JP5043462B2 - Composite magnetic powder - Google Patents

Composite magnetic powder Download PDF

Info

Publication number
JP5043462B2
JP5043462B2 JP2007032375A JP2007032375A JP5043462B2 JP 5043462 B2 JP5043462 B2 JP 5043462B2 JP 2007032375 A JP2007032375 A JP 2007032375A JP 2007032375 A JP2007032375 A JP 2007032375A JP 5043462 B2 JP5043462 B2 JP 5043462B2
Authority
JP
Japan
Prior art keywords
magnetic powder
resin
magnetic
composite magnetic
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007032375A
Other languages
Japanese (ja)
Other versions
JP2008198790A (en
Inventor
秀彦 飯沼
政友 林
邦彦 石澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP2007032375A priority Critical patent/JP5043462B2/en
Publication of JP2008198790A publication Critical patent/JP2008198790A/en
Application granted granted Critical
Publication of JP5043462B2 publication Critical patent/JP5043462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、ノイズ除去用インダクタなどの電子部品の材料として好適に用いられる複合磁性粉に関する。   The present invention relates to a composite magnetic powder suitably used as a material for electronic parts such as a noise removing inductor.

従来、インダクタなどの電子部品として高透磁率、高絶縁性を実現するために、空芯コイルを金型に入れた後、磁性粉と有機結合剤の混合粉、あるいは、樹脂で表面を被覆した磁性粉を金型内に充填して加圧成型、熱処理する方法が知られている(特許文献1〜3参照)。この方法は、形状にも自由度があり、任意の形状に成型することが可能である。上記磁性粉としては、絶縁性、磁気特性に優れ、且つ加圧成型または熱処理した際に磁性粉間の接着性が良く、成型品の機械的強度が強いことが求められている。   Conventionally, in order to achieve high magnetic permeability and high insulation as an electronic component such as an inductor, after the air core coil is placed in a mold, the surface is coated with a mixed powder of magnetic powder and an organic binder, or resin. There is known a method in which magnetic powder is filled in a mold and subjected to pressure molding and heat treatment (see Patent Documents 1 to 3). This method also has a degree of freedom in shape, and can be molded into an arbitrary shape. As said magnetic powder, it is calculated | required that it is excellent in insulation and a magnetic characteristic, and the adhesiveness between magnetic powder is good at the time of pressure molding or heat processing, and the mechanical strength of a molded article is strong.

しかし、特許文献1では、磁性粉と有機結合剤の混合粉を使用しているが、有機結合剤が磁性粉表面を被覆することができず、絶縁性を向上することが困難である。また、絶縁性を向上させるために有機結合剤量を増加させると透磁率の減少が生じる。   However, in patent document 1, although the mixed powder of magnetic powder and an organic binder is used, the organic binder cannot coat | cover the magnetic powder surface, and it is difficult to improve insulation. Further, when the amount of the organic binder is increased in order to improve the insulation, the magnetic permeability is reduced.

また、特許文献2では、磁性粉の表面をエポキシ樹脂などの熱硬化性樹脂で被覆した複合磁性粉を使用しているが、熱硬化性樹脂を磁性粉の表面に被覆する際、熱を伴うため硬化反応が進み、磁性粉間の接着性が弱まり、高圧での成型が必要となってしまう。また、熱硬化性樹脂を被覆した複合磁性粉は、長期間の保存に適していない。   Moreover, in patent document 2, although the composite magnetic powder which coat | covered the surface of magnetic powder with thermosetting resins, such as an epoxy resin, is used, when coat | covering the thermosetting resin on the surface of magnetic powder, it accompanies heat. Therefore, the curing reaction proceeds, the adhesiveness between the magnetic powders is weakened, and high pressure molding is required. Moreover, the composite magnetic powder coated with a thermosetting resin is not suitable for long-term storage.

また、特許文献3では、2種類以上の樹脂層で表面を被覆した磁性材粉を使用することを特徴としている。樹脂層の内側層の材料として、例えば機械的強度が強い熱硬化性樹脂を用いることで成型圧力を高くしたり、成型後に熱処理をしたりしても高い絶縁性を保つ。また、樹脂層の外側層の材料として、例えば熱可塑性樹脂を用いることで磁性材粉間での結合力を強めて隙間を少なくしている。しかしながら、磁性材粉に熱硬化樹脂を被覆後に熱可塑性樹脂を均一に被覆することは困難である。そのため、機械的強度を得るために熱可塑性樹脂の被覆量が多くなり、磁気特性の低下を招く。   Patent Document 3 is characterized by using magnetic material powder whose surface is covered with two or more types of resin layers. As a material for the inner layer of the resin layer, for example, a thermosetting resin having high mechanical strength is used, so that high insulation is maintained even when the molding pressure is increased or heat treatment is performed after molding. Moreover, as a material for the outer layer of the resin layer, for example, a thermoplastic resin is used, so that the bonding force between the magnetic material powders is increased and the gap is reduced. However, it is difficult to uniformly coat the thermoplastic resin after coating the magnetic powder with the thermosetting resin. Therefore, the coating amount of the thermoplastic resin is increased in order to obtain mechanical strength, resulting in a decrease in magnetic properties.

特許第2700713号公報Japanese Patent No. 2700713 特開2004−363466号公報JP 2004-363466 A 特許第3593986号公報Japanese Patent No. 3593986

本発明は、上記のような事情に鑑みなされたものであり、低歪および低発熱で且つ絶縁抵抗の高いことが要求されるノイズ除去用インダクタなどの電子部品の材料として好適に用いられる、高透磁率および高絶縁性で、磁気特性に優れ、且つ磁性粉間の接着性が良く、機械的強度の高い成型品が得られる複合磁性粉を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is preferably used as a material for electronic components such as a noise removal inductor that is required to have low distortion, low heat generation, and high insulation resistance. An object of the present invention is to provide a composite magnetic powder that has a magnetic permeability and high insulating properties, is excellent in magnetic properties, has good adhesion between magnetic powders, and provides a molded product having high mechanical strength.

本発明は、磁性粉表面を、平均粒子径が1.0〜1000nmの絶縁性微粒子が分散した熱可塑性樹脂で被覆した複合磁性粉であり、直流電圧100V〜1000V印加時の電気抵抗値が1.0×1010Ω以上、見掛密度が1.0〜3.5g/cm3 、平均粒子径が10〜200μmである複合磁性粉を提供することにより、上記課題を解決したものである。 The present invention is a composite magnetic powder obtained by coating the surface of a magnetic powder with a thermoplastic resin in which insulating fine particles having an average particle size of 1.0 to 1000 nm are dispersed , and has an electric resistance value of 1 when a DC voltage of 100 V to 1000 V is applied. This problem is solved by providing a composite magnetic powder having a density of 1.0 × 10 10 Ω or more, an apparent density of 1.0 to 3.5 g / cm 3 , and an average particle size of 10 to 200 μm.

本発明の複合磁性粉は、高透磁率および高絶縁性で、磁気特性に優れ、且つ磁性粉間の接着性が良く、機械的強度の高い成型品が得られ、低歪および低発熱で且つ絶縁抵抗の高いことが要求されるノイズ除去用インダクタなどの電子部品の材料として好適に用いることができる。   The composite magnetic powder of the present invention has a high magnetic permeability and high insulation, excellent magnetic properties, good adhesion between the magnetic powders, and a molded product with high mechanical strength, having low distortion and low heat generation. It can be suitably used as a material for an electronic component such as a noise removing inductor that is required to have a high insulation resistance.

本発明の複合磁性粉は、磁性粉表面を熱可塑性樹脂で被覆したものである。
上記磁性粉としては、例えば、純鉄粉(還元鉄粉、アトマイズ鉄粉、カーボニル鉄粉など)、鉄系合金、アモルファス合金などの金属系磁性粉、また、Mn−Znフェライト、Mgフェライト、Cu−Znフェライト、Ni−Znフェライトなどのフェライト系磁性粉を用いることができる。上記磁性粉は、平均粒子径が10〜200μmであることが好ましく、25〜165μmであることがより好ましい。磁性粉の組成および平均粒子径により透磁率の周波数依存性が変わるため、これらの磁性粉の中から目的の特性にあった磁性粉を適宜選択すれば良い。
The composite magnetic powder of the present invention is obtained by coating the surface of the magnetic powder with a thermoplastic resin.
Examples of the magnetic powder include pure iron powder (reduced iron powder, atomized iron powder, carbonyl iron powder, etc.), iron-based alloy, metal-based magnetic powder such as amorphous alloy, Mn-Zn ferrite, Mg ferrite, Cu Ferrite magnetic powders such as -Zn ferrite and Ni-Zn ferrite can be used. The magnetic powder preferably has an average particle size of 10 to 200 μm, and more preferably 25 to 165 μm. Since the frequency dependence of the magnetic permeability varies depending on the composition and average particle diameter of the magnetic powder, a magnetic powder that meets the target characteristics may be appropriately selected from these magnetic powders.

上記磁性粉を被覆する熱可塑性樹脂としては、ABS樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル樹脂、PET樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂などが挙げられる。これらの樹脂は、単独で使用しても良く、複合的に使用(混合被覆または重層被覆)することもでき、共重合体を使用することも可能である。   Examples of the thermoplastic resin that coats the magnetic powder include ABS resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylic resin, PET resin, polyphenylene ether resin, polyamide resin, polycarbonate resin, polyphenylene sulfide resin, and the like. These resins may be used alone, may be used in combination (mixed coating or multilayer coating), and a copolymer may be used.

被覆樹脂量は、磁性粉の0.05〜10.0重量%が好ましく、1.0〜4.0重量%がより好ましい。樹脂量が0.05重量%未満では磁性粉表面が十分に被覆されないことがあり、10.0重量%より多いと磁性粉間で造粒が生じ易くなる。   The amount of the coating resin is preferably 0.05 to 10.0% by weight of the magnetic powder, and more preferably 1.0 to 4.0% by weight. If the amount of resin is less than 0.05% by weight, the surface of the magnetic powder may not be sufficiently coated. If it is more than 10.0% by weight, granulation is likely to occur between the magnetic powders.

上記の熱可塑性樹脂の被覆方法については特に制限はなく、従来公知の方法は何れも使用することができ、適宜選択すればよい。例えば、流動床によるスプレー法や浸漬法が挙げられる。通常は、上記の熱可塑性樹脂を、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、トルエン、キシレン、クロロホルム、アルコールなどの有機溶剤、またはこれらの混合溶剤に希釈または分散させて、樹脂溶液またはエマルジョンを調製し、そして当該樹脂溶液またはエマルジョンに磁性粉を浸漬させるか、または磁性粉に上記樹脂溶液をスプレーすることにより、磁性粉表面に樹脂層を形成する方法により行うとよい。スプレー法の場合、予め磁性粉を流動化させた状態で上記樹脂溶液をスプレーすることにより、均一な被膜を得ることができる。
熱可塑性樹脂を被覆した磁性粉は、冷却した後、必要に応じて解砕および分級を行ってもよい。
There is no restriction | limiting in particular about the coating method of said thermoplastic resin, Any conventionally well-known method can be used and should just select it suitably. For example, a spray method using a fluidized bed or a dipping method may be used. Usually, the above thermoplastic resin is diluted or dispersed in an organic solvent such as methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, toluene, xylene, chloroform, alcohol, or a mixed solvent thereof to prepare a resin solution or emulsion. And it is good to carry out by the method of forming a resin layer in the magnetic powder surface by immersing magnetic powder in the said resin solution or emulsion, or spraying the said resin solution on magnetic powder. In the case of the spray method, a uniform film can be obtained by spraying the resin solution in a state where the magnetic powder is fluidized in advance.
The magnetic powder coated with the thermoplastic resin may be crushed and classified as necessary after cooling.

磁性粉表面に熱可塑性樹脂が被覆された本発明の複合磁性粉は、直流電圧100Vから1000V印加時の電気抵抗値が1.0×1010Ω以上、好ましくは1.0×1010〜1.0×1014Ωである。直流電圧100Vから1000V印加時の電気抵抗値が1.0×1010Ω未満の場合では、磁性粉表面に対して被覆樹脂量が少ないことから、磁性粉表面に熱可塑性樹脂を均一に被覆できず、高透磁率、高絶縁性、および高い機械的強度が得られない。 The composite magnetic powder of the present invention in which the surface of the magnetic powder is coated with a thermoplastic resin has an electric resistance value of 1.0 × 10 10 Ω or more, preferably 1.0 × 10 10 −1 when a DC voltage of 100 V to 1000 V is applied. 0.0 × 10 14 Ω. When the electrical resistance value when applying a DC voltage of 100 V to 1000 V is less than 1.0 × 10 10 Ω, the amount of the coating resin is small relative to the surface of the magnetic powder, so the surface of the magnetic powder can be uniformly coated with the thermoplastic resin. In other words, high magnetic permeability, high insulation, and high mechanical strength cannot be obtained.

また、本発明の複合磁性粉は、ハンドリングの観点から、見掛密度が1.0〜3.5g/cm3 、好ましくは2.0〜3.2g/cm3 である。
また、本発明の複合磁性粉は、平均粒子径が10〜200μm、好ましくは25〜165μmである。平均粒子径が10μmより小さいと、熱可塑性樹脂を被覆する際に磁性粉間で造粒が生じ易くなり、また平均粒子径が200μmより大きいと、透磁率は向上するものの磁性粉間の接着性が悪化する。
The composite magnetic powder of the present invention, from the viewpoint of handling, apparent density 1.0~3.5g / cm 3, preferably 2.0~3.2g / cm 3.
The composite magnetic powder of the present invention has an average particle size of 10 to 200 μm, preferably 25 to 165 μm. When the average particle size is smaller than 10 μm, granulation tends to occur between the magnetic powders when coating the thermoplastic resin, and when the average particle size is larger than 200 μm, the magnetic permeability is improved, but the adhesion between the magnetic powders is improved. Gets worse.

本発明の複合磁性粉を成型後に高温で熱処理した場合、被覆樹脂が熱可塑性樹脂の単独では樹脂の分解による絶縁抵抗の低下が生じることがある。そのため、本発明の複合磁性粉は、絶縁抵抗の調整や加圧成型後に高温の熱処理が必要な場合などには、磁性粉表面に熱可塑性樹脂を被覆する際に、該熱可塑性樹脂中に絶縁性微粒子を分散することが好ましく、それにより絶縁性および耐熱性を制御することができる。
上記絶縁性微粒子としては、SiO2、Al23、TiO2、MgO、CaO、ZnO、Fe23などが挙げられ、平均粒子径が1.0〜1000nmのものが好ましく、5.0〜200nmのものがより好ましい。
上記絶縁性微粒子の分散量は、通常、熱可塑性樹脂100重量部に対し、5〜60重量部、好ましくは20〜50重量部である。
When the composite magnetic powder of the present invention is heat-treated at a high temperature after molding, if the coating resin is a thermoplastic resin alone, the insulation resistance may be lowered due to decomposition of the resin. For this reason, the composite magnetic powder of the present invention is insulated in the thermoplastic resin when the surface of the magnetic powder is coated with a thermoplastic resin, for example, when high-temperature heat treatment is required after adjustment of insulation resistance or pressure molding. It is preferable to disperse the conductive fine particles, whereby the insulation and heat resistance can be controlled.
Examples of the insulating fine particles include SiO 2 , Al 2 O 3 , TiO 2 , MgO, CaO, ZnO, Fe 2 O 3 and the like, and those having an average particle diameter of 1.0 to 1000 nm are preferable. The thing of -200 nm is more preferable.
The dispersion amount of the insulating fine particles is usually 5 to 60 parts by weight, preferably 20 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。尚、下記の実施例1〜10は参考例である。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples. In addition, the following Examples 1-10 are reference examples.

[実施例1〜11および比較例1]
表1記載の磁性粉を表1記載の熱可塑性樹脂で被覆して複合磁性粉をそれぞれ製造した。被覆処理は、磁性粉表面にトルエンで希釈した熱可塑性樹脂溶液をスプレーコーティングすることにより行った。被覆樹脂量(対磁性粉)を表1に示す。実施例11では、熱可塑性樹脂に対して絶縁性微粒子としてSiO2 を40重量%添加した。比較例1は、熱可塑性樹脂を被覆しない場合である。
得られた複合磁性粉について、磁気特性(振動試料型磁力計により測定)、電気抵抗、見掛密度(JIS Z2504-1979に準ずる)、平均粒子径(レーザー回折式粒度分布により測定)の測定結果を表1に示す。尚、電気抵抗の測定には、N極およびS極を対向させ磁極間間隔8mmとした測定器を用いた(磁極:表面磁束密度1500G、対向磁極面積10×30mm)。この磁極間に非磁性の平行平板電極(電極面積10×40mm、電極間隔4mm)を配置し、該電極間に試料を200mg入れ、磁力により電極間に試料を保持した。絶縁抵抗測定器(TR-8601 、武田理研製)を用いて直流電圧100Vおよび1000Vを印加して測定した。
また、実施例1および11で得られた複合磁性粉の電子顕微鏡写真をそれぞれ図1および図2に示す。
[Examples 1 to 11 and Comparative Example 1]
A composite magnetic powder was produced by coating the magnetic powder described in Table 1 with the thermoplastic resin described in Table 1. The coating treatment was performed by spray coating a thermoplastic resin solution diluted with toluene on the surface of the magnetic powder. Table 1 shows the amount of coating resin (against magnetic powder). In Example 11, 40% by weight of SiO2 was added as insulating fine particles to the thermoplastic resin. Comparative Example 1 is a case where the thermoplastic resin is not coated.
Measurement results of magnetic properties (measured with a vibrating sample magnetometer), electrical resistance, apparent density (according to JIS Z2504-1979), average particle diameter (measured by laser diffraction particle size distribution) for the obtained composite magnetic powder Is shown in Table 1. For measuring the electrical resistance, a measuring instrument was used in which the N pole and the S pole were opposed to each other and the interval between the magnetic poles was 8 mm (magnetic pole: surface magnetic flux density 1500 G, counter magnetic pole area 10 × 30 mm). A non-magnetic parallel plate electrode (electrode area: 10 × 40 mm, electrode interval: 4 mm) was placed between the magnetic poles, 200 mg of sample was placed between the electrodes, and the sample was held between the electrodes by magnetic force. DC voltage 100V and 1000V were applied and measured using an insulation resistance measuring instrument (TR-8601, manufactured by Takeda Riken).
Moreover, the electron micrograph of the composite magnetic powder obtained in Examples 1 and 11 is shown in FIGS. 1 and 2, respectively.

[実施例12]
実施例11で得られた複合磁性粉を成型後、歪除去および機械的強度を上げるため、200℃で1時間、大気下で熱処理した。該熱処理後の磁性粉の電子顕微鏡写真を図3に示す。
[Example 12]
After the composite magnetic powder obtained in Example 11 was molded, it was heat-treated at 200 ° C. for 1 hour in the air in order to remove strain and increase mechanical strength. An electron micrograph of the magnetic powder after the heat treatment is shown in FIG.

表1および図1〜3から次のことがわかる。実施例1〜11と比較例1との対比から明らかなように、本発明の複合磁性粉は、磁性粉の組成および平均粒子径に依存せず、高い絶縁抵抗を有し、電気抵抗の100Vから1000Vまでの電圧依存性も一定である。これは、図1の電子顕微鏡写真から見られるように磁性粉表面に均一に樹脂が被覆されているからである。また、被覆樹脂量も多く必要とせず、磁気特性の大きな低下を防ぐことができる。   From Table 1 and FIGS. As is clear from the comparison between Examples 1 to 11 and Comparative Example 1, the composite magnetic powder of the present invention does not depend on the composition and average particle diameter of the magnetic powder, has a high insulation resistance, and has an electric resistance of 100 V. The voltage dependence from 1 to 1000V is also constant. This is because the resin is uniformly coated on the surface of the magnetic powder as seen from the electron micrograph of FIG. In addition, a large amount of coating resin is not required, and a large decrease in magnetic properties can be prevented.

また、実施例11から明らかなように、樹脂中に絶縁性微粒子を分散させても、図2の電子顕微鏡写真に示すように樹脂を磁性粉表面に均一に被覆することができる。また、図2と図3との対比から明らかなように、実施例11で得られた本発明の複合磁性粉を成型後に高温で熱処理しても、熱処理前の被覆状態と差異が見られない。   As is clear from Example 11, even when insulating fine particles are dispersed in the resin, the resin can be uniformly coated on the surface of the magnetic powder as shown in the electron micrograph of FIG. As is clear from the comparison between FIG. 2 and FIG. 3, even when the composite magnetic powder of the present invention obtained in Example 11 is heat-treated at a high temperature after molding, no difference from the coating state before the heat treatment is observed. .

実施例1で得られた複合磁性粉の被覆状態を示す電子顕微鏡写真(反射電子像、×200)である。2 is an electron micrograph (reflection electron image, × 200) showing a covering state of the composite magnetic powder obtained in Example 1. FIG. 実施例11で得られた複合磁性粉の被覆状態を示す電子顕微鏡写真(反射電子像、×200)である。It is an electron micrograph (reflected electron image, × 200) showing a covering state of the composite magnetic powder obtained in Example 11. 実施例11で得られた複合磁性粉を成型後、200℃で1時間、大気下で熱処理した複合の複合磁性粉の被覆状態を示す電子顕微鏡写真(反射電子像、×200)である。It is an electron micrograph (reflection electron image, * 200) which shows the coating state of the composite magnetic composite powder which heat-processed in air | atmosphere at 200 degreeC for 1 hour after shape | molding the composite magnetic powder obtained in Example 11. FIG.

Claims (3)

磁性粉表面を、平均粒子径が1.0〜1000nmの絶縁性微粒子が分散した熱可塑性樹脂で被覆した複合磁性粉であり、
直流電圧100V〜1000V印加時の電気抵抗値が1.0×1010Ω以上、見掛密度が1.0〜3.5g/cm3 、平均粒子径が10〜200μmである複合磁性粉。
The magnetic powder surface is a composite magnetic powder coated with a thermoplastic resin in which insulating fine particles having an average particle size of 1.0 to 1000 nm are dispersed ,
A composite magnetic powder having an electrical resistance value of 1.0 × 10 10 Ω or more when a DC voltage of 100 V to 1000 V is applied, an apparent density of 1.0 to 3.5 g / cm 3 , and an average particle size of 10 to 200 μm.
絶縁性微粒子の分散量が熱可塑性樹脂100重量部に対して20〜50重量部であり、当該絶縁性微粒子がSiO である請求項1記載の複合磁性粉。 20 to 50 parts by weight dispersion amount with respect to 100 parts by weight of the thermoplastic resin of the insulating fine particles, the composite magnetic particles of claim 1, wherein said insulating fine particles are SiO 2. ノイズ除去用インダクタに用いられる請求項1または2記載の複合磁性粉。   The composite magnetic powder according to claim 1 or 2, which is used for a noise removing inductor.
JP2007032375A 2007-02-13 2007-02-13 Composite magnetic powder Active JP5043462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007032375A JP5043462B2 (en) 2007-02-13 2007-02-13 Composite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007032375A JP5043462B2 (en) 2007-02-13 2007-02-13 Composite magnetic powder

Publications (2)

Publication Number Publication Date
JP2008198790A JP2008198790A (en) 2008-08-28
JP5043462B2 true JP5043462B2 (en) 2012-10-10

Family

ID=39757475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032375A Active JP5043462B2 (en) 2007-02-13 2007-02-13 Composite magnetic powder

Country Status (1)

Country Link
JP (1) JP5043462B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822146B2 (en) * 2013-03-29 2015-11-24 パウダーテック株式会社 Composite magnetic powder for noise suppression
CN111863371B (en) * 2019-04-24 2022-08-26 昆山磁通新材料科技有限公司 Mould pressing inductance with self-repairing function

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015912A (en) * 2000-06-30 2002-01-18 Tdk Corp Dust core powder and dust core
JP2002083732A (en) * 2000-09-08 2002-03-22 Murata Mfg Co Ltd Inductor and method of manufacturing the same
JP3902945B2 (en) * 2001-11-22 2007-04-11 キヤノン株式会社 Resin coated carrier, two-component developer and replenishment developer
JP4106966B2 (en) * 2002-05-24 2008-06-25 松下電器産業株式会社 Composite magnetic material and manufacturing method thereof
JP2005213619A (en) * 2004-01-30 2005-08-11 Sumitomo Electric Ind Ltd Soft magnetic material and method for manufacturing the same
JP3955854B2 (en) * 2004-02-27 2007-08-08 米沢電線株式会社 Inductance element manufacturing method
WO2005096324A1 (en) * 2004-03-31 2005-10-13 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core

Also Published As

Publication number Publication date
JP2008198790A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5358562B2 (en) Method for producing composite magnetic material and composite magnetic material
JP4654881B2 (en) Dust core manufactured using soft magnetic material
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
JP7310220B2 (en) Composite magnetic material and inductor using the same
JP6071211B2 (en) Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
CN110246651B (en) Soft magnetic metal powder, dust core, and magnetic component
US20110017501A1 (en) Composite material and manufacturing method thereof
JP6504288B1 (en) Soft magnetic metal powder, dust core and magnetic parts
US20210142933A1 (en) Soft magnetic composite materials and methods and powders for producing the same
JP5986010B2 (en) Powder magnetic core and magnetic core powder used therefor
WO2006112197A1 (en) Soft magnetic material and dust core
WO2008032707A1 (en) Powder magnetic core and iron-base powder for powder magnetic core
CN110246649B (en) Soft magnetic metal powder, dust core, and magnetic component
CN109754972A (en) A kind of high-frequency molding inductance soft magnetism powder and preparation method thereof
JP2010232225A (en) Insulator coating soft magnetic powder, dust core and magnetic element
JP7128439B2 (en) Dust core and inductor element
US9093205B2 (en) Superparamagnetic iron oxide and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
JP5043462B2 (en) Composite magnetic powder
JPH04346204A (en) Compound material and manufacture thereof
KR101503349B1 (en) Fe based soft magnetic powder, composite magnetic powder using the fe based soft magnetic powder, and pressed powder magnetic core using the composite magnetic powder
Shiroki et al. New type metal composite material for SMD power inductor
US7601229B2 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
KR20140128762A (en) soft magnetic core and manufacturing method of the same
JP7128438B2 (en) Dust core and inductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250