JP5045389B2 - Method for manufacturing organic electroluminescence device - Google Patents

Method for manufacturing organic electroluminescence device Download PDF

Info

Publication number
JP5045389B2
JP5045389B2 JP2007301929A JP2007301929A JP5045389B2 JP 5045389 B2 JP5045389 B2 JP 5045389B2 JP 2007301929 A JP2007301929 A JP 2007301929A JP 2007301929 A JP2007301929 A JP 2007301929A JP 5045389 B2 JP5045389 B2 JP 5045389B2
Authority
JP
Japan
Prior art keywords
partition wall
organic
receiving portion
partition
functional liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007301929A
Other languages
Japanese (ja)
Other versions
JP2009129648A (en
Inventor
厚史 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007301929A priority Critical patent/JP5045389B2/en
Publication of JP2009129648A publication Critical patent/JP2009129648A/en
Application granted granted Critical
Publication of JP5045389B2 publication Critical patent/JP5045389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機エレクトロルミネッセンス装置の製造方法および有機エレクトロルミネッセンス装置に関するものである。   The present invention relates to a method for manufacturing an organic electroluminescence device and an organic electroluminescence device.

近年、有機エレクトロルミネッセンス(以下、有機EL)素子の製造工程において、機能性材料を含む液状体(機能液)を所定の位置に配置し、所望の機能性材料の膜(機能膜)を形成する技術が活発に開発されている。数ある方法の中でも液滴吐出法を用いた製造方法では、用いるインクジェットヘッドの解像度に応じて微少な機能液を所望の位置に塗布することが可能である。そのため、微細なパターンを備えた機能膜の形成ができ、高解像度で高品質な有機EL装置とすることが可能である。   In recent years, in a manufacturing process of an organic electroluminescence (hereinafter, organic EL) element, a liquid material (functional liquid) containing a functional material is disposed at a predetermined position to form a film (functional film) of a desired functional material. Technology is being actively developed. Among the various methods, in the manufacturing method using the droplet discharge method, it is possible to apply a minute functional liquid to a desired position according to the resolution of the inkjet head to be used. Therefore, a functional film having a fine pattern can be formed, and a high-resolution and high-quality organic EL device can be obtained.

更に、液滴吐出法を用いた製造方法では、機能液を塗布する領域の周囲に隔壁(バンク)を設け、それぞれの機能液の配置箇所を区画することが提案されている。バンクを設けることで位置精度が向上する上に、塗布された機能液が他の領域に塗布される機能液と混ざり合うことを抑制し、確実なパターニングをすることが可能にもなる。   Furthermore, in the manufacturing method using the droplet discharge method, it has been proposed to provide a partition (bank) around the area where the functional liquid is applied, and to partition each functional liquid placement location. By providing the bank, the positional accuracy is improved, and it is possible to suppress the mixing of the applied functional liquid with the functional liquid applied to other regions and perform reliable patterning.

ところで、高品質な有機EL装置とするためには、機能膜を均一な膜厚に成膜することが重要となる。なぜなら、形成する機能膜の膜厚が均一でなくムラ(膜厚ムラ)を有していると、膜厚の違いにより発光量の差を生じ、輝度や色合いに違いが生まれる結果、表示不良(表示ムラ)が生じてしまうからである。   By the way, in order to obtain a high-quality organic EL device, it is important to form a functional film with a uniform thickness. This is because if the thickness of the functional film to be formed is not uniform and has unevenness (film thickness unevenness), a difference in film thickness results in a difference in light emission amount, resulting in differences in brightness and hue, resulting in poor display ( This is because display unevenness occurs.

この膜厚ムラは様々な原因により生じる。原因のひとつとして、機能液の表面張力に起因して、機能液が塗布する領域で凝集してしまうということが挙げられる。そのため、例えば隔壁に周囲を囲まれた平面視矩形の領域にあっては、隅部分にあたる隔壁近傍に機能液が行き渡りにくいということが起こる。   This film thickness unevenness is caused by various causes. One of the causes is that the functional liquid is aggregated in a region where the functional liquid is applied due to the surface tension of the functional liquid. Therefore, for example, in a rectangular region in plan view surrounded by the partition wall, it may be difficult for the functional liquid to reach the vicinity of the partition wall corresponding to the corner portion.

この課題に対し、特許文献1では、有機EL素子に対応する画素電極の周囲に2層構造の隔壁を設ける方法を提案している。すなわち、画素電極を囲む第1隔壁と、第1隔壁上に形成される第2隔壁で構成される2層構造の隔壁とし、機能液を第1隔壁で囲まれた領域からあふれるまで配置することで、確実に第1隔壁で囲まれた領域に機能液を配置するという方法である。
特開2005−326799号公報
For this problem, Patent Document 1 proposes a method of providing a two-layer partition wall around a pixel electrode corresponding to an organic EL element. That is, a partition wall having a two-layer structure including a first partition wall surrounding the pixel electrode and a second partition wall formed on the first partition wall is disposed until the functional liquid overflows from the region surrounded by the first partition wall. In this method, the functional liquid is surely disposed in the region surrounded by the first partition walls.
JP 2005-326799 A

この方法は、第1隔壁の上面にあふれた機能液が第1隔壁の上面に濡れ広がる際の表面張力を利用することで、第1隔壁に囲まれた領域の隅部分にまで確実に機能液を行き渡らせることを主旨としている。そのため、第1隔壁内に配置された機能液と、第1隔壁からあふれて第1隔壁上に濡れ広がる機能液とは連続して配置されている。したがって、第1隔壁に囲まれた領域では、余剰量の機能液が塗布されることとなる。   This method uses the surface tension at the time when the functional liquid overflowing on the upper surface of the first partition wall wets and spreads on the upper surface of the first partition wall, so that the functional liquid can be surely reached the corner portion of the region surrounded by the first partition wall. The main purpose is to spread the word. For this reason, the functional liquid disposed in the first partition and the functional liquid overflowing from the first partition and spreading on the first partition are continuously disposed. Therefore, an excessive amount of functional liquid is applied in the region surrounded by the first partition.

例えば図9に示すように、基板500上の第1隔壁510と第2隔壁520と囲まれた領域に2種類の量La,Lbの機能液Lを塗布する場合について考える。その場合、第1隔壁510内は同じように隅々まで機能液で充填されていても、第1隔壁510の上面にあふれ出る機能液Lの量は制御されていないため、第1隔壁510に囲まれた領域に盛り上がる機能液Lの高さHa、Hbが異なる。   For example, as shown in FIG. 9, consider a case where two types of functional liquids L and Lb are applied to a region surrounded by the first partition 510 and the second partition 520 on the substrate 500. In that case, even if the inside of the first partition wall 510 is similarly filled with the functional liquid, the amount of the functional liquid L overflowing the upper surface of the first partition wall 510 is not controlled. The heights Ha and Hb of the functional liquid L rising in the enclosed area are different.

また、第1隔壁510の上面にあふれ出る機能液Lの量が一定であったとしても、第1隔壁510の上面への機能液Lの濡れ広がりやすさ(親撥液性)が異なっても機能液Lの高さが異なる。例えば、第1隔壁510の上面にあふれ出た同量の機能液Lが、薄く広く濡れ広がるのか、該上面にはじかれて濡れ広がらず第1隔壁510の上面の周縁部で留まるのか、の違いによっても、配置した機能液Lの高さが異なる。これらのことから、特許文献1の方法によれば、第1隔壁510に囲まれた領域に形成される機能性材料の膜厚が異なってしまう。   Even if the amount of the functional liquid L overflowing to the upper surface of the first partition 510 is constant, the ease of wetting and spreading of the functional liquid L to the upper surface of the first partition 510 (lyophilicity) is different. The height of the functional liquid L is different. For example, the difference between whether the same amount of the functional liquid L overflowing from the upper surface of the first partition wall 510 spreads thinly and widely, or is repelled by the upper surface and does not spread and stays at the peripheral edge of the upper surface of the first partition wall 510. Also, the height of the arranged functional liquid L differs. From these things, according to the method of patent document 1, the film thickness of the functional material formed in the area | region enclosed by the 1st partition 510 will differ.

また、液滴吐出法に特有の課題もある。すなわち、液滴吐出装置が有する吐出量誤差の影響により、機能液の塗布量が変化してしまうことである。液滴吐出装置を用いた液滴の吐出量は、一定のバラつきを有している。それは例えば、最小量を基準量とすると、最大で10%程度多い量を吐出するほどのバラつきであることが多い。そのため、塗布量は常にこのバラつき分の差を有しており、この塗布量のバラつきに起因して、形成される膜厚が各所で異なる。その結果、膜厚ムラを生じ表示ムラの原因となってしまう。   There are also problems specific to the droplet discharge method. That is, the application amount of the functional liquid changes due to the influence of the discharge amount error of the droplet discharge device. The discharge amount of the droplets using the droplet discharge device has a certain variation. For example, when the minimum amount is set as a reference amount, there are many variations such that a maximum amount of about 10% is discharged. For this reason, the coating amount always has a difference in the amount of variation, and due to the variation in the coating amount, the formed film thickness is different in various places. As a result, film thickness unevenness occurs and causes display unevenness.

本発明はこのような事情に鑑みてなされたものであって、均一な膜厚の機能性材料の膜を備え表示ムラのない高品質な有機EL装置の製造方法、及び有機EL装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for manufacturing a high-quality organic EL device that has a functional material film with a uniform thickness and has no display unevenness, and an organic EL device. For the purpose.

上記の課題を解決するため、本発明にかかる第1の有機EL装置の製造方法は、第1電極と第2電極との間に有機機能層を挟持した発光素子を基板上に複数配設し、前記発光素子の周囲が隔壁層で囲まれてなる有機エレクトロルミネッセンス装置の製造方法であって、前記基板上の前記第1電極の周囲を囲んで、前記隔壁層が含む第1隔壁部を形成する工程と、前記第1隔壁部の周囲を囲んで、前記隔壁層が含む第2隔壁部を前記第1隔壁部と離間して形成する工程と、前記第1隔壁部の側壁と前記第1隔壁部に囲まれた領域の底面とで囲まれる部分を有効受容部とし、前記有効受容部に前記有機機能層の形成材料を含む機能液を配置し前記有機機能層を形成する工程と、を備え、互いに向き合う前記第1隔壁部の側壁と前記第2隔壁部の側壁及びこれらの間の領域の底面とで囲まれる部分を緩衝受容部とし、前記有機機能層を形成する工程では、前記機能液を、前記有効受容部からあふれ出す量以上の量であって、且つ、前記有効受容部の容積と前記緩衝受容部の容積とを合わせた量未満の量を配置することを特徴とする。   In order to solve the above-described problems, a first method for manufacturing an organic EL device according to the present invention includes a plurality of light-emitting elements each having an organic functional layer sandwiched between a first electrode and a second electrode. A method of manufacturing an organic electroluminescence device in which a periphery of the light emitting element is surrounded by a partition wall layer, and the first partition portion included in the partition layer is formed surrounding the periphery of the first electrode on the substrate. A step of forming a second partition wall included in the partition wall so as to surround the first partition wall and being spaced apart from the first partition wall, a side wall of the first partition wall, and the first The step surrounded by the bottom of the region surrounded by the partition wall is an effective receiving portion, and the functional liquid containing the organic functional layer forming material is disposed in the effective receiving portion to form the organic functional layer. The side walls of the first partition wall and the side of the second partition wall facing each other And a portion surrounded by the bottom surface of the region between them as a buffer receiving portion, and in the step of forming the organic functional layer, the functional liquid is in an amount more than the amount overflowing from the effective receiving portion, and An amount less than the total of the volume of the effective receiving portion and the volume of the buffer receiving portion is disposed.

この方法によれば、機能液は少なくとも有効受容部を完全に満たす量が塗布される。そのため、配置される機能液の高さを第1隔壁部の高さで一定にそろえることが可能となり、いずれの有効受容部においても同じ膜厚の有機機能層を形成することができる。また、有効受容部からあふれた機能液は緩衝受容部に溜まり、第2隔壁部を乗り越えて漏れ出ることがない。そのため、隣接する有効受容部に塗布した機能液同士が混ざり合うことがない。更に、画素電極(第1電極)は第1隔壁部に囲まれた領域、つまり有効受容部に平面的に重なる領域にのみ配置されている。そのため、緩衝受容部に配置された有機機能層が発光することがなく、有効受容部に形成される有機機能層のみを発光させることができる。これらのことより、発光領域に形成される有機機能層の膜厚が均一で発光ムラのない有機EL装置を製造することができる。   According to this method, the functional fluid is applied in an amount that completely fills at least the effective receiving portion. Therefore, it is possible to make the height of the functional liquid to be arranged constant with the height of the first partition wall, and it is possible to form an organic functional layer having the same film thickness in any effective receiving part. In addition, the functional liquid overflowing from the effective receiving portion is collected in the buffer receiving portion and does not leak over the second partition wall portion. Therefore, the functional liquids applied to adjacent effective receiving portions do not mix with each other. Furthermore, the pixel electrode (first electrode) is disposed only in a region surrounded by the first partition wall, that is, in a region overlapping the effective receiving portion in plan view. Therefore, the organic functional layer disposed in the buffer receiving portion does not emit light, and only the organic functional layer formed in the effective receiving portion can emit light. From these, it is possible to manufacture an organic EL device in which the thickness of the organic functional layer formed in the light emitting region is uniform and there is no light emission unevenness.

本発明において「有効受容部からあふれ出す量」とは、配置した機能液が有効受容部と平面的に重なる領域に留まることが出来なくなる分量を指す。有効受容部のように周囲を壁面で囲まれ、液状物をためることができる枡状の箇所(受容部)に液状体を配置すると、該液状体が備える表面張力と配置箇所の表面自由エネルギーとの関係、いわゆる親撥液性により受容部の上部で盛り上がって配置される。配置する量が「受容部からあふれ出す量」を超えると、受容部の上部から液状体が流出しあふれ出すことになる。また「容積」とは、受容部の中を満たしうる分量である。受容部の側壁部の高さが一定しない場合には、最も低い頂面までに満たしうる分量のことを指す。したがって、「有効受容部からあふれ出す量」と「有効受容部の容積」とは、必ずしも一致しない分量となる。   In the present invention, the “amount overflowing from the effective receiving portion” refers to an amount by which the arranged functional liquid cannot stay in the region overlapping the effective receiving portion in a plane. When the liquid material is disposed in a bowl-shaped portion (receiving portion) that is surrounded by a wall surface and can collect liquid like the effective receiving portion, the surface tension of the liquid material and the surface free energy at the arrangement location In this relationship, so-called lyophobic properties, the upper portion of the receiving portion is raised. When the amount to be disposed exceeds the “amount overflowing from the receiving portion”, the liquid material flows out from the upper portion of the receiving portion and overflows. The “volume” is an amount that can fill the receiving portion. When the height of the side wall portion of the receiving portion is not constant, it indicates the amount that can be filled up to the lowest top surface. Therefore, the “amount overflowing from the effective receiving portion” and the “volume of the effective receiving portion” do not necessarily coincide with each other.

また、本発明にかかる第2の有機EL装置の製造方法は、第1電極と第2電極との間に有機機能層を挟持した発光素子を基板上に複数配設し、前記発光素子の周囲が隔壁層で囲まれてなる有機エレクトロルミネッセンス装置の製造方法であって、前記基板上の前記第1電極の周囲を囲んで、前記隔壁層が含む第1隔壁部を形成する工程と、前記第1隔壁部の周囲を囲んで、前記隔壁層が含む第2隔壁部を、前記第1隔壁部の側壁面の一部と前記第2隔壁部の側壁面の一部とを当接させ形成する工程と、前記第1隔壁部の側壁と前記第1隔壁部に囲まれた領域の底面とで囲まれる部分を有効受容部とし、前記有効受容部に前記有機機能層の形成材料を含む機能液を配置し前記有機機能層を形成する工程と、を備え、互いに向き合う前記第1隔壁部の側壁と前記第2隔壁部の側壁及びこれらの間の領域の底面とで囲まれる部分を緩衝受容部とし、前記第2隔壁部を形成する工程では、少なくとも前記第1隔壁部と前記第2隔壁部との当接部では、前記第1隔壁部の高さを前記当接部での前記第2隔壁部よりも低く形成し、前記有機機能層を形成する工程では、前記機能液を、前記有効受容部からあふれ出す量以上の量であって、且つ、前記有効受容部の容積と前記緩衝受容部の容積とを合わせた量未満の量を配置することを特徴とする。   Further, in the second method for manufacturing an organic EL device according to the present invention, a plurality of light emitting elements having an organic functional layer sandwiched between a first electrode and a second electrode are disposed on a substrate, and the periphery of the light emitting element is arranged. Is a method of manufacturing an organic electroluminescence device surrounded by a partition wall layer, the method comprising: forming a first partition wall portion included in the partition wall layer surrounding the first electrode on the substrate; Surrounding the periphery of one partition wall portion, a second partition wall portion included in the partition wall layer is formed by bringing a part of the side wall surface of the first partition wall portion into contact with a part of the side wall surface of the second partition wall portion. A functional liquid including a step and a portion surrounded by a side wall of the first partition wall and a bottom surface of a region surrounded by the first partition wall as an effective receiving portion, and the effective receiving portion includes a material for forming the organic functional layer And forming the organic functional layer, the first partition walls facing each other In the step of forming the second partition wall portion, a portion surrounded by the side wall of the second partition wall portion and the side wall of the second partition wall portion and the bottom surface of the region between them is used as the buffer receiving portion, at least the first partition wall portion and the second partition wall portion In the contact portion with the partition wall portion, the first partition wall portion is formed at a height lower than that of the second partition wall portion in the contact portion, and in the step of forming the organic functional layer, the functional liquid is An amount that is greater than or equal to the amount overflowing from the effective receiving portion and less than the total of the volume of the effective receiving portion and the volume of the buffer receiving portion is arranged.

この方法によれば、第1隔壁部と第2隔壁部との側壁面同士の当接部では、第1隔壁部の高さを第2隔壁部よりも低く形成しているため、有効受容部に塗布した機能液の余剰分は第2隔壁部を乗り越えてもれ出ることなく、緩衝受容部に向かって流出する。そのため、隣接する有効受容部に塗布した機能液同士が混ざり合うことなく良好に塗布することができる。また、第1の製造方法の効果は共通に備える。したがって、発光領域に形成される有機機能層の膜厚が均一で発光ムラのない有機EL装置を製造することができる。   According to this method, since the height of the first partition wall portion is lower than that of the second partition wall portion at the contact portion between the side wall surfaces of the first partition wall portion and the second partition wall portion, the effective receiving portion is formed. The excess of the functional liquid applied to the fluid flows out toward the buffer receiving portion without getting out of the second partition wall. Therefore, it can apply | coat favorably, without the functional liquid apply | coated to the adjacent effective receiving part mixing. The effects of the first manufacturing method are provided in common. Therefore, it is possible to manufacture an organic EL device in which the organic functional layer formed in the light emitting region has a uniform thickness and does not have uneven light emission.

また、本発明においては、前記第1隔壁部を前記第2隔壁部よりも低く形成することが望ましい。
この方法によれば、機能液が第2隔壁部を乗り越えて漏れ出ることを確実に防ぐことができ、良好に有機機能層を形成することができる。また、第1隔壁部近傍と有効受容部の中央部との膜厚の差を小さくすることができるため、膜の平坦性を高め膜厚ムラを減らすことができる。
In the present invention, it is preferable that the first partition wall is formed lower than the second partition wall.
According to this method, it is possible to reliably prevent the functional liquid from leaking over the second partition wall, and it is possible to form the organic functional layer satisfactorily. Further, since the difference in film thickness between the vicinity of the first partition wall portion and the central portion of the effective receiving portion can be reduced, the flatness of the film can be increased and the film thickness unevenness can be reduced.

また、本発明においては前記機能液を配置する工程に先立って、前記隔壁層が含む単数または複数の第3隔壁部を形成し前記緩衝受容部を分割する工程を備え、前記第3隔壁部は、前記第1隔壁部以下の高さとすることが望ましい。
有効受容部からあふれ出た機能液は、第1隔壁部の側面を伝って緩衝受容部に垂れ下がり、濡れ広がる。この際、有効受容部に配置された機能液は、緩衝受容部にあふれ出た機能液の表面張力に引かれるため、緩衝受容部に向かって流動しやすい。機能液があふれ出る緩衝受容部が十分に広く大きいものとすると、緩衝受容部に濡れ広がる機能液の量が多くなるためにあふれ出る量が多くなりすぎ、かえって有効受容部に配置される機能液の量が減りすぎてしまうおそれがある。一方、緩衝受容部があまり狭く小さいものであるとすると、あふれ出る機能液で緩衝受容部がすぐに満たされるため、有効受容部に配置する機能液を高度に制御する必要に迫られる。しかし、この方法によれば、第3隔壁部を設けることで1つの緩衝受容部を狭く小さい複数の緩衝受容部に分割することができる。こうすると、あふれ出た機能液の濡れ広がりは狭い緩衝受容部に抑えられるため、機能液の流出を抑制することができる。また、第3隔壁部は第1隔壁部以下の高さに形成されているため、あふれ出た機能液が緩衝受容部を満たすと、機能液は第3隔壁部を乗り越え、隣接する緩衝受容部に流れ込む。その結果、有効受容部に配置された機能液の量を均一に保つことができ、膜厚ムラを減らすことが可能となる。
Further, in the present invention, prior to the step of disposing the functional liquid, the step of forming a single or a plurality of third partition walls included in the partition wall layer and dividing the buffer receiving portion, Preferably, the height is equal to or lower than the first partition wall.
The functional liquid overflowing from the effective receiving portion hangs down on the buffer receiving portion along the side surface of the first partition wall and spreads wet. At this time, the functional liquid arranged in the effective receiving part is attracted by the surface tension of the functional liquid overflowing in the buffer receiving part, and thus tends to flow toward the buffer receiving part. If the buffer receiving part where the functional liquid overflows is sufficiently wide and large, the amount of the functional liquid that wets the buffer receiving part increases, so that the amount of overflowing liquid becomes excessive, and instead the functional liquid placed in the effective receiving part There is a risk that the amount of will decrease too much. On the other hand, if the buffer receiving part is too narrow and small, the buffer receiving part is immediately filled with the overflowing functional liquid, so that it is necessary to highly control the functional liquid disposed in the effective receiving part. However, according to this method, it is possible to divide one buffer receiving portion into a plurality of narrow buffer receiving portions by providing the third partition wall portion. In this way, since the spreading of the overflowing functional liquid is suppressed by the narrow buffer receiving portion, the outflow of the functional liquid can be suppressed. In addition, since the third partition wall portion is formed at a height equal to or lower than the first partition wall portion, when the overflowing functional liquid fills the buffer receiving portion, the functional liquid gets over the third partition wall portion and is adjacent to the buffer receiving portion. Flow into. As a result, the amount of the functional liquid disposed in the effective receiving portion can be kept uniform, and film thickness unevenness can be reduced.

また本発明においては、前記機能液を配置する工程に先立って、前記緩衝受容部を分割する第3隔壁部を形成する工程を備え、前記第3隔壁部は、前記第1隔壁部以下の高さとすることが望ましい。
この方法によれば、隣接する隔壁層同士の配置間隔を狭くすることなく、更に小さい複数の緩衝受容部に分割することができる。その結果、有効受容部に配置された機能液の量を均一に保つことができ、膜厚ムラを減らすことが可能となる。
Further, in the present invention, prior to the step of disposing the functional liquid, a step of forming a third partition portion that divides the buffer receiving portion is provided, and the third partition portion has a height equal to or lower than that of the first partition portion. It is desirable to do so.
According to this method, it is possible to divide into a plurality of smaller buffer receiving portions without narrowing the arrangement interval between adjacent partition wall layers. As a result, the amount of the functional liquid disposed in the effective receiving portion can be kept uniform, and film thickness unevenness can be reduced.

また本発明においては、前記隔壁層は、少なくとも表面が前記機能液に対して撥液性を示す撥液材料を用いて形成されていることが望ましい。
第1隔壁部が機能液に対して親液性を示す材料で形成していたとすると、配置される機能液は第1隔壁部に沿って濡れ広がりやすい。そのような場合には、有効受容部からは機能液があふれ出しやすく、また、あふれ出た機能液に引かれる機能液の流動が止まりにくいものとなる。しかし、この方法のように第1隔壁部を撥液材料で形成すれば、機能液は第1隔壁部の頂部ではじかれるため有効受容部からあふれ出しにくく、また、あふれ出す機能液の流動が止まりやすいものとなる。そのため、有効受容部により多くの機能液を容易に配置することができ、膜厚ムラが少なく厚い有機機能層を形成することができる。
In the present invention, it is desirable that at least the surface of the partition layer is formed using a liquid repellent material that exhibits liquid repellency with respect to the functional liquid.
Assuming that the first partition wall is formed of a material that is lyophilic with respect to the functional liquid, the arranged functional liquid tends to wet and spread along the first partition wall. In such a case, the functional liquid tends to overflow from the effective receiving portion, and the flow of the functional liquid drawn by the overflowing functional liquid is difficult to stop. However, if the first partition wall is formed of a liquid repellent material as in this method, the functional liquid is repelled from the top of the first partition wall, so that it is difficult to overflow from the effective receiving part, and the overflow of the overflowing functional liquid It will be easy to stop. Therefore, a large number of functional liquids can be easily arranged in the effective receiving portion, and a thick organic functional layer with little film thickness unevenness can be formed.

本発明においては、前記機能液の配置は、液滴吐出法を用いて行うことが望ましい。
液滴吐出法は、微少な量の液滴を吐出可能であるが、使用する液滴吐出装置のノズル形状間の成形誤差に起因して液滴1滴あたりの吐出量に誤差を生じる。しかしこの方法によれば、誤差量に対応する液滴は緩衝受容部にあふれ出るため、使用する装置が原因となる塗布量の差を抑制することができる。そのため、表示ムラがなく且つ高解像度の有機EL装置を容易に製造することができる。
In the present invention, it is desirable that the functional liquid is disposed using a droplet discharge method.
Although the droplet discharge method can discharge a minute amount of droplets, an error occurs in the discharge amount per droplet due to a molding error between nozzle shapes of a droplet discharge device to be used. However, according to this method, since the droplet corresponding to the error amount overflows to the buffer receiving portion, the difference in the coating amount caused by the device to be used can be suppressed. Therefore, a high-resolution organic EL device without display unevenness can be easily manufactured.

また、本発明にかかる第1の有機EL装置は、基板と、一対の電極間に有機機能層が挟持された複数の発光素子と、前記基板上に配設された前記発光素子の周囲を囲んで設けられた第1隔壁部と、前記基板上の前記第1隔壁部の周囲を囲んで前記第1隔壁部と離間して設けられた第2隔壁部と、を備えることを特徴とする。
この構成によれば、液状体を配置して有機機能層を形成する場合に均一な膜厚とすることができるため、表示ムラなく高品質な有機EL装置とすることができる。
The first organic EL device according to the present invention surrounds a substrate, a plurality of light emitting elements having an organic functional layer sandwiched between a pair of electrodes, and the periphery of the light emitting elements disposed on the substrate. And a second partition wall that surrounds the periphery of the first partition wall on the substrate and is spaced apart from the first partition wall.
According to this configuration, when the liquid material is disposed to form the organic functional layer, a uniform film thickness can be obtained, so that a high-quality organic EL device without display unevenness can be obtained.

本発明にかかる第2の有機EL装置は、基板と、第1電極と第2電極との間に有機機能層が挟持された複数の発光素子と、前記基板上に配設された前記発光素子の周囲を囲んで設けられた第1隔壁部と、前記基板上の前記第1隔壁部の周囲を囲んで設けられた第2隔壁部と、を備え、前記第1隔壁部の側壁面の一部と前記第2隔壁部の側壁面の一部とは当接しており、少なくとも前記第1隔壁部と前記第2隔壁部との当接部での前記第1隔壁部の高さが、前記当接部での前記第2隔壁部よりも低いことを特徴とする。
この構成によれば、液状体を配置して有機機能層を形成する場合に均一な膜厚とすることができるため、表示ムラなく高品質な有機EL装置とすることができる。
The second organic EL device according to the present invention includes a substrate, a plurality of light emitting elements in which an organic functional layer is sandwiched between a first electrode and a second electrode, and the light emitting elements disposed on the substrate. And a second partition wall provided around the first partition wall on the substrate, and a side wall surface of the first partition wall. And a part of the side wall surface of the second partition wall part are in contact with each other, and the height of the first partition wall part at least at the contact part between the first partition wall part and the second partition wall part is It is lower than the said 2nd partition part in an abutting part, It is characterized by the above-mentioned.
According to this configuration, when the liquid material is disposed to form the organic functional layer, a uniform film thickness can be obtained, so that a high-quality organic EL device without display unevenness can be obtained.

[第1実施形態]
以下、図1〜図3を参照しながら、本発明の第1実施形態に係る有機EL装置及びその製造方法について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の膜厚や寸法の比率などは適宜異ならせてある。本実施形態では、有機EL装置1の製造に液滴吐出法を用いている。そのため、まず液滴吐出法について概要を説明した後に、本実施形態の有機EL装置の説明へと移る。
[First Embodiment]
Hereinafter, the organic EL device and the manufacturing method thereof according to the first embodiment of the present invention will be described with reference to FIGS. In all the drawings below, the film thicknesses and dimensional ratios of the constituent elements are appropriately changed in order to make the drawings easy to see. In the present embodiment, a droplet discharge method is used for manufacturing the organic EL device 1. For this reason, first, an outline of the droplet discharge method will be described, and then the description will proceed to the organic EL device of the present embodiment.

図1は、液滴吐出法に用いる装置(液滴吐出装置)が備える液滴吐出ヘッド301の断面図である。液滴吐出ヘッド301は、複数の吐出ノズルを備えたマルチノズルタイプの液滴吐出ヘッドである。複数の吐出ノズルは、液滴吐出ヘッド301の下面に一方向に並んで一定間隔で設けられている。液滴吐出ヘッド301の吐出ノズルからは、液状体の液滴Lが吐出される。本実施形態の液状体は、有機機能層の形成材料を含む機能液である。本実施形態で吐出する機能液の一滴の量は、例えば1〜300ナノグラムである。   FIG. 1 is a cross-sectional view of a droplet discharge head 301 provided in an apparatus (droplet discharge apparatus) used for a droplet discharge method. The droplet discharge head 301 is a multi-nozzle type droplet discharge head having a plurality of discharge nozzles. The plurality of ejection nozzles are provided at regular intervals in one direction on the lower surface of the droplet ejection head 301. Liquid droplets L are discharged from the discharge nozzles of the droplet discharge head 301. The liquid material of the present embodiment is a functional liquid containing a material for forming an organic functional layer. The amount of one drop of the functional liquid ejected in the present embodiment is 1 to 300 nanograms, for example.

本実施形態では、液滴吐出ヘッド301には電気機械変換式の吐出技術を採用したものを用いる。本方式では、液状体を収容する液体室321に隣接してピエゾ素子322が設置されている。液体室321には、液状体を収容する材料タンクを含む液状体供給系323を介して液状体が供給される。ピエゾ素子322は駆動回路324に接続されており、この駆動回路324を介してピエゾ素子322に電圧を印加し、ピエゾ素子322を変形させることにより、液体室321が変形して内圧が高まり、ノズル325から液状体の液滴Lが吐出される。この場合、印加電圧の値を変化させることにより、ピエゾ素子322の歪み量を制御し、液状体の吐出量を制御する。   In this embodiment, a droplet discharge head 301 that employs an electromechanical conversion type discharge technique is used. In this system, a piezo element 322 is installed adjacent to a liquid chamber 321 that stores a liquid material. The liquid material is supplied to the liquid chamber 321 via a liquid material supply system 323 including a material tank that stores the liquid material. The piezo element 322 is connected to the drive circuit 324. By applying a voltage to the piezo element 322 via the drive circuit 324 and deforming the piezo element 322, the liquid chamber 321 is deformed to increase the internal pressure, and the nozzle A liquid droplet L is ejected from 325. In this case, the amount of distortion of the piezo element 322 is controlled by changing the value of the applied voltage, and the discharge amount of the liquid material is controlled.

なお、液滴吐出法の吐出技術としては、上記の電気機械変換式の他に、帯電制御方式、加圧振動方式、電気熱変換方式、静電吸引方式などのものが挙げられ、これらのいずれの方式も好適に用いることができる。帯電制御方式は、材料に帯電電極で電荷を付与し、偏向電極で材料の飛翔方向を制御してノズルから吐出させるものである。加圧振動方式は、材料に例えば30kg/cm程度の超高圧を印加してノズル先端側に材料を吐出させるものである。電気熱変換方式は、材料を貯留した空間内に設けたヒータにより、材料を急激に気化させてバブル(泡)を発生させ、バブルの圧力によって空間内の材料をノズルから吐出させるものである。静電吸引方式は、材料を貯留した空間内に微小圧力を加え、ノズルに材料のメニスカスを形成し、この状態で静電引力を加えてノズル先端から材料を引き出すものである。この他にも、電場による流体の粘性変化を利用する方式や、放電火花で飛ばす方式のものがあり、いずれも適用可能である。 In addition to the electromechanical conversion method, the droplet discharge method includes discharge control methods, pressure vibration methods, electrothermal conversion methods, electrostatic suction methods, and the like. This method can also be suitably used. In the charge control method, a charge is applied to a material by a charging electrode, and the flight direction of the material is controlled by a deflection electrode and discharged from a nozzle. In the pressure vibration method, an ultra-high pressure of, for example, about 30 kg / cm 2 is applied to the material to discharge the material to the nozzle tip side. In the electrothermal conversion system, a material is rapidly vaporized by a heater provided in a space in which the material is stored to generate bubbles, and the material in the space is discharged from the nozzle by the pressure of the bubbles. In the electrostatic attraction method, a minute pressure is applied to the space in which the material is stored to form a meniscus of the material on the nozzle, and in this state, an electrostatic attractive force is applied to draw the material from the nozzle tip. In addition to this, there are a method using a change in the viscosity of a fluid due to an electric field and a method using a discharge spark, which are all applicable.

次いで、図2には本実施形態で形成する有機EL装置1を示す。ここでは、説明を簡略化するために、有機EL装置1が備える有機EL素子のうち1つのみ図示している。実際には、有機EL装置1には図2に示す有機EL素子が複数配置されている。図2(a)には有機EL素子周辺の斜視図を、図2(b)は同平面図を、図2(c)は同断面図を示す。ここで図2(c)は、図2(b)のA−Aの矢視断面図である。   Next, FIG. 2 shows the organic EL device 1 formed in this embodiment. Here, in order to simplify the description, only one of the organic EL elements included in the organic EL device 1 is illustrated. Actually, a plurality of organic EL elements shown in FIG. 2A is a perspective view around the organic EL element, FIG. 2B is a plan view thereof, and FIG. 2C is a cross-sectional view thereof. Here, FIG. 2C is a cross-sectional view taken along the line AA in FIG.

ここで、有機EL装置には、有機EL素子が放つ光を有機EL素子が形成された基板側とは反対側から取り出すトップエミッション方式と、有機EL素子が形成された基板側から基板を介して取り出すボトムエミッション方式の2種類の発光方式がある。本発明はこのどちらの方式に適用しても良好な結果が得られるため、以下の説明においては形成材料などに限定があるものを除き、発光方式に限定をせずに記載する。   Here, the organic EL device includes a top emission system that extracts light emitted from the organic EL element from the side opposite to the substrate side on which the organic EL element is formed, and a substrate side from which the organic EL element is formed via the substrate. There are two types of light emission methods, the bottom emission method. Since good results can be obtained by applying the present invention to either of these methods, the following description will be made without limiting the light-emitting method, except for materials that are limited.

まず図2(a)に示すように、本実施形態の有機EL装置1は、有機EL素子90と、有機EL素子90の周囲に配置された第1隔壁部10と、第1隔壁部10の周囲に第1隔壁部10と離間して形成された第3隔壁部20と、第3隔壁部20の周囲に第3隔壁部20と離間して形成された第2隔壁部50と、を備えている。   First, as shown in FIG. 2A, the organic EL device 1 of the present embodiment includes an organic EL element 90, a first partition 10 that is disposed around the organic EL element 90, and a first partition 10. A third partition wall portion 20 formed around the first partition wall portion 10 and spaced apart from the first partition wall portion 10; and a second partition wall portion 50 formed around the third partition wall portion 20 and spaced apart from the third partition wall portion 20. ing.

第1隔壁部10に囲まれた領域は、第1隔壁部10の側壁と底面とに囲まれた有効受容部100となっている。また、第1隔壁部10の有効受容部100に対向しない側壁と、第2隔壁部50の側壁と、その間の領域の底面とで囲まれた部分は緩衝受容部200となっている。   A region surrounded by the first partition wall 10 is an effective receiving portion 100 surrounded by the side wall and the bottom surface of the first partition wall 10. A portion surrounded by the side wall of the first partition 10 that does not oppose the effective receiving part 100, the side wall of the second partition 50, and the bottom surface of the region therebetween is a buffer receiving part 200.

この緩衝受容部200に第3隔壁部20が配置されているため、緩衝受容部200は2つに分割されている。一方は、第1隔壁部10と第3隔壁部20との互いの側壁と、この間の領域の底面と、で囲まれた断面視略Uの字型の溝部である緩衝受容部200aである。他方は、第3隔壁部20と第2隔壁部50との互いの側壁と、この間の領域の底面と、で囲まれた断面視略Uの字型の溝部である緩衝受容部200bである。   Since the third partition wall portion 20 is disposed in the buffer receiving portion 200, the buffer receiving portion 200 is divided into two. One is a buffer receiving portion 200a which is a substantially U-shaped groove portion in a sectional view surrounded by the side walls of the first partition wall portion 10 and the third partition wall portion 20 and the bottom surface of the region therebetween. The other is a buffer receiving portion 200b which is a substantially U-shaped groove portion in sectional view surrounded by the side walls of the third partition wall portion 20 and the second partition wall portion 50 and the bottom surface of the region therebetween.

また図2(b)に示すように、第1隔壁部10と第3隔壁部20とは、平面視略円形に閉環して形成されており、同じく平面視略円形の第2隔壁部50の開口部は略同心円状に形成されている。そのため、これら隔壁部によって周囲を囲まれている有効受容部100、緩衝受容部200a,200bも略同心円状の形状を備えている。有効受容部100と平面的に重なる領域には有機EL素子90が配置され、有機EL素子90が備える画素電極60は第1隔壁部10に周囲を囲まれている。画素電極60の平面視形状は、有効受容部100内に収まる形状であれば限定は無く、有機EL素子90の設計により矩形、多角形、楕円形などの形状に適宜形成することができる。本実施形態では、画素電極60は平面視略円形に形成されている。   Further, as shown in FIG. 2B, the first partition wall portion 10 and the third partition wall portion 20 are formed so as to be closed in a substantially circular shape in plan view, and the second partition wall portion 50 is also substantially circular in plan view. The openings are formed substantially concentrically. Therefore, the effective receiving portion 100 and the buffer receiving portions 200a and 200b surrounded by these partition walls also have a substantially concentric shape. An organic EL element 90 is disposed in a region overlapping the effective receiving portion 100 in a plane, and the pixel electrode 60 included in the organic EL element 90 is surrounded by the first partition wall portion 10. The shape of the pixel electrode 60 in plan view is not limited as long as it is a shape that can be accommodated in the effective receiving portion 100, and can be appropriately formed into a rectangular shape, a polygonal shape, an elliptical shape or the like depending on the design of the organic EL element 90. In the present embodiment, the pixel electrode 60 is formed in a substantially circular shape in plan view.

ここでは略同心円状の形状となっているが、形状はこれに限定されるものではなく、楕円形、矩形、多角形などの形状であってもよい。また、第1隔壁部10と第3隔壁部20と第2隔壁部50の側壁との形状は同じであっても異なっていても良い。本実施形態では、平面視略円形の有効受容部100の直径、つまり第1隔壁部10の内壁の直径を30μmとなるように形成している。また、第1隔壁部10及び第3隔壁部20の幅を1μm、緩衝受容部200a,200bの溝の幅を1μmとなるように形成している。   Here, the shape is substantially concentric, but the shape is not limited to this, and may be an ellipse, a rectangle, a polygon, or the like. Moreover, the shape of the side walls of the first partition wall portion 10, the third partition wall portion 20, and the second partition wall portion 50 may be the same or different. In the present embodiment, the diameter of the effective receiving portion 100 having a substantially circular shape in plan view, that is, the diameter of the inner wall of the first partition 10 is 30 μm. Further, the first partition wall 10 and the third partition wall 20 are formed to have a width of 1 μm, and the buffer receiving portions 200a and 200b have a width of 1 μm.

図2(c)に示すように、上記のような外観を備える本実施形態の有機EL装置1は、基板本体30と、基板本体30の上に形成された素子層40と、素子層40の上に形成された第2隔壁部50、第1隔壁部10、及び第3隔壁部20の各隔壁部を含む隔壁層と、が順に積層されて形成されている。   As shown in FIG. 2C, the organic EL device 1 according to this embodiment having the above-described appearance includes a substrate body 30, an element layer 40 formed on the substrate body 30, and an element layer 40. The partition wall layer including the partition walls of the second partition wall part 50, the first partition wall part 10, and the third partition wall part 20 formed thereon is sequentially laminated.

基板本体30は、ボトムエミッション方式を採用すると透明基板を、トップエミッション方式を採用すると透明基板及び不透明基板のいずれも用いることができる。不透明基板としては、例えばアルミナ等のセラミックス、ステンレススチール等の金属シートに表面酸化などの絶縁処理を施したもの、また熱硬化性樹脂や熱可塑性樹脂、さらにはそのフィルム(プラスチックフィルム)などが挙げられる。透明基板としては、例えばガラス、石英ガラス、窒化ケイ素等の無機物や、アクリル樹脂、ポリカーボネート樹脂等の有機高分子(樹脂)を用いることができる。また、光透過性を備えるならば、前記材料を積層または混合して形成された複合材料を用いることもできる。本実施形態では、基板本体30の材料としてガラスを用いる。   The substrate body 30 can be a transparent substrate when the bottom emission method is adopted, and can be either a transparent substrate or an opaque substrate when the top emission method is adopted. Examples of opaque substrates include ceramics such as alumina, metal sheets such as stainless steel that have been subjected to insulation treatment such as surface oxidation, thermosetting resins and thermoplastic resins, and films thereof (plastic films). It is done. As the transparent substrate, for example, an inorganic substance such as glass, quartz glass, or silicon nitride, or an organic polymer (resin) such as an acrylic resin or a polycarbonate resin can be used. In addition, a composite material formed by laminating or mixing the above materials can be used as long as it has optical transparency. In the present embodiment, glass is used as the material of the substrate body 30.

素子層40は、有機EL素子90を発光させるための各種配線や駆動素子、及び無機物または有機物の絶縁膜などを備えている。各種配線や駆動素子はフォトリソグラフィによりパターニングした後エッチングすることにより、また、絶縁膜は蒸着法やスパッタ法など通常知られた方法により適宜形成することができる。   The element layer 40 includes various wirings and driving elements for causing the organic EL element 90 to emit light, and an inorganic or organic insulating film. Various wirings and driving elements can be appropriately formed by patterning by photolithography and then etching, and the insulating film can be appropriately formed by a generally known method such as vapor deposition or sputtering.

第1隔壁部10および第3隔壁部20は同じ高さで、且つ第2隔壁部50より低く形成されている。第3隔壁部20は第1隔壁部10よりも低く形成されていてもよい。第3隔壁部20はここでは1つ配置されているが、複数の第3隔壁部20を例えば同心円状に配置することとしてもよい。また、第3隔壁部20は装置構成上必須ではなく、これを設けることなく製造することとしても構わない。   The first partition wall portion 10 and the third partition wall portion 20 are formed at the same height and lower than the second partition wall portion 50. The third partition wall 20 may be formed lower than the first partition wall 10. Although one third partition 20 is disposed here, a plurality of third partitions 20 may be disposed concentrically, for example. Further, the third partition wall portion 20 is not essential in terms of the device configuration, and may be manufactured without providing it.

素子層40の有効受容部100と平面的に重なる領域には画素電極60が配置されている。画素電極60の形成材料には、仕事関数が5eV以上の材料を用いることができる。このような材料は、正孔注入効果が高いため画素電極60の形成材料として好ましい。このような材料としては、例えばITO(Indium Thin Oxide:インジウム錫酸化物)等の金属酸化物を挙げることができる。本実施形態ではITOを用いる。   A pixel electrode 60 is disposed in a region overlapping the effective receiving portion 100 of the element layer 40 in a plan view. As a material for forming the pixel electrode 60, a material having a work function of 5 eV or more can be used. Such a material is preferable as a material for forming the pixel electrode 60 because the hole injection effect is high. Examples of such a material include metal oxides such as ITO (Indium Thin Oxide). In this embodiment, ITO is used.

有効受容部100および緩衝受容部200aには有機機能層70が形成されている。有機機能層70は、電荷輸送層としての正孔注入層や、発光材料で形成される有機発光層を備えている。正孔注入層の形成材料としては、ポリマー前駆体がポリテトラヒドロチオフェニルフェニレンであるポリフェニレンビニレン、1,1−ビス−(4−N,N−ジトリルアミノフェニル)シクロヘキサン、トリス(8−ヒドロキシキノリノール)アルミニウム、ポリスチレンスルフォン酸、ポリエチレンジオキシチオフェンとポリスチレンスルフォン酸との混合物(PEDOT/PSS)等の公知の材料を例示することができる。また、塗布時にこれらを溶かしておく溶媒としては、イソプロピルアルコール、N−メチルピロリドン、1,3−ジメチル−イミダゾリノン等の極性溶媒を例示することができる。   An organic functional layer 70 is formed on the effective receiving portion 100 and the buffer receiving portion 200a. The organic functional layer 70 includes a hole injection layer as a charge transport layer and an organic light emitting layer formed of a light emitting material. As a material for forming the hole injection layer, polyphenylene vinylene whose polymer precursor is polytetrahydrothiophenylphenylene, 1,1-bis- (4-N, N-ditolylaminophenyl) cyclohexane, tris (8-hydroxyquinolinol) ) Known materials such as aluminum, polystyrene sulfonic acid, a mixture of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT / PSS) can be exemplified. Moreover, as a solvent which dissolves these at the time of application | coating, polar solvents, such as isopropyl alcohol, N-methylpyrrolidone, 1, 3- dimethyl- imidazolinone, can be illustrated.

また、有機発光層の形成材料としては、蛍光あるいは燐光を発光することが可能な公知の高分子発光材料を好適に用いることができる。このような材料としては、ポリフルオレン(PF)、ポリパラフェニレンビニレン(PPV)、ポリフェニレン(PP)、ポリパラフェニレン(PPP)、ポリビニルカルバゾール(PVK)、ポリチオフェン、ポリジアルキルフルオレン(PDAF)、ポリフルオレンベンゾチアジアゾール(PFBT)、ポリアルキルチオフェン(PAT)や、ポリメチルフェニルシラン(PMPS)等のポリシランなどの各誘導体を例示することができる。また、これらの発光材料に、ペリレン系色素、クマリン系色素、ローダミン系色素などの高分子系材料や、ルブレン、ペリレン、9,10−ジフェニルアントラセン、テトラフェニルブタジエン、ナイルレッド、クマリン6、キナクリドン等の低分子材料をドープして用いることもできる。   As a material for forming the organic light emitting layer, a known polymer light emitting material capable of emitting fluorescence or phosphorescence can be suitably used. Examples of such materials include polyfluorene (PF), polyparaphenylene vinylene (PPV), polyphenylene (PP), polyparaphenylene (PPP), polyvinylcarbazole (PVK), polythiophene, polydialkylfluorene (PDAF), polyfluorene. Examples thereof include benzothiadiazole (PFBT), polyalkylthiophene (PAT), and polysilanes such as polymethylphenylsilane (PMPS). In addition, these light emitting materials include polymer materials such as perylene dyes, coumarin dyes, rhodamine dyes, rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, Nile red, coumarin 6, quinacridone and the like. It is also possible to use a low molecular weight material doped.

溶媒には、水、メタノール、エタノール等の水と相溶性のあるアルコール、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルイミダゾリン(DMI)、ジメチルスルホキシド(DMSO)、2,3−ジヒドロベンゾフラン、等が挙げられ、これらの溶媒を2種以上適宜混合したものであっても良い。また、これらの溶媒にシクロヘキシルベンゼン等を適宜加えて粘度を調整しても構わない。極性溶媒は、上述した材料を容易に溶解または均一に分散させることができるため、機能液中の固形分が液滴吐出ヘッド301のノズル孔に付着したり目詰りを起こしたりすることを防止することができる。   Solvents include water, alcohols compatible with water such as methanol and ethanol, N, N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylimidazoline (DMI), dimethyl sulfoxide (DMSO), 2 , 3-dihydrobenzofuran, etc., and two or more of these solvents may be appropriately mixed. Further, the viscosity may be adjusted by appropriately adding cyclohexylbenzene or the like to these solvents. Since the polar solvent can easily dissolve or uniformly disperse the above-described materials, the solid content in the functional liquid is prevented from adhering to the nozzle holes of the droplet discharge head 301 or causing clogging. be able to.

素子層40上に形成されたこれらの構成要素を覆って素子層40の上面全面には、共通電極80が形成されている。共通電極80を形成するための材料としては、仕事関数が4eV以下の材料を用いることができる。このような材料は電子注入効果が大きいため、共通電極80の形成材料として好ましい。有効受容部100と平面的に重なる領域の画素電極60と有機機能層70と共通電極80とは、有機EL素子90を成している。   A common electrode 80 is formed on the entire upper surface of the element layer 40 so as to cover these components formed on the element layer 40. As a material for forming the common electrode 80, a material having a work function of 4 eV or less can be used. Since such a material has a large electron injection effect, it is preferable as a material for forming the common electrode 80. The pixel electrode 60, the organic functional layer 70, and the common electrode 80 in a region overlapping the effective receiving unit 100 in a plane form an organic EL element 90.

次いで、上述した有機EL装置1の製造方法について、図3を参照しながら説明する。以下の説明においては、各層の積層する方向を上、基板本体30の配置されている方向を下として各構成部材の上下関係を示す。なお、以下に示す手順や材料の構成は一例であり、これに限定されるものではない。   Next, a method for manufacturing the organic EL device 1 described above will be described with reference to FIG. In the following description, the vertical relationship of each component is shown with the direction in which the layers are stacked up and the direction in which the substrate body 30 is arranged as the bottom. Note that the following procedures and material configurations are examples, and the present invention is not limited to these.

まず、図3(a)に示すように、基板本体30の上に素子層40を形成し、素子層40上に第1隔壁部10、第3隔壁部20、第2隔壁部50の各隔壁部(隔壁層)をそれぞれ設ける。隔壁層は、例えば含フッ素樹脂のような撥液性材料で形成されている。または、アクリル樹脂、ポリイミド樹脂等の樹脂で形成された後に、表面にCF4などの有機フッ化物を用いたプラズマ処理を行い撥液処理することとしても良い。隔壁層は、たとえばフォトリソグラフィ法を用いて第1隔壁部10、第3隔壁部20、第2隔壁部50を別々に加工する方法や、階調マスクを用いて厚みを制御する方法など、従来公知の方法を採用し形成することができる。   First, as shown in FIG. 3A, the element layer 40 is formed on the substrate body 30, and the partition walls of the first partition part 10, the third partition part 20, and the second partition part 50 are formed on the element layer 40. Each part (partition wall layer) is provided. The partition layer is formed of a liquid repellent material such as a fluorine-containing resin. Alternatively, after being formed of a resin such as an acrylic resin or a polyimide resin, a liquid repellent treatment may be performed by performing plasma treatment using an organic fluoride such as CF 4 on the surface. For example, the partition layer may be a conventional method such as a method of separately processing the first partition portion 10, the third partition portion 20, and the second partition portion 50 using a photolithography method, or a method of controlling the thickness using a gradation mask. A well-known method can be employ | adopted and formed.

また、第2隔壁部50と第1隔壁部10と第3隔壁部20との幅を各々調節することで、第2隔壁部50、第1隔壁部10、第3隔壁部20の高さを調節することもできる。具体的には、高さの低い隔壁を形成する場合にはその隔壁の幅を小さくすることで高さの異なる隔壁を形成可能である。例えば、第2隔壁部50、第1隔壁部10、第3隔壁部20の順に隔壁を低くしたい場合には、同じ順で隔壁の幅を小さくする。このようにすると、エッチング(現像)によって幅の狭い隔壁は幅の広い隔壁よりも高さ方向により多く削られ、隔壁を低く形成することができる。   Further, by adjusting the widths of the second partition wall portion 50, the first partition wall portion 10 and the third partition wall portion 20, the heights of the second partition wall portion 50, the first partition wall portion 10 and the third partition wall portion 20 can be adjusted. It can also be adjusted. Specifically, when a partition wall having a low height is formed, partition walls having different heights can be formed by reducing the width of the partition wall. For example, when it is desired to lower the partition wall in the order of the second partition wall part 50, the first partition wall part 10, and the third partition wall part 20, the width of the partition wall is decreased in the same order. In this way, the narrow partition wall is etched more in the height direction than the wide partition wall by etching (development), and the partition wall can be formed low.

次いで、図3(b)に示すように、液滴吐出ヘッド301より機能液Lを塗布する。ここで、有効受容部100A,100Bに塗布する機能液の量には差があり、有効受容部100Aに塗布する機能液L1は有効受容部100Bに塗布する機能液L2より少ないこととする。また、機能液L2は有効受容部100Bから丁度あふれ出ない程度の量であるとする。更に、機能液L1の量を、有効受容部100からあふれ出す量ではあるが、緩衝受容部200の容積を満たして更に余剰がある量ではない量に調整する。   Next, as shown in FIG. 3B, the functional liquid L is applied from the droplet discharge head 301. Here, there is a difference in the amount of the functional liquid applied to the effective receiving portions 100A and 100B, and the functional liquid L1 applied to the effective receiving portion 100A is less than the functional liquid L2 applied to the effective receiving portion 100B. Further, it is assumed that the functional liquid L2 is in an amount that does not overflow from the effective receiving unit 100B. Further, the amount of the functional liquid L1 is adjusted to an amount that overflows from the effective receiving portion 100 but is not an amount that has a surplus after filling the volume of the buffer receiving portion 200.

上記のように機能液Lを塗布すると、図3(c)に示すように、有効受容部100Aでは機能液L1が緩衝受容部200aにあふれ出す。配置された機能液L1が自重により変形し、第1隔壁部10の頂部と機能液との接触角が前進接触角を越えると、機能液L1の流出が起こる。流出した機能液L1は緩衝受容部200aに濡れ広がるが、第3隔壁部20によりせき止められる。また、流出した機能液L1が緩衝受容部200aを満たし第3隔壁部20を乗り越えてあふれ出る場合には、機能液L1は緩衝受容部200bに濡れ広がることになる。濡れ広がる機能液L1は第2隔壁部50によりせき止められるため、隣り合う有効受容部100に配置された機能液L同士が混ざることはない。   When the functional liquid L is applied as described above, as shown in FIG. 3C, the functional liquid L1 overflows into the buffer receiving part 200a in the effective receiving part 100A. When the arranged functional liquid L1 is deformed by its own weight and the contact angle between the top of the first partition 10 and the functional liquid exceeds the forward contact angle, the functional liquid L1 flows out. The functional fluid L1 that has flowed out wets and spreads to the buffer receiving portion 200a, but is blocked by the third partition wall portion 20. Further, when the functional liquid L1 that has flowed out fills the buffer receiving part 200a and overflows over the third partition wall part 20, the functional liquid L1 wets and spreads to the buffer receiving part 200b. Since the functional liquid L1 spreading and getting wet is blocked by the second partition wall 50, the functional liquids L arranged in the adjacent effective receiving portions 100 are not mixed.

このような機能液の挙動によって、機能液の高さを略均一にそろえることが可能となるが、この機能を以下に詳細に説明する。   Such a behavior of the functional liquid makes it possible to make the height of the functional liquid substantially uniform. This function will be described in detail below.

まず、ある面の上に液状体を配置すると、液状体の量が増えるにつれ液状体は高く盛り上がり、また、広く濡れ広がる。この際、配置面の親撥液性と液状体の表面張力との関係により、濡れ広がり方(濡れ広がる面積)が異なると、液状体の高さは変化する。そのため、ぬれ広がりを規制し配置面の面積を一定とすると、盛り上がる液状体の高さの最大値はおのずと決まる。本発明では、隔壁層を用いてこれらの現象を制御し、配置する機能液L1の高さを略一定に制御する。   First, when a liquid material is arranged on a certain surface, the liquid material rises higher as the amount of the liquid material increases, and spreads widely and wet. At this time, the height of the liquid material changes depending on the relationship between the lyophobic property of the arrangement surface and the surface tension of the liquid material when the wet spreading method (area where the wet material spreads) is different. Therefore, if the wetting spread is restricted and the area of the arrangement surface is constant, the maximum height of the rising liquid material is naturally determined. In the present invention, these phenomena are controlled by using the partition layer, and the height of the functional liquid L1 to be disposed is controlled to be substantially constant.

本発明の場合、まず有効受容部100に配置された機能液L1は、第1隔壁部10の頂面に至るまでたまる。この場合、機能液L1の平面視形状は第1隔壁部10の頂面に沿ったものとなることから、第1隔壁部10の平面視形状の面積を、機能液L1を配置する面の配置面積であると擬似的に考える。上述したとおり、配置面積が一定である場合盛り上がる液状体の高さの最大値は決まるため、有効受容部100に配置さる機能液L1の盛り上がる高さの最大値が決まる。   In the case of the present invention, first, the functional liquid L <b> 1 disposed in the effective receiving portion 100 is accumulated until reaching the top surface of the first partition wall portion 10. In this case, since the planar view shape of the functional liquid L1 is along the top surface of the first partition wall portion 10, the area of the planar view shape of the first partition wall portion 10 is arranged on the surface on which the functional liquid L1 is disposed. Think of it as an area. As described above, when the arrangement area is constant, the maximum value of the height of the liquid that rises is determined, and therefore the maximum value of the height of the functional liquid L1 that is arranged in the effective receiving unit 100 is determined.

配置する機能液L1の量が有効受容部100からあふれ出る量に達すると、有効受容部100上にそれ以上高く盛り上がらず、緩衝受容部200にあふれ出す。そのため、有効受容部100での機能液L1の盛り上がりが抑制される。   When the amount of the functional liquid L1 to be arranged reaches the amount overflowing from the effective receiving portion 100, it does not rise higher on the effective receiving portion 100 and overflows to the buffer receiving portion 200. Therefore, the swell of the functional liquid L1 in the effective receiving part 100 is suppressed.

一方で、緩衝受容部200の底面積が広いとあふれ出た余剰分の機能液L1がぬれ広がり、濡れ広がった機能液L1の表面張力により該余剰分よりも多く機能液L1が流出するおそれがある。そうすると、機能液L1の高さが低くなる。そこで、第3隔壁部20を設けて緩衝受容部200を緩衝受容部200a,200bに分割し、ぬれ広がる底面積を小さく分割している。あふれ出る機能液L1は、まずは第3隔壁部20に至るまでぬれ広がるため、必要以上の機能液L1の流出を防ぎ、機能液L1の高さの変化が抑制される。   On the other hand, if the bottom area of the buffer receiving part 200 is large, the excess functional liquid L1 overflows and the functional liquid L1 may flow out more than the surplus due to the surface tension of the functional liquid L1 spreading wet. is there. If it does so, the height of the functional liquid L1 will become low. Therefore, the third partition wall portion 20 is provided to divide the buffer receiving portion 200 into buffer receiving portions 200a and 200b, and the bottom area that spreads out is divided into small portions. Since the overflowing functional liquid L1 is first spread to reach the third partition wall portion 20, the functional liquid L1 is prevented from flowing out more than necessary, and the change in the height of the functional liquid L1 is suppressed.

配置する機能液L1の量が更に多いと、機能液L1は緩衝受容部200aを満たし、第3隔壁部20の頂面に至る。この場合、機能液L1は緩衝受容部200aからあふれ出る量に達するまでは配置することができるため、緩衝受容部200aの平面視面積が擬似的な配置面積であると考えることができる。そのため、第3隔壁部20により配置面積を制御することで機能液L1の高さを制御することが可能となる。配置面積が広がるため機能液L1の盛り上がる高さの最大値が変化することが考えられるが、第1隔壁部10と第3隔壁部20との配置間隔を制御することで、擬似配置面積の拡大幅を小さくすることができる。このようにすることで、機能液L1と機能液L2の配置後の高さH1,H2を略均一となるよう制御することができる。   When the amount of the functional liquid L1 to be arranged is further large, the functional liquid L1 fills the buffer receiving portion 200a and reaches the top surface of the third partition wall portion 20. In this case, since the functional liquid L1 can be arranged until it reaches the amount overflowing from the buffer receiving part 200a, it can be considered that the area in plan view of the buffer receiving part 200a is a pseudo arrangement area. Therefore, the height of the functional liquid L1 can be controlled by controlling the arrangement area by the third partition wall portion 20. Although it is conceivable that the maximum height of the rising of the functional liquid L1 changes due to the expansion of the arrangement area, the pseudo arrangement area can be increased by controlling the arrangement interval between the first partition wall portion 10 and the third partition wall portion 20. The width can be reduced. By doing in this way, the heights H1 and H2 after the arrangement of the functional liquid L1 and the functional liquid L2 can be controlled to be substantially uniform.

このような理由から、図では1つだけ設けている第3隔壁部20を更に同心円状に複数設けると、緩衝受容部の容量や擬似配置面積の拡大幅をより細かく制御することができ、機能液の高さの変化を抑えることができる。例えば、用いる液滴吐出ノズルの吐出量誤差があらかじめ推定可能であるとする。その場合には、分割した緩衝受容部1つあたりの容量が、吐出量誤差により想定される最大値と最小値の差(誤差幅)よりも小さくなるように第3隔壁部20を形成すると良い。こうすることで、吐出量の誤差を多段階で緩衝することができ、膜厚のバラつきを抑える塗布が可能となる。   For this reason, if a plurality of third partition walls 20 that are provided only one in the figure are further provided concentrically, the capacity of the buffer receiving part and the expansion width of the pseudo-arrangement area can be controlled more finely. The change in the height of the liquid can be suppressed. For example, it is assumed that the discharge amount error of the droplet discharge nozzle to be used can be estimated in advance. In that case, the third partition wall portion 20 may be formed so that the capacity per divided buffer receiving portion is smaller than the difference (error width) between the maximum value and the minimum value assumed by the discharge amount error. . By doing so, it is possible to buffer errors in the discharge amount in multiple stages, and it is possible to perform coating that suppresses variations in film thickness.

次いで図3(d)に示すように、配置された機能液Lの溶媒を加熱あるいは光照射により蒸発させて画素電極60上に固形の有機機能層70を形成する。または、大気環境下又は窒素ガス雰囲気下において所定温度及び時間で焼成するようにしてもよい。あるいは大気圧より低い圧力環境下(減圧環境下)に配置することで溶媒を除去するようにしてもよい。ここで、緩衝受容部200aにあふれ出た機能液L1も、溶媒が蒸発して有機機能層70を形成する。   Next, as shown in FIG. 3 (d), the solvent of the arranged functional liquid L is evaporated by heating or light irradiation to form a solid organic functional layer 70 on the pixel electrode 60. Alternatively, firing may be performed at a predetermined temperature and time in an air environment or a nitrogen gas atmosphere. Or you may make it remove a solvent by arrange | positioning in the pressure environment (under pressure reduction environment) lower than atmospheric pressure. Here, the functional liquid L1 overflowing into the buffer receiving portion 200a also forms the organic functional layer 70 by evaporation of the solvent.

次いで図3(e)に示すように、全ての有効受容部100に有機機能層70を形成したら、素子層40上に形成された隔壁層や有機機能層70の全面を覆って素子層40の表面全体にITO等を用いて共通電極80を形成する。共通電極80はスパッタなどの物理的蒸着、CVDなどの化学的蒸着いずれの方法によっても形成可能である。必要に応じて、共通電極80の表面には共通電極80の破損を防ぐための保護膜を形成してもよい。   Next, as shown in FIG. 3E, when the organic functional layer 70 is formed on all the effective receiving portions 100, the barrier layer formed on the element layer 40 and the entire surface of the organic functional layer 70 are covered so as to cover the element layer 40. The common electrode 80 is formed on the entire surface using ITO or the like. The common electrode 80 can be formed by either physical vapor deposition such as sputtering or chemical vapor deposition such as CVD. If necessary, a protective film for preventing the common electrode 80 from being damaged may be formed on the surface of the common electrode 80.

画素電極60は、有効受容部100に平面的に重なる領域に形成されており、緩衝受容部200に平面的に重なる領域には形成されていない。そのため、有効受容部100に形成された有機機能層70は画素電極60および共通電極80と共に有機EL素子90を構成する。一方で、緩衝受容部200に形成された有機機能層70は対応する画素電極が存在しないため発光しない。以上のようにして、有機EL素子90を形成し有機EL装置1が完成する。   The pixel electrode 60 is formed in a region that overlaps the effective receiving portion 100 in a plane, and is not formed in a region that overlaps the buffer receiving portion 200 in a plane. Therefore, the organic functional layer 70 formed in the effective receiving part 100 constitutes the organic EL element 90 together with the pixel electrode 60 and the common electrode 80. On the other hand, the organic functional layer 70 formed in the buffer receiving part 200 does not emit light because there is no corresponding pixel electrode. As described above, the organic EL element 90 is formed and the organic EL device 1 is completed.

以上のような構成の有機EL装置の製造方法によれば、異なる量の機能液L1,L2が塗布されても、配置される機能液の高さを第1隔壁部10の高さで一定にそろえることが可能となる。例えば、機能液を配置する方法・装置の性質により配置する機能液の量にバラつきが生じることが避けられないような場合であっても、画素電極60上に配置される機能液Lの量(高さ)が一定となる。そのため、いずれの有機EL素子90おいても形成される有機機能層70の膜厚に均一となり、発光ムラのない有機EL装置1を製造することができる。   According to the method of manufacturing the organic EL device having the above-described configuration, the height of the functional liquid to be arranged is kept constant at the height of the first partition 10 even when different amounts of the functional liquids L1 and L2 are applied. It becomes possible to align. For example, even if it is unavoidable that the amount of the functional liquid to be arranged varies due to the nature of the method / apparatus for arranging the functional liquid, the amount of the functional liquid L arranged on the pixel electrode 60 ( Height) is constant. Therefore, the organic EL device 1 can be manufactured with uniform thickness of the organic functional layer 70 formed in any of the organic EL elements 90 and without light emission unevenness.

また、本実施形態では、第1隔壁部10を第2隔壁部50よりも低く形成することとしている。そのため、機能液Lが第2隔壁部50を乗り越えることを確実に防ぐことができ、良好に有機機能層70を形成することができる。また、第1隔壁部10を低く形成することにより隔壁近傍と隔壁から遠い部分との形成される膜厚の差を小さくすることができる。そのため、膜の平坦性を高め膜厚ムラを減らすことができる。   In the present embodiment, the first partition wall 10 is formed lower than the second partition wall 50. Therefore, it is possible to reliably prevent the functional liquid L from getting over the second partition wall 50, and the organic functional layer 70 can be formed satisfactorily. Further, by forming the first partition wall portion 10 low, the difference in film thickness formed between the vicinity of the partition wall and the portion far from the partition wall can be reduced. Therefore, the flatness of the film can be increased and the film thickness unevenness can be reduced.

また、本実施形態では、第1隔壁部10と同じ高さの第3隔壁部20を形成し、緩衝受容部200を緩衝受容部200a,200bに分割している。そのため、機能液Lの濡れ広がりを抑制し、有効受容部100に配置された機能液Lの量の変動を防ぐことで、膜厚ムラを減らすことが可能となる。   Moreover, in this embodiment, the 3rd partition part 20 of the same height as the 1st partition part 10 is formed, and the buffer receiving part 200 is divided | segmented into buffer receiving part 200a, 200b. Therefore, by suppressing the wetting and spreading of the functional liquid L and preventing the fluctuation of the amount of the functional liquid L disposed in the effective receiving unit 100, it is possible to reduce film thickness unevenness.

また、本実施形態では、第1隔壁部10は機能液Lに対して撥液性を示す撥液材料である含フッ素樹脂を用いて形成されている。機能液Lは第1隔壁部10の頂部ではじかれるため有効受容部100からあふれ出しにくく、また、あふれ出す機能液Lの流動が止まりやすい。そのため、有効受容部100により多くの機能液Lを容易に配置することができ、膜厚ムラが少なく厚い有機機能層70を形成することができる。   In the present embodiment, the first partition 10 is formed using a fluorine-containing resin that is a liquid repellent material that exhibits liquid repellency with respect to the functional liquid L. Since the functional liquid L is repelled at the top of the first partition wall 10, it is difficult for the functional liquid L to overflow from the effective receiving portion 100, and the flow of the overflowing functional liquid L tends to stop. Therefore, a large amount of the functional liquid L can be easily arranged in the effective receiving portion 100, and the thick organic functional layer 70 with little film thickness unevenness can be formed.

本発明においては、機能液Lを配置する工程に液滴吐出法を用いている。そのため、表示ムラがなく且つ高解像度の有機EL装置を容易に製造することができる。   In the present invention, a droplet discharge method is used in the step of disposing the functional liquid L. Therefore, a high-resolution organic EL device without display unevenness can be easily manufactured.

このような構成の有機EL装置1によれば、機能液Lを配置して有機機能層70を形成する場合に均一な膜厚とすることができるため、表示ムラなく高品質な有機EL装置1とすることができる。   According to the organic EL device 1 having such a configuration, when the functional liquid L is disposed and the organic functional layer 70 is formed, the organic EL device 1 can have a uniform film thickness. It can be.

なお、本実施形態においては、第1隔壁部10を第2隔壁部50よりも低く形成することとしたが、第1隔壁部10を第2隔壁部50と同じ高さもしくは高く形成しても構わない。   In the present embodiment, the first partition wall portion 10 is formed lower than the second partition wall portion 50, but the first partition wall portion 10 may be formed at the same height or higher than the second partition wall portion 50. I do not care.

また、本実施形態においては、第3隔壁部20を1つ設けることとしたが、複数の第3隔壁部20を設けることとしても構わない。このように設けることで、更に複数の緩衝受容部が形成され、有効受容部100から流出する機能液の濡れ広がりを更に細かく制御することができる。   In the present embodiment, one third partition 20 is provided, but a plurality of third partitions 20 may be provided. By providing in this way, a plurality of buffer receiving portions are further formed, and the wetting and spreading of the functional liquid flowing out from the effective receiving portion 100 can be controlled more finely.

[第2実施形態]
図4は、本発明の第2実施形態に係る有機EL装置の説明図である。図4(a)は斜視図、(b)は平面図を示す。本実施形態の有機EL装置2は、第1実施形態の有機EL装置1と一部共通している。異なるのは、第1隔壁部および第3隔壁部が第2隔壁部に当接して形成されていることである。したがって、本実施形態において第1実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Second Embodiment]
FIG. 4 is an explanatory diagram of an organic EL device according to the second embodiment of the present invention. 4A is a perspective view, and FIG. 4B is a plan view. The organic EL device 2 of the present embodiment is partially in common with the organic EL device 1 of the first embodiment. The difference is that the first partition wall portion and the third partition wall portion are formed in contact with the second partition wall portion. Therefore, in this embodiment, the same code | symbol is attached | subjected about the component which is common in 1st Embodiment, and detailed description is abbreviate | omitted.

図4(a)に示すように、本実施形態の有機EL装置2は、互いに離間した2つの第1隔壁部10が第2隔壁部50の長辺側の向かいあう側壁同士に接続して形成されている。また、向かい合う第1隔壁部10の側壁同士と、2つの第1隔壁部10間の第2隔壁部50の側壁と、これらに囲まれた領域の底面と、で囲まれた部分は有効受容部100を形成している。   As shown in FIG. 4A, the organic EL device 2 of the present embodiment is formed by connecting two first partition walls 10 that are separated from each other to the side walls facing each other on the long side of the second partition wall 50. ing. Further, the portion surrounded by the side walls of the first partition walls 10 facing each other, the side wall of the second partition wall 50 between the two first partition walls 10 and the bottom surface of the region surrounded by these is the effective receiving portion. 100 is formed.

また、第2隔壁部50の側壁と、第1隔壁部10の有効受容部100に対向しない側の側壁と、これらに囲まれた領域の底面と、で囲まれた部分は緩衝受容部200を形成している。緩衝受容部200には、第2隔壁部50の長辺側の向かいあう側壁同士を接続する第3隔壁部20が設けられており、緩衝受容部200を2つの緩衝受容部200a,200bに分割している。これら第1隔壁部10及び第3隔壁部20は、第2隔壁部50よりも低く形成されている。   Further, the portion surrounded by the side wall of the second partition wall 50, the side wall of the first partition wall 10 on the side not facing the effective receiving portion 100, and the bottom surface of the region surrounded by these is the buffer receiving portion 200. Forming. The buffer receiving portion 200 is provided with a third partition wall portion 20 that connects the side walls facing each other on the long side of the second partition wall portion 50. The buffer receiving portion 200 is divided into two buffer receiving portions 200a and 200b. ing. The first partition wall portion 10 and the third partition wall portion 20 are formed lower than the second partition wall portion 50.

図4(b)に示すように、第2隔壁部50は平面視で角部が丸くなった矩形の開口部を備えている。第1隔壁部10および第3隔壁部20は第2隔壁部50の形状に対応した弧状を成している。ここでは第1隔壁部10及び第3隔壁部20を、第2隔壁部50の開口部の長手方向両方にそれぞれに同数ずつ配置しているが、数・形状はこれに限定されるものではない。例えば長手方向の一方側にのみ第1隔壁部10及び第3隔壁部20を形成することとしてもよい。また、一方側には第1隔壁部10と第3隔壁部20を、他方側には第1隔壁部10のみを形成することとしても構わない。   As shown in FIG. 4B, the second partition wall portion 50 is provided with a rectangular opening whose corners are rounded in plan view. The first partition wall portion 10 and the third partition wall portion 20 have an arc shape corresponding to the shape of the second partition wall portion 50. Here, the same number of the first partition walls 10 and the third partition walls 20 are disposed in both the longitudinal directions of the openings of the second partition walls 50, but the number and shape are not limited thereto. . For example, the first partition wall 10 and the third partition wall 20 may be formed only on one side in the longitudinal direction. Further, the first partition wall 10 and the third partition wall 20 may be formed on one side, and only the first partition wall 10 may be formed on the other side.

図に示すような縦長の平面視形状の有機EL素子90は、例えばフルカラー表示を行う有機ELディスプレイの表示画面を構成する有機EL素子に好適に用いることができる。
画像表示装置を用いてフルカラー表示を行う場合には、赤色、緑色、青色の3色に対応する縦長のサブ画素を用いて1画素を構成し、良好な画像表示が可能な縦横比(アスペクト比)の画素にするのが通常の構成である。
The vertically long organic EL element 90 in a plan view as shown in the figure can be suitably used for an organic EL element constituting a display screen of an organic EL display that performs full color display, for example.
When full-color display is performed using an image display device, an aspect ratio (aspect ratio) that allows one image to be formed using vertical sub-pixels corresponding to three colors of red, green, and blue to display a good image. ) Is a normal configuration.

図のような形状の隔壁層を設けた有機EL素子90では、第2隔壁部50の側壁50a近傍にまで画素電極60を配置することが可能であるため、画素開口率が上がり表示が優れたものとなる。また、このような形状の有機EL素子90をマトリクス状に複数備える有機EL装置2では、隣接する有機EL素子90同士が側壁50a同士を接近させて配置することが可能となり、緻密で高画質な表示が可能となる   In the organic EL element 90 provided with the partition wall layer having a shape as shown in the figure, the pixel electrode 60 can be disposed up to the vicinity of the side wall 50a of the second partition wall portion 50, so that the pixel aperture ratio is increased and display is excellent. It will be a thing. Further, in the organic EL device 2 including a plurality of organic EL elements 90 having such a shape in a matrix shape, the adjacent organic EL elements 90 can be arranged with the side walls 50a approaching each other, and the dense and high image quality can be achieved. Can be displayed

図4に示した本実施形態の有機EL装置2は、隔壁層を形成するフォトリソグラフィおよびエッチング工程において、有機EL装置2が備える隔壁層の形状に形成することとする他は、第1実施形態で示した製造方法と同様の方法を用いることで良好に形成することができる。第1隔壁部10を第2隔壁部50よりも低く形成しているため、塗布した機能液Lが第2隔壁部50を乗り越えてもれ出ることなく、緩衝受容部200にあふれる。したがって、隣接する有効受容部100に塗布した機能液L同士が混ざり合うことなく良好に塗布することができ、膜厚が均一で発光ムラのない有機EL装置2を製造することができる。   The organic EL device 2 of the present embodiment shown in FIG. 4 is the first embodiment except that the organic EL device 2 is formed in the shape of the partition layer included in the organic EL device 2 in the photolithography and etching process for forming the partition layer. It can be formed satisfactorily by using a method similar to the manufacturing method shown in. Since the first partition wall portion 10 is formed lower than the second partition wall portion 50, the applied functional liquid L overflows the buffer receiving portion 200 without leaking over the second partition wall portion 50. Therefore, the functional liquid L applied to the adjacent effective receiving portions 100 can be satisfactorily applied without being mixed, and the organic EL device 2 having a uniform film thickness and no uneven light emission can be manufactured.

(変形例)
また、有効受容部100に配置した機能液の一部を緩衝受容部200にあふれ出させることで、配置する機能液の高さを均一にそろえるという本発明の趣旨から、隔壁層の形状や配置を変形可能なことは明らかである。以下、隔壁層の形状や配置について、いくつかの変形例を説明する。図5から図7は、変形例を示す平面図である。
(Modification)
Further, the shape and arrangement of the partition wall layer are formed from the gist of the present invention that the height of the functional liquid to be arranged is made uniform by overflowing a part of the functional liquid arranged in the effective receiving section 100 to the buffer receiving section 200. It is clear that can be deformed. Hereinafter, some modified examples of the shape and arrangement of the partition wall layer will be described. 5 to 7 are plan views showing modifications.

図5は、有効受容部100の平面視形状を楕円形とし、第3隔壁部20および第2隔壁部50の形状も有効受容部100に対応した楕円または円弧状の形状である以外は第2実施形態と共通する構成としている。図4の構成と同様に、隣接する有機EL素子90同士が側壁50a同士を接近させて配置することが可能となり、緻密で高画質な表示が可能となる   FIG. 5 shows a second shape except that the shape of the effective receiving portion 100 in plan view is an ellipse, and the shapes of the third partition wall portion 20 and the second partition wall portion 50 are also elliptical or arcuate shapes corresponding to the effective receiving portion 100. The configuration is the same as that of the embodiment. Similar to the configuration of FIG. 4, the adjacent organic EL elements 90 can be arranged with the side walls 50 a close to each other, and a dense and high-quality display is possible.

図6は、平面視円形の開口部を備えた第2隔壁部50の側壁に接続する第1隔壁部10を複数設け、複数の第1隔壁部10が全体として平面視多角形(図では八角形)となるような構成としている。図6に示す例では、有効受容部100は第1隔壁部10で周囲を囲まれており、複数の第1隔壁部10と第2隔壁部50との間に複数の緩衝受容部200を形成している。機能液の余剰分が有効受容部100からあふれ出る箇所は、第1隔壁部10の特定の箇所と決まってはいない。緩衝受容部200の配置が図に示すような構成であると、緩衝受容部200が同じ形状の8つの小単位に分割され、有効受容部100の周囲に均等な間隔配置している。そのため、緩衝受容部200でのぬれ広がりは小さく、配置面積の増大も細かく制御することができ、略均一に機能液の高さをそろえることが可能となる。   6 shows a plurality of first partition walls 10 connected to the side wall of the second partition wall 50 having a circular opening in plan view, and the plurality of first partition walls 10 as a whole are polygons in plan view (eight in the figure). (Square). In the example shown in FIG. 6, the effective receiving part 100 is surrounded by a first partition part 10, and a plurality of buffer receiving parts 200 are formed between the plurality of first partition parts 10 and the second partition part 50. is doing. The location where the excess functional fluid overflows from the effective receiving portion 100 is not determined as a specific location of the first partition 10. If the arrangement of the buffer receiving portions 200 is as shown in the figure, the buffer receiving portions 200 are divided into eight small units having the same shape, and are arranged at equal intervals around the effective receiving portion 100. Therefore, the wetting spread at the buffer receiving portion 200 is small, the increase in the arrangement area can be finely controlled, and the height of the functional liquid can be made substantially uniform.

図7(a)は、第1実施形態で示した平面視同心円状に各隔壁を形成した例において、第1隔壁部10と第3隔壁部20との間、第3隔壁部20と第2隔壁部との間を第4隔壁部22で接続して緩衝受容部200を更に細かく分割した構成の例である。図では第4隔壁部22を、放射状に等間隔に複数(図では8つ)配置することで、緩衝受容部200aを略同じ平面視形状の複数の緩衝受容部200aに、緩衝受容部200bを略同じ平面視形状の複数の緩衝受容部200bにそれぞれ分割している。このような形態の隔壁層を設けることで、あふれ出る機能液のぬれ広がりを細かく制御し、また、機能液が配置される受容部の面積(擬似配置面積)の拡大を抑制することができる。したがって、より容易に機能液の高さをそろえることが可能となる。   FIG. 7A shows an example in which each partition wall is formed concentrically in a plan view shown in the first embodiment, between the first partition wall portion 10 and the third partition wall portion 20, and between the third partition wall portion 20 and the second partition wall portion 20. This is an example of a configuration in which the buffer receiving portion 200 is further finely divided by connecting the partition walls with a fourth partition wall 22. In the figure, a plurality of (four in the figure) fourth partition walls 22 are arranged radially at equal intervals, so that the buffer receiving parts 200a are arranged in a plurality of buffer receiving parts 200a having substantially the same plan view shape, and the buffer receiving parts 200b are provided. Each is divided into a plurality of buffer receiving portions 200b having substantially the same plan view shape. By providing the partition layer having such a configuration, it is possible to finely control the wetting and spreading of the overflowing functional liquid, and to suppress the increase in the area (pseudo-arrangement area) of the receiving portion where the functional liquid is disposed. Therefore, the height of the functional liquid can be more easily aligned.

また、図7(b)のように、第1隔壁部10と第3隔壁部20との間は第4隔壁部22で接続しており、有効受容部100に隣接する緩衝受容部200aが複数に分割されているが、緩衝受容部200bは分割されていなくてもよい。同様に図7(c)のように、有効受容部100に隣接する緩衝受容部200aは分割されず、第3隔壁部20と第2隔壁部50との間を第4隔壁部22で接続し、緩衝受容部200bのみが複数に分割されることとしても構わない。   Further, as shown in FIG. 7B, the first partition wall 10 and the third partition wall 20 are connected by the fourth partition wall 22, and there are a plurality of buffer receiving parts 200 a adjacent to the effective receiving part 100. However, the buffer receiving portion 200b may not be divided. Similarly, as shown in FIG. 7C, the buffer receiving portion 200a adjacent to the effective receiving portion 100 is not divided, and the third partition wall portion 20 and the second partition wall portion 50 are connected by the fourth partition wall portion 22. Only the buffer receiving part 200b may be divided into a plurality of parts.

これら変形例に示す形状の隔壁層を備えた有機EL装置であっても、同様に、膜圧ムラが少なく高品質表示が可能な装置とすることができる。   Even in the organic EL device including the partition wall layer having the shape shown in these modified examples, similarly, a device capable of high quality display with little film pressure unevenness can be obtained.

[電子機器]
次に、図8を参照し、本発明の有機EL装置を備えた電子機器の例について説明する。
次に、本発明の有機EL装置を備えた電子機器の例について説明する。図8は、本発明に係る電子機器の一例を示す斜視図である。図8に示す携帯電話1300は、本発明の液晶表示装置を小サイズの表示部1301として備え、複数の操作ボタン1302、受話口1303、及び送話口1304を備えて構成されている。これにより、本発明の有機EL装置を備え表示品質に優れる表示部を具備した携帯電話1300を提供することができる。
[Electronics]
Next, an example of an electronic apparatus provided with the organic EL device of the present invention will be described with reference to FIG.
Next, an example of an electronic apparatus provided with the organic EL device of the present invention will be described. FIG. 8 is a perspective view showing an example of an electronic apparatus according to the present invention. A cellular phone 1300 shown in FIG. 8 includes the liquid crystal display device of the present invention as a small-sized display portion 1301, and includes a plurality of operation buttons 1302, an earpiece 1303, and a mouthpiece 1304. Thereby, the mobile phone 1300 provided with the display unit that includes the organic EL device of the present invention and has excellent display quality can be provided.

なお、電子機器としては、上述したものに限られることなく、種々のものに適用することができる。例えば、ディスクトップ型コンピュータ、マルチメディア対応のパーソナルコンピュータ(PC)及びエンジニアリング・ワークステーション(EWS)、ページャ、ワードプロセッサ、テレビ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、電子手帳、電子卓上計算機、カーナビゲーション装置、POS端末、タッチパネルを備えた装置等の画像表示手段として好適に用いることができ、かかる構成とすることで、表示品質が高い表示部を備えた電子機器を提供することができる。   In addition, as an electronic device, it is not restricted to what was mentioned above, It can apply to a various thing. For example, a desktop computer, multimedia personal computer (PC) and engineering workstation (EWS), pager, word processor, television, viewfinder type or monitor direct view type video tape recorder, electronic notebook, electronic desk calculator, It can be suitably used as an image display means such as a car navigation device, a POS terminal, or a device provided with a touch panel. With such a configuration, an electronic device including a display unit with high display quality can be provided.

以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

液滴吐出装置に備わる液滴吐出ヘッドの断面図である。It is sectional drawing of the droplet discharge head with which a droplet discharge apparatus is equipped. 本発明の第1実施形態に係る有機EL装置の要部を拡大した概略図である。It is the schematic which expanded the principal part of the organic electroluminescent apparatus which concerns on 1st Embodiment of this invention. 本実施形態の有機EL装置の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the organic electroluminescent apparatus of this embodiment. 本発明の第2実施形態に係る有機EL装置の要部を拡大した概略図である。It is the schematic which expanded the principal part of the organic electroluminescent apparatus which concerns on 2nd Embodiment of this invention. 第2実施形態の変形例を示す平面図である。It is a top view which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す平面図である。It is a top view which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す平面図である。It is a top view which shows the modification of 2nd Embodiment. 本発明の実施形態の有機EL装置を備える電子機器を示す図である。It is a figure which shows an electronic device provided with the organic electroluminescent apparatus of embodiment of this invention. 従来例を示す概略図である。It is the schematic which shows a prior art example.

符号の説明Explanation of symbols

1,2…有機エレクトロルミネッセンス装置、10…第1隔壁部、20…第3隔壁部、22…第4隔壁部、50…第2隔壁部、70…有機機能層、90…有機エレクトロルミネッセンス素子、100…有効受容部、200,200a,200b…緩衝受容部、L,L1,L2…機能液   DESCRIPTION OF SYMBOLS 1, 2 ... Organic electroluminescent apparatus, 10 ... 1st partition part, 20 ... 3rd partition part, 22 ... 4th partition part, 50 ... 2nd partition part, 70 ... Organic functional layer, 90 ... Organic electroluminescent element, 100 ... Effective receiving part, 200, 200a, 200b ... Buffer receiving part, L, L1, L2 ... Functional liquid

Claims (4)

第1電極と第2電極との間に有機機能層を挟持した発光素子を基板上に複数配設し、前記発光素子の周囲が隔壁層で囲まれてなる有機エレクトロルミネッセンス装置の製造方法であって、
前記基板上の前記第1電極の周囲を囲んで、前記隔壁層に含まれる第1隔壁部を形成し、前記第1隔壁部の側壁と前記第1隔壁部に囲まれた領域の底面とで囲まれた有効受容部を設ける工程と、
前記第1隔壁部の周囲を囲んで、前記隔壁層に含まれる第2隔壁部を、前記第1隔壁部と離間し、且つ前記第1隔壁部よりも高くなるように形成して、互いに向き合う前記第1隔壁部の側壁と前記第2隔壁部の側壁及びこれらの間の領域の底面とで囲まれた緩衝受容部を設ける工程と、
前記第1隔壁部と前記第2隔壁部との間において、前記第1隔壁部の周囲を囲んで前記隔壁層に含まれる第3隔壁部を形成する工程と、
前記第1隔壁部と前記第3隔壁部との間、または前記第3隔壁部と前記第2隔壁部との間の領域のいずれか一方または両方において、前記隔壁層に含まれ両端が前記第1隔壁部および前記第3隔壁部に当接、または両端が前記第3隔壁部および前記第2隔壁部に当接する第4隔壁部を形成し、前記第1隔壁部の延在方向を前記有効受容部の周方向として、前記有効受容部の周方向に前記緩衝受容部を複数に分割する工程と、
前記有効受容部に前記有機機能層の形成材料を含む機能液を配置し前記有機機能層を形成する工程と、を備え、
前記緩衝受容部は、複数の前記有効受容部の間で共有されることなく前記有効受容部毎に設けられ、
前記有機機能層を形成する工程では、前記機能液を、前記有効受容部からあふれ出す量以上の量であって、且つ、前記有効受容部の容積と前記緩衝受容部の容積とを合わせた量未満の量を配置することを特徴とする有機エレクトロルミネッセンス装置の製造方法。
A method of manufacturing an organic electroluminescence device, in which a plurality of light emitting elements each having an organic functional layer sandwiched between a first electrode and a second electrode are disposed on a substrate, and the periphery of the light emitting elements is surrounded by a partition wall layer. And
A first partition part included in the partition layer is formed surrounding the first electrode on the substrate, and a side wall of the first partition part and a bottom surface of a region surrounded by the first partition part are formed. Providing an enclosed effective receiving portion;
Surrounding the periphery of the first partition wall portion, the second partition wall portion included in the partition wall layer is formed so as to be spaced apart from the first partition wall portion and higher than the first partition wall portion, and face each other. Providing a buffer receiving portion surrounded by a side wall of the first partition wall, a side wall of the second partition wall, and a bottom surface of a region between them;
Forming a third partition wall included in the partition wall surrounding the first partition wall between the first partition wall and the second partition wall; and
In either one or both of the region between the first partition wall portion and the third partition wall portion, or the region between the third partition wall portion and the second partition wall portion, both ends are included in the partition wall layer . 1 to form a fourth partition wall partition wall portion and the third contact in the partition wall portion or both ends, abuts on the third partition wall and the second partition wall, the extending direction of the first partition wall portion enable the Dividing the buffer receiving portion into a plurality in the circumferential direction of the effective receiving portion as a circumferential direction of the receiving portion;
Arranging the functional liquid containing the organic functional layer forming material in the effective receiving portion to form the organic functional layer, and
The buffer receiving portion is provided for each of the effective receiving portions without being shared between the plurality of effective receiving portions,
In the step of forming the organic functional layer, the amount of the functional liquid is greater than or equal to the amount overflowing from the effective receiving portion, and the combined volume of the effective receiving portion and the volume of the buffer receiving portion. A method for producing an organic electroluminescence device, wherein an amount of less than that is disposed.
前記緩衝受容部が、前記有効受容部の周方向に等間隔に分割されていることを特徴とする請求項1に記載の有機エレクトロルミネッセンス装置の製造方法。 2. The method of manufacturing an organic electroluminescence device according to claim 1, wherein the buffer receiving portion is divided at equal intervals in a circumferential direction of the effective receiving portion. 前記隔壁層は、少なくとも表面が前記機能液に対して撥液性を示す材料を用いて形成されていることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス装置の製造方法。 The partition wall layer, the manufacturing method of the organic electroluminescent device according to claim 1 or 2, characterized in that it is formed by using a material exhibiting liquid repellency at least the surface relative to the functional fluid. 前記機能液の配置は、液滴吐出法を用いて行うことを特徴とする請求項1からのいずれか1項に記載の有機エレクトロルミネッセンス装置の製造方法。 The functional layout of the liquid, a method of manufacturing an organic electroluminescent device according to claim 1, characterized in that using a droplet discharge method in any one of 3.
JP2007301929A 2007-11-21 2007-11-21 Method for manufacturing organic electroluminescence device Expired - Fee Related JP5045389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301929A JP5045389B2 (en) 2007-11-21 2007-11-21 Method for manufacturing organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301929A JP5045389B2 (en) 2007-11-21 2007-11-21 Method for manufacturing organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2009129648A JP2009129648A (en) 2009-06-11
JP5045389B2 true JP5045389B2 (en) 2012-10-10

Family

ID=40820383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301929A Expired - Fee Related JP5045389B2 (en) 2007-11-21 2007-11-21 Method for manufacturing organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP5045389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569023B2 (en) * 2010-02-16 2014-08-13 凸版印刷株式会社 Organic electroluminescence device and method for manufacturing the same
CN108231824B (en) * 2016-12-16 2024-04-23 京东方科技集团股份有限公司 OLED display panel and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1229866C (en) * 2001-04-26 2005-11-30 皇家菲利浦电子有限公司 Electroluminescent device and method for manufacturing thereof
US20050190253A1 (en) * 2002-02-01 2005-09-01 Duineveld Paulus C. Structured polmer substrate for ink-jet printing of an oled matrix
JP4248184B2 (en) * 2002-03-19 2009-04-02 東芝松下ディスプレイテクノロジー株式会社 Self-luminous display device
JP4815761B2 (en) * 2003-11-27 2011-11-16 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
TWI313395B (en) * 2006-01-13 2009-08-11 Icf Technology Co Ltd Substrate structure and method of manufacturing thin film pattern layer using the same

Also Published As

Publication number Publication date
JP2009129648A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
US11489019B2 (en) High resolution organic light-emitting diode devices, displays, and related methods
JP5338266B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE
JP4211804B2 (en) Device, film forming method and device manufacturing method
KR100691702B1 (en) Organic electroluminescent device, method for producing the same and electronic apparatus
US7755277B2 (en) Organic electroluminescent device, manufacturing method therefor, and electronic devices therewith
US7896721B2 (en) Method of manufacturing an organic electroluminescence device using a liquid droplet ejection method
US8507897B2 (en) Organic EL element having a partition with a step, method for manufacturing organic EL element, organic EL device, and electronic apparatus
JP2007103349A (en) Method of forming film pattern, and manufacturing method for organic electroluminescent device, color filter substrate and liquid crystal display device
JP2007080603A (en) Method for forming film pattern, method for manufacturing device, and organic electroluminescence device
JP2007311236A (en) Device, film forming method, and manufacturing method of device
JP2007227127A (en) Light-emitting device and manufacturing method therefor
JP2009259457A (en) Organic electroluminescent device and method of manufacturing the same, and electronic apparatus
JP2009259570A (en) Organic electroluminescent device and electronic equipment
JP5045389B2 (en) Method for manufacturing organic electroluminescence device
JP5076295B2 (en) Film pattern forming method, device manufacturing method, organic electroluminescence apparatus
JP2011096376A (en) Optical device, method of manufacturing the same, and electronic apparatus
JP5082217B2 (en) Film pattern forming method, device manufacturing method
JP2006313657A (en) Electro-optical device, electronic apparatus, and manufacturing method of electro-optical device
JP2008243649A (en) Organic electroluminescent device, and its manufacturing method
JP2016195028A (en) Barrier rib structure, formation method of barrier rib structure, electro-optical device, and electronic device
JP2008243648A (en) Organic electroluminescent device and its manufacturing method
JP2007225856A (en) Manufacturing method for electrooptical device and electrooptical device
JP2007035484A (en) Forming method of film pattern, and manufacturing method of device
JP2007080765A (en) Method of forming film pattern, device, and electronic apparatus
JP2007081271A (en) Film pattern forming method, device, electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees