JP5044466B2 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP5044466B2
JP5044466B2 JP2008084369A JP2008084369A JP5044466B2 JP 5044466 B2 JP5044466 B2 JP 5044466B2 JP 2008084369 A JP2008084369 A JP 2008084369A JP 2008084369 A JP2008084369 A JP 2008084369A JP 5044466 B2 JP5044466 B2 JP 5044466B2
Authority
JP
Japan
Prior art keywords
discharge electrode
dehumidifying
water
air
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008084369A
Other languages
Japanese (ja)
Other versions
JP2008264778A (en
Inventor
友宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008084369A priority Critical patent/JP5044466B2/en
Publication of JP2008264778A publication Critical patent/JP2008264778A/en
Application granted granted Critical
Publication of JP5044466B2 publication Critical patent/JP5044466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、静電霧化現象を利用して帯電微粒子水を生成する静電霧化装置を有する熱交換により除湿する除湿装置に関するものである。   The present invention relates to a dehumidifying device for dehumidifying by heat exchange having an electrostatic atomizing device that generates charged fine particle water by utilizing an electrostatic atomization phenomenon.

従来から、吸込部から吸込んだ空気を除湿手段により除湿して乾燥空気として吐出部から吐出するようにした除湿装置が特許文献1等により知られている。   Conventionally, a dehumidifying device that dehumidifies air sucked from a suction portion by a dehumidifying means and discharges it as dry air from a discharge portion is known from Patent Document 1 and the like.

しかしながら、特許文献1に示されたような除湿装置においては、単に湿った空気を吸い込んで除湿して乾燥空気として送り出すようにしたものでしかなく、乾燥空気の脱臭、除菌、アレルゲン物質の除去、あるいは、乾燥空気が放出される空間における脱臭、除菌、アレルゲン物質の除去はできなかった。   However, in the dehumidifying apparatus as shown in Patent Document 1, it is only a device that sucks in humid air, dehumidifies it, and sends it out as dry air. Deodorization, sterilization of dry air, removal of allergen substances Alternatively, deodorization, sterilization, and removal of allergen substances in a space where dry air is released cannot be performed.

また、従来から霧化電極と、霧化電極に対向して位置する対向電極と、霧化電極に水を供給する供給手段とを備え、霧化電極と対向電極との間に高電圧を印加することで霧化電極に保持される水を霧化させ、ナノメータサイズの帯電イオンミストを発生させる静電霧化装置が知られている。   In addition, conventionally provided with an atomizing electrode, a counter electrode positioned opposite the atomizing electrode, and a supply means for supplying water to the atomizing electrode, a high voltage is applied between the atomizing electrode and the counter electrode. There is known an electrostatic atomizer that atomizes water held by an atomization electrode to generate nanometer-sized charged ion mist.

このナノメータサイズの帯電微粒子水は保湿効果があり、また、活性種が水分子に包み込まれるようにして存在するため脱臭効果、カビや菌の除菌や繁殖の抑制効果があり、更にまた、活性種が水分子に包み込まれるようにして存在するナノメータサイズの帯電微粒子水は遊離基単独で存在する場合より寿命が長くなり、且つ、ナノメータサイズと非常に小さいので、空気中に長時間浮遊すると共に拡散性が高く、空気中に長時間満遍なく浮遊して、脱臭効果をより高めることができるという特徴を有している。   This nanometer-sized charged fine particle water has a moisturizing effect, and since the active species is present in the form of water molecules, it has a deodorizing effect, a fungus and fungus sterilization effect, and a growth inhibiting effect. Nanometer-sized charged fine particle water that exists in such a way that the seeds are encapsulated in water molecules has a longer life than when free radicals exist alone, and is very small at nanometer size, so it floats in the air for a long time. It is highly diffusive and has a feature that it can float evenly in the air for a long time and enhance the deodorizing effect.

しかしながら、上記特許文献2に示された従来の静電霧化装置は、水の供給手段が、水が充填される水タンクと、水タンク内の水を毛細管現象により霧化電極まで搬送する水搬送部を備えた構造であるので、使用者は水タンク内に継続的に水を補給する必要があり、面倒な水補給の手間が強いられるという問題があって、使い勝手が悪いという問題があった。また、上記の静電霧化装置においては、供給する水が水道水のようなCa、Mg等の不純物を含む水であった場合、この不純物が空気中のCO2と反応して水搬送部の先端部にCaCO3やMgO等を析出付着させ、毛細管現象による水の供給を阻害し、ナノメータサイズの帯電微粒子水の発生を妨げるという問題があった。   However, in the conventional electrostatic atomizer shown in Patent Document 2, the water supply means includes a water tank filled with water, and water that carries water in the water tank to the atomization electrode by capillary action. Since the structure is equipped with a transport unit, the user needs to replenish water in the water tank continuously, which is troublesome and troublesome to replenish water. It was. In the above electrostatic atomizer, when the water to be supplied is water containing impurities such as Ca and Mg such as tap water, the impurities react with CO2 in the air and There has been a problem that CaCO 3, MgO, or the like is deposited on the tip portion to obstruct the supply of water by capillary action and prevent the generation of nanometer-sized charged fine particle water.

そこで、上記問題を解決するために、霧化電極にペルチェユニットの冷却部を接続して霧化電極を冷却し、霧化電極を冷却して空気中の水分を結露させることで霧化電極に水を供給し、霧化電極と対向電極との間に高電圧を印加して霧化電極に供給された水(結露水)を静電霧化するようにしたものが特許文献3により知られている。   Therefore, in order to solve the above problem, the atomizing electrode is connected to the cooling part of the Peltier unit to cool the atomizing electrode, and the atomizing electrode is cooled to condense moisture in the air. Patent Document 3 discloses that water is supplied and a high voltage is applied between the atomization electrode and the counter electrode to electrostatically atomize water (condensation water) supplied to the atomization electrode. ing.

この特許文献3の従来例は、水の補給の手間が不要となり、得られた水には不純物が含まれないことからCaCO3やMgO等が析出付着しないという特徴を有している。   The conventional example of this Patent Document 3 has a feature that the labor of replenishing water becomes unnecessary and the obtained water does not contain impurities, so that CaCO3, MgO and the like do not deposit.

しかしながら、上記特許文献3に示された従来例にあっては、ペルチェユニット及びペルチェユニットの制御回路が必要であり、また、結露水がペルチェユニット側に浸入しないように防水対策が必要であり、これらの理由によりコストが高くなり、また、ペルチェユニットを設けるためサイズも大きくなるという問題があった。   However, in the conventional example shown in Patent Document 3, a Peltier unit and a control circuit for the Peltier unit are necessary, and waterproofing measures are necessary so that condensed water does not enter the Peltier unit side. For these reasons, there is a problem that the cost is increased and the size is increased because the Peltier unit is provided.

したがって、仮に、上記特許文献2や特許文献3に示された静電霧化装置を特許文献1に示された除湿装置に組み込んでも、上記した水の補給の手間や、ペルチェユニット及びペルチェユニットの制御回路を必要とするという問題が残る。
特開平8−189664号公報 特許第3260150号公報 特開2006−68711号公報
Therefore, even if the electrostatic atomizer shown in Patent Document 2 or Patent Document 3 is incorporated in the dehumidifying device shown in Patent Document 1, the trouble of replenishing the water, the Peltier unit, and the Peltier unit The problem of requiring a control circuit remains.
JP-A-8-189664 Japanese Patent No. 3260150 JP 2006-68711 A

本発明は上記の従来の問題点に鑑みて発明したものであって、除湿と同時に除湿対象空間の脱臭、アレルゲンやウイルスや菌の不活性化、除菌等を行うことができ、しかも、ペルチェユニットを用いることなく除湿手段の冷却側を有効利用して空気中の水分を結露させて放電電極に水を供給でき、また、静電霧化を行おうとする霧化対象空間の温度、湿度条件の制約を受けず、確実に霧化電極に水を供給して安定して静電霧化を行うことができる除湿装置を提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and can perform deodorization of the dehumidification target space, inactivation of allergens, viruses and bacteria, sterilization, and the like simultaneously with dehumidification. Without using a unit, the cooling side of the dehumidifying means can be used effectively to condense moisture in the air to supply water to the discharge electrode, and the temperature and humidity conditions of the atomization target space where electrostatic atomization is to be performed It is an object of the present invention to provide a dehumidifying device that can reliably supply water to an atomizing electrode and perform electrostatic atomization stably without being restricted by the above.

上記課題を解決するために本発明に係る除湿装置は、除湿装置1に吸込部2と、吸込んだ空気を除湿する除湿手段3と、除湿した空気を吐出する吐出部4とを備え、上記除湿手段3が湿気を含んだ空気を冷却することで除湿するものであり、除湿手段3で除湿した乾燥空気に帯電微粒子水を放出するための静電霧化装置5を設け、該静電霧化装置5に、放電電極6と、空気中の水分を結露水として生成することで放電電極6に水を供給するための冷却手段7と、放電電極6に供給された水を静電霧化するために放電電極6に高電圧を印加するための高電圧印加部8とを備え、上記除湿手段3の冷却側を静電霧化装置5の放電電極6に接続させて放電電極6を冷却する冷却手段7を構成して成ることを特徴とするものである。   In order to solve the above problems, a dehumidifying apparatus according to the present invention includes a dehumidifying apparatus 1 including a suction unit 2, dehumidifying means 3 for dehumidifying the sucked air, and a discharging unit 4 for discharging dehumidified air. The means 3 dehumidifies by cooling the air containing moisture, and an electrostatic atomizer 5 for discharging charged fine particle water to the dry air dehumidified by the dehumidifying means 3 is provided. Electrostatic atomization of the water supplied to the discharge electrode 6 and the cooling means 7 for supplying water to the discharge electrode 6 by generating the moisture in the air as condensed water in the device 5 Therefore, a high voltage application unit 8 for applying a high voltage to the discharge electrode 6 is provided, and the discharge side 6 is cooled by connecting the cooling side of the dehumidifying means 3 to the discharge electrode 6 of the electrostatic atomizer 5. The cooling means 7 is constituted and is characterized.

このような構成とすることで、除湿対象空間の湿った空気を吸込部2から吸い込んで除湿手段3で除湿して乾燥空気として吐出部4から除湿対象空間に吐出することで、除湿対象空間の除湿を行う。このとき、冷却手段7で空気中の水分を結露水として生成させて放電電極6に供給し、高電圧を印加することで、放電電極6に供給された水を静電霧化して帯電微粒子水を生成し、除湿した後の乾燥空気と共に除湿対象空間に放出する。これにより、除湿対象空間の除湿と、除湿対象空間の殺菌、脱臭を行うことができる。特に、帯電微粒子水はナノメータサイズと小さく、霧化対象空間の壁面や霧化対象空間内に存在する物の表面から内部に浸透して殺菌、脱臭ができるので、防カビ効果が優れている。また、空気中の水分を結露水として生成して放電電極6に供給するに当り、除湿手段3の冷却側を静電霧化装置5の放電電極6に接続させて放電電極6を冷却する冷却手段7を構成しているので、冷却のためにペルチェユニットのような特別な冷却手段を別途必要とせず、除湿装置1に本来備わっている除湿手段3の冷却側をそのまま冷却手段7として利用できる。   By adopting such a configuration, the humid air in the dehumidification target space is sucked from the suction unit 2, dehumidified by the dehumidifying means 3, and discharged as dry air from the discharge unit 4 to the dehumidification target space. Dehumidify. At this time, water in the air is generated as condensed water by the cooling means 7 and supplied to the discharge electrode 6, and a high voltage is applied to electrostatically atomize the water supplied to the discharge electrode 6 to charge charged particulate water. And is released into the dehumidified space together with the dry air after being dehumidified. Thereby, dehumidification of the dehumidification object space and sterilization and deodorization of the dehumidification object space can be performed. In particular, the charged fine particle water is as small as nanometer size, and can be sterilized and deodorized by penetrating from the wall surface of the space to be atomized or the surface of the object present in the space to be atomized into the interior, and therefore has an excellent antifungal effect. In addition, when water in the air is generated as condensed water and supplied to the discharge electrode 6, the cooling side of the dehumidifying means 3 is connected to the discharge electrode 6 of the electrostatic atomizer 5 to cool the discharge electrode 6. Since the means 7 is configured, a special cooling means such as a Peltier unit is not required for cooling, and the cooling side of the dehumidifying means 3 originally provided in the dehumidifying device 1 can be used as the cooling means 7 as it is. .

また、除湿手段3の冷却側と静電霧化装置5の放電電極6とを伝熱部材9を介して接続することが好ましい。 Further, the discharge electrodes 6 of the cooling side and the electrostatic atomizing device 5 of the dehumidifying means 3 are preferably connected via a heat transfer member 9.

このような構成とすることで、除湿手段3の冷却側により放電電極6を効果的に冷却して空気中の水分を結露させて放電電極6に水を供給できる。   By setting it as such a structure, the discharge electrode 6 can be cooled effectively by the cooling side of the dehumidification means 3, and the water | moisture content in air can be condensed, and water can be supplied to the discharge electrode 6. FIG.

また、放電電極6又は伝熱部材9近傍の温度又は湿度を検知して伝熱部材9の伝熱量をコントロールすることが好ましい。   Further, it is preferable to control the amount of heat transfer of the heat transfer member 9 by detecting the temperature or humidity near the discharge electrode 6 or the heat transfer member 9.

このような構成とすることで、気温や湿度が変化しても確実に空気中の水分を結露させて放電電極6に水を供給できて、帯電微粒子水の生成を安定して行える。   By adopting such a configuration, moisture in the air can be reliably condensed to supply water to the discharge electrode 6 even when the temperature and humidity change, and the generation of charged particulate water can be stably performed.

本発明は、上記のように除湿手段で除湿した乾燥空気に帯電微粒子水を放出するための静電霧化装置を設けたので、乾燥空気と共に帯電微粒子を除湿対象空間に放出できて、除湿と同時に除湿対象空間の脱臭、アレルゲンやウイルスや菌の不活性化、除菌等を行うことができ、しかも、除湿手段の冷却側を静電霧化装置の放電電極に接続させて放電電極を冷却する冷却手段を構成するので、ペルチェユニットなどの特別な冷却手段を別途も設ける必要がなく、除湿手段に備わっている冷却側を有効利用して空気中の水分を結露させて放電電極に水を供給でき、構造が簡略化し、コストダウンが図れる。   In the present invention, since the electrostatic atomizing device for discharging the charged fine particle water to the dry air dehumidified by the dehumidifying means as described above is provided, the charged fine particles can be discharged together with the dry air to the dehumidification target space. At the same time, it can deodorize the space to be dehumidified, inactivate allergens, viruses and bacteria, sterilize, etc., and cool the discharge electrode by connecting the cooling side of the dehumidifying means to the discharge electrode of the electrostatic atomizer. Therefore, there is no need to provide a special cooling means such as a Peltier unit, and the cooling side provided in the dehumidifying means can be used effectively to condense moisture in the air to condense water to the discharge electrode. It can be supplied, the structure is simplified, and the cost can be reduced.

(実施形態1)
以下、本発明を添付図面に示す実施形態に基づいて説明する。
(Embodiment 1)
Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

除湿装置1には除湿流路10が設けてあり、該除湿流路10は一端部が吸込部2となり且つ他端部が吐出部4となっている。吐出部4にはルーバ40が設けてある。   The dehumidifying device 1 is provided with a dehumidifying channel 10, and the dehumidifying channel 10 has a suction portion 2 at one end and a discharge portion 4 at the other end. The discharge unit 4 is provided with a louver 40.

除湿装置1には除湿流路10の途中に除湿手段3と送風手段11とが設けてある。   The dehumidifying device 1 is provided with a dehumidifying means 3 and a blower means 11 in the middle of the dehumidifying channel 10.

図1の実施形態では除湿流路10の途中に除湿室18を設けると共に該除湿室18に凝縮器19と蒸発器20を備えることで除湿手段3を構成してあるが、吸着剤により除湿手段3を構成してもよいが、以下の実施形態では。凝縮器19と蒸発器20を備えた例で説明する。   In the embodiment of FIG. 1, the dehumidifying chamber 18 is provided in the middle of the dehumidifying channel 10 and the dehumidifying chamber 18 is provided with a condenser 19 and an evaporator 20 to constitute the dehumidifying means 3. 3 may be configured, but in the following embodiment. An example in which the condenser 19 and the evaporator 20 are provided will be described.

除湿室18の底部には排水部21が設けてあり、底部は排水部21側が低くなるような傾斜面となっている。   A drainage portion 21 is provided at the bottom of the dehumidifying chamber 18, and the bottom portion is inclined so that the drainage portion 21 side is lowered.

除湿装置1内の下部には水溜め部13が設けてあり、上記除湿室18の底部に設けた排水部21から流下した水を溜めるようになっている。   A water reservoir 13 is provided at the lower part in the dehumidifier 1 so that water flowing down from a drain 21 provided at the bottom of the dehumidifying chamber 18 is accumulated.

除湿流路10の除湿室18よりも下流側に送風手段11であるファンを収納する送風手段収納室22が設けてあり、除湿室18と送風手段収納室22とは除湿室18の下流側の下端部に設けた連通口23で連通していて、除湿室18で除湿された乾燥空気が連通口23を経て送風手段収納室22に流入するようになっている。   A blower means storage chamber 22 is provided on the downstream side of the dehumidification chamber 18 of the dehumidification passage 10 to store a fan as the blower means 11. The dehumidification chamber 18 and the blower means storage chamber 22 are located downstream of the dehumidification chamber 18. The dry air dehumidified in the dehumidification chamber 18 flows into the blower means storage chamber 22 through the communication port 23 through the communication port 23 provided at the lower end.

上記除湿装置1は送風手段11を運転することで、除湿対象空間の空気が吸込部2から吸い込まれ除湿手段3により除湿され、乾燥空気となって吐出部4から除湿対象空間内に返送されることで、除湿対象空間の除湿をする。   The dehumidifying device 1 operates the air blowing means 11 so that the air in the dehumidifying target space is sucked in from the suction part 2 and dehumidified by the dehumidifying means 3, and is returned to the dehumidifying target space from the discharge part 4 as dry air. In this way, the dehumidifying target space is dehumidified.

本発明において除湿手段3は空気を冷却することで除湿するもので構成してある。具体的には、凝縮器19、蒸発器20で構成してあり、蒸発器20側が除湿手段3の冷却側となっている。そして、吸込部2から吸込まれた湿った空気は、凝縮器19で熱交換されて加温され、蒸発器20で冷やされて空気中の水分が結露水となって除去されることで乾燥空気となる。除湿により発生した凝縮水は排水部21から水溜め部13に流れて溜められる。   In the present invention, the dehumidifying means 3 is configured to dehumidify by cooling the air. Specifically, the condenser 19 and the evaporator 20 are configured, and the evaporator 20 side is the cooling side of the dehumidifying means 3. Then, the humid air sucked from the suction unit 2 is heat-exchanged by the condenser 19 and heated, and cooled by the evaporator 20 to remove moisture in the air as condensed water, thereby causing dry air. It becomes. The condensed water generated by dehumidification flows from the drainage part 21 to the water reservoir 13 and is stored.

上記のような構成の除湿装置1には更に除湿手段3で除湿した後の乾燥空気に帯電微粒子水を放出するための静電霧化装置5を除湿装置1に設けてある。   In the dehumidifying device 1 having the above-described configuration, the dehumidifying device 1 is further provided with an electrostatic atomizing device 5 for releasing charged fine particle water into the dry air that has been dehumidified by the dehumidifying means 3.

静電霧化装置5には、静電霧化現象を発生させて帯電微粒子水を生成する主体部5aと、主体部5aに設けた放電電極6に熱的に接続した伝熱部材9とを備えており、図1、図2に示すように除湿流路10の壁部10aを貫通して主体部5aが除湿流路10の除湿室18に位置し、且つ、放電電極6が除湿流路10の除湿室18よりも下流側の部分(実施形態では送風手段収納室22よりも下流側の部分)に位置している。   The electrostatic atomizer 5 includes a main body part 5a that generates an electrostatic atomization phenomenon to generate charged fine particle water, and a heat transfer member 9 that is thermally connected to the discharge electrode 6 provided in the main body part 5a. 1 and 2, the main body 5a is located in the dehumidifying chamber 18 of the dehumidifying channel 10 through the wall 10a of the dehumidifying channel 10, and the discharge electrode 6 is disposed in the dehumidifying channel. It is located in a portion on the downstream side of the ten dehumidifying chambers 18 (in the embodiment, a portion on the downstream side of the blowing means storage chamber 22).

静電霧化装置5の主体部5aの外郭を構成し且つ内部が霧化対象空間となったハウジング36内には放電電極6と対向電極25と内装してある。対向電極25はドーナツ状をした金属板により構成してあってハウジング36の前面に設けた放出用開口36bに対向するようにハウジング36内に取付けてあり、ハウジング36内の後部には放電電極6が取付けてあり、放電電極6の先端の尖った部分がドーナツ状をした対向電極25の中央孔部のセンターと同一軸線上に位置している。放電電極6と対向電極25とは高圧リード線を介して高電圧印加部8に電気的に接続してある。   The discharge electrode 6 and the counter electrode 25 are housed in a housing 36 that constitutes the outer portion of the main body 5a of the electrostatic atomizer 5 and whose inside is the space to be atomized. The counter electrode 25 is formed of a doughnut-shaped metal plate, and is mounted in the housing 36 so as to face the discharge opening 36 b provided on the front surface of the housing 36. Is attached, and the pointed portion of the discharge electrode 6 is located on the same axis as the center of the center hole of the counter electrode 25 having a donut shape. The discharge electrode 6 and the counter electrode 25 are electrically connected to the high voltage application unit 8 through a high voltage lead wire.

上記放電電極6の後端部には金属のような熱伝導性の良い伝熱部材9が設けてある。ここで、放電電極6と伝熱部材9とを一体に形成したものでもよく、また、放電電極6に別体の伝熱部材9を固着してもよく、また、放電電極6に別体の伝熱部材9を接触させるようにしたものであってもよい。いずれの場合も、伝熱部材9と放電電極6とで熱を効率よくやりとりできるような構成とする。   A heat transfer member 9 having good thermal conductivity such as metal is provided at the rear end of the discharge electrode 6. Here, the discharge electrode 6 and the heat transfer member 9 may be integrally formed, a separate heat transfer member 9 may be fixed to the discharge electrode 6, and a separate body may be attached to the discharge electrode 6. The thing which made the heat-transfer member 9 contact may be used. In either case, the heat transfer member 9 and the discharge electrode 6 are configured to efficiently exchange heat.

伝熱部材9はハウジング36の底部36aに嵌挿して取付けられている。ハウジング36の底部36aの下面側の伝熱部材9が嵌挿する部分には凹所が設けてあって、該凹所に伝熱部材9を囲むようにヒータ38が収納してある。   The heat transfer member 9 is fitted and attached to the bottom 36 a of the housing 36. A recess is provided in a portion where the heat transfer member 9 on the lower surface side of the bottom portion 36 a of the housing 36 is fitted, and a heater 38 is accommodated in the recess so as to surround the heat transfer member 9.

伝熱部材9の他端部は除湿手段3の冷却側である蒸発器20に熱的に接続してある。つまり、放電電極6は伝熱部材9を介して蒸発器20により冷却されるように構成してある。したがって、本発明においては、蒸発器20が放電電極6を冷却する冷却手段7を構成している。   The other end of the heat transfer member 9 is thermally connected to an evaporator 20 on the cooling side of the dehumidifying means 3. That is, the discharge electrode 6 is configured to be cooled by the evaporator 20 via the heat transfer member 9. Therefore, in the present invention, the evaporator 20 constitutes the cooling means 7 for cooling the discharge electrode 6.

図2に示すように、伝熱部材9の軸方向の片側半分は固定断熱部材42により小間隙43を介して囲まれており、伝熱部材9に軸方向に移動自在に被嵌した可動断熱材44が上記小間隙43から出し入れ自在となっている。可動断熱材44にはラック部50が設けてあり、該ラック部50は駆動ギア51に噛み合っていて駆動ギア51を駆動することで、可動断熱材44を軸方向に移動して伝熱部材9の外面の外部に露出する面積を可変するようになっている。   As shown in FIG. 2, one half of the heat transfer member 9 in the axial direction is surrounded by a fixed heat insulating member 42 through a small gap 43, and the movable heat insulation is fitted to the heat transfer member 9 so as to be movable in the axial direction. The material 44 can be taken in and out of the small gap 43. The movable heat insulating material 44 is provided with a rack portion 50. The rack portion 50 meshes with the drive gear 51 and drives the drive gear 51, thereby moving the movable heat insulating material 44 in the axial direction and moving the heat transfer member 9. The area exposed to the outside of the outer surface is variable.

上記のような構成において、除湿装置1を運転すると、蒸発器20が冷却側となって冷えるので、伝熱部材9を介した熱のやりとりにより放電電極6の温度が低下する。放電電極6の温度が低下すると、ハウジング36内の空気が冷やされて空気中に含まれる水分を放電電極6に結露水として生成させる。このようにして放電電極6には安定して水が供給されることになる。   In the above configuration, when the dehumidifying device 1 is operated, the evaporator 20 cools on the cooling side, and thus the temperature of the discharge electrode 6 decreases due to heat exchange via the heat transfer member 9. When the temperature of the discharge electrode 6 decreases, the air in the housing 36 is cooled, and moisture contained in the air is generated in the discharge electrode 6 as condensed water. In this way, water is stably supplied to the discharge electrode 6.

このように放電電極6に水が供給されている状態で、高電圧印加部8により放電電極6と対向電極25との間に高電圧を印加すると、放電電極6と対向電極25との間にかけられた高電圧により放電電極6の先端部に供給された水と対向電極25との間にクーロン力が働いて、水の液面が局所的に錐状に盛り上がり(テーラーコーン)が形成される。このようにテーラーコーンが形成されると、該テーラーコーンの先端に電荷が集中してこの部分における電界強度が大きくなって、これによりこの部分に生じるクーロン力が大きくなり、更にテーラーコーンを成長させる。このようにテーラーコーンが成長し該テーラーコ
ーンの先端に電荷が集中して電荷の密度が高密度となると、テーラーコーンの先端部分の水が大きなエネルギー(高密度となった電荷の反発力)を受け、表面張力を超えて***・飛散(レイリー***)を繰り返してナノメータサイズの帯電微粒子水を大量に生成させる。
When a high voltage is applied between the discharge electrode 6 and the counter electrode 25 by the high voltage application unit 8 in a state where water is supplied to the discharge electrode 6 in this way, a voltage is applied between the discharge electrode 6 and the counter electrode 25. The Coulomb force acts between the water supplied to the tip of the discharge electrode 6 and the counter electrode 25 by the applied high voltage, and the liquid level of the water locally rises in a cone shape (tailor cone). . When the tailor cone is formed in this way, the electric charge concentrates on the tip of the tailor cone and the electric field strength in this portion increases, thereby increasing the Coulomb force generated in this portion and further growing the tailor cone. . When the tailor cone grows like this and the charge concentrates on the tip of the tailor cone and the density of the charge becomes high, the water at the tip of the tailor cone has a large energy (repulsive force of the charge that has become dense). In response, the surface tension is exceeded, and splitting and scattering (Rayleigh splitting) are repeated to generate a large amount of nanometer-sized charged fine particle water.

このようにして生成されたナノメータサイズの帯電微粒子水は対向電極25の中央孔を通過してハウジング36の前面に設けた放出用開口36bから除湿流路10内に放出される。除湿後の空気流れに乗って吐出部4から除湿対象空間に放出される。   The nanometer-sized charged fine particle water generated in this way passes through the central hole of the counter electrode 25 and is discharged into the dehumidifying channel 10 from the discharge opening 36b provided on the front surface of the housing 36. It rides on the air flow after dehumidification and is discharged from the discharge section 4 to the dehumidification target space.

除湿対象空間に放出されたナノメータサイズの帯電微粒子水はナノメータサイズと極めて小さいために空気中に長時間浮遊すると共に拡散性が高いため、除湿対象空間内の隅々まで浮遊して、除湿対象空間の壁面や除湿対象空間内にある物に付着するものであり、しかも、ナノメータサイズの帯電微粒子水活性種が水分子に包み込まれるようにして存在するため脱臭効果、アレルゲン物質や不活性化、カビや菌の除菌や繁殖の抑制効果があり、除湿対象空間の壁や内部の物に付着して脱臭効果、アレルゲン物質の不活性化、カビや菌の除菌や繁殖の抑制効果を発揮することになる。また、活性種が水分子に包み込まれるようにして存在するナノメータサイズの帯電微粒子水は遊離基単独で存在する場合より寿命が長いため、上記拡散性、脱臭効果、アレルゲン物質の不活性化、カビや菌の除菌や繁殖の抑制効果がより向上することになる。   The nanometer-sized charged fine particle water released into the dehumidification target space is extremely small at nanometer size, so it floats in the air for a long time and has high diffusivity. In addition, the nanometer-sized charged fine particle water-active species are encapsulated in water molecules, and thus deodorizing effect, allergenic substances, inactivation, mold, etc. It has the effect of suppressing sterilization and breeding of bacteria and bacteria, and adheres to the walls and internal objects of the dehumidified target space to exert deodorizing effect, inactivation of allergen substances, sterilization of mold and fungi and suppression of breeding It will be. Also, nanometer-sized charged fine particle water that exists in such a way that active species are encapsulated in water molecules has a longer life than when free radicals exist alone, so that the diffusibility, deodorizing effect, inactivation of allergen substances, mold, This will further improve the effect of sterilization and propagation of bacteria and bacteria.

ところで、伝熱部材9を介して放電電極6と、除湿手段3の冷却側である蒸発器20との間で熱のやりとりをして放電電極6を冷却することで、放電電極6周囲の空気中の水分を結露させて放電電極6に結露水を生成させて水の供給を行うに当り、放電電極6の周囲の温度や湿度が変動したり、放電電極6の温度が変動したり、伝熱部材9近傍の温度(例えば蒸発器20の温度)が変動すると、放電電極6周囲の空気中の水分を効果的に放電電極6に結露水として適正な量生成させ難くなるおそれがある。そこで、本実施形態においては、放電電極6と、除湿手段3の冷却側である蒸発器20との間で熱のやりとりをして放電電極6を冷却するに当って、伝熱部材9による伝熱量を調整する調整手段60を設けてある。   By the way, the air around the discharge electrode 6 is cooled by exchanging heat between the discharge electrode 6 and the evaporator 20 on the cooling side of the dehumidifying means 3 through the heat transfer member 9. When water is condensed in the discharge electrode 6 to generate condensed water and water is supplied, the temperature and humidity around the discharge electrode 6 fluctuate, the temperature of the discharge electrode 6 fluctuates, If the temperature in the vicinity of the heat member 9 (for example, the temperature of the evaporator 20) fluctuates, it may be difficult to effectively generate a proper amount of moisture in the air around the discharge electrode 6 as condensed water in the discharge electrode 6. Therefore, in the present embodiment, when the discharge electrode 6 is cooled by exchanging heat between the discharge electrode 6 and the evaporator 20 on the cooling side of the dehumidifying means 3, the heat transfer by the heat transfer member 9 is performed. An adjusting means 60 for adjusting the amount of heat is provided.

すなわち、図3に示す実施形態では、霧化対象空間であるハウジング36内に、霧化対象空間の温度と湿度とを検出するための霧化対象空間温湿度検出手段45と、放電電極6の温度を検出する放電電極温度検出手段46と、蒸発器20の温度を検出する蒸発器温度検出手段47とを設けてあり、これらの検出手段からの検出データが制御部70に入力され、調整手段60により伝熱部材9による伝熱量を調整して、伝熱部材9と蒸発器20との熱のやりとりにより放電電極6を何℃になるように冷却すれば、最も効果的に放電電極6の周囲の空気(つまり霧化対象空間内の空気)中の水分を結露させて静電霧化に必要な水として供給できるかを求め、調整手段60により放電電極6が目的の温度となるように伝熱部材9による伝熱量の調整を制御するようになっており、霧化対象空間内の温度や湿度、あるいは、伝熱部材9近傍(つまり蒸発器20側の)が変化しても確実に空気中の水分を結露させて放電電極6に水を供給できて、帯電微粒子水の生成を安定して行えるようになっている。   That is, in the embodiment shown in FIG. 3, the atomization target space temperature / humidity detection means 45 for detecting the temperature and humidity of the atomization target space in the housing 36 which is the atomization target space, and the discharge electrode 6. Discharge electrode temperature detection means 46 for detecting the temperature and evaporator temperature detection means 47 for detecting the temperature of the evaporator 20 are provided. Detection data from these detection means is input to the control unit 70, and adjustment means. If the amount of heat transfer by the heat transfer member 9 is adjusted by 60 and the discharge electrode 6 is cooled to a temperature of what temperature by exchanging heat between the heat transfer member 9 and the evaporator 20, the most effective of the discharge electrode 6 It is determined whether moisture in ambient air (that is, air in the space to be atomized) can be condensed and supplied as water necessary for electrostatic atomization, and the discharge electrode 6 is brought to a target temperature by the adjusting means 60. Adjustment of heat transfer amount by heat transfer member 9 Even if the temperature and humidity in the space to be atomized, or the vicinity of the heat transfer member 9 (that is, on the evaporator 20 side) is changed, moisture in the air is surely condensed to the discharge electrode. 6 can be supplied with water to stably generate charged fine particle water.

調整手段60としては図の実施形態では、伝熱部材9の外部に露出する表面面積を調整する可動断熱材44、ラック部50、駆動ギア51よりなる表面積調整手段37と、ヒータ38とがある。   In the illustrated embodiment, the adjusting means 60 includes a surface area adjusting means 37 including a movable heat insulating material 44 that adjusts the surface area exposed to the outside of the heat transfer member 9, a rack portion 50, and a drive gear 51, and a heater 38. .

すなわち、霧化対象空間温湿度検出手段45により霧化対象空間の温度と湿度とを検出して放電電極6の露点温度TOを算出する。次に、放電電極温度検出手段46で放電電極6の温度TBを検出する。TO>TBであると蒸発器温度検出手段47で蒸発器20の温
度TCを検出する。このようにして放電電極6の露点温度TOの露点温度と、放電電極6の温度TBと、蒸発器20の温度TCを求め、これにより霧化対象空間の空気中の水分を基にして放電電極6に最適の量の結露水が供給されるように、伝熱部材9を介して蒸発器20と放電電極6との間で熱のやりとりができるように伝熱部材9の露出面積を調整する。つまり、放電電極6の露点温度TOの露点温度と、放電電極6の温度TBと、蒸発器20の温度TCとで算出した伝熱部材9の最適の露出面積Sとなるように駆動ギア51を駆動して可動断熱材44を移動し、伝熱部材9の露出面積を調整する。
That is, the temperature and humidity of the atomization target space are detected by the atomization target space temperature / humidity detecting means 45 to calculate the dew point temperature TO of the discharge electrode 6. Next, the discharge electrode temperature detection means 46 detects the temperature TB of the discharge electrode 6. If TO> TB, the evaporator temperature detecting means 47 detects the temperature TC of the evaporator 20. In this way, the dew point temperature of the dew point TO of the discharge electrode 6, the temperature TB of the discharge electrode 6, and the temperature TC of the evaporator 20 are obtained, and thereby the discharge electrode is based on the moisture in the air in the atomization target space. The exposed area of the heat transfer member 9 is adjusted so that heat can be exchanged between the evaporator 20 and the discharge electrode 6 via the heat transfer member 9 so that the optimum amount of condensed water is supplied to the heat transfer member 9. . That is, the drive gear 51 is adjusted so that the optimum exposure area S of the heat transfer member 9 is calculated by the dew point temperature of the dew point temperature TO of the discharge electrode 6, the temperature TB of the discharge electrode 6, and the temperature TC of the evaporator 20. The movable heat insulating material 44 is moved by driving, and the exposed area of the heat transfer member 9 is adjusted.

そして、放電電極6の露点温度TOの露点温度と、放電電極6の温度TBと、蒸発器20の温度TCとで算出した伝熱部材9の最適の露出面積Sが、駆動ギア51を駆動して可動断熱材44を移動した際の最大の露出面積SMAXよりも大きい場合は、放電電極6が冷えすぎて過剰に結露水が生成されるため、ヒータ38をオンにして、伝熱部材9を介して蒸発器20と放電電極6との間で放電電極6に最適の量の結露水が生成されるようにする。   The optimum exposed area S of the heat transfer member 9 calculated by the dew point temperature of the dew point temperature TO of the discharge electrode 6, the temperature TB of the discharge electrode 6, and the temperature TC of the evaporator 20 drives the drive gear 51. If it is larger than the maximum exposed area SMAX when the movable heat insulating material 44 is moved, the discharge electrode 6 is too cold and excessively condensed water is generated. Therefore, the heater 38 is turned on and the heat transfer member 9 is turned on. Therefore, an optimum amount of condensed water is generated in the discharge electrode 6 between the evaporator 20 and the discharge electrode 6.

上記実施形態では、霧化対象空間の温度と湿度とを検出するための霧化対象空間温湿度検出手段45と、放電電極6の温度を検出する放電電極温度検出手段46と、蒸発器20の温度を検出する蒸発器温度検出手段47とを設けて、各検出手段で求めた情報に基づいて調整手段60により伝熱部材9による伝熱量を調整するようにした例を示したが、精度はやや落ちるが、霧化対象空間温湿度検出手段45、放電電極温度検出手段46、蒸発器温度検出手段47の少なくとも1つ又は2つを備え、この1つ又は2つの検出手段により求めた情報に基づいて調整手段60により伝熱部材9による伝熱量を調整するようにしてもよい。   In the above embodiment, the atomization target space temperature / humidity detection means 45 for detecting the temperature and humidity of the atomization target space, the discharge electrode temperature detection means 46 for detecting the temperature of the discharge electrode 6, and the evaporator 20 An example is shown in which an evaporator temperature detecting means 47 for detecting the temperature is provided, and the amount of heat transfer by the heat transfer member 9 is adjusted by the adjusting means 60 based on information obtained by each detecting means. Although it falls a little, it is provided with at least one or two of the atomization target space temperature and humidity detection means 45, the discharge electrode temperature detection means 46, and the evaporator temperature detection means 47, and the information obtained by the one or two detection means Based on this, the heat transfer amount by the heat transfer member 9 may be adjusted by the adjusting means 60.

(実施形態2)
本実施形態の除湿装置を、図4を用いて説明する。本実施形態の除湿装置1は、上記実施形態1と異なり、除湿装置1の内部に、除湿流路10と異なる経路として空気流路30が形成し、当該空気流路30に静電霧化装置5を設けたことに特徴がある。なお、その他の構成は実施形態1と同様であるため、同一の構成には同一の符号を付し、説明を省略する。
(Embodiment 2)
The dehumidifying device of this embodiment is demonstrated using FIG. Unlike the first embodiment, the dehumidifying device 1 of the present embodiment forms an air flow path 30 as a path different from the dehumidifying flow path 10 inside the dehumidifying apparatus 1, and the electrostatic atomizer is formed in the air flow path 30. 5 is provided. Since the other configuration is the same as that of the first embodiment, the same reference numeral is given to the same configuration, and the description is omitted.

空気流路30は、除湿流路10とは異なる経路として、除湿流路10と隣接して並列に形成されている。空気流路30は、一端側に空気流入部31を備え、他端側にはミスト放出部32を備えている。空気流入部31は空気流路30に空気を取り込む入口であり、ミスト放出部32は、空気流路30から空気を吹き出す出口である。空気流入部31は、吸込口2とは分離して形成されており、ミスト放出部32は吐出部4とは分離して、隣接して形成されている。そして、空気流路30は、内部にファン33と、除湿流路10から空気流路30の内部に突出した静電霧化装置5とを備えている。   The air flow path 30 is formed in parallel with the dehumidification flow path 10 as a path different from the dehumidification flow path 10. The air flow path 30 includes an air inflow portion 31 on one end side and a mist discharge portion 32 on the other end side. The air inflow portion 31 is an inlet that takes air into the air flow path 30, and the mist discharge portion 32 is an outlet that blows air out of the air flow path 30. The air inflow portion 31 is formed separately from the suction port 2, and the mist discharge portion 32 is formed adjacent to the discharge portion 4. And the air flow path 30 is provided with the fan 33 and the electrostatic atomizer 5 which protruded from the dehumidification flow path 10 inside the air flow path 30 inside.

空気流路30内のファン33が回転することにより、除湿装置1の外部の空気が空気流入部31より空気流路30内に吸い込まれる。吸い込まれた空気は、静電霧化装置5の放電電極6で冷却される。冷却された空気に含まれる水分は、放電電極6に凝集し、結露水が生成される。このようにして放電電極6には水が供給されることになる。   As the fan 33 in the air flow path 30 rotates, the air outside the dehumidifier 1 is sucked into the air flow path 30 from the air inflow portion 31. The sucked air is cooled by the discharge electrode 6 of the electrostatic atomizer 5. Moisture contained in the cooled air aggregates on the discharge electrode 6 to generate condensed water. In this way, water is supplied to the discharge electrode 6.

このように、放電電極6に水が供給されている状態で、高電圧印加部8により放電電極6と対向電極25との間に高電圧を印加すると、ナノメータサイズの帯電微粒子水が大量に生成される。生成されたナノメータサイズの帯電微粒子水は、対向電極25の中央孔を通過して、空気流路30内に放出される。そして、ナノメータサイズの帯電微粒子水はファン33が作り出した空気の流れに乗って、ミスト放出部32から除湿対象空間に放出される。   Thus, when a high voltage is applied between the discharge electrode 6 and the counter electrode 25 by the high voltage application unit 8 while water is supplied to the discharge electrode 6, a large amount of nanometer-sized charged fine particle water is generated. Is done. The generated nanometer-size charged fine particle water passes through the central hole of the counter electrode 25 and is discharged into the air flow path 30. Then, the nanometer-sized charged fine particle water rides on the air flow created by the fan 33 and is discharged from the mist discharge portion 32 to the dehumidifying target space.

このような本実施形態の除湿装置1は、放電電極6の周囲の空気に含まれる水分を結露させて放電電極6に結露水を生成させて水の供給を行うにあたり、除湿装置1の外の水分を多く含んだ空気を、空気流入部31を介して空気流路30に流入させるので、放電電極6には、より確実に結露水が供給される。したがって、乾燥空気とともに帯電微粒子水をより確実に除湿対象空間に放出することができる。   The dehumidifying apparatus 1 according to this embodiment is configured so that moisture contained in the air around the discharge electrode 6 is condensed to generate condensed water in the discharge electrode 6 and water is supplied. Since air containing a large amount of water flows into the air flow path 30 via the air inflow portion 31, dew condensation water is more reliably supplied to the discharge electrode 6. Therefore, the charged fine particle water can be more reliably discharged into the dehumidifying target space together with the dry air.

また、空気流路30のミスト放出部32は、除湿流路10の吐出部40に隣接して設けられているため、ミスト放出部32から放出された帯電微粒子水を吐出部4から吹き出す乾燥した空気に乗せて速やかに除湿対象空間に飛散させることができる。したがって、脱臭、除菌、アレルゲン物質の除去などの効果を更に向上することができる。   Further, since the mist discharge part 32 of the air flow path 30 is provided adjacent to the discharge part 40 of the dehumidification flow path 10, it is dried by blowing out the charged fine particle water discharged from the mist discharge part 32 from the discharge part 4. It can be quickly scattered in the dehumidification target space by being put on air. Therefore, effects such as deodorization, sterilization, and removal of allergen substances can be further improved.

なお、添付図面に示す実施形態では放電電極と対向電極との間に高電圧を印加して帯電微粒子水を生成する静電霧化装置5の例を示したが、対向電極を設けない場合であってもよい。   In the embodiment shown in the accompanying drawings, an example of the electrostatic atomizer 5 that generates charged fine particle water by applying a high voltage between the discharge electrode and the counter electrode is shown. However, the counter electrode is not provided. There may be.

実施形態1の除湿装置の断面図である。It is sectional drawing of the dehumidification apparatus of Embodiment 1. FIG. 同上の要部拡大断面図である。It is a principal part expanded sectional view same as the above. 同上の制御ブロック図である。It is a control block diagram same as the above. 実施形態2の除湿装置の断面図である。It is sectional drawing of the dehumidification apparatus of Embodiment 2. FIG.

符号の説明Explanation of symbols

1 除湿装置
2 吸込部
3 除湿手段
4 吐出部
5 静電霧化装置
6 放電電極
7 冷却手段
8 高電圧印加部
9 伝熱部材
DESCRIPTION OF SYMBOLS 1 Dehumidifier 2 Suction part 3 Dehumidification means 4 Discharge part 5 Electrostatic atomizer 6 Discharge electrode 7 Cooling means 8 High voltage application part 9 Heat-transfer member

Claims (3)

除湿装置に吸込部と、吸込んだ空気を除湿する除湿手段と、除湿した空気を吐出する吐出部とを備え、上記除湿手段が湿気を含んだ空気を冷却することで除湿するものであり、除湿手段で除湿した乾燥空気に帯電微粒子水を放出するための静電霧化装置を設け、該静電霧化装置に、放電電極と、空気中の水分を結露水として生成することで放電電極に水を供給するための冷却手段と、放電電極に供給された水を静電霧化するために放電電極に高電圧を印加するための高電圧印加部とを備え、上記除湿手段の冷却側を静電霧化装置の放電電極に接続させて放電電極を冷却する冷却手段を構成して成ることを特徴とする除湿装置。   The dehumidifying device includes a suction unit, a dehumidifying unit that dehumidifies the sucked air, and a discharge unit that discharges the dehumidified air, and the dehumidifying unit dehumidifies by cooling the air containing moisture. An electrostatic atomizing device for discharging charged fine particle water to dry air dehumidified by means is provided. In the electrostatic atomizing device, a discharge electrode and moisture in the air are generated as condensed water. A cooling means for supplying water, and a high voltage application section for applying a high voltage to the discharge electrode to electrostatically atomize the water supplied to the discharge electrode, the cooling side of the dehumidifying means being A dehumidifying device comprising cooling means for cooling the discharge electrode by being connected to the discharge electrode of the electrostatic atomizer. 除湿手段の冷却側と静電霧化装置の放電電極とを伝熱部材を介して接続して成ることを特徴とする請求項1記載の除湿装置。 A discharge electrode of the cooling side and the electrostatic atomizer of the dehumidifying means dehumidifying device according to claim 1, wherein a formed by connecting via the heat transfer member. 放電電極又は伝熱部材近傍の温度又は湿度を検知して伝熱部材の伝熱量をコントロールすることを特徴とする請求項2記載の除湿装置。   The dehumidifying device according to claim 2, wherein the heat transfer amount of the heat transfer member is controlled by detecting the temperature or humidity in the vicinity of the discharge electrode or the heat transfer member.
JP2008084369A 2007-03-27 2008-03-27 Dehumidifier Expired - Fee Related JP5044466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084369A JP5044466B2 (en) 2007-03-27 2008-03-27 Dehumidifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007080670 2007-03-27
JP2007080670 2007-03-27
JP2008084369A JP5044466B2 (en) 2007-03-27 2008-03-27 Dehumidifier

Publications (2)

Publication Number Publication Date
JP2008264778A JP2008264778A (en) 2008-11-06
JP5044466B2 true JP5044466B2 (en) 2012-10-10

Family

ID=39995446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084369A Expired - Fee Related JP5044466B2 (en) 2007-03-27 2008-03-27 Dehumidifier

Country Status (2)

Country Link
JP (1) JP5044466B2 (en)
CN (2) CN101275764B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2394589T3 (en) 2007-12-14 2013-02-04 Aerodesigns, Inc Supply of food products transformable in aerosol
JP2010194439A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Dehumidifier
JP4985759B2 (en) * 2009-12-28 2012-07-25 パナソニック株式会社 Electric vacuum cleaner
JP5722251B2 (en) * 2012-02-27 2015-05-20 株式会社東芝 Battery pack, secondary battery device and electric vehicle
JP6156357B2 (en) * 2014-12-26 2017-07-05 ダイキン工業株式会社 Humidifier
CN107293962B (en) * 2017-07-25 2019-10-11 远中电气有限公司 A kind of intelligent JP cabinet with dehumidifying heat sinking function
CN109228828A (en) * 2018-09-30 2019-01-18 林奇虎 The electric heater for electric car of raw electricity dehumidifying is pressed based on fluid mechanics principle
CN110508088B (en) * 2019-07-29 2024-03-19 江苏大学 Chimney waste gas whitening device utilizing electrostatic technology
CN112495144B (en) * 2020-10-15 2022-08-26 广西电网有限责任公司玉林供电局 Method for removing condensation of local self-heating high-voltage switch cabinet
CN116659191A (en) * 2023-06-25 2023-08-29 上海科益生物科技有限公司 Waste heat utilization device of freeze dryer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687081B2 (en) * 2004-11-25 2011-05-25 パナソニック株式会社 Air conditioner
JP4701746B2 (en) * 2005-02-23 2011-06-15 パナソニック電工株式会社 Air conditioner with air purification function

Also Published As

Publication number Publication date
CN101275764B (en) 2013-08-07
CN201237303Y (en) 2009-05-13
CN101275764A (en) 2008-10-01
JP2008264778A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5044466B2 (en) Dehumidifier
JP4625267B2 (en) Electrostatic atomizer
JP4333779B2 (en) Blower
JP4470710B2 (en) Air conditioner for vehicles
EP1738667B8 (en) Fan heater with electrostatic atomizer
JP2008190813A (en) Air conditioner with electrostatic atomizer
JP4492630B2 (en) Dehumidifier
JP4096905B2 (en) Air conditioner
JP5368844B2 (en) Air conditioner with electrostatic atomizer
JP2008241093A (en) Humidifier
JP5238047B2 (en) Electrostatic atomizer
JP3973391B2 (en) Humidifying device and electric heating device provided with the same
JP5054402B2 (en) Closed space dehumidification system
JP2009030911A (en) Air conditioner, and refrigeration cycle device
JP4380721B2 (en) Dehumidifier
JP2008241094A (en) Dehumidifying system for closed space
JP4552905B2 (en) Electrostatic atomizer
JP2011098074A (en) Air cleaner and electrostatic atomizer
JP5662705B2 (en) Electrostatic atomizer
JP5728074B2 (en) Humidification mechanism
JP2009139001A (en) Air conditioner
JP2010091194A (en) Air conditioner
TWI352796B (en) Air conditioner
JP5107202B2 (en) Air conditioner
JP2011099647A (en) Air cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees