるように構成された密閉容器と、この容器を段階的に昇降する昇降装置と、この容器を上側から入れて加熱する加熱装置と、前記容器の冷却装置と、を備え、
前記容器の蓋の内側にU字状部材が固定されていることを特徴とするアスファルト混合物の分離装置
A sealed container configured to be able to maintain the internal temperature at 300 ° C or higher, the pressure at 20 MPa or higher, and detect the internal temperature, a lifting device for raising and lowering the container in stages, and inserting the container from the upper side A heating device that heats the container and a cooling device for the container,
Separation device characteristics and to luer asphalt mixture that inside the U-shaped member of the lid of the container is fixed.
内部の温度を300℃以上に、圧力を20MPa以上に保持でき、内部の温度を検出できるように構成された密閉容器と、この容器を段階的に昇降する昇降装置と、この容器を上側から入れて加熱する加熱装置と、前記容器の冷却装置と、を備え
前記容器内に配置される金網をさらに備え、
前記金網は、この金網の面が前記容器内の水面に合うように設置されることを特徴とするアスファルト混合物の分離装置
A sealed container configured to be able to maintain the internal temperature at 300 ° C or higher, the pressure at 20 MPa or higher, and detect the internal temperature, a lifting device for raising and lowering the container in stages, and inserting the container from the upper side A heating device that heats the container and a cooling device for the container ,
Further comprising a wire mesh disposed in the container,
The asphalt mixture separation device , wherein the wire mesh is installed so that a surface of the wire mesh is aligned with a water surface in the container .
JP2005361747A 2005-12-15 2005-12-15 Method for separating asphalt mixture and apparatus capable of carrying out this method Expired - Fee Related JP5046199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361747A JP5046199B2 (en) 2005-12-15 2005-12-15 Method for separating asphalt mixture and apparatus capable of carrying out this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361747A JP5046199B2 (en) 2005-12-15 2005-12-15 Method for separating asphalt mixture and apparatus capable of carrying out this method

Publications (2)

Publication Number Publication Date
JP2007163351A JP2007163351A (en) 2007-06-28
JP5046199B2 true JP5046199B2 (en) 2012-10-10

Family

ID=38246408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361747A Expired - Fee Related JP5046199B2 (en) 2005-12-15 2005-12-15 Method for separating asphalt mixture and apparatus capable of carrying out this method

Country Status (1)

Country Link
JP (1) JP5046199B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812585B2 (en) * 2010-08-24 2015-11-17 常盤工業株式会社 Method for promoting exfoliation of asphalt mixture
CN108693067A (en) * 2018-07-16 2018-10-23 西安公路研究院 A kind of assay method of asphalt from asphalt mixture content and bitumen aggregate ratio
JP7086389B2 (en) * 2018-08-06 2022-06-20 学校法人日本大学 How to regenerate asphalt
JP6742011B1 (en) * 2020-01-29 2020-08-19 前田道路株式会社 Aggregate supply optimization system for asphalt mixture and aggregate supply optimization method
JP6738079B1 (en) * 2020-03-26 2020-08-12 前田道路株式会社 Asphalt mixture component information estimation system, asphalt plant, and asphalt mixture component information estimation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154796B2 (en) * 1999-04-06 2008-09-24 株式会社Ihi Waste roadbed material processing method and apparatus

Also Published As

Publication number Publication date
JP2007163351A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5046199B2 (en) Method for separating asphalt mixture and apparatus capable of carrying out this method
JP6559486B2 (en) Sample preparation for XRF using flux and platinum crucible
BRPI0615826A2 (en) method of processing a starting material in the form of residual raw metallurgical slag
JPH01275451A (en) Filler containing grains of mn3o4
CA2775154C (en) Method and reactor for treating bulk material containing carbon
Heo et al. Crystallization and vitrification behavior of CaO-SiO2-FetO-Al2O3 slag: Fundamentals to use mineral wastes in production of glass ball
Ajibade et al. Bacteria removal efficiency data and properties of Nigerian clay used as a household ceramic water filter
JP5232327B2 (en) Method for packaging radioactive waste in synthetic rock form
CN107671108A (en) Curing for hazardous waste
RU2015132828A (en) CONTAINING TITANIUM FILLER, METHOD FOR ITS MANUFACTURE, AND ITS APPLICATION
Lis et al. Determination of physical and chemical properties of electric arc furnace dusts for the purposes of their utilization
NO142353B (en) PROCEDURE FOR THE MANUFACTURING OF ANIMALS FOR DRILLING FLUIDS.
EP2669392A1 (en) Process for production of ore slurry
Dildin et al. Process improvement for liquidphase metal reduction from steelmaking dump slags
CN109207767A (en) A kind of aluminium alloy sodium-free refining agent and preparation method thereof
KR100883633B1 (en) A method for stabilizing and solidifying elemental mercury by sulfur and paraffin
CN106076613B (en) A kind of method recycling iron filings and Al-Fe intermediate alloys obtained
JP2007138063A (en) Asphalt dissolving agent, asphalt amount measuring method and asphalt paving process using the asphalt dissolving agent, modified asphalt composition containing the asphalt dissolving agent and the production method, crack repair process and waterproofing treating process using the modified asphalt composition
NO327763B1 (en) Procedure for cementing gas and oil wells and cement slurry
JP5130487B2 (en) Steelmaking slag treatment method
CN113620630B (en) Method for preparing building aggregate from household garbage incineration slag
KR101159958B1 (en) Manufacturing method for asphalt pavement aggregate using electricfurnace oxidized slag
KR20030079041A (en) Waste treatment method and solidified material obtained by the same method
JP2011235213A (en) Pretreatment method for soil polluted by pcb
RU2276119C2 (en) The raw materials mixture for production of the building structures and articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees