JP5045915B2 - Fullerene fine wires and their aggregates - Google Patents

Fullerene fine wires and their aggregates Download PDF

Info

Publication number
JP5045915B2
JP5045915B2 JP2007228737A JP2007228737A JP5045915B2 JP 5045915 B2 JP5045915 B2 JP 5045915B2 JP 2007228737 A JP2007228737 A JP 2007228737A JP 2007228737 A JP2007228737 A JP 2007228737A JP 5045915 B2 JP5045915 B2 JP 5045915B2
Authority
JP
Japan
Prior art keywords
fullerene
solvent
liquid
alkaline earth
fine wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007228737A
Other languages
Japanese (ja)
Other versions
JP2008038333A (en
Inventor
薫一 宮澤
真久 藤野
唯知 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007228737A priority Critical patent/JP5045915B2/en
Publication of JP2008038333A publication Critical patent/JP2008038333A/en
Application granted granted Critical
Publication of JP5045915B2 publication Critical patent/JP5045915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、フラ−レンを構成要素とする炭素細線とその集合体に関する。 The present invention relates to a carbon fine wire having fullerene as a constituent element and an assembly thereof.

フラーレン細線(フラーレンナノウィスカ、フラーレンナノファイバー)は、内外の研究所、民間企業、大学で最近注目を集めており、開発競争が激化しつつある。 Fullerene fine wires (fullerene nanowhiskers, fullerene nanofibers) have recently attracted attention in domestic and overseas research institutes, private companies, and universities, and development competition is intensifying.

本発明者らは、先に、液−液界面析出法を用いてフラーレン細線を製造する方法を開発した(特許文献1、非特許文献1、非特許文献2)。 The present inventors have previously developed a method for producing fullerene fine wires using a liquid-liquid interface precipitation method (Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2).

この方法は、フラーレンを構成要素とする炭素細線を得るにあたり、(1)フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液−液界面を形成する工程、及び(3)前記液−液界面にて炭素細線を析出させる工程を含む炭素細線の製造方法である。また、本発明者らは、フラーレン細線の成長中に可視光を照射することによって、著しく成長が促進されることを明らかにして来た(非特許文献3)。 In this method, when obtaining a carbon fine wire having fullerene as a constituent element, (1) a solution containing a first solvent in which fullerene is dissolved, and a second solvent having a solubility of fullerene smaller than that of the first solvent A method of producing a carbon fine wire, including a step of combining, (2) a step of forming a liquid-liquid interface between the solution and the second solvent, and (3) a step of depositing a carbon fine wire at the liquid-liquid interface. It is. Moreover, the present inventors have clarified that growth is remarkably promoted by irradiating visible light during the growth of fullerene fine wires (Non-patent Document 3).

特開平2003−1600号公報Japanese Patent Laid-Open No. 2003-1600 K.Miyazawa,Y.Kuwasaki,A.ObayashiandM.Kuwabara,“C60nanowhiskersformedbytheliquid−liquidinterfacialprecipitationmethod”,J.Mater.Res.,17[1](2002)83−88K. Miyazawa, Y .; Kuwasaki, A .; Obayashiand M. et al. Kuubara, “C60 nanohiskers formedbytheliquid-liquid interfacial preprecipitation method”, J. Am. Mater. Res. , 17 [1] (2002) 83-88 宮澤薫一、“フラーレンナノウィスカ”、工業材料,52[1](2004)24−25Junichi Miyazawa, “Fullerene Nanowhiskers”, Industrial Materials, 52 [1] (2004) 24-25 M.Tachibana,K.Kobayashi,T.Uchida,K.Kojima,M.TanimuraandK.Miyazawa,Photo−assistedgrowthandpolymerizationofC60 nano whiskers,ChemicalPhysicsLetters374(2003)279−285M.M. Tachibana, K .; Kobayashi, T .; Uchida, K .; Kojima, M .; Tanimuraa K. Miyazawa, Photo-assisted growth and polymerization of C60 nano whiskers, Chemical Physics Letters 374 (2003) 279-285

長繊維のフラーレン細線は、触媒・フィルター・ガス吸着材料、軽量ナノ配線材料、樹脂複合材料、イオン交換樹脂、フラーレンシェルチューブ用作製材料、発熱細線など幅広い用途がある。
本発明は、これらの用途の実用化を加速するために、長繊維フラーレン細線を提供することを課題とする。
Long fiber fullerene thin wires have a wide range of applications such as catalysts, filters, gas adsorbing materials, lightweight nanowiring materials, resin composite materials, ion exchange resins, fullerene shell tube fabrication materials, and exothermic thin wires.
An object of the present invention is to provide a long fiber fullerene fine wire in order to accelerate the practical use of these applications.

本発明者らは、本発明者らが開発した前記の液−液界面析出法を用いてフラーレン細線を製造する際に、光によって著しくフラーレン細線の成長が促進されることを明らかにしたが、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒に微量なアルカリ金属やアルカリ土類金属元素の添加も、成長に多大の効果をもたらすことを発見した。 The present inventors have clarified that the growth of fullerene fine lines is significantly promoted by light when producing fullerene fine lines using the liquid-liquid interface precipitation method developed by the present inventors. It has been discovered that the addition of a trace amount of an alkali metal or alkaline earth metal element to the second solvent having a lower ability to dissolve fullerene than the first solvent has a great effect on growth.

すなわち、発明1のフラ−レン細線は、フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程と、前記溶液と前記第2溶媒との間に液−液界面を形成する工程と、前記液−液界面にて炭素細線を析出させる工程と、を含み、前記第2溶媒に、アルカリ金属元素、アルカリ土類金属元素、アルカリ金属元素の水酸化物、アルカリ金属アルコキシド、アルカリ土類金属水酸化物、アルカリ土類金属アルコキシド、アルカリ金属元素又はアルカリ土類元素の有機・無機化合物からなる群から選ばれる少なくとも1種を添加する液−液界面析出法を用いて製造されたフラーレン細線であって、フラ−レンを構成要素とする六方晶の炭素細線であって、長さ1mm以上の繊維状であることを特徴とする。
That is, the fullerene fine wire of the invention 1 includes a step of combining a solution containing a first solvent in which fullerene is dissolved with a second solvent having a lower ability to dissolve fullerene than the first solvent, the solution and the A step of forming a liquid-liquid interface with the second solvent and a step of precipitating carbon fine wires at the liquid-liquid interface, wherein the second solvent includes an alkali metal element and an alkaline earth metal element. And at least one selected from the group consisting of alkali metal hydroxides, alkali metal alkoxides, alkaline earth metal hydroxides, alkaline earth metal alkoxides, alkali metal elements or organic / inorganic compounds of alkaline earth elements liquid added - a liquid interface deposition method fullerene thin wires manufactured using, hula - a carbon thin line hexagonal to Ren components, length 1mm or more fibrous And wherein the Rukoto.

発明2は、発明1のフラ−レン細線からなる集合体であって、多数のフラ−レン細線がその長さ方向で相対位置をずらせて凝集した繊維束状であることを特徴とする。   Invention 2 is an aggregate comprising the fullerene fine wires of Invention 1, and is characterized in that a number of fullerene fine wires are aggregated by shifting their relative positions in the length direction.

本発明によって、C60やC70分子等からなる、ミリメートルからセンチメートルオーダーの長さのフラーレン細線を提供することが可能となり、その実用性は大きく促進することができた。 The present invention consists of C 60 and C 70 molecules like, mm it is possible to provide a fullerene thin wires of the length of cm order of, could be its utility is greatly facilitated.

本発明者らが開発した前記の液−液界面析出法は下記のとおりである。フラーレンを構成要素とする炭素細線を得るにあたり、(1)フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液−液界面を形成する工程、及び(3)前記液−液界面にて炭素細線を析出させる工程を含む。 The liquid-liquid interface deposition method developed by the present inventors is as follows. (1) A step of combining a solution containing a first solvent in which fullerene is dissolved with a second solvent having a lower ability to dissolve fullerene than the first solvent in obtaining a carbon fine wire having fullerene as a constituent element. 2) forming a liquid-liquid interface between the solution and the second solvent; and (3) depositing a carbon fine wire at the liquid-liquid interface.

本発明は、前記第2溶媒に、アルカリ金属元素、アルカリ土類金属元素、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属元素の水酸化物、カリウムメトキシドなどのアルカリ金属アルコキシド、水酸化カルシウムなどのアルカリ土類金属水酸化物、アルカリ土類金属アルコキシド、その他のアルカリ金属元素又はアルカリ土類金属元素の有機・無機化合物からなる群から選ばれる少なくとも1種を添加するものである。 In the second solvent, alkali metal element, alkaline earth metal element, hydroxide of alkali metal element such as potassium hydroxide and sodium hydroxide, alkali metal alkoxide such as potassium methoxide, calcium hydroxide, etc. At least one selected from the group consisting of alkaline earth metal hydroxides, alkaline earth metal alkoxides, other alkali metal elements or organic / inorganic compounds of alkaline earth metal elements is added.

好ましい添加濃度は、10−4〜10−7mol/L、好ましい液温は、5℃〜25℃の範囲、好ましい雰囲気は、大気中もしくは不活性ガス中である。長繊維化の最も好ましい条件は、液温が15℃〜25℃、アルカリおよびアルカリ土類金属元素の濃度が、1×10−5mol/L〜1×10−6mol/Lである。前記第2溶媒に、アルカリ金属およびアルカリ土類金属元素を高濃度に添加すると、C60細線が成長できない。 The preferable addition concentration is 10 −4 to 10 −7 mol / L, the preferable liquid temperature is in the range of 5 ° C. to 25 ° C., and the preferable atmosphere is in the air or in an inert gas. The most preferable conditions for the long fiber formation are a liquid temperature of 15 ° C. to 25 ° C. and a concentration of alkali and alkaline earth metal elements of 1 × 10 −5 mol / L to 1 × 10 −6 mol / L. When alkali metal and alkaline earth metal elements are added to the second solvent at a high concentration, C 60 fine wires cannot be grown.

カリウムをKOHの形でイソプロピルアルコールに溶解させて添加した場合、約5×10−3mol/L濃度以上になると、粒子状のC60析出物が生じて、長繊維のC60細線を得ることができない。 When potassium is dissolved in isopropyl alcohol in the form of KOH and added to a concentration of about 5 × 10 −3 mol / L or more, particulate C 60 precipitates are formed, and C 60 fine wires of long fibers are obtained. I can't.

図4のTEM写真に示すように、9.9×10−3mol/L濃度のIPAを用いて、C60のメタキシレン飽和溶液との液−液法により得た析出物は、球状粒子と不定形な棒状の析出物であった。また、10−8mol/L以下の濃度では、濃度が小さすぎて長繊維化をもたらす効果が観察されない。 As shown in the TEM photograph in FIG. 4, the precipitate obtained by the liquid-liquid method with a saturated solution of C 60 metaxylene using IPA having a concentration of 9.9 × 10 −3 mol / L was obtained as spherical particles. It was an amorphous rod-like precipitate. Further, at a concentration of 10 −8 mol / L or less, the concentration is too small, and the effect of causing long fiber formation is not observed.

前記第1溶媒がフラーレンの良溶媒であり、前記第2溶媒がフラーレンの貧溶媒である。前記第1溶媒が非極性溶媒であり、前記第2溶媒が極性溶媒である。前記第1溶媒が炭化水素系溶媒である。前記炭化水素系溶媒が、トルエン、キシレン、ベンゼン、ヘキサン、ペンタン、二硫化炭素及びこれらの誘導体からなる群より選ばれる少なくとも1種の物質からなる。 The first solvent is a good solvent for fullerene, and the second solvent is a poor solvent for fullerene. The first solvent is a nonpolar solvent and the second solvent is a polar solvent. The first solvent is a hydrocarbon solvent. The hydrocarbon solvent is composed of at least one substance selected from the group consisting of toluene, xylene, benzene, hexane, pentane, carbon disulfide, and derivatives thereof.

前記第2溶媒がアルコール系溶媒である。前記アルコール系溶媒が、ペンタノール、ブチルアルコール、イソプロピルアルコール、n−プロピルアルコール、メチルアルコール、エチルアルコール、及び多価アルコールからなる群より選ばれる少なくとも1種のアルコールからなる。前記第1工程で、金属触媒又は金属酸化物触媒を添加するとよい。 The second solvent is an alcohol solvent. The alcohol solvent comprises at least one alcohol selected from the group consisting of pentanol, butyl alcohol, isopropyl alcohol, n-propyl alcohol, methyl alcohol, ethyl alcohol, and polyhydric alcohol. In the first step, a metal catalyst or a metal oxide catalyst may be added.

<水酸化カリウム(KOH)をカリウム源としたときの例>
表1の(a)〜(e)に示す溶液組成でフラーレン細線を成長させた。C60の飽和トルエン(第1溶媒)溶液(約2.2g/L)を、適当な大きさのガラスバイアルビン(望ましくは、容量5mL〜50mL)に注ぎ込み、室温付近(5℃〜25℃)で、ほぼ等量のKOHを溶解したイソプロピルアルコール(第2溶媒)を、ピペットを用いて、静かにビン壁を伝わらせるか、滴下するかして注ぎ込み、C60のメタキシレン溶液とイソプロピルアルコールの液−液界面を形成させた。このガラスビンを室温付近(15℃〜25℃)で、2週間程度以上静置した。この間にC60細線(C60ナノウィスカー)が成長した。以上の方法は、C70細線(C70ナノウィスカー)の作製についても同様に実施した。
<Example when potassium hydroxide (KOH) is used as the potassium source>
Fullerene fine wires were grown with the solution compositions shown in (a) to (e) of Table 1. C 60 in saturated toluene (first solvent) solution (approximately 2.2 g / L) is poured into an appropriately sized glass vial (preferably 5 mL to 50 mL) and near room temperature (5 ° C. to 25 ° C.). Then, isopropyl alcohol (second solvent) in which approximately the same amount of KOH was dissolved was gently transferred along the bottle wall or dropped by using a pipette, and poured into a solution of C 60 metaxylene and isopropyl alcohol. A liquid-liquid interface was formed. The glass bottle was allowed to stand at about room temperature (15 ° C. to 25 ° C.) for about 2 weeks or more. During this time, C 60 fine wires (C 60 nanowhiskers) grew. Above process was carried out similarly for manufacturing the C 70 thin line (C 70 nanowhiskers).

10−3mol/L濃度のKOHを溶質としたIPAの系では、C60細線が成長しなかったが、10−5〜10−6mol/L濃度のKOH−IPAの系では、著しく長く成長したC60細線が得られた。CHOKを微量添加した(f)と(g)においても、長繊維のC60細線が育成された。微量のKOHを添加した(d)と(e)では、長繊維のC70細線が育成された。 In the IPA system in which 10 −3 mol / L concentration of KOH was used as the solute, C 60 fine wires did not grow, but in the 10 −5 to 10 −6 mol / L concentration of KOH-IPA system, the growth was significantly longer. C 60 fine wire was obtained. Also in (f) and (g) to which a small amount of CH 3 OK was added, C 60 fine wires of long fibers were grown. In KOH was added a trace amount (d) and (e), C 70 thin line of the long fibers are grown.

<CHOKをカリウム源としたときの例>
表1の(f)〜(G)に示す溶液組成でフラーレン細線を成長させた。CHOKを溶質とし、IPA−3wt%CHOHを溶媒とする溶液を調製した。(1)と同様にして、微量のCHOKを添加したIPA−3wt%CHOH溶液とC60飽和トルエンもしくはメタキシレン溶液の系による液−液界面析出法によって、C60細線を育成した。長繊維のC60細線が育成された。
<Example when CH 3 OK is used as potassium source>
Fullerene fine wires were grown with the solution compositions shown in (f) to (G) of Table 1. A solution was prepared using CH 3 OK as a solute and IPA-3 wt% CH 3 OH as a solvent. In the same manner as in (1), C 60 fine wires were grown by a liquid-liquid interface precipitation method using an IPA-3 wt% CH 3 OH solution added with a trace amount of CH 3 OK and a C 60 saturated toluene or meta-xylene solution. . C 60 thin line of the long fibers are grown.

<Ca(OH)をカルシウム源としたときの例>
Ca(OH)のIPA溶液を調製し、これとC60のメタキシレン飽和溶液の系による液−液法によって、C60細線を成長させた。長繊維のC60細線が育成された。
<Example when Ca (OH) 2 is a calcium source>
An IPA solution of Ca (OH) 2 was prepared, and C 60 fine wires were grown by a liquid-liquid method using this and a saturated solution of C 60 metaxylene. C 60 thin line of the long fibers are grown.

<NaOHをナトリウム源としたときの例>
NaOHのIPA溶液を調製し、これとC60のメタキシレン飽和溶液の系による液−液法によって、C60細線を成長させた。長繊維のC60細線が育成された。
<Example when NaOH is used as the sodium source>
An IPA solution of NaOH was prepared, and C 60 fine wires were grown by a liquid-liquid method using this and a saturated solution of C 60 metaxylene. C 60 thin line of long fibers have been grown.

<長繊維C60細線の観察例>
図1(a)に、実施例1の(b)のKOHを10−5mol/L溶解したIPAとC60のメタキシレン飽和溶液とで作製したC60細線、図1(b)に、実施例3のCa(OH)を10−5mol/L溶解したIPAとC60のメタキシレン飽和溶液とで作製したC60細線、図1(c)に、実施例4のNaOHを10−5mol/L溶解したIPAとC60のメタキシレン飽和溶液とで作製したC60細線の走査電子顕微鏡(SEM)像を示す。いずれも、ミリメートルオーダーのC60細線として成長していることが分かる。
<Observation example of long fiber C 60 fine wire>
Figure 1 (a), KOH and C 60 thin line prepared in the of 10 -5 mol / L dissolved IPA and C 60 meta-xylene saturated solution of Example 1 (b), in FIG. 1 (b), carried out example 3 Ca (OH) 2 to C 60 thin line prepared in a 10 -5 mol / L dissolved IPA and C 60 metaxylene saturated solution, in FIG. 1 (c), NaOH 10 -5 example 4 It shows the C 60 scanning electron microscope (SEM) image of a fine line produced by the meta-xylene saturated solution of mol / L dissolved IPA and C 60. It can be seen that both grow as C 60 fine lines on the order of millimeters.

図2に、図1の各試料の拡大図を示す。良好に成長したC60細線が示されている。図3に、実施例1の(d)のC60のメタキシレン飽和溶液と、KOHを10−5mol/L添加したIPAを用いて、液−液法により作製したC60細線の×線回折図形を示す。回折図形から明らかなように、結晶性の良いC60細線が得られている。 FIG. 2 shows an enlarged view of each sample in FIG. It has been shown to favorably grown C 60 thin line. 3, the meta-xylene saturated solution of C 60 in Example 1 (d), KOH with 10 -5 mol / L added with IPA and liquid - C 60 thin line × ray diffraction produced by the liquid method Indicates a figure. As is clear from the diffraction pattern, a C 60 fine line with good crystallinity is obtained.

本発明の方法によって得られる長繊維フラーレン細線は取り扱いやすいことが著しい長所となり、燃料電池触媒担持材料、光増感太陽電池、フィルター、イオン交換カラム充填剤、抗菌材料、複合繊維材料、など、エネルギー、環境、繊維、半導体、医薬品産業において利用されることにより、大きな経済効果を生じると期待される。 The long fiber fullerene fine wire obtained by the method of the present invention is a remarkable advantage that it is easy to handle, such as fuel cell catalyst support material, photosensitized solar cell, filter, ion exchange column filler, antibacterial material, composite fiber material, etc. When used in the environment, textile, semiconductor and pharmaceutical industries, it is expected to produce significant economic effects.

図1(a)は、実施例1の(b)、図1(b)は、実施例3、図1(c)は、実施例4により作製したC60細線の図面代用走査電子顕微鏡(SEM)像である。1 (a) is, in Example 1 (b), FIG. 1 (b), Example 3, FIG. 1 (c), Example 4 C 60 thin line drawing-substituting SEM manufactured by (SEM ) 図1に示す試料の拡大図面代用SEM像である。FIG. 2 is an enlarged SEM image of the sample shown in FIG. 実施例1の(d)により作製したC60細線の×線回折図形である。A × ray diffraction pattern of C 60 thin line prepared by the Example 1 (d). KOH濃度9.9×10−3のIPAを用いて、C60のメタキシレン飽和溶液との液−液法により得た析出物の図面代用TEM写真像である。Using IPA of KOH concentration 9.9 × 10 -3, the liquid of xylene saturated solution of C 60 - substituting a drawing TEM photograph of the resulting precipitate by liquid method.

Claims (2)

フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程と、前記溶液と前記第2溶媒との間に液−液界面を形成する工程と、前記液−液界面にて炭素細線を析出させる工程と、を含み、
前記第2溶媒に、アルカリ金属元素、アルカリ土類金属元素、アルカリ金属元素の水酸化物、アルカリ金属アルコキシド、アルカリ土類金属水酸化物、アルカリ土類金属アルコキシド、アルカリ金属元素又はアルカリ土類元素の有機・無機化合物からなる群から選ばれる少なくとも1種を添加する液−液界面析出法を用いて製造されたフラーレン細線であって、
フラ−レンを構成要素とする六方晶の炭素細線であって、長さ1mm以上の繊維状であることを特徴とするフラ−レン細線。
A step of combining a solution containing a first solvent dissolving fullerene with a second solvent having a lower fullerene solubility than the first solvent, and a liquid-liquid interface between the solution and the second solvent. Forming a carbon fine wire at the liquid-liquid interface, and
In the second solvent, an alkali metal element, an alkaline earth metal element, a hydroxide of an alkali metal element, an alkali metal alkoxide, an alkaline earth metal hydroxide, an alkaline earth metal alkoxide, an alkali metal element or an alkaline earth element A fullerene fine wire produced using a liquid-liquid interface deposition method in which at least one selected from the group consisting of organic and inorganic compounds is added,
A fullerene fine wire, which is a hexagonal carbon fine wire having a fullerene as a constituent element and is in the form of a fiber having a length of 1 mm or more.
請求項1に記載のフラ−レン細線からなる集合体であって、多数のフラ−レン細線がその長さ方向で相対位置をずらせて凝集した繊維束状であることを特徴とするフラ−レン細線集合体。
2. The fullerene comprising the fullerene fine wires according to claim 1, wherein the fullerene fine wires are in the form of a bundle of fibers aggregated by shifting their relative positions in the length direction. Fine wire assembly.
JP2007228737A 2007-09-04 2007-09-04 Fullerene fine wires and their aggregates Expired - Fee Related JP5045915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228737A JP5045915B2 (en) 2007-09-04 2007-09-04 Fullerene fine wires and their aggregates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228737A JP5045915B2 (en) 2007-09-04 2007-09-04 Fullerene fine wires and their aggregates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004069597A Division JP4035618B2 (en) 2004-03-11 2004-03-11 Fullerene fine wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2008038333A JP2008038333A (en) 2008-02-21
JP5045915B2 true JP5045915B2 (en) 2012-10-10

Family

ID=39173687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228737A Expired - Fee Related JP5045915B2 (en) 2007-09-04 2007-09-04 Fullerene fine wires and their aggregates

Country Status (1)

Country Link
JP (1) JP5045915B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159364A (en) * 2014-02-12 2014-09-04 National Institute For Materials Science Fullerene structure, and application using the same

Also Published As

Publication number Publication date
JP2008038333A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
Su et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction
Wang et al. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods
JP6845259B2 (en) Method for preparing single-walled carbon nanotube flexible transparent conductive film with carbon welded structure
Wang et al. Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods
US20080089827A1 (en) C70Fullerene Tube And Process For Producing The Same
KR20140146695A (en) Manufacturing methods of carbon quantum dots using emulsion
Yao et al. Synthesis of differently shaped C70 nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence
CN101607689B (en) Zinc oxide and zinc sulfide nano-belt composite heterogenous junction material and preparation method
Shen et al. An efficient template pathway to synthesis of ordered metal oxide nanotube arrays using metal acetylacetonates as single-source molecular precursors
JP4035618B2 (en) Fullerene fine wire manufacturing method
JP5045915B2 (en) Fullerene fine wires and their aggregates
Ding et al. Large-scale synthesis of neodymium hexaboride nanowires by self-catalyst
CN102345162A (en) One-dimensional axial type nano zinc oxide / zinc sulfide heterojunction and preparation method thereof
Zhang et al. In situ synthesis of ZnO nanocrystal/PET hybrid nanofibers via electrospinning
Baca et al. Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates
CN1843935A (en) A tetrapod-like nanorod of zinc oxide, its preparation method and apparatus
CN1787965A (en) Nano-fiber or nano-tube comprising v group transition metal dichalcogenide crystals, and method for preparation thereof
Guo et al. Microwave-assisted synthesis of Sb2Se3 submicron tetragonal tubular and spherical crystals
JP4595110B2 (en) Needle-like crystal having a hollow structure composed of fullerene molecules and method for producing the same
Shi et al. Multicomponent and hybrid hydrogels comprised of carbon nanotube–nickel/nickel oxide core/shell nanoparticle heterostructures incorporated in polyvinyl alcohol
JP6338280B2 (en) Chiral solid metals and solid composites and methods for their production
Zhou et al. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires
CN1207452C (en) High temperature molten salt reaction process of preparing one-dimensional ordered nano wire and nanotube array
Rao et al. Multiwalled HgX (X= S, Se, Te) Nanotubes Formed with a Mercury Iodide Catalyst in Nanocrystalline Thin Films Spray‐Deposited at Low Temperature
JP4246590B2 (en) Fullerene derivative fine wire and production method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees