JP5044857B2 - Manufacturing method of copper powder with oxide film - Google Patents

Manufacturing method of copper powder with oxide film Download PDF

Info

Publication number
JP5044857B2
JP5044857B2 JP2001162156A JP2001162156A JP5044857B2 JP 5044857 B2 JP5044857 B2 JP 5044857B2 JP 2001162156 A JP2001162156 A JP 2001162156A JP 2001162156 A JP2001162156 A JP 2001162156A JP 5044857 B2 JP5044857 B2 JP 5044857B2
Authority
JP
Japan
Prior art keywords
copper powder
copper
oxide film
oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001162156A
Other languages
Japanese (ja)
Other versions
JP2002356702A (en
Inventor
美洋 岡田
宏昌 三好
和司 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2001162156A priority Critical patent/JP5044857B2/en
Publication of JP2002356702A publication Critical patent/JP2002356702A/en
Application granted granted Critical
Publication of JP5044857B2 publication Critical patent/JP5044857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,焼成温度の低い銅粉,特に導電ペーストの導電フイラーに用いるのに適した銅粉に関する。
【0002】
【従来の技術】
各種基板の表面や内部或いは外部に導電回路や電極を形成する手段として導電ペーストが多く使用されている。そのさい,基板表面や内部等に導電ペーストを塗布または充填した状態で基板と共に適切な加熱処理が行なわれ,この加熱処理によって導電ペーストの揮発性媒体を気化させると共に導電フイラーとしての金属粉が互いに焼結して通電可能な回路が形成される。
【0003】
このような導電ペーストの導電フイラー(金属粉)として,銀粉と銅粉の使用が一般化しているが,銅粉を導電フイラーとした導電ペースト(銅系ペースト)は,銀系ペーストに比べて,マイグレーションが起き難い,回路を微細化しやすい,耐半田性に優る,低コスト化が可能である,等の理由により,一層汎用化されつつある。このような利点をもつ銅系の導電ペーストは,粒径が0.1〜10μm程度の銅粉を適切な樹脂バインダーに分散させることによって得られる。
【0004】
基板に形成する回路の形態,回路の形成方法,基板の材料等の要因によって,導電ペーストに要求される物理的および化学的性質も異なる。このため,各種の性能をもつ銅系ペーストを用途別に作製することが一般的に行われており,フイラーとしての銅粉についてもその粒子形状,粒度分布,粒子表面性状,粒子の成分組成等を適切に調整し,用途別に諸要求を満たすようにすると共に,導電ペーストの塗布条件や焼結条件も各ペースト毎に最適範囲の条件化を行っている。
【0005】
このうち,銅系ペーストの焼結性については,特別の事例を除いては低温で焼結できるものが好ましい。基板の表面や内部において,低温の加熱で導電回路が焼成できれば,導電ペーストと共に加熱される基板の加熱温度も低くでき,基板に対する熱的影響が軽減されると共に,熱エネルギー的,設備的にも有利となり,さらにはセラミツク製基板と銅回路との間の熱膨張差に基づく歪み発生も低減できるからである。
【0006】
他方,実際の焼結処理にあたっては,該ペーストを塗布したセラミック製電子部品を数10ppmの酸素を含む弱酸化性の不活性ガス雰囲気中で加熱処理することがある。一般に加熱処理は,ペースト中の樹脂や溶媒を気化させてから(この工程を脱バインダー工程と言う),残部の銅粉を基板の表面や内部で焼結させる(銅粉の焼結工程)という段階を経るが,脱バインダー工程においてペースト中の樹脂や溶媒の分解生成物(炭素質成分)が残留すると,後続の焼結工程での銅粉の焼結性を損なうので,脱バインダー工程では不活性ガス雰囲気中に微量の酸素を混入し,この酸素によって炭素質成分を炭酸ガスに燃焼させて排出させるという酸化・脱バイダー処理が行われることがあり,そのさい,雰囲気中に混入される酸素によって,銅粉の一部も酸化されることがある。
【0007】
銅粉が酸化されると,粒子表面が酸化して焼結性に影響を与え,焼結が均一に進まないといった問題が生ずる。このために,銅粒子表面に耐酸化性皮膜を形成する表面処理がが行われたり,酸化した銅を還元する還元処理工程を脱バインダー工程の後,最終の焼結前に挿入したりして対処している。
【0008】
【発明が解決しようとする課題】
ペースト用フイラー銅粉のうち,焼結性に優れ,比較的低温から焼結を開始するものでは,一般に耐酸化性が劣り表面が酸化し易い。すなわち,焼結性に優れるものは銅系ペーストの脱バイダー処理工程で表面が酸化しやすく,このために脱バインダー処理後に還元処理工程を設けることが必要となる。この還元処理工程が増設されることは,それだけ,処理工数の増加と設備増加につながり,費用的にも設備的にも負担となる。
【0009】
したがって,焼結性に優れ,比較的低温から焼結を開始すると共に,耐酸化性にも優れる銅粉が要求される。本発明の課題はこの要求を満たすことにある。
【0010】
【課題を解決するための手段】
前記課題を解決すべく、本発明は、第1に、ミキサー内を最初は80℃次いで100℃に昇温して酸化処理することによって銅粉に対し1.5〜50重量%の銅酸化物の薄膜が粒子表面に形成された導電ペースト用酸化膜付き銅粉を製造する方法を、第2に、ミキサー内を最初の240分は80℃次いで100℃に昇温して合計1200分の酸化処理することによって銅粉に対し1.5〜50重量%の銅酸化物の薄膜が粒子表面に形成された導電ペースト用酸化膜付き銅粉を製造する方法を、第3に、酸素含有量0.12重量%の銅粉をミキサーに装填し撹拌を付与し空気を通気しながら反応させ、且つ該ミキサー内を最初の240分は80℃次いで100℃に昇温して合計1200分の酸化処理することによって銅粉に対し1.5〜50重量%の銅酸化物の薄膜が粒子表面に形成された導電ペースト用酸化膜付き銅粉を製造する方法を提供する。
【0011】
【発明の実施の形態】
これまで銅系ペーストに用いる銅粉は,表面が酸化していると,該ペーストの印刷性,半田付け性,焼成後の導電性,密着性などを劣化させるので,できるだけ表面酸化しないことが重要であるとされていた。このために,銅粉の最終製造工程のあと直ちに酸化防止のための処置を施すのが通常であった。酸化防止の処置としては銅粉の粒子表面に耐酸化性皮膜を形成する方法が一般化している。耐酸化性皮膜には種々のものが知られているが,粒子表面を硼素の薄い融膜で被覆する方法や,シランカップリング剤で被覆する方法(特開昭57−155386号公報)などが知られている。
【0012】
高品質の銅系ペーストを得るには,銅粉の酸化をできるだけ防止しなければならない,というこれまでの常識に反し,本発明者らは,銅粉の粒子表面に均一な銅酸化物の層(酸化膜)を積極的に形成することを試みた。その結果,酸化銅の皮膜が均一で且つ適切な量比である場合には,該ペーストの品質を劣化させるような実害はなく,かえって銅粉の焼結温度を著しく低下させることができる点で有利に作用することがわかった。しかも,銅系ペーストの焼成にさいしての前述の脱バインダー工程において,銅粒子表面に存在する銅酸化物が樹脂バインダーや溶媒の分解生成物(炭素質物質)を酸化させる酸化剤として働き,該炭素質物質を炭酸ガス等のガス成分に変えて系外に排除できると共に,表面の銅酸化物の一部は銅に還元されたような状態で次の焼結処理に供されることになる。
【0013】
すなわち,脱バインダー工程で粒子表面に付着する分解生成物(炭素質物質)が粒子表面に均一に形成されている銅酸化物中の酸素と反応し,炭素質物質をガス化させると同時に銅酸化物の一部が還元されるような反応が進行し,この反応によって銅粒子表面は活性化された状態となる。このことが,次の焼結工程では粒子同士の接合を促す起因となり,焼結開始温度の低下に寄与するのではないかと考えられる。
【0014】
銅粒子表面に対して銅酸化物の薄膜を均一に形成するには,空気,酸素ガス,オゾンガス等を銅粉に作用させる乾式法,或いは銅粉を水または有機溶媒中に懸濁させて酸化剤(空気等)をバブリングさせる湿式法によって行い得る。乾式法による場合は,銅粉を流動状態に維持しながら所定の温度で酸化剤ガスと反応させるのがよく,例えば攪拌用ミキサーやロータリーキルン内で銅粉を流動化しながら60〜150℃,好ましくは80〜100℃で酸化剤ガスと反応させることにより,その雰囲気中の酸素濃度または処理時間を調整することによって,銅粉に対し1.5〜50重量%の銅酸化物の薄膜を粒子表面に形成させるのが便宜である。別法として真空乾燥炉を使用し,炉内に減圧下に静置した銅粉に対し,酸化性ガスを適量通気する方法でも同様に銅酸化物の薄膜を形成できる。
【0015】
銅酸化物の量が銅粉に対し1.0重量%未満では,粒子表面の全体に均一にその薄膜を形成するには酸素量が不足し,局部酸化の状態になったり酸化皮膜の厚みの不均一性が発生したりして,脱バインダー工程での炭素質物質の分解反応が不十分となったり,焼結開始温度を低下させる作用が不十分となったりするし,焼結開始温度にバラツキを生ずる原因にもなる。
【0016】
他方,銅酸化物の量が銅粉に対し50重量%を超えるようになると,炭素質物質の分解に必要な酸素量が過剰になり,その分解反応に消費されなかった銅酸化物の残存量が多くなって焼結開始温度にバラツキを発生させたり,焼結体の導電性を低下させたりするようになるので,銅酸化物の量が銅粉に対し50重量%以下,好ましくは30重量%以下,さらに好ましくは15重量%以下とするのがよい。形成する銅酸化物の皮膜がCuOであるか,またはCu2Oであるかによって,銅粉に含有される酸素量は相違することになるが,銅酸化物の皮膜中の酸素量は銅粉に対し,一般に0.1〜5重量%,好ましくは0.3〜3重量%の範囲にあるのがよい。
【0017】
銅酸化物を被覆する銅粉そのものは湿式還元法,アトマイズ法,機械粉砕法等によって製造された各種のものが使用でき,導電ペーストのフイラーとして適するものであれば平均粒径0.1〜10μmの粉体であればよい。いずれにしても銅粉の各粒子全体に銅酸化物皮膜が形成され,その皮膜も粒子表面の全体に均一に形成されているのが好ましい。
【0018】
【実施例】
〔実施例1〕
粒度分布測定装置による銅粉の粒度分布測定において,D10=2.34μm,D50=3.12μm, D90=4.07μmの粒度分布をもち,平均粒径が 3.1μmの銅粉を供試材とした。ここで,D10,D50およびD90は,横軸に粒径D(μm)をとり,縦軸に粒径Dμm以下の粒子が存在する容積(Q%)をとった累積粒度曲線において,Q%が10%,50%および90%に対応するそれぞれの粒径Dの値を言う。供試材の銅粉は湿式還元法に製造されたものであり,粒子形状はほぼ球形である。
【0019】
前記の供試材銅粉をヘンシエルミキサーに26Kg装填し,空気を2リットル/分の流量で通気しながら周波数20Hzで攪拌を付与し,ミキサー内を最初の240分は80℃,次いで100℃に昇温して合計1200分の酸化処理を行った。その結果,D10=2.17μm,D50=3.43μm, D90=5.63μmの粒度分布をもち,平均粒径が 2.0μmの酸化膜付き銅粉を得た。供試材(対照例)と酸化膜付き銅粉の比表面積 (BET法), タップ密度, 酸素含有量,炭素含有量を表1に示した。表1の酸化膜付き銅粉の酸素含有量=1.13重量%は,銅酸化物の全てがCu2Oとすると,銅酸化物の含有量は銅粉に対し10.1重量%となる。
【0020】
【表1】

Figure 0005044857
【0021】
これらの供試材銅粉と酸化膜付き銅粉について,以下に述べる焼結開始温度の測定に供した。
〔焼結開始温度の測定〕:測定用の銅粉0.97±0.001gを採取し,これに 0.03 〜0.05g のターピネオールと4.5 重量%のエチルセルロースを加えてメノウ乳鉢で約5分混合し,この混合物を直径5mmの筒体に装填し,上部からポンチを押し込んで1623Nで10秒保持する加圧を付与し,高さ約10mm相当の円柱状に成形する。この成形体を,軸を鉛直方向にして且つ軸方向に10gの荷重を付与した条件で,昇温炉に装填し,窒素流量中で昇温速度10℃/分,測定範囲:常温〜1000℃に連続的に昇温してゆき,成形体の高さ変化(膨張・収縮の変化)を自動記録する。そして,成形体の高さ変化が始まったところの屈曲点を焼結開始温度とする。なお,前記の高さ変化の自動記録において,横軸に昇温してゆく温度(昇温速度が一定である場合には経過時間に対応する)を採り,縦軸に高さ変化の割合(膨張率または収縮率)を記録したものをTMA曲線と呼ぶ。
【0022】
両粉体について得られたTMA曲線を図1に示した。図1のTMA曲線から計測される焼結開始温度は,供試材銅粉では746.2℃,酸化膜付き銅粉では406.2℃と算出され,後者の銅粉は前者に比べて焼結開始温度が340℃低下したことになる。
【0023】
【発明の効果】
以上説明したように,本発明によると,焼結開始温度が低下した銅粉が得られる。そして本発明の銅粉が粒子表面に有する銅酸化物は,導電ペーストの脱バインダー工程で炭素質物質の酸化剤として機能するので,導電ペーストの焼結性をさらに向上させることができる。
【図面の簡単な説明】
【図1】供試材銅粉と酸化膜付き銅粉のTMA曲線を対比して示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper powder having a low firing temperature, particularly a copper powder suitable for use in a conductive filler of a conductive paste.
[0002]
[Prior art]
A conductive paste is often used as a means for forming conductive circuits and electrodes on the surface, inside or outside of various substrates. At that time, an appropriate heat treatment is performed together with the substrate in a state where the conductive paste is applied or filled on the surface or inside of the substrate, the volatile medium of the conductive paste is vaporized by this heat treatment, and the metal powder as the conductive filler is mutually bonded. A circuit that can be energized by sintering is formed.
[0003]
As the conductive filler (metal powder) of such conductive paste, the use of silver powder and copper powder is common, but conductive paste (copper paste) with copper powder as the conductive filler is compared to silver paste, It is becoming more and more versatile because it is difficult to migrate, it is easy to miniaturize circuits, it has excellent solder resistance, and it can be reduced in cost. A copper-based conductive paste having such advantages can be obtained by dispersing copper powder having a particle size of about 0.1 to 10 μm in an appropriate resin binder.
[0004]
The physical and chemical properties required for the conductive paste differ depending on factors such as the form of the circuit formed on the substrate, the method of forming the circuit, and the material of the substrate. For this reason, it is a common practice to prepare copper-based pastes with various performances for different applications. The copper powder as a filler also has its particle shape, particle size distribution, particle surface properties, particle composition, etc. In addition to making appropriate adjustments to meet various requirements for each application, the application conditions and sintering conditions of the conductive paste are conditioned in the optimum range for each paste.
[0005]
Among these, the sinterability of the copper-based paste is preferably one that can be sintered at a low temperature except in special cases. If the conductive circuit can be baked on the surface and inside of the substrate by low temperature heating, the heating temperature of the substrate heated with the conductive paste can be lowered, the thermal influence on the substrate can be reduced, and the thermal energy and equipment can be reduced. This is because it is advantageous, and furthermore, the generation of strain due to the difference in thermal expansion between the ceramic substrate and the copper circuit can be reduced.
[0006]
On the other hand, in the actual sintering process, the ceramic electronic component coated with the paste may be heat-treated in a weakly oxidizing inert gas atmosphere containing several tens of ppm of oxygen. In general, the heat treatment is to vaporize the resin and solvent in the paste (this process is called debinding process) and then sinter the remaining copper powder on the surface and inside of the substrate (copper powder sintering process) However, if the decomposition product (carbonaceous component) of the resin or solvent in the paste remains in the debinding process, the sinterability of the copper powder in the subsequent sintering process is impaired. Oxidation / debinder treatment may be performed in which a trace amount of oxygen is mixed in the active gas atmosphere, and the carbonaceous components are burned into carbon dioxide gas and discharged by this oxygen. As a result, part of the copper powder may be oxidized.
[0007]
When copper powder is oxidized, the surface of the particles is oxidized to affect the sinterability, resulting in a problem that sintering does not proceed uniformly. For this purpose, surface treatment to form an oxidation-resistant film on the copper particle surface is performed, or a reduction treatment step for reducing oxidized copper is inserted after the binder removal step and before the final sintering. It is addressed.
[0008]
[Problems to be solved by the invention]
Among paste copper copper powders, those that have excellent sinterability and that start sintering at a relatively low temperature generally have poor oxidation resistance and are easily oxidized on the surface. That is, those having excellent sinterability are liable to oxidize in the copper paste debinding process, and for this reason, it is necessary to provide a reduction process after the binder removal process. The extension of this reduction treatment process leads to an increase in processing man-hours and an increase in equipment, which is a burden in terms of cost and equipment.
[0009]
Therefore, there is a demand for copper powder that has excellent sinterability, starts sintering at a relatively low temperature, and has excellent oxidation resistance. The object of the present invention is to satisfy this requirement.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is as follows. First, the inside of the mixer is first heated to 80 ° C. and then to 100 ° C. to oxidize the copper powder to 1.5 to 50% by weight of the copper oxide. The second method is to produce copper powder with oxide film for conductive paste with the thin film formed on the particle surface. Second, the temperature in the mixer is increased to 80 ° C for the first 240 minutes and then to 100 ° C for a total of 1200 minutes. Third, a method for producing a copper powder with an oxide film for a conductive paste in which a thin film of copper oxide of 1.5 to 50% by weight with respect to the copper powder is formed on the particle surface by treating, the oxygen content is 0 . 12% by weight of copper powder was charged into the mixer, stirred and allowed to react while ventilating the air, and the inside of the mixer was heated to 80 ° C for the first 240 minutes and then to 100 ° C for a total of 1200 minutes of oxidation treatment 1.5 to 50 weights to copper powder % Of a thin film of copper oxide to provide a method for producing a conductive paste with an oxide film of copper powder formed on the particle surface.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Until now, copper powder used in copper-based pastes has an oxidized surface that degrades the printability, solderability, conductivity after firing, and adhesion of the paste. It was supposed to be. For this reason, it was usual to take measures to prevent oxidation immediately after the final production process of copper powder. As an antioxidant treatment, a method of forming an oxidation-resistant film on the surface of copper powder particles has become common. Various types of oxidation resistant coatings are known, but there are a method of coating the particle surface with a thin melt film of boron, a method of coating with a silane coupling agent (Japanese Patent Laid-Open No. 57-155386), and the like. Are known.
[0012]
Contrary to the conventional wisdom that the oxidation of copper powder must be prevented as much as possible in order to obtain a high-quality copper-based paste, the present inventors have formed a uniform copper oxide layer on the surface of the copper powder particles. An attempt was made to actively form (oxide film). As a result, when the copper oxide film is uniform and in an appropriate quantity ratio, there is no actual harm that deteriorates the quality of the paste, and the sintering temperature of the copper powder can be significantly reduced. It has been found to be advantageous. In addition, in the above-described binder removal step during the firing of the copper-based paste, the copper oxide present on the surface of the copper particles acts as an oxidizing agent that oxidizes the resin binder and the decomposition product (carbonaceous material) of the solvent. The carbonaceous material can be changed to gas components such as carbon dioxide and removed from the system, and part of the copper oxide on the surface will be used for the next sintering process as if it has been reduced to copper. .
[0013]
That is, the decomposition product (carbonaceous material) adhering to the particle surface in the binder removal process reacts with oxygen in the copper oxide uniformly formed on the particle surface to gasify the carbonaceous material and simultaneously oxidize copper. A reaction in which part of the product is reduced proceeds, and the copper particle surface is activated by this reaction. This is considered to be a cause of promoting the joining of particles in the next sintering process, and may contribute to a decrease in sintering start temperature.
[0014]
In order to form a thin film of copper oxide uniformly on the surface of copper particles, a dry method in which air, oxygen gas, ozone gas, etc. are allowed to act on copper powder, or copper powder is suspended in water or an organic solvent and oxidized. It can be performed by a wet method in which an agent (air or the like) is bubbled. In the case of the dry method, it is better to react with the oxidant gas at a predetermined temperature while maintaining the copper powder in a fluid state. For example, 60 to 150 ° C. while fluidizing the copper powder in a stirring mixer or rotary kiln, preferably By adjusting the oxygen concentration or treatment time in the atmosphere by reacting with an oxidant gas at 80 to 100 ° C., a thin film of copper oxide of 1.5 to 50% by weight based on the copper powder is formed on the particle surface. It is convenient to form. Alternatively, a thin film of copper oxide can be similarly formed by using a vacuum drying furnace and ventilating an appropriate amount of oxidizing gas through copper powder that has been left in the furnace under reduced pressure.
[0015]
If the amount of copper oxide is less than 1.0% by weight with respect to the copper powder, the amount of oxygen is insufficient to form a thin film uniformly on the entire particle surface, resulting in localized oxidation or the thickness of the oxide film. Inhomogeneity may occur, the decomposition reaction of the carbonaceous material in the debinding process will be insufficient, and the action of lowering the sintering start temperature will be insufficient. It can also cause variations.
[0016]
On the other hand, when the amount of copper oxide exceeds 50% by weight with respect to the copper powder, the amount of oxygen necessary for decomposition of the carbonaceous material becomes excessive, and the remaining amount of copper oxide not consumed in the decomposition reaction Increases the sintering start temperature and decreases the conductivity of the sintered body, so the amount of copper oxide is 50 wt% or less, preferably 30 wt% with respect to the copper powder. % Or less, more preferably 15% by weight or less. Depending on whether the copper oxide film to be formed is CuO or Cu 2 O, the amount of oxygen contained in the copper powder will differ, but the amount of oxygen in the copper oxide film is the copper powder. On the other hand, it is generally in the range of 0.1 to 5% by weight, preferably 0.3 to 3% by weight.
[0017]
The copper powder covering the copper oxide itself can be produced by various methods such as a wet reduction method, an atomizing method, a mechanical grinding method, etc., and if it is suitable as a filler for conductive paste, the average particle size is 0.1 to 10 μm. Any powder may be used. In any case, it is preferable that a copper oxide film is formed on the entire particle of the copper powder, and the film is also formed uniformly on the entire surface of the particle.
[0018]
【Example】
[Example 1]
In measuring the particle size distribution of copper powder with a particle size distribution measuring device, copper powder having a particle size distribution of D10 = 2.34 μm, D50 = 3.12 μm, D90 = 4.07 μm and an average particle size of 3.1 μm was used as a test material. Here, D10, D50, and D90 are the cumulative particle size curve in which the horizontal axis represents the particle size D (μm) and the vertical axis represents the volume (Q%) in which particles having a particle size of D μm or less are present. The respective particle size D values corresponding to 10%, 50% and 90% are said. The copper powder of the test material was manufactured by the wet reduction method, and the particle shape is almost spherical.
[0019]
The test material copper powder was charged into a Hensiel mixer at 26 kg, and agitation was applied at a frequency of 20 Hz while air was aerated at a flow rate of 2 liters / minute. The temperature was raised to 1,300 minutes for the oxidation treatment. As a result, a copper powder with an oxide film having a particle size distribution of D10 = 2.17 μm, D50 = 3.43 μm, D90 = 5.63 μm and an average particle size of 2.0 μm was obtained. Table 1 shows the specific surface area (BET method), tap density, oxygen content, and carbon content of the test material (control example) and copper powder with oxide film. The oxygen content of the copper powder with an oxide film in Table 1 is 1.13% by weight, and if the copper oxide is all Cu 2 O, the content of the copper oxide is 10.1% by weight with respect to the copper powder.
[0020]
[Table 1]
Figure 0005044857
[0021]
These test material copper powder and oxide-coated copper powder were subjected to the measurement of the sintering start temperature described below.
[Measurement of sintering start temperature]: Take 0.97 ± 0.001g of copper powder for measurement, add 0.03 ~ 0.05g of terpineol and 4.5% by weight of ethylcellulose and mix for about 5 minutes in an agate mortar. Is loaded into a cylinder having a diameter of 5 mm, a punch is pushed in from above, and a pressure is applied to hold it at 1623 N for 10 seconds to form a cylindrical shape corresponding to a height of about 10 mm. This molded body was loaded into a heating furnace under the condition that the shaft was set in a vertical direction and a load of 10 g was applied in the axial direction, and the temperature rising rate was 10 ° C./min in a nitrogen flow rate. As the temperature rises continuously, the height change (change in expansion / contraction) of the compact is automatically recorded. The inflection point where the change in the height of the compact begins is taken as the sintering start temperature. In the above-described automatic recording of the height change, the horizontal axis represents the temperature rising (corresponding to the elapsed time when the rate of temperature increase is constant), and the vertical axis represents the rate of height change ( What recorded the expansion rate or shrinkage rate is called a TMA curve.
[0022]
The TMA curves obtained for both powders are shown in FIG. The sintering start temperature measured from the TMA curve in FIG. 1 is calculated to be 746.2 ° C. for the sample copper powder and 406.2 ° C. for the copper powder with oxide film, and the latter copper powder is calcined compared to the former. This indicates that the starting temperature has decreased by 340 ° C.
[0023]
【Effect of the invention】
As described above, according to the present invention, copper powder having a reduced sintering start temperature can be obtained. And since the copper oxide which the copper powder of this invention has on the particle | grain surface functions as an oxidizing agent of a carbonaceous substance in the binder removal process of an electrically conductive paste, the sinterability of an electrically conductive paste can further be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a comparison of TMA curves of a test material copper powder and a copper powder with an oxide film.

Claims (3)

ミキサー内を最初は80℃次いで100℃に昇温して酸化処理することによって銅粉に対し1.5〜50重量%の銅酸化物の薄膜が粒子表面に形成された導電ペースト用酸化膜付き銅粉を製造する方法。 First, the inside of the mixer is heated to 80 ° C. and then heated to 100 ° C. to oxidize, and a copper oxide thin film of 1.5 to 50% by weight based on the copper powder is formed on the particle surface. A method for producing copper powder. ミキサー内を最初の240分は80℃次いで100℃に昇温して合計1200分の酸化処理することによって銅粉に対し1.5〜50重量%の銅酸化物の薄膜が粒子表面に形成された導電ペースト用酸化膜付き銅粉を製造する方法。 In the first 240 minutes, the temperature is raised to 80 ° C. and then to 100 ° C. for a total of 1200 minutes, and a copper oxide thin film of 1.5 to 50% by weight based on the copper powder is formed on the particle surface. A method for producing copper powder with an oxide film for conductive paste . 酸素含有量0.12重量%の銅粉をミキサーに装填し撹拌を付与し空気を通気しながら反応させ、且つ該ミキサー内を最初の240分は80℃次いで100℃に昇温して合計1200分の酸化処理することによって銅粉に対し1.5〜50重量%の銅酸化物の薄膜が粒子表面に形成された導電ペースト用酸化膜付き銅粉を製造する方法。A copper powder having an oxygen content of 0.12% by weight was charged into a mixer, agitated, allowed to react while aerating air, and the inside of the mixer was heated to 80 ° C. and then 100 ° C. for the first 240 minutes, for a total of 1200. The manufacturing method of the copper powder with an oxide film for electrically conductive paste in which the thin film of 1.5 to 50weight% of the copper oxide with respect to the copper powder was formed in the particle | grain surface by performing the oxidation process of a minute .
JP2001162156A 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film Expired - Lifetime JP5044857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162156A JP5044857B2 (en) 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162156A JP5044857B2 (en) 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010272850A Division JP2011094236A (en) 2010-12-07 2010-12-07 Copper powder for low temperature firing, or copper powder for conductive paste

Publications (2)

Publication Number Publication Date
JP2002356702A JP2002356702A (en) 2002-12-13
JP5044857B2 true JP5044857B2 (en) 2012-10-10

Family

ID=19005325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162156A Expired - Lifetime JP5044857B2 (en) 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film

Country Status (1)

Country Link
JP (1) JP5044857B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263205A (en) * 2003-01-31 2004-09-24 Toho Titanium Co Ltd Metallic impalpable powder, manufacturing method therefor, and conductive paste using the metallic impalpable powder
JP4197151B2 (en) * 2003-11-27 2008-12-17 三井金属鉱業株式会社 Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP4879473B2 (en) * 2004-10-25 2012-02-22 三井金属鉱業株式会社 Flake copper powder, method for producing flake copper powder, and conductive slurry containing flake copper powder
JP2006196717A (en) * 2005-01-14 2006-07-27 Nec Tokin Corp Laminated piezoelectric ceramics element, and manufacturing method thereof
JP5286846B2 (en) * 2008-03-12 2013-09-11 日立化成株式会社 Conductive substrate and method for manufacturing the same, copper wiring substrate and method for manufacturing the same
WO2011125244A1 (en) 2010-04-09 2011-10-13 三菱マテリアル株式会社 Clay-like composition for forming a sintered object, powder for a clay-like composition for forming a sintered object, method for manufacturing a clay-like composition for forming a sintered object, sintered silver object, and method for manufacturing a sintered silver object
JP5672945B2 (en) * 2010-07-27 2015-02-18 三菱マテリアル株式会社 Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, silver sintered body, and method for producing silver sintered body
JP5862004B2 (en) * 2010-10-25 2016-02-16 三菱マテリアル株式会社 Method for producing a silver sintered body
JP5807740B2 (en) * 2011-08-04 2015-11-10 三菱マテリアル株式会社 Method for producing sintered silver-copper alloy
JP5888483B2 (en) * 2011-08-30 2016-03-22 三菱マテリアル株式会社 Clay-like composition for forming silver-copper alloy sintered body, powder for clay-like composition for forming silver-copper alloy sintered body, method for producing clay-like composition for forming silver-copper alloy sintered body, silver-copper alloy Sintered body manufacturing method and silver-copper alloy sintered body
JP5861321B2 (en) * 2011-08-30 2016-02-16 三菱マテリアル株式会社 Powder for clay-like composition for forming silver-copper alloy sintered body using copper compound, clay-like composition, and method for producing clay-like composition
KR101353149B1 (en) * 2011-12-27 2014-01-27 삼성전기주식회사 Manufacturing mehtod for copper powder
WO2016052373A1 (en) * 2014-10-03 2016-04-07 三井金属鉱業株式会社 Copper powder
JP6812615B2 (en) * 2017-03-24 2021-01-13 大陽日酸株式会社 Copper fine particles, method for producing copper fine particles, and method for producing sintered body
JP7143223B2 (en) * 2017-07-21 2022-09-28 三井金属鉱業株式会社 Copper powder, method for manufacturing stereolithographic object using the same, and stereolithographic object using copper
JP2021014634A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder
JP6914999B2 (en) * 2019-07-16 2021-08-04 Jx金属株式会社 Surface treatment copper powder
CN116013580B (en) * 2023-01-05 2023-11-28 哈尔滨理工大学 Self-reduction copper sintering slurry for power semiconductor packaging and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521329A (en) * 1983-06-20 1985-06-04 E. I. Du Pont De Nemours And Company Copper conductor compositions
JPH1125754A (en) * 1997-06-27 1999-01-29 Kyocera Corp Manufacture of copper-metallized composition and glass-ceramic substrate
JP3674501B2 (en) * 2000-11-30 2005-07-20 株式会社村田製作所 Photosensitive copper paste, method for forming copper pattern, and method for producing ceramic multilayer substrate

Also Published As

Publication number Publication date
JP2002356702A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP5044857B2 (en) Manufacturing method of copper powder with oxide film
JP2011094236A (en) Copper powder for low temperature firing, or copper powder for conductive paste
JP3646259B2 (en) Copper powder for conductive paste with excellent oxidation resistance and method for producing the same
JP4697539B2 (en) Nickel powder, conductor paste and laminated electronic component using the same
WO2002062727A1 (en) Porous ceramic and method for preparation thereof, and microstrip substrate
TW200535869A (en) Conductive paste for terminal electrode of multilayer ceramic electronic part
EP3153254A1 (en) Method for firing copper paste
JP5067312B2 (en) Nickel powder and its manufacturing method
JP4213921B2 (en) Method for producing silver powder for conductive paste
JP3924406B2 (en) Alumina sintered body and manufacturing method thereof, wiring board and manufacturing method thereof
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2008262916A (en) Silver powder for conductive paste, and conductive paste using silver powder
JPWO2008041541A1 (en) Nickel-rhenium alloy powder and conductor paste containing the same
JP4128424B2 (en) Method for producing copper powder for conductive pastes with excellent oxidation resistance and sinterability
JP4977041B2 (en) Copper powder for conductive paste for external electrodes with excellent oxidation resistance and sinterability
JP6720053B2 (en) Method for manufacturing silicon nitride sintered body
JP2539018B2 (en) Al Lower 2 O Lower 3 Base ceramics
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
JP2001118424A (en) Copper alloy powder for conductive paste
JP2002308678A (en) Porous ceramics and method for manufacturing the same
JP4081387B2 (en) Silver powder for conductive material of ceramic multilayer substrate and manufacturing method thereof
Lin et al. On the sintering of mixed and alloyed silver-palladium powders from chemical coprecipitation
JP5285868B2 (en) Magnetron stem manufacturing method
JP3183930B2 (en) Manufacturing method of aluminum nitride substrate
JP2001003124A (en) Manufacture of iron-copper composite powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5044857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term