JP5042924B2 - Equipment housing - Google Patents

Equipment housing Download PDF

Info

Publication number
JP5042924B2
JP5042924B2 JP2008144288A JP2008144288A JP5042924B2 JP 5042924 B2 JP5042924 B2 JP 5042924B2 JP 2008144288 A JP2008144288 A JP 2008144288A JP 2008144288 A JP2008144288 A JP 2008144288A JP 5042924 B2 JP5042924 B2 JP 5042924B2
Authority
JP
Japan
Prior art keywords
heat
metal plate
film
housing
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008144288A
Other languages
Japanese (ja)
Other versions
JP2009286092A (en
Inventor
浩平 植田
智明 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008144288A priority Critical patent/JP5042924B2/en
Publication of JP2009286092A publication Critical patent/JP2009286092A/en
Application granted granted Critical
Publication of JP5042924B2 publication Critical patent/JP5042924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Casings For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an equipment box which has excellent heat-absorbing and heat-radiating performance and can lower its internal temperature efficiently. <P>SOLUTION: Among side surfaces constituting an equipment box having a heat-generating source in the box, both sides of the metal plate of at least one side surface have an IR emissivity of &ge;0.7, and irregularities of a surface area improvement rate of 10-100% are formed in the metal plate. The equipment box has excellent heat-absorbing and heat-radiating performance and can lower the internal temperature efficiently. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、内部に発熱源を有する機器の筐体に関する。   The present invention relates to a housing of a device having a heat source inside.

家電分野、機械分野、自動車分野等で内部に発熱源を有する機器の筐体に表面の放射率を高めた金属板を用いることで内部に発生した熱を効率的に筐体外部に放出する特許文献技術が特許文献1〜4に公開されている。当該技術は、特に家電分野の電子回路を発熱源とする機器や部品の筐体に使用されており、当該金属板を用いることで、塗膜で電子回路の発熱量を抑制することができるため、近年、広がりつつある。   Patent that efficiently releases heat generated inside by using a metal plate with increased surface emissivity for the housing of equipment that has a heat source in the home appliance field, machine field, automobile field, etc. Literature techniques are disclosed in Patent Literatures 1 to 4. The technology is used in the housing of equipment and parts that use electronic circuits in the household appliance field as a heat source, and the amount of heat generated in the electronic circuits can be suppressed with a coating film by using the metal plate. Recently, it is spreading.

特開2004−256871号公報Japanese Patent Application Laid-Open No. 2004-256871 特開2006−175804号公報JP 2006-175804 A 特開2004−74145号公報JP 2004-74145 A 特開2004−74412号公報JP 2004-74412 A

しかしながら、各種機器の機能向上、性能向上にともない、各種機器の発熱量が増加し、更なる熱対策に対する要望が高まってきている。例えば、家電分野においては、各種家電製品のデジタル化に伴い、家電製品に搭載する電子回路数が増大、または、搭載する電子回路の性能が向上し、集積回路から発生する発熱量が増加している。電子部品は熱に弱いため、発熱量が増加すると、例えば、電子回路の演算効率が低下するため、機器筐体内部の温度をより低下させたいとの要望が高まってきている。特に電子部品においては、1度の温度低下でも電子回路の作動効率が上がるため、温度を下げたいとの要望がある。   However, with improvements in functions and performance of various devices, the amount of heat generated by the various devices has increased, and there has been an increasing demand for further heat countermeasures. For example, in the field of home appliances, with the digitization of various home appliances, the number of electronic circuits mounted on home appliances has increased, or the performance of the mounted electronic circuits has improved, increasing the amount of heat generated from integrated circuits. Yes. Since electronic components are vulnerable to heat, an increase in the amount of heat generated, for example, reduces the calculation efficiency of the electronic circuit. Therefore, there is an increasing demand for lowering the temperature inside the device housing. In particular, in electronic components, there is a demand for lowering the temperature because the operating efficiency of the electronic circuit increases even if the temperature drops once.

そこで、本発明は、上記従来技術の現状に鑑み、熱吸収性と熱放射性に優れ、筐体内部の温度を効率よく低下させることが可能な機器筐体を提供する事を目的とする。   Therefore, in view of the above-described state of the art, the present invention has an object to provide a device housing that is excellent in heat absorption and heat radiation and that can efficiently reduce the temperature inside the housing.

本発明は、上記課題を解決するために完成されたものであって、本発明がその要旨とするところは、以下の通りである。   The present invention has been completed in order to solve the above problems, and the gist of the present invention is as follows.

(1) 内部に発熱源を有する筐体を構成する面のうち、少なくとも1面を成す金属板の両面の赤外線放射率が、各々0.7以上であり、且つ、該金属板に、下記式1で定義される表面積向上率が10%以上100%以下となる凹凸を設け、前記凹凸の凸部の山の勾配斜面と凸部を設けていない平面部とのなす角度を勾配角度θと定義した場合、θ≦45°であることを特徴とする、機器筐体。
) 前記筐体の少なくとも一面を構成する前記金属板の両面が、熱吸収性材と、バインダーとしての樹脂と、を含有する熱吸収性皮膜であることを特徴とする、前記(1)に記載の機器筐体。
) 前記筐体の少なくとも一面を構成する前記金属板が、38%以上の伸びを有する金属板に予め熱吸収性皮膜を被覆したものを成形加工して得られるものであることを特徴とする、(1)または)記載の機器筐体。
) 前記筐体の少なくとも一面を構成する前記金属板の少なくとも内面側が、熱伝導性を有する熱吸収性皮膜であることを特徴とする、前記(1)〜(のいずれかに記載の機器筐体。
) 前記熱伝導性を有する熱吸収性皮膜が、熱吸収性物質と、熱伝導性物質と、バインダーとしての樹脂と、を含有する皮膜であることを特徴とする、前記()に記載の機器筐体。
) 前記熱伝導性物質が、100℃での熱伝導率が80w/m・K以上である物質であり、且つ、乾燥皮膜中の前記熱伝導性物質の添加量が、10vol%以上であることを特徴とする、前記()に記載の機器筐体。
(7) 前記樹脂のガラス転移温度が10〜35℃であることを特徴とする、前記(2)〜(6)のいずれかに記載の機器筐体。
) 前記熱吸収性皮膜が下記a)〜d)の条件を満たすことを特徴とする、前記()または()に記載の機器筐体。
a)バインダー樹脂が、数平均分子量5000〜25000、ガラス転移温度10〜35℃であるポリエステル樹脂をアミノプラスト樹脂またはイソシアネートで架橋したものである。
b)熱吸収性物質が、カーボンブラックである。
c)熱伝導性物質が粒状であり、且つ、その平均粒径Dが、熱吸収性皮膜の膜厚tに対して0.8t≦D≦1.2tの範囲内である。
d)熱吸収性皮膜中にフッ素系ワックスが添加されている。
) 前記筐体の少なくとも一面を構成する熱吸収性皮膜を被覆した金属板が、プレコート金属板であることを特徴とする、前記(2)〜(8)のいずれかに記載の機器筐体。
(1) The infrared emissivity of both surfaces of a metal plate forming at least one of the surfaces constituting a housing having a heat source therein is 0.7 or more, and the metal plate has the following formula: The surface area improvement rate defined in 1 is 10% or more and 100% or less, and the angle formed by the slope of the ridges of the convex part of the concavo-convex part and the flat part without the convex part is defined as the slope angle θ. If so, θ ≦ 45 °, wherein the device housing.
(2) both surfaces of the metal plate constituting at least one surface of the housing, characterized in that the heat absorbing material is a heat absorbing coating containing a resin as a binder, wherein (1) equipment cabinet according to.
( 3 ) The metal plate constituting at least one surface of the housing is obtained by molding and processing a metal plate having an elongation of 38% or more previously coated with a heat absorbing film. The device housing according to (1) or ( 2 ).
( 4 ) At least one inner surface side of the metal plate constituting at least one surface of the housing is a heat-absorbing film having thermal conductivity, (1) to ( 3 ) , Equipment housing.
(5) the heat absorbing film having the heat conductivity, the heat absorbing material, a thermally conductive material, characterized in that the resin as a binder, a coating containing, in the (4) Equipment enclosure as described.
( 6 ) The thermally conductive substance is a substance having a thermal conductivity at 100 ° C. of 80 w / m · K or more, and the added amount of the thermally conductive substance in the dry film is 10 vol% or more. The device casing according to ( 5 ), wherein the device housing is provided.
(7) The apparatus housing according to any one of (2) to (6), wherein the resin has a glass transition temperature of 10 to 35 ° C.
( 8 ) The equipment casing according to ( 5 ) or ( 6 ), wherein the heat-absorbing film satisfies the following conditions a) to d).
a) The binder resin is a polyester resin having a number average molecular weight of 5000 to 25000 and a glass transition temperature of 10 to 35 ° C. crosslinked with an aminoplast resin or isocyanate.
b) The heat absorbing material is carbon black.
c) The heat conductive material is granular, and the average particle diameter D is in the range of 0.8 t ≦ D ≦ 1.2 t with respect to the film thickness t of the heat absorbing film.
d) A fluorine-based wax is added to the heat-absorbing film.
( 9 ) The device casing according to any one of (2) to (8) , wherein the metal plate coated with a heat-absorbing film constituting at least one surface of the casing is a pre-coated metal plate. body.

Figure 0005042924
・・・(式1)
Figure 0005042924
... (Formula 1)

本発明により、内部に発熱源を有する機器筐体の内部温度を低下させ、機器の発熱問題を低減することが可能となる。また、熱源が電気・電子回路である電気・電子機器、特にデジタル家電の筐体に本発明技術を用いると、電気機器筐体内部の温度が低減するため、電気・電子機器が効率的に作動し、電気・電子機器の作動効率化または省エネルギー化に寄与することができる。従って、本発明は産業上、極めて価値の高い発明であると言える。   According to the present invention, it is possible to reduce the internal temperature of a device housing having a heat source inside, thereby reducing the heat generation problem of the device. In addition, when the technology of the present invention is applied to the case of an electric / electronic device whose heat source is an electric / electronic circuit, especially a digital home appliance, the temperature inside the electric device case is reduced, so that the electric / electronic device operates efficiently. In addition, it is possible to contribute to the improvement of the operation efficiency or energy saving of the electric / electronic device. Therefore, it can be said that the present invention is an industrially extremely valuable invention.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本発明は内部に発熱源を有する機器の筐体に関するものであり、特に、例えば、家電用、機械用、自動車用の部品または本体を覆う筐体に関する。   The present invention relates to a housing of a device having a heat source therein, and more particularly, to a housing that covers, for example, a home appliance, machine, or automobile part or body.

本願発明者らは、上記問題を解決すべく鋭意検討したところ、以下に示すような知見に想到した。すなわち、発熱体を内部に有する機器の筐体に表裏面の赤外線放射率が高い金属板を適用し、且つ、その金属板の表面積を成形加工により高め、成形加工前の平滑な面と比較して10%以上の表面積向上率を得ることで、機器筐体内部の温度を1℃以上低下させることができることを見出した。   The inventors of the present invention have made extensive studies to solve the above problems, and have come up with the following knowledge. In other words, a metal plate with high infrared emissivity on the front and back surfaces is applied to the casing of a device having a heating element inside, and the surface area of the metal plate is increased by molding processing, compared with a smooth surface before molding processing. It has been found that by obtaining a surface area improvement rate of 10% or more, the temperature inside the device casing can be lowered by 1 ° C. or more.

更に、金属板表面に被覆されている放射率を高めるための熱吸収性皮膜の熱伝導率を高めることで、更に機器筐体内部の温度を低下させることができることを見出した。   Furthermore, it discovered that the temperature inside an apparatus housing | casing could be lowered | hung further by raising the heat conductivity of the heat absorption film | membrane for raising the emissivity coat | covered on the metal plate surface.

ここで、金属板の表面積を高めるためには、表層に多数の凹凸を成形加工によって設けなければならず、公知となっている表面の赤外線放射率が高い金属板に多数の凹凸を設けようとすると、金属板が破断してしまったり、成形時にプレス金型と金属板表面が擦れて表面に被覆された赤外線放射率を高めるための表面処理皮膜が剥離したりするなどの問題があった。   Here, in order to increase the surface area of the metal plate, it is necessary to provide a large number of irregularities on the surface layer by molding, and to provide a large number of irregularities on a known metal plate having a high infrared emissivity on the surface. As a result, the metal plate may be broken, or the surface of the press mold and the surface of the metal plate may be rubbed at the time of molding to peel off the surface treatment film for increasing the infrared emissivity.

そこで、本願発明者らは更に検討を重ね、伸び率の高い金属板に、比較的分子量が高く且つ常温付近のガラス転移温度を持つ樹脂に、熱吸収性顔料と、特定の熱伝導性物質と、特定のワックスと、を添加した皮膜を被覆することで、成形加工によって皮膜が剥離することなく赤外線放射率の高い金属板に多数の凹凸を設けることができることを見出した。   Therefore, the inventors of the present application have further studied, a metal plate having a high elongation rate, a resin having a relatively high molecular weight and a glass transition temperature near room temperature, a heat absorbing pigment, a specific heat conductive substance, It has been found that by coating a film to which a specific wax is added, a large number of irregularities can be formed on a metal plate having a high infrared emissivity without peeling off the film by molding.

更に、本願発明者らは、熱吸収性皮膜の熱伝導率を高めると、筐体内面で吸収した熱をより効率よく筐体外面に伝えて筐体外部に放出することが可能となるため、筐体の熱吸収効率が高まり、筐体内部の温度がより低くなることを見出した。   Furthermore, the inventors of the present application, when increasing the thermal conductivity of the heat-absorbing film, can more efficiently transmit the heat absorbed by the inner surface of the housing to the outer surface of the housing and release it to the outside of the housing. It has been found that the heat absorption efficiency of the casing is increased and the temperature inside the casing is lowered.

以下に、上記知見を基に完成された本願発明について、詳細に説明する。   Hereinafter, the present invention completed based on the above findings will be described in detail.

本発明は、内部に発熱源を有する筐体(例えば、立方体形状またはこれに準ずる形状等の多面体形状)の少なくとも一面が表面に赤外線放射性を有する金属板であり、且つ、該金属板の外面と内面の両面の赤外線放射率がそれぞれ0.7以上であり、且つ、該金属板に凹凸を設け、その凹凸が下記式1に定義した表面積向上率が10%以上100%以下となることによって達成される。この表面積向上率は、より好ましくは10%以上60%以下である。   According to the present invention, at least one surface of a housing having a heat source inside (for example, a polyhedral shape such as a cubic shape or a similar shape) is a metal plate having infrared radiation on the surface, and the outer surface of the metal plate Achieved by the infrared emissivity of both surfaces of the inner surface being 0.7 or more respectively, and providing unevenness on the metal plate, the surface area improvement rate defined by the following formula 1 being 10% or more and 100% or less Is done. The surface area improvement rate is more preferably 10% or more and 60% or less.

ここで、凹凸形状は特に限定するものではないが、例えば図1に示したような形状が例示できる。表面積向上率が10%未満であると、筐体内部の温度が低下しないため、好ましくない。また、面積向上率は10%以上であれば、高いほど良いが、折り曲げ加工で断面が三角形状に加工した場合に、凹凸の凸部の山の斜面と凸部を設けていない平面部とのなす角度である勾配角度θを60°とした場合が経験的な加工限界であり、これよりθが大きいと、加工が困難になる。   Here, the uneven shape is not particularly limited, but for example, the shape as shown in FIG. 1 can be exemplified. If the surface area improvement rate is less than 10%, the temperature inside the housing does not decrease, which is not preferable. In addition, if the area improvement rate is 10% or higher, the higher the better, but when the cross section is processed into a triangular shape by bending, the convexity of the convex and concave ridges and the flat part not provided with the convex part The case where the gradient angle θ, which is the angle formed, is 60 ° is an empirical processing limit. If θ is larger than this, processing becomes difficult.

ここで、この様に曲げ加工にて加工した三角断面の波型形状の山の高さを6mmとして表面積向上率を計算すると、表面積向上率は95%程度であるため、この値を面積向上率の限界値とすることができる。更に、凹凸形状を曲げ加工ではなく、張り出し成形又は絞り成形で加工した場合、世の中にある金属板の単軸引張試験による伸び率は60%程度が限界であり、この様に伸びの高い金属板を用いて凹凸加工を施しても面積向上率は60%が限界であると考えられるため、上限は60%であるとより好ましい。また、面積向上率を60%超100%以下とするためには、後述する凹凸の凸部の山の斜面と凸部を設けていない平面部との角度で定義される勾配角度θが45°超となる恐れがあり、熱吸収効率が低下する恐れがある。   Here, when the surface area improvement rate is calculated with the height of the corrugated peak of the triangular cross section processed by bending as described above being 6 mm, the surface area improvement rate is about 95%. Can be set as the limit value. Furthermore, when the concavo-convex shape is processed by stretch forming or draw forming instead of bending, the extent of elongation by a uniaxial tensile test of a metal plate in the world is limited to about 60%. Even if the unevenness processing is performed using, the area improvement rate is considered to be 60% as a limit, so the upper limit is more preferably 60%. Further, in order to make the area improvement rate more than 60% and 100% or less, the gradient angle θ defined by the angle between the slopes of the ridges of the concavo-convex convex portions described later and the flat portions not provided with the convex portions is 45 °. The heat absorption efficiency may be reduced.

Figure 0005042924
・・・(式1)
Figure 0005042924
... (Formula 1)

更に、前記凹凸の凸部の山の斜面と凸部を設けていない平面部との角度を勾配角度θと定義した場合、θ≦45°とすることで熱放射性により優れるものとなる。凸部の山の勾配斜面と凸部を設けていない平面部との角度(勾配角度)θは、例えば図2に示す角度θを表す。θ>45°となる構造であると、例えば図3に示すように、凸部の山の裾野付近から放射した熱が、隣接する凸部と干渉して、隣接する凸部表面で吸収される恐れがある。 Further, when the angle between the flat portion not provided with the inclined surface and the convex portion of the mountain of the projecting portion of the uneven defined as the slope angle theta, becomes excellent by thermal radiation property by a θ ≦ 45 °. The angle (gradient angle) θ between the slope of the convex mountain and the flat surface not provided with the convex portion represents, for example, the angle θ shown in FIG. If the structure is θ> 45 °, for example, as shown in FIG. 3, heat radiated from the vicinity of the ridge of the convex portion interferes with the adjacent convex portion and is absorbed by the adjacent convex portion surface. There is a fear.

本発明の赤外線放射率が0.7未満であると、熱吸収性機能が低下し、筐体内部の温度が低下しないため、好ましくない。ここで、本発明における赤外線放射率とは、80℃以上のいずれかの温度で測定した波数600〜3000cm−1の領域における全放射率である。波数600cm−1未満、または、3000cm−1超の波数領域の放射線は、熱に与える影響が非常に小さいため、これらの波数領域の放射線を含めた放射率は好ましくない。 When the infrared emissivity of the present invention is less than 0.7, the heat absorption function is lowered and the temperature inside the housing is not lowered, which is not preferable. Here, the infrared emissivity in the present invention is the total emissivity in the region of wave number 600 to 3000 cm −1 measured at any temperature of 80 ° C. or higher. Since radiation in the wave number region of less than 600 cm −1 or more than 3000 cm −1 has a very small effect on heat, the emissivity including radiation in these wave number regions is not preferable.

本発明の金属板表面の赤外線放射率を0.7以上にするためには、バインダー樹脂と熱吸収性物質とを含有する熱吸収性皮膜で金属板を被覆することで達することができる。本発明に用いる熱吸収性材は、一般に公知の赤外線吸収性の高い材料、例えば、カーボン、グラファイトなどを用いることができる。特にカーボンブラックはバインダー樹脂などと混合しやすく、より好適である。なお、赤外線放射率の上限値は特に定めないが、理論的に1.0が上限値であり、これが実質的な上限値となる。   In order to make the infrared emissivity of the metal plate surface of the present invention 0.7 or more, it can be achieved by coating the metal plate with a heat-absorbing film containing a binder resin and a heat-absorbing substance. As the heat-absorbing material used in the present invention, generally known materials having high infrared absorbing properties such as carbon and graphite can be used. In particular, carbon black is more suitable because it can be easily mixed with a binder resin or the like. The upper limit value of the infrared emissivity is not particularly defined, but 1.0 is theoretically the upper limit value, which is a practical upper limit value.

また、熱吸収性物質の添加量は、熱吸収材の種類によっても異なるため、必要に応じて適宜選定することができる。   Moreover, since the addition amount of a heat | fever absorptive substance changes also with the kind of heat | fever absorption material, it can select suitably as needed.

本発明の金属板に凹凸を設ける方法は、一般に公知の加工方法、例えば、折り曲げ加工、張り出し加工、絞り加工などにて加工することができる。プレス機を用いて加工するプレス加工や金属ロールで成形するロールフォーミング加工などで行うと、効率よく加工でき、より好ましい。凹凸の形状は特に規定するものではないが、図1に例示したような断面形状の凹凸を多数設けることで得ることができる。   The method for providing irregularities on the metal plate of the present invention can be processed by generally known processing methods such as bending, overhanging and drawing. It is more preferable to perform it by press working using a press machine or roll forming forming using a metal roll, which is more efficient. The shape of the unevenness is not particularly specified, but it can be obtained by providing a large number of unevennesses in the cross-sectional shape illustrated in FIG.

各形状のサイズ、凹凸の個数は特に規定するものではなく、金属板の表面積向上率が10%以上となる形状であれば、任意に選ぶ事ができる。鋼材や筐体としての取り扱いの観点からは、凹凸の高さは例えば20mm以下が好ましい。表面積の向上率や凹凸の数や加工形状の観点からは、凹凸の高さは例えば1mm以上が好ましい。図1の断面形状は例示であり、金属板の表面積向上率が10%以上となる形状であれば、例示した以外の形状でも良い。更に、予め熱吸収性皮膜を被覆した金属板、いわゆるプレコート鋼板を前記方法で凹凸を設けたものであると、生産工程が簡便で、より好ましい。   The size of each shape and the number of irregularities are not particularly defined, and any shape can be selected as long as the surface area improvement rate of the metal plate is 10% or more. From the viewpoint of handling as a steel material or a housing, the height of the unevenness is preferably 20 mm or less, for example. From the viewpoint of the surface area improvement rate, the number of irregularities, and the processed shape, the height of the irregularities is preferably 1 mm or more, for example. The cross-sectional shape in FIG. 1 is an exemplification, and a shape other than that illustrated may be used as long as the surface area improvement rate of the metal plate is 10% or more. Further, it is more preferable that the metal plate previously coated with a heat-absorbing film, that is, a so-called pre-coated steel plate, is provided with irregularities by the above-described method because the production process is simple.

本発明の金属板筐体の少なくとも内面側の熱吸収性皮膜に、熱伝導率の高い材料(以降熱伝導性物質と称する。)が含まれていると、皮膜最表層で吸収した熱を熱伝導性の高い材料を介して皮膜下の金属板表層までより効率的に伝えやすくなるため、好ましい。更に、熱伝導性物質が導電性を有していると、電気・電子機器から発生する電気や電磁波漏洩を防ぐためのアースや電磁波シールド特性が付与でき、より好ましい。本発明に用いる熱伝導性物質は、例えば、100℃で80w/m・K以上の高い熱伝導率を有しているものであり、且つ、その添加量が皮膜全体の体積濃度で10vol%以上であると、皮膜に熱伝導性が付与されて効率良く筐体内部の熱を筐体外部に放出するため、好ましい。   If the heat-absorbing film on at least the inner surface side of the metal plate casing of the present invention contains a material with high thermal conductivity (hereinafter referred to as a heat-conductive substance), the heat absorbed by the outermost layer of the film is heated. This is preferable because it can be more efficiently transmitted to the surface of the metal plate under the film through a highly conductive material. Furthermore, it is more preferable that the heat conductive material has conductivity because it can provide earth and electromagnetic wave shielding characteristics for preventing electricity and electromagnetic wave leakage generated from electric / electronic devices. The heat conductive substance used in the present invention has, for example, a high heat conductivity of 80 w / m · K or more at 100 ° C., and the amount added is 10 vol% or more in the volume concentration of the entire film. If it is, since heat conductivity will be provided to a membrane | film | coat and the heat | fever inside a housing | casing will be discharge | released outside a housing | casing efficiently, it is preferable.

更に、本発明に用いる熱伝導性物質は、100℃で200w/m・K以上の高い熱伝導率を有しているものであり、且つ、その添加量が皮膜全体の体積濃度で10vol%以上であるものであってもよい。このような熱伝導性物質を用いることで、皮膜に熱伝導性が付与され、効率良く筐体内部の熱を筐体外部に、より効率よく熱を放出することが可能となる。   Furthermore, the thermally conductive substance used in the present invention has a high thermal conductivity of 200 w / m · K or more at 100 ° C., and the amount added is 10 vol% or more in terms of the volume concentration of the entire film. It may be what is. By using such a heat conductive substance, heat conductivity is imparted to the film, and heat inside the housing can be efficiently released to the outside of the housing.

本発明に用いる熱伝導率の高い材料は、一般に公知の熱伝導材料を用いることができ、例えば、Ni、Al、銅などの金属微粒子やグラファイトなどを用いることできる。より詳細には、100℃で80W/m・K以上の熱伝導率を有するものとしては、例えば、マグネシウム、ニッケルなどを用いる事ができ、100℃で200W/m・K以上の熱伝導性物質としては、例えば、アルミニウム、銅、窒化アルミニウム、銀、金などを用いる事ができる。熱伝導率の上限値は特に定めないが、既知の熱伝導物質のなかで最も高い熱伝導率を有するグラファイトシートの熱伝導率が700〜1600W/m・K(例えば、松下電器産業社製の「GPSグラファイトシート」など)であることから、実質的な上限値は、例えば1600W/m・Kとなる。   As the material having high thermal conductivity used in the present invention, generally known thermal conductive materials can be used, and for example, metal fine particles such as Ni, Al, copper, graphite, and the like can be used. More specifically, as a material having a thermal conductivity of 80 W / m · K or more at 100 ° C., for example, magnesium or nickel can be used, and a thermal conductive material of 200 W / m · K or more at 100 ° C. For example, aluminum, copper, aluminum nitride, silver, gold, or the like can be used. Although the upper limit of the thermal conductivity is not particularly defined, the thermal conductivity of the graphite sheet having the highest thermal conductivity among known thermal conductive materials is 700 to 1600 W / m · K (for example, manufactured by Matsushita Electric Industrial Co., Ltd.). Therefore, the substantial upper limit value is 1600 W / m · K, for example.

また、前記熱伝導性の高い熱伝導性物質は、粒子であり、且つ、その粒子の平均粒径Dが0.8t≦D≦1.2tであると、皮膜最表層で吸収した熱を熱伝導性の高い材料を介して皮膜下の金属板表層までより効率的に伝えやすくなるため、好ましい。ここで、上記式中のtは、熱吸収性皮膜の膜厚である。   Further, the heat conductive material having high heat conductivity is particles, and when the average particle diameter D of the particles is 0.8 t ≦ D ≦ 1.2 t, heat absorbed by the outermost layer of the film is heated. This is preferable because it can be more efficiently transmitted to the surface of the metal plate under the film through a highly conductive material. Here, t in the above formula is the film thickness of the heat-absorbing film.

本発明に用いる樹脂は、例えば、ガラス転移温度が10〜35℃であることが好ましい。ガラス転移温度が10℃未満の場合、加工時の皮膜傷入りや、加工のプレス金型によって皮膜が削り取られる現象(一般に皮膜カジリと呼ばれる。)が起こる恐れがある。また、ガラス転移温度が35℃超の場合は、皮膜が脆くなり、これを加工して凹凸を設けて表面積を10%以上広くする際に、皮膜が破壊され亀裂や剥離が生ずる恐れがある。   For example, the resin used in the present invention preferably has a glass transition temperature of 10 to 35 ° C. When the glass transition temperature is less than 10 ° C., there is a possibility that a film is damaged during processing or a phenomenon (generally referred to as film galling) that the film is scraped off by a processing press die. When the glass transition temperature is higher than 35 ° C., the film becomes brittle, and when this is processed to provide irregularities to increase the surface area by 10% or more, the film may be broken and cracks or peeling may occur.

本発明に用いる熱吸収性皮膜に用いるバインダー樹脂は、一般に公知のコーティング用バインダー樹脂、例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などを用いることができる。架橋材を用いた熱硬化型バインダー樹脂であるとより効果的である。特に、数平均分子量5000〜25000、ガラス転移温度10〜35℃であるポリエステル樹脂をアミノプラスト樹脂またはイソシアネートで架橋したものであると、カーボンブラックなどの熱吸収性材を添加し、且つ、熱伝導性を有する熱伝導性物質を10vol%以上添加したときに、皮膜が脆くならず、皮膜の加工性にも優れるため、より効果的である。   As the binder resin used in the heat-absorbing film used in the present invention, generally known binder resin for coating, for example, polyester resin, urethane resin, acrylic resin, epoxy resin and the like can be used. A thermosetting binder resin using a cross-linking material is more effective. In particular, when a polyester resin having a number average molecular weight of 5000 to 25000 and a glass transition temperature of 10 to 35 ° C. is crosslinked with an aminoplast resin or an isocyanate, a heat absorbing material such as carbon black is added, and heat conduction When 10 vol% or more of the heat conductive material having the property is added, the film does not become brittle and is excellent in workability of the film, which is more effective.

樹脂の数平均分子量が5000未満の場合、または、ガラス転移温度が35℃超の場合は、皮膜が脆くなり、これを加工して凹凸を設けて表面積を10%以上広くする際に皮膜が破壊され、亀裂や剥離が生ずる恐れがある。また、樹脂の数平均分子量が25000超の場合、または、ガラス転移温度が10℃未満の場合は、これを加工して凹凸を設けて表面積を10%以上広くする際に、皮膜に傷が入ったり、加工のプレス金型によって皮膜が削り取られたりする現象(一般に皮膜カジリと呼ばれる。)が起こる恐れがある。   When the number average molecular weight of the resin is less than 5000 or when the glass transition temperature is higher than 35 ° C., the film becomes brittle, and the film breaks when it is processed to provide irregularities to increase the surface area by 10% or more. There is a risk of cracking and peeling. Also, if the number average molecular weight of the resin is more than 25000, or if the glass transition temperature is less than 10 ° C, the film will be scratched when it is processed to provide irregularities and increase the surface area by 10% or more. Or a phenomenon that the film is scraped off by a working press die (generally called film galling) may occur.

本発明の熱吸収性皮膜中にフッ素系ワックスが添加されていると、熱吸収性皮膜を予め塗装した金属板を成形加工して凹凸を設けて表面積を10%以上広くする際に、加工のプレス金型による皮膜カジリが起こりにくく、より好ましい。   When a fluorine-based wax is added to the heat-absorbing film of the present invention, a metal plate that has been pre-coated with the heat-absorbing film is molded to provide irregularities to increase the surface area by 10% or more. It is more preferable because galling of the film due to the press mold hardly occurs.

皮膜中にワックスを添加して、皮膜カジリを抑制する技術は、一般的に知られているが、通常のワックス、例えばカルナバワックスやポリエチレンワックスは、これらを添加した皮膜を焼き付けて効果させる際に、熱溶融して皮膜の表層に濃化したり、熱伝導性の高い熱伝導性物質の周りに吸着したりして熱伝導性や導電性の機能発揮を阻害することが課題であった。本願発明者らは鋭意検討し、熱伝導性の高い熱伝導性物質とフッ素系ワックスとを併用して用いることで、高い熱伝導性と高い導電性とを担保して、高い摺動性を得ることができることを見出した。フッ素系ワックスは、皮膜を焼付け硬化する時の熱で溶融しにくく、樹脂自身の比重も高いため、塗膜表層に濃化したり、熱伝導性の高い熱伝導性物質表面に吸着しにくいためである。   Techniques for suppressing galling of the film by adding wax in the film are generally known, but ordinary waxes such as carnauba wax and polyethylene wax are effective when baking these added films. It has been a problem to inhibit the thermal conductivity and the function of conductivity by heat melting and concentrating on the surface layer of the film, or adsorbing around the heat conductive material having high thermal conductivity. The inventors of the present application intensively studied and used both a heat conductive material having high heat conductivity and a fluorine-based wax in combination to ensure high heat conductivity and high conductivity, and high slidability. Found that can be obtained. Fluorine-based wax is difficult to melt by heat when baking and curing the film, and the resin itself has a high specific gravity, so it is difficult to concentrate on the surface of the coating film or to adsorb on the surface of the heat conductive material with high heat conductivity. is there.

本願発明で用いる金属板は、一般に公知の38%以上の伸びを有する金属板、例えば、アルミ板、銅板、鋼板などを使用することができる。めっきされた金属板を用いても良い。本発明の金属板の伸びが38%未満であると、成形加工して凹凸を設ける際に、板破断が発生するため好ましくない。特に、本願発明の鋼板の使用を想定している筐体は、熱放射性に加え電磁波シールド性を要求される場合が殆どである。従って、他部材との接合部については、平坦であることが望ましく、例えば用いる鋼板が長方形の場合、接合部となる4辺がフラットで、接合に関係のない内部のみに凹凸を形成することとなり、鋼板には、より厳しい加工特性が要求されることとなる。この成形加工に関して、より好ましくは、ランクフォード値r≧1.5である事が好ましい。r値が1.5未満であると、厳しい絞り加工や張出し加工によって凹凸を設ける際に、母材である金属板が破断する恐れがある。   As the metal plate used in the present invention, generally known metal plates having an elongation of 38% or more, for example, aluminum plates, copper plates, steel plates and the like can be used. A plated metal plate may be used. When the elongation of the metal plate of the present invention is less than 38%, the plate breaks when forming and forming irregularities, which is not preferable. In particular, most of cases that are assumed to use the steel sheet of the present invention are required to have electromagnetic shielding properties in addition to thermal radiation. Accordingly, it is desirable that the joint portion with other members be flat. For example, when the steel plate to be used is rectangular, the four sides serving as the joint portion are flat, and irregularities are formed only in the interior not related to the joint. More severe processing characteristics are required for the steel sheet. With respect to this forming process, it is more preferable that the Rankford value r ≧ 1.5. When the r value is less than 1.5, the metal plate as the base material may be broken when unevenness is provided by severe drawing or overhanging.

伸びが38%以上の金属板としては、JIS.G3141に記載されている冷間圧延鋼板(以降、冷延鋼板)SPCDの板厚0.6mm以上のものやSPCEの板厚0.4mm以上のもの、JIS.G3302に記載されている溶融亜鉛めっき鋼板SGCD2の板厚0.6mm以上のもの、SGCD3の板厚0.4mm以上のもの、SGCD3、JIS.G3313に記載されている電機亜鉛めっき鋼板SECDの板厚0.6mm以上のものやSECEの板厚0.4mm以上のものなどを使用する事ができる。金属板は、熱伝導率の高いものであれば、金属板筐体内側の面で吸収した熱をより効率良く金属板筐体の外側へ伝達し、放熱することができるため、より好ましい。金属板の熱伝導率は、例えば、200W/m・K以上であるとより好適である。   As a metal plate having an elongation of 38% or more, JIS. Cold rolled steel sheet (hereinafter referred to as cold rolled steel sheet) SPCD having a thickness of 0.6 mm or more, SPCE having a thickness of 0.4 mm or more, and JIS. GHP3 hot-dip galvanized steel sheet SGCD2 having a thickness of 0.6 mm or more, SGCD3 having a thickness of 0.4 mm or more, SGCD3, JIS. An electrogalvanized steel sheet SECD having a thickness of 0.6 mm or more described in G3313 or a SECE sheet thickness of 0.4 mm or more can be used. It is more preferable that the metal plate has a high thermal conductivity because the heat absorbed by the inner surface of the metal plate casing can be transmitted to the outside of the metal plate casing and radiated more efficiently. The thermal conductivity of the metal plate is more preferably, for example, 200 W / m · K or more.

めっきされた金属板の場合、めっきの種類は特に限定するものではないが、例えば、電気めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、亜鉛−アルミ合金めっき鋼板、合金化亜鉛めっき鋼板、亜鉛―ニッケル合金めっき鋼板、アルミめっき鋼板を用いることができる。特に導電性の視点では、めっき層に不純物が少なく製造工程でめっき層が酸化し難い電気亜鉛めっき鋼板を用いると、より好ましい。しかし、熱伝導性という視点から考えると、めっき層は、熱伝導率の高いものであれば、金属板筐体内側の面で吸収した熱をより効率良く金属板筐体の外側へ伝達し、放熱することができるため、より好ましい。めっき層の熱伝導率は、例えば、200W/m・K以上であると、より好ましい。また、200W/m・K以上の熱伝導率を有するめっき層を施しためっきされた金属板の場合、めっき層の厚みは片面あたり50μm以上であると、熱伝導性の効果がより発揮されるため、より好ましい。   In the case of a plated metal plate, the type of plating is not particularly limited. Zinc-nickel alloy plated steel sheets and aluminum plated steel sheets can be used. In particular, from the viewpoint of conductivity, it is more preferable to use an electrogalvanized steel sheet that has few impurities in the plating layer and is difficult to oxidize in the manufacturing process. However, from the viewpoint of thermal conductivity, if the plating layer has a high thermal conductivity, the heat absorbed by the inner surface of the metal plate casing is more efficiently transferred to the outside of the metal plate casing, It is more preferable because it can dissipate heat. The thermal conductivity of the plating layer is more preferably, for example, 200 W / m · K or more. In the case of a plated metal plate provided with a plating layer having a thermal conductivity of 200 W / m · K or more, if the thickness of the plating layer is 50 μm or more per side, the effect of thermal conductivity is more exhibited. Therefore, it is more preferable.

金属板表面には、熱吸収性皮膜との密着性を高めるために化成処理を施しても良い。化成処理は、一般に公知のもの、例えば、クロメート処理、シランカップリング剤系の処理、樹脂系の処理、シリカ系の処理を使用することができる。これらの処理を組み合わせた、または、混合した複合処理を用いても良い。市販の化成処理を施しても良く、例えば、日本パーカライジング社製のクロメート処理「ZM−1300AN」、日本パーカライジング社製のクロメートフリー化成処理「CT−E300N」、日本ペイント社製の3価クロム系化成処理「サーフコート(登録商標) NRC1000」等を使用することもできる。ただし、環境負荷物質低減の観点から、6価クロムを含まない化成処理を用いるとより好適である。   The surface of the metal plate may be subjected to chemical conversion treatment in order to improve the adhesion with the heat absorbing film. As the chemical conversion treatment, generally known treatments such as chromate treatment, silane coupling agent-based treatment, resin-based treatment, and silica-based treatment can be used. A composite process in which these processes are combined or mixed may be used. For example, a chromate treatment “ZM-1300AN” manufactured by Nihon Parkerizing Co., a chromate-free chemical conversion treatment “CT-E300N” manufactured by Nihon Parkerizing Co., Ltd. The treatment “Surfcoat (registered trademark) NRC1000” or the like can also be used. However, it is more preferable to use a chemical conversion treatment that does not contain hexavalent chromium from the viewpoint of reducing environmentally hazardous substances.

[実施例−1]
以下、実施例−1の実験について詳細を説明する。
まず、実施例−1の実験に用いたトップ塗料について詳細を説明する。
東洋紡社製の非晶性ポリエステル樹脂である「バイロン(登録商標)GK140」(Tg:20℃、数平均分子量:13000、以降、ポリエステルと称す)に、架橋剤と触媒を添加してクリヤー塗料を作製した。ポリエステル樹脂は、ペレット状態の樹脂を溶剤に溶解して用いた。溶剤は、シクロヘキサノンとソルベッソ150を質量比で[シクロヘキサンノン]:[ソルベッソ150]=1:1で種混合したものを用いた。架橋剤は、アミノプラスト樹脂である三井サイテック社製の完全アルキル型メチル化メラミン樹脂「サイメル(登録商標)303」を用い、ポリエステル樹脂固形分100質量部に対して、アミノプラスト樹脂固形分が20質量部となる様に添加した。触媒は、三井サイテック社製の揮発性塩基性物質で中和したタイプである「キャタリスト602」を用い、ポリエステル樹脂とアミノプラスト樹脂の合計固形分を100質量部に対して、0.5質量部添加した。
[Example-1]
Hereinafter, the details of the experiment of Example-1 will be described.
First, the details of the top paint used in the experiment of Example-1 will be described.
Toyobo's amorphous polyester resin “Byron (registered trademark) GK140” (Tg: 20 ° C., number average molecular weight: 13000, hereinafter referred to as polyester) is added with a crosslinking agent and a catalyst to form a clear coating. Produced. The polyester resin was used by dissolving a pellet resin in a solvent. The solvent used was a mixture of cyclohexanone and Solvesso 150 in a mass ratio of [cyclohexanenon]: [Solvesso 150] = 1: 1. As the cross-linking agent, a fully alkyl methylated melamine resin “Cymel (registered trademark) 303” manufactured by Mitsui Cytec Co., Ltd., which is an aminoplast resin, was used, and the aminoplast resin solid content was 20 with respect to 100 parts by mass of the polyester resin solid content. It added so that it might become a mass part. The catalyst used is “Catalyst 602” which is a type neutralized with a volatile basic substance manufactured by Mitsui Cytec Co., Ltd., and the total solid content of the polyester resin and aminoplast resin is 0.5 mass relative to 100 mass parts. Part was added.

次に、作製したクリヤー塗料に、熱吸収材として東海カーボン社製のカーボンブラック「トーカブラック(登録商標)#7350/F」を、熱伝導性物質して熱伝導率が81W/m・Kで平均粒径が2.6〜3.3μmであるNi粒(INCO社製「ニッケルパウダー287」)及び熱伝導率が398W/m・Kである銅粉を平均粒径が3.0μmとなるように粉砕、分級したものを添加した。熱吸収材の添加量は、ポリエステル樹脂の固形分100質量部に対して、15質量部添加した。熱伝導性物質については、ポリエステル100質量部に対して30質量部添加したもの、89質量部添加したもの、134質量部添加したもの、178質量部添加した塗液をそれぞれ作成した。熱伝導性物質を添加しない塗液も作成した。   Next, carbon black “Toka Black (registered trademark) # 7350 / F” manufactured by Tokai Carbon Co., Ltd. as a heat absorbing material is used as the heat absorbing material, and the thermal conductivity is 81 W / m · K. An average particle diameter of 2.6 μ-3.3 μm Ni particles (“Nickel Powder 287” manufactured by INCO) and copper powder having a thermal conductivity of 398 W / m · K are set to have an average particle diameter of 3.0 μm. The crushed and classified material was added. The amount of the heat absorbing material added was 15 parts by mass with respect to 100 parts by mass of the solid content of the polyester resin. About the heat conductive substance, what added 30 mass parts with respect to 100 mass parts of polyester, what added 89 mass parts, what added 134 mass parts, and the coating liquid which added 178 mass parts were created, respectively. A coating solution to which no thermally conductive material was added was also prepared.

なお、ポリエステル樹脂の比重を1.25(カタログ値)、アミノプラスト樹脂の比重を1.2(カタログ値)、カーボンブラックの比重を1.85(文献値)、Ni粒の比重を8.9(文献値)として体積濃度を計算すると、ポリエステル100質量部に対して30質量部添加した熱伝導性物質(銅粉、Ni粒)の体積濃度は3.1vol%、89質量部添加した導電材の体積濃度は8.4vol%、134質量部添加したものは12.5vol%、178質量部添加したもの16vol%となる。   The specific gravity of the polyester resin is 1.25 (catalog value), the specific gravity of the aminoplast resin is 1.2 (catalog value), the specific gravity of carbon black is 1.85 (document value), and the specific gravity of Ni particles is 8.9. When the volume concentration is calculated as (document value), the volume concentration of the heat conductive material (copper powder, Ni particles) added to 30 parts by mass with respect to 100 parts by mass of the polyester is 3.1 vol%, and the conductive material added with 89 parts by mass. The volume concentration of 8.4 vol%, 134 parts by mass added is 12.5 vol%, and 178 parts by mass added 16 vol%.

更に、作成した塗液にはフッ素系ワックスとして、ダイキン工業社性のPTFE系ワックス「ルブロン(登録商標)L−5」を、ポリエステル樹脂固形分に対して2質量部添加した。   Furthermore, 2 mass parts of Daikin Industries, Ltd. PTFE type | system | group wax "Lublon (trademark) L-5" was added to the created coating liquid with respect to polyester resin solid content.

以下、実施例−1の実験に用いた金属板について詳細を説明する。   Hereinafter, the metal plate used for the experiment of Example-1 will be described in detail.

板厚0.6mmの電気亜鉛めっき鋼板(SECE、伸び42%、r値1.8、亜鉛付着量片面あたり20g/m)を原板として準備した。なお、以降、電気亜鉛めっき鋼板をEGと称する。 An electrogalvanized steel sheet having a thickness of 0.6 mm (SECE, elongation 42%, r value 1.8, zinc adhesion amount on one side of 20 g / m 2 ) was prepared as an original sheet. Hereinafter, the electrogalvanized steel sheet is referred to as EG.

次に、準備した原板を、日本パーカライジング社製のアルカリ脱脂液「FC−4336」の3質量%濃度、50℃水溶液にてスプレー脱脂し、水洗後、乾燥した後に、日本パーカライジング社製のクロメートフリー化成処理である「CT−E300N」をロールコーターにて塗布し、熱風オーブンにて乾燥させた。熱風オーブンでの乾燥条件は、金属板の到達板温で60℃とした。クロメートフリー処理の付着量は、全固形分で200mg/m付着するように塗装した。 Next, the prepared original plate is spray-degreased with a 3% by weight, 50 ° C. aqueous solution of alkali degreasing solution “FC-4336” manufactured by Nihon Parkerizing Co., Ltd., washed with water, dried, and then chromate-free made by Nihon Parkerizing Co. “CT-E300N” which is a chemical conversion treatment was applied with a roll coater and dried in a hot air oven. The drying condition in the hot air oven was 60 ° C. at the ultimate plate temperature of the metal plate. The amount of chromate-free treatment was applied so that the total solid content was 200 mg / m 2 .

次に、化成処理を施した金属板の両方の面に、作製した塗液をロールコーターにてそれぞれ塗装し、熱風を吹き込んだ誘導加熱炉にて金属板の到達板温が230℃となる条件で乾燥硬化した。そして、乾燥硬化後に、塗装された金属板へ水をスプレーにて拭きかけ、水冷することでサンプル金属板を作成した。   Next, on both surfaces of the metal plate subjected to the chemical conversion treatment, the prepared coating liquid is applied with a roll coater, and the ultimate temperature of the metal plate is 230 ° C. in an induction heating furnace in which hot air is blown. And dried and cured. And after drying and hardening, the sample metal plate was created by wiping the coated metal plate with water by spraying and water cooling.

作製したサンプル金属板の熱吸収性皮膜の膜厚は、3μmとした。なお、各膜厚はKET社製の電磁膜厚計「LE−200J」にて測定した。   The film thickness of the heat-absorbing film of the produced sample metal plate was 3 μm. Each film thickness was measured with an electromagnetic film thickness meter “LE-200J” manufactured by KET.

以下、作成した金属板の加工について詳細を説明する。   Hereinafter, details of processing of the created metal plate will be described.

平たいプレス金型に、直径12.5mmの半球状の凸部を有するプレス金型と、この凸部に合う様に凹部を設けたプレス金型を作成した(凸部と凹部とのクリアランスは1.0mmとした。)。これらをプレス機にセットした後、凹凸金型の間に150mm×285mmサイズに切断したサンプル金属板を挿入してプレス加工することで、凹凸を有する筐体金属板を得た。また、金属板に設ける凹凸の個数によって、金属板の表面積をコントロールした。そして、それぞれの表面積向上率を計算した。更に半球状の凸部の高さをプレス機によって調整することで、図2に示すθを調整した。θは、プレス後の凸部の断面を切断することで断面形状から測定した。また、プレス加工により図4に示すような波型形状の筐体金属板も得た。波型の形状は、図4(a)の台形形状及び図4(b)の三角形状(以降、三角Iと称する。)のものをそれぞれ作成した。台形形状の場合、図2(A)の各斜面及び水平面の長さL4=L5=L6=L7=5mmとし、凸部の山の高さH=5mmとした。三角形状の場合、図2(D)の各斜面及び水平面の長さL1=L2=L3=5mmとし、凸部の山の高さは台形、三角形のいずれの形状もH=5mmとした。また、台形や三角形の波型形状の各コーナーは、R=1mmの丸みを設けた。また、折り曲げ加工によって、図4(c)に示す三角形状(以降、三角IIと称する。)のサンプルも作成した。三角IIの各寸法は図2(D)の各斜面及び水平面の長さL1=L2=5mm、L3=0mmとし、凸部の山の高さH=6mmとした。なお、図4においては、形成した凸部の個数は、省略して図示している。   A press die having a hemispherical convex portion with a diameter of 12.5 mm and a press die provided with a concave portion so as to fit the convex portion were created on a flat press die (the clearance between the convex portion and the concave portion was 1). 0.0 mm). After these were set in a press machine, a sample metal plate cut to a size of 150 mm × 285 mm was inserted between the concavo-convex molds and pressed to obtain a housing metal plate having concavo-convex portions. The surface area of the metal plate was controlled by the number of irregularities provided on the metal plate. And each surface area improvement rate was calculated. Furthermore, θ shown in FIG. 2 was adjusted by adjusting the height of the hemispherical convex portion with a press. θ was measured from the cross-sectional shape by cutting the cross section of the convex part after pressing. Further, a corrugated casing metal plate as shown in FIG. 4 was also obtained by pressing. As the wave shape, a trapezoidal shape in FIG. 4A and a triangular shape in FIG. 4B (hereinafter referred to as a triangle I) were prepared. In the case of a trapezoidal shape, the lengths of the slopes and the horizontal planes in FIG. In the case of a triangular shape, the length of each slope and horizontal plane in FIG. 2D is L1 = L2 = L3 = 5 mm, and the height of the peak of the convex portion is trapezoidal and the triangular shape is H = 5 mm. Each corner of the trapezoidal or triangular corrugated shape was provided with a roundness of R = 1 mm. Further, a triangular sample (hereinafter referred to as triangle II) shown in FIG. 4C was also produced by bending. The dimensions of the triangle II were the lengths L1 = L2 = 5 mm and L3 = 0 mm of each slope and horizontal plane in FIG. 2D, and the height H of the convex portion was H = 6 mm. In FIG. 4, the number of convex portions formed is not shown.

以下、作成した筐体金属板の評価試験について詳細を説明する。   Hereinafter, the details of the evaluation test of the produced casing metal plate will be described.

1)表面処理金属板の放射率測定
日本分光社製のフーリエ変換赤外分光光度計「VALOR−III」を用いて、表面処理金属板の板温度を80℃にしたときの波数600〜3000cm−1の領域における赤外発光スペクトルを測定し、これを標準黒体の発光スペクトルと比較することで、表面処理金属板の全赤外線放射率を測定した。なお、標準黒体は鉄板にタコスジャパン社販売(オキツモ社製造)の「THI−1B黒体スプレー」を30±2μmの膜厚でスプレー塗装したものを用いた。なお、放射率は金属板両面について測定した。
1) Emissivity measurement of a surface-treated metal plate Using a Fourier transform infrared spectrophotometer “VALOR-III” manufactured by JASCO Corporation, a wave number of 600 to 3000 cm when the plate temperature of the surface-treated metal plate is 80 ° C. The infrared emission spectrum in the region 1 was measured, and this was compared with the emission spectrum of a standard black body, whereby the total infrared emissivity of the surface-treated metal plate was measured. In addition, the standard black body used what spray-coated "THI-1B black body spray" with a film thickness of 30 +/- 2micrometer on the iron plate by Tacos Japan company manufacture (Okitsumo company manufacture). The emissivity was measured on both sides of the metal plate.

2)筐体熱特性測定試験
図5に示す測定箱(筐体)を作成して試験を行った。測定箱1は、未処理の板厚0.6mmの電気亜鉛めっき鋼板で作成された、上面が解放された(金属板の無い)箱状のものである。この測定箱の解放された面に、熱吸収性金属板2(すなわち、サンプル金属板)で覆い、この状態で、熱源であるヒーター3に温度コントローラー4にて10Wの投入電力を入れ、測定箱1内に設置した熱電対5の温度を、デジタル温度計6で測定した。
2) Case thermal characteristic measurement test A measurement box (housing) shown in FIG. 5 was prepared and tested. The measurement box 1 is a box-shaped box made of an untreated electrogalvanized steel sheet having a thickness of 0.6 mm and having an open upper surface (without a metal plate). The open surface of the measurement box is covered with a heat-absorbing metal plate 2 (that is, a sample metal plate), and in this state, 10 W of input power is applied to the heater 3 which is a heat source by the temperature controller 4, and the measurement box The temperature of the thermocouple 5 installed in 1 was measured with a digital thermometer 6.

評価は、作成したサンプルにプレス加工により凹凸をつけたもので測定した筐体内部温度(凹凸有り温度)と、凹凸有り温度を測定したときと同じ熱吸収性金属板で凹凸をつけなかった平坦なもの(プレス加工しなかったもの)で測定した筐体内部温度(凹凸無し温度)とについて、同じ水準サンプル間で比較し、以下の基準で評価した。なお、作製した各種サンプルを熱吸収性金属板2として測定箱の解放した面で覆う際に、成形精度の悪かったサンプルや波型形状サンプルについては隙間が生じたため、この隙間は、信越化学工業社製の一液型「シリコーンRTVゴム」にて埋めた。   The evaluation was made with the same heat-absorbing metal plate that was measured with the temperature inside the housing (temperature with unevenness) measured by pressing the prepared sample with unevenness, and the same temperature as when the temperature with unevenness was measured. Comparison was made between samples at the same level with respect to the internal temperature of the case (temperature without unevenness) measured with a sample (not pressed), and evaluated according to the following criteria. In addition, when the prepared various samples were covered as the heat-absorbing metal plate 2 with the open surface of the measurement box, a gap was generated for the sample with poor molding accuracy or the corrugated sample. It was filled with a one-component “silicone RTV rubber” manufactured by the company.

以下、凹凸有無の違いで測定した温度の評価基準を説明する。
[{(凹凸有り温度)−(凹凸無し温度)}≧3℃]のとき:◎
[{(凹凸有り温度)−(凹凸無し温度)}≧2℃]のとき:○
[{(凹凸有り温度)−(凹凸無し温度)}≧1℃]のとき:△
[{(凹凸有り温度)−(凹凸無し温度)}<1℃]のとき:×
Hereinafter, the evaluation criteria of the temperature measured by the difference in unevenness will be described.
[{(Temperature with unevenness) − (temperature without unevenness)} ≧ 3 ° C.]:
[{(Temperature with unevenness) − (temperature without unevenness)} ≧ 2 ° C.]: ○
[{(Temperature with unevenness) − (temperature without unevenness)} ≧ 1 ° C.]:
[{(Temperature with unevenness) − (temperature without unevenness)} <1 ° C.]: ×

また、同じ表面積向上率を有する熱吸収性金属板で、導電顔料(Ni粒)が未添加の熱吸収性金属板を用いて測定した温度(熱伝導性物質無し温度)と、各評価試験水準の金属板(熱伝導性物質有り温度)と、を比較し、以下の基準で評価した。   In addition, a temperature (temperature without heat conductive material) measured using a heat absorbing metal plate having the same surface area improvement rate and no conductive pigment (Ni particles) added, and each evaluation test level And a metal plate (temperature with a thermally conductive material) were compared and evaluated according to the following criteria.

以下、熱伝導性物質有無の違いで測定した温度の評価基準を説明する。
[{(熱伝導性物質有り温度)−(熱伝導性物質無し温度)}≧3℃]のとき:◎
[{(熱伝導性物質有り温度)−(熱伝導性物質無し温度)}≧2℃]のとき:○
[{(熱伝導性物質有り温度)−(熱伝導性物質無し温度)}≧1℃]のとき:△
[{(熱伝導性物質有り温度)−(熱伝導性物質無し温度)}<1℃]のとき:×
Hereinafter, the evaluation criteria of the temperature measured by the difference in the presence or absence of the heat conductive substance will be described.
[{(Temperature with thermal conductive material) − (temperature without thermal conductive material)} ≧ 3 ° C.]:
[{(Temperature with thermal conductive material) − (temperature without thermal conductive material)} ≧ 2 ° C.]: ○
[{(Temperature with thermal conductive material) − (temperature without thermal conductive material)} ≧ 1 ° C.]: Δ
[{(Temperature with thermal conductive material) − (temperature without thermal conductive material)} <1 ° C .: ×

3)皮膜加工性評価
プレス加工により凹凸を設けた金属板の凹凸加工部を、目視と10倍ルーペにて観察し、凹凸加工部に皮膜の亀裂の発生有無を評価した。
3) Evaluation of film processability The unevenness processed part of the metal plate provided with unevenness by press working was observed visually and with a 10-fold magnifier, and the presence or absence of cracks in the film was evaluated in the unevenness processed part.

以下、皮膜加工部の評価基準を説明する
10倍ルーペで観察しても皮膜に亀裂が認められないとき:○
10倍ルーペで観察すると皮膜に亀裂が認められるが、目視では認められないとき:△
目視でも皮膜の亀裂が認められるとき:×
Hereinafter, the evaluation criteria of the film processed part will be described. When the film is not cracked even when observed with a 10 × magnifier: ○
When observed with a 10-fold magnifier, cracks are observed in the film, but not visually observed: Δ
When cracks in the film are recognized visually: ×

4)皮膜密着性評価
プレス加工により凹凸を設けた金属板の表面を目視にて観察し、プレス金型とのカジリによる皮膜剥離発生有無を評価した。
4) Evaluation of film adhesion The surface of the metal plate provided with irregularities by press working was visually observed to evaluate the presence or absence of film peeling due to galling with the press mold.

以下、プレス金型による皮膜カジリの評価基準を説明する
プレス金型とのカジリによる皮膜剥離、キズが発生していないとき:○
プレス金型とのカジリにより皮膜にキズは入っているが、塗膜剥離はないとき:△
プレス金型とのカジリにより皮膜が剥離していたとき:×
The following explains the evaluation criteria for film galling with a press mold. When there is no film peeling or scratching due to galling with a press mold: ○
When the film has scratches due to galling with the press mold, but there is no film peeling: △
When the film is peeled off due to galling with the press die: ×

5)導電性試験
作成した表面処理金属板の導電性を有する熱伝導性物質を含む皮膜面側の導電性を、測定した。測定方法は、三井化学社製の抵抗率計「Loresta−EP/MCP−T360」の四端子法にて表面処理金属板の表面の抵抗率を測定し、以下の基準で評価した。
5) Conductivity test The conductivity of the prepared surface-treated metal plate on the side of the coating surface containing a thermally conductive material having conductivity was measured. The measuring method measured the resistivity of the surface of a surface treatment metal plate by the four-terminal method of the resistivity meter "Loresta-EP / MCP-T360" by Mitsui Chemicals, and evaluated it on the following references | standards.

抵抗率が0.1×10−2Ω未満の場合:○
抵抗率が0.1×10−2以上1.0×10−1Ω未満の場合:△
抵抗率が1.0×10−1Ω以上の場合:×
When the resistivity is less than 0.1 × 10 −2 Ω: ○
When resistivity is 0.1 × 10 −2 or more and less than 1.0 × 10 −1 Ω: Δ
When resistivity is 1.0 × 10 −1 Ω or more: ×

以下評価結果の詳細について述べる。 Details of the evaluation results are described below.

Figure 0005042924
Figure 0005042924

表1に実施例1の評価結果を示す。本発明の金属筐体(本発明例−1〜12)は、表面積向上率を10%以上にすることで、凹凸を設けていない平坦な金属板で作成した筐体(比較例−15)より筐体内部の温度をより低くすることができることを確認した。また、熱伝導率が80W/m・K以上の熱伝導性物質を熱吸収性皮膜中に添加したもの(本発明例−1〜5及び8〜11)は、導電性に優れるため、好適である。特に100℃での熱伝導率が200W/m・K以上のものを皮膜中に10vol%以上添加したもの(本発明例1〜3及び7〜9)は、筐体の熱特性にもより優れ、より好適である。   Table 1 shows the evaluation results of Example 1. The metal casings of the present invention (Invention Examples -1 to 12) have a surface area improvement rate of 10% or more, thereby making the metal casing (Comparative Example-15) made of a flat metal plate not provided with irregularities. It was confirmed that the temperature inside the housing could be lowered. In addition, those in which a heat conductive material having a heat conductivity of 80 W / m · K or more is added to the heat-absorbing film (Invention Examples-1 to 5 and 8 to 11) are preferable because they have excellent conductivity. is there. Particularly, those having a thermal conductivity at 100 ° C. of 200 W / m · K or more added to the film by 10 vol% or more (Invention Examples 1 to 3 and 7 to 9) are more excellent in the thermal characteristics of the casing. Is more preferable.

また、面積向上率が最も大きくできたものは本発明例−11であり、これよりも面積向上率を大きくしたものは板破断などが発生し、作成することはできなかった。   Moreover, the thing which could make the area improvement rate the largest was this invention example-11, and the thing which made the area improvement rate larger than this generate | occur | produced the board fracture | rupture etc., and could not produce it.

凹凸を設けても表面積向上率が10%未満のもの(比較例−14)は、凹凸を設けない比較例−13と比べて筐体内温度が殆ど変わらないため、不適である。   Even if unevenness is provided, the surface area improvement rate of less than 10% (Comparative Example-14) is unsuitable because the temperature in the housing hardly changes compared to Comparative Example-13 where unevenness is not provided.

[実施例−2]
以下、実施例−2の実験について詳細を説明する。
まず、実施例−2の実験に用いたトップ塗料について、詳細を説明する。
[Example-2]
Hereinafter, the details of the experiment of Example-2 will be described.
First, the details of the top paint used in the experiment of Example-2 will be described.

実施例−2では、バインダー樹脂として東洋紡績社製の「バイロン(登録商標)650」(Tg:10℃、数平均分子量:23000、比重:1.21)、「バイロン(登録商標)GK130」(Tg:15℃、数平均分子量:7000、比重:1.25)、「バイロン(登録商標)BX1001」(Tg:−18℃、数平均分子量:28000、比重:1.19)、「バイロン(登録商標)600」(Tg:47℃、数平均分子量:7000、比重:1.25)を用いた。更に、架橋剤として、アミノプラスト樹脂「サイメル(登録商標)303」と住化バイエルウレタン社製のイソシアネート「デスモジュール(登録商標)BL4265SN」(比重:1.03)を用いた。アミノプラスト樹脂を使用する場合は、実施例−1で用いた触媒を用いた、触媒やアミノプラスト樹脂の添加量も実施例−1と同じにした。イソシアネートを硬化剤に使用する場合は、ポリエステル樹脂のOH基当量とイソシアネートのNCO基当量が同じとなるように添加した。その他、クリヤー塗料の作製方法は、実施例−1と同じにした。   In Example-2, “Byron (registered trademark) 650” (Tg: 10 ° C., number average molecular weight: 23000, specific gravity: 1.21) manufactured by Toyobo Co., Ltd. as a binder resin, “Byron (registered trademark) GK130” ( Tg: 15 ° C., number average molecular weight: 7000, specific gravity: 1.25), “Byron (registered trademark) BX1001” (Tg: −18 ° C., number average molecular weight: 28000, specific gravity: 1.19), “Byron (registered) (Trademark) 600 ”(Tg: 47 ° C., number average molecular weight: 7000, specific gravity: 1.25) was used. Further, aminoplast resin “Cymel (registered trademark) 303” and isocyanate “Desmodur (registered trademark) BL4265SN” (specific gravity: 1.03) manufactured by Sumika Bayer Urethane Co., Ltd. were used as a crosslinking agent. When the aminoplast resin was used, the addition amount of the catalyst and aminoplast resin using the catalyst used in Example-1 was also the same as in Example-1. When using isocyanate for a hardening | curing agent, it added so that the OH group equivalent of a polyester resin and the NCO group equivalent of isocyanate might become the same. In addition, the clear paint was produced in the same manner as in Example-1.

次に、作製したクリヤー塗料に、熱吸収材として東海カーボン社製のカーボンブラック「トーカブラック(登録商標)#7350/F」を、熱伝導性物質として100℃での熱伝導率が398w/m・Kで平均粒径が3.0μmとなるように粉砕、分級した銅粉を添加した。熱吸収材の添加量は、ポリエステル樹脂の固形分100質量部に対して15質量部、熱伝導性物質はポリエステル樹脂固形分100質量に対して178質量部添加した塗液を作成した。比較に用いる熱伝導性物質を添加しない塗液も作成した。   Next, carbon black “Toka Black (registered trademark) # 7350 / F” manufactured by Tokai Carbon Co., Ltd. is used as the heat absorbing material, and the thermal conductivity at 100 ° C. is 398 w / m as the heat conductive material. -Copper powder pulverized and classified so as to have an average particle diameter of 3.0 μm at K was added. The amount of the heat absorbing material added was 15 parts by mass with respect to 100 parts by mass of the solid content of the polyester resin, and the heat conductive material was added to 178 parts by mass with respect to 100 parts by mass of the polyester resin solid content. A coating solution without adding a heat conductive material used for comparison was also prepared.

なお、熱伝導性物質の添加量は、文献より各金属の比重を調べて、計算で皮膜中の体積濃度が16vol%となるように添加した。   In addition, the addition amount of the heat conductive material was determined so that the specific gravity of each metal was examined from literature and the volume concentration in the film was calculated to be 16 vol%.

以下、実施例−2の実験に用いた金属板について詳細を説明する。
0.6mmの電気亜鉛めっき鋼板(SECE、伸び42%、r値1.8、亜鉛付着量片面あたり20g/m)を原板として準備した。また、0.4mmの電気めっき鋼板(SECC、伸び34%、r値1.0、亜鉛付着量片面あたり20g/m)と0.6mmの電気亜鉛めっき鋼板(SECD、伸び39%、r値1.4、亜鉛付着量片面あたり20g/m、本材料を以降SECD−1と称する。)、0.6mmの電気亜鉛めっき鋼板(SECD、伸び37%、r値1.4、亜鉛付着量片面あたり20g/m、本材料を以降SECD−2と称する。)も準備した。これら原板に、実施例−1で用いたと同じ方法で作成した塗液を被覆して、熱吸収性皮膜を塗装した。熱吸収性皮膜の膜厚も実施例−1と同じとした。
Hereinafter, the metal plate used in the experiment of Example-2 will be described in detail.
A 0.6 mm electrogalvanized steel sheet (SECE, elongation 42%, r value 1.8, 20 g / m 2 per one surface of zinc adhesion amount) was prepared as an original plate. Moreover, a 0.4 mm electroplated steel sheet (SECC, elongation 34%, r value 1.0, zinc adhesion amount 20 g / m 2 per side) and a 0.6 mm electrogalvanized steel sheet (SECD, elongation 39%, r value) 1.4, zinc adhesion amount 20 g / m 2 per side, this material is hereinafter referred to as SECD-1), 0.6 mm electrogalvanized steel sheet (SECD, elongation 37%, r value 1.4, zinc adhesion amount) 20 g / m 2 per side, this material is hereinafter referred to as SECD-2). These original plates were coated with a coating solution prepared by the same method as used in Example-1 and a heat-absorbing coating was applied. The film thickness of the heat absorbing film was also the same as in Example-1.

以下、作成した金属板の加工について詳細を説明する。
実施例−1の本発明例−1で用いたと同じ方法で凹凸を設けた。凹凸の個数は、何れも512個で、金属板表面の表面積向上率も、何れも12.6%とした。
Hereinafter, details of processing of the created metal plate will be described.
Concavities and convexities were provided by the same method as used in Example-1 of the invention of Example-1. The number of irregularities was 512 for all, and the surface area improvement rate on the surface of the metal plate was 12.6% for all.

以下、実施例−2で作成した筐体金属板の評価試験について詳細を説明する。
実施例−1で実施した1)〜5)と同じ評価試験を実施した。ただし、2)筐体熱特性測定試験については、凹凸有無の比較のみを行なった。
Hereinafter, the details of the evaluation test of the casing metal plate created in Example-2 will be described.
The same evaluation tests as 1) to 5) performed in Example-1 were performed. However, 2) For the casing thermal characteristic measurement test, only the comparison of the presence or absence of unevenness was performed.

以下実施例−2の評価結果の詳細について述べる。   Details of the evaluation results of Example-2 will be described below.

Figure 0005042924
Figure 0005042924

本発明の金属筐体に被覆する熱吸収性皮膜のバインダー樹脂においては、一般に公知のバインダー樹脂を用いても良いが、数平均分子量5000〜25000、ガラス転移温度10〜35℃であるポリエステル樹脂をアミノプラスト樹脂またはイソシアネートで架橋したもの(本発明例−16〜23)であると、加工性や密着性に優れ好適である。ガラス転移温度が10℃未満で数平均分子量が25000超の樹脂を用いたもの(本発明例−20)は、皮膜密着性に劣り、ガラス転移温度が35℃超で数平均分子量が5000未満のもの(本発明例−21)や、数平均分子量は5000〜25000であるがガラス転移温度が35℃超のものは、加工性に劣る傾向がある。更に、熱吸収性皮膜中にフッ素系ワックスを添加しなかったもの(本発明例−19)は、プレス加工時の皮膜密着性(塗膜カジリ性)が低下する傾向がある。また、母材の伸び率が38%以上でもr値が1.5未満のもの場合(本発明例−23)は、加工した凸部の裾の付近で母材の肉厚が局部的に薄くなっており、母材破談が発生する寸前の状態であったため、r値は1.5以上がより好適である。また、原板である金属板に38%未満の伸びを有するもの(比較例−24、25)を用いると、凹凸を設けた際に母材である金属板が破断してしまうため、不適である。   In the binder resin of the heat-absorbing film coated on the metal casing of the present invention, a publicly known binder resin may be used, but a polyester resin having a number average molecular weight of 5000 to 25000 and a glass transition temperature of 10 to 35 ° C. A product crosslinked with an aminoplast resin or isocyanate (Invention Examples -16 to 23) is excellent in workability and adhesion and is suitable. A resin using a resin having a glass transition temperature of less than 10 ° C. and a number average molecular weight of more than 25,000 (Invention Example-20) has poor film adhesion, a glass transition temperature of more than 35 ° C. and a number average molecular weight of less than 5,000. Those having a glass transition temperature of more than 35 ° C. tend to be inferior in workability. Furthermore, what did not add a fluorine-type wax in a heat | fever absorptive film | membrane (this invention example-19) exists in the tendency for the film | membrane adhesiveness (coating galling property) at the time of press work to fall. Further, when the elongation percentage of the base material is 38% or more and the r value is less than 1.5 (Example 23 of the present invention), the thickness of the base material is locally thin in the vicinity of the skirt of the processed convex portion. The r value is more preferably 1.5 or more because it is a state just before the base material breakage occurs. In addition, if a metal plate that is an original plate having an elongation of less than 38% (Comparative Examples -24 and 25) is used, the metal plate that is a base material is broken when unevenness is provided, which is not suitable. .

[実施例−3]
以下、実施例−3の実験について詳細を説明する。
[Example-3]
Hereinafter, the details of the experiment of Example-3 will be described.

まず、実施例−3の実験に用いたトップ塗料について詳細を説明する。
実施例−1と同じ東洋紡社製の非晶性ポリエステル樹脂である「バイロン(登録商標)GK140」(Tg:20℃、数平均分子量:13000、以降、ポリエステルと称する。)に、三井サイテック社製のアミノプラスト樹脂「サイメル(登録商標)303」と三井サイテック社製の揮発性塩基性物質で中和したタイプである「キャタリスト602」を添加してクリヤー塗料を作成した。樹脂、硬化剤、触媒の添加量は、実施例−1と同じにした。
First, the details of the top paint used in the experiment of Example-3 will be described.
“Byron (registered trademark) GK140” (Tg: 20 ° C., number average molecular weight: 13000, hereinafter referred to as polyester), which is the same amorphous polyester resin manufactured by Toyobo Co., Ltd. as in Example-1, was manufactured by Mitsui Cytec. A clear paint was prepared by adding “Cymerist 602”, a type neutralized with a volatile basic substance manufactured by Mitsui Cytec Co., Ltd. The amounts of resin, curing agent and catalyst added were the same as in Example-1.

次に、作製したクリヤー塗料に、熱吸収材として東海カーボン社製のカーボンブラック「トーカブラック(登録商標)#7350/F」を、ポリエステル樹脂の固形分100質量部に対して15質量部添加した。次に、熱伝導性物質として、鉄粉(100℃での熱伝導率:71.9W/m・K)、銅粉(100℃での熱伝導率:393W/m・K)、スズ粉(100℃での熱伝導率:63W/m・K)、亜鉛粉(100℃での熱伝導率:113W/m・K)、ニッケル粉(100℃での熱伝導率:81W/m・K)の試薬を準備し、これを必要に応じて機械的に粉砕し、分級することで、平均粒径2μm、3μm、4μmの各金属粉の微粒子を得た。また、INCO社製のニッケルフレーク「HCA−1」を分級して平均粒径が3μmとなるものを準備して用いた。熱伝導性物質の添加量は、文献より各金属の比重を調べて、計算で皮膜中の体積濃度が16vol%となるように添加した。   Next, 15 parts by mass of carbon black “Toka Black (registered trademark) # 7350 / F” manufactured by Tokai Carbon Co., Ltd. as a heat absorbing material was added to the prepared clear paint with respect to 100 parts by mass of the solid content of the polyester resin. . Next, as a heat conductive substance, iron powder (heat conductivity at 100 ° C .: 71.9 W / m · K), copper powder (heat conductivity at 100 ° C .: 393 W / m · K), tin powder ( Thermal conductivity at 100 ° C .: 63 W / m · K), zinc powder (thermal conductivity at 100 ° C .: 113 W / m · K), nickel powder (thermal conductivity at 100 ° C .: 81 W / m · K) Were prepared, and were mechanically pulverized and classified as necessary to obtain fine particles of each metal powder having an average particle diameter of 2 μm, 3 μm, and 4 μm. In addition, nickel flakes “HCA-1” manufactured by INCO were classified and used to prepare an average particle size of 3 μm. The amount of thermally conductive material added was determined by examining the specific gravity of each metal from literature and calculating so that the volume concentration in the film was 16 vol%.

更に、作成した塗液にはフッ素系ワックスとして、ダイキン工業社性のPTFE系ワックス「ルブロン(登録商標)L−5」を、ポリエステル樹脂固形分に対して2質量部添加した。   Furthermore, 2 mass parts of Daikin Industries, Ltd. PTFE type | system | group wax "Lublon (trademark) L-5" was added to the created coating liquid with respect to polyester resin solid content.

以下、実施例−3の実験に用いた金属板について詳細を説明する。
作成した塗液を実施例−1と同じ方法で金属板に塗装した。用いた金属板も実施例−1と同じにした。ただし、実施例−3ではロールコーターの周速や塗液の希釈率を調整することで、異なる膜厚の熱吸収性皮膜を塗装した。金属板の表裏面の熱吸収性皮膜の膜厚は同じにした。
Hereinafter, the metal plate used in the experiment of Example-3 will be described in detail.
The prepared coating liquid was applied to a metal plate in the same manner as in Example-1. The metal plate used was also the same as in Example-1. However, in Example-3, heat absorbing films having different film thicknesses were applied by adjusting the peripheral speed of the roll coater and the dilution rate of the coating liquid. The film thickness of the heat absorbing film on the front and back surfaces of the metal plate was the same.

以下、作成した金属板の加工について詳細を説明する。
実施例−1の本発明例−1で用いたと同じ方法で凹凸を設けた。凹凸の個数は何れも512個で、金属板表面の表面積向上率も何れも12.6%とした。
Hereinafter, details of processing of the created metal plate will be described.
Concavities and convexities were provided by the same method as used in Example-1 of the invention of Example-1. The number of irregularities was 512, and the surface area improvement rate on the surface of the metal plate was 12.6%.

以下、実施例−2で作成した筐体金属板の評価試験について詳細を説明する。
実施例−1で実施した1)〜5)と同じ評価試験を実施した。ただし、2)筐体熱特性測定試験については、熱伝導性物質有無の比較のみを行った。比較は、実施例−1の本発明例−6の熱伝導性物質を添加しない熱吸収性皮膜を有する金属板に凹凸を設けて表面積向上率を13.2%としたものを用いた。
Hereinafter, the details of the evaluation test of the casing metal plate created in Example-2 will be described.
The same evaluation tests as 1) to 5) performed in Example-1 were performed. However, 2) For the casing thermal property measurement test, only the presence or absence of a thermally conductive substance was compared. For comparison, a metal plate having a heat-absorbing film to which the heat-conductive substance of Invention Example-6 of Example-1 was not added was provided with irregularities so that the surface area improvement rate was 13.2%.

以下実施例−3の評価結果の詳細について述べる。   Details of the evaluation results of Example-3 are described below.

Figure 0005042924
Figure 0005042924

本発明の熱吸収性皮膜に80W/m・K以上の熱伝導率を有する熱伝導性物質を添加したもの(本発明例−26〜28)は、80W/m・K未満の熱伝導率を有する熱伝導性物質を添加したもの(本発明例−29,30)と比べて筐体の熱特性が優れる傾向であるため、より好適である。また、熱伝導性物質が粒状であり、且つ、平均粒径Dが熱吸収性皮膜の膜厚tに対して0.8t≦D≦1.2tの範囲を満たすもの(本発明例−26〜31,34)は、0.8t2≦D≦1.2tの範囲を満たさないもの(本発明例−32,33,35,36)と比べて筐体の熱特性に優れる傾向であるため、より好適である。更に、熱伝導性物質がフレーク状のもの(本発明例−37)より同じ熱伝導性物質でも粒状のもの(本発明例−28)の方が筐体の熱特性に優れる傾向であるため、より好適である。   The heat-absorbing film of the present invention to which a heat conductive material having a heat conductivity of 80 W / m · K or more is added (Invention Example -26 to 28) has a heat conductivity of less than 80 W / m · K. Since the thermal characteristics of the casing tend to be superior to those added with the thermal conductive material (Examples -29, 30 of the present invention) added, it is more preferable. Further, the thermally conductive material is granular, and the average particle diameter D satisfies the range of 0.8 t ≦ D ≦ 1.2 t with respect to the film thickness t of the heat-absorbing film (Invention Example −26 to 31 and 34) tend to be superior in thermal characteristics of the casing as compared with those not satisfying the range of 0.8t2 ≦ D ≦ 1.2t (Examples of the present invention 32, 33, 35, 36). Is preferred. Furthermore, since the heat conductive material is more like a flake (Invention Example-37), the same thermally conductive material is more granular (Invention Example-28), which tends to have better thermal characteristics of the casing. More preferred.

[実施例−4]
板厚0.6mmのアルミめっき鋼板(SA1E、伸び率40%、r値1.6、アルミ付着量片面あたり60g/m)を原板に用いて、実施例−1の本発明例−1〜6及び比較例−14,15と同じ金属板サンプルを作成し、実施例−1実施と同じ評価試験を行った。なお、アルミ付着量片面あたり60g/mのめっき層は、めっき厚み約22μmとなる(アルミの比重より換算)ため、アルミめっき鋼板(SA1E、アルミ付着量片面あたり60g/m)を以降、Al鋼板22と称する。
[Example-4]
Example-1 of the invention-1 of Example-1 using an aluminum-plated steel plate with a thickness of 0.6 mm (SA1E, elongation 40%, r value 1.6, aluminum adhesion amount 60 g / m 2 per side) as an original plate 6 and Comparative Examples-14 and 15, the same metal plate samples were prepared, and the same evaluation test as in Example-1 was performed. In addition, since the plating layer of 60 g / m 2 per side of the aluminum adhesion amount has a plating thickness of about 22 μm (converted from the specific gravity of aluminum), the aluminum plated steel plate (SA1E, 60 g / m 2 per side of the aluminum adhesion amount) This is referred to as an Al steel plate 22.

以下実施例−4の評価結果の詳細について述べる。   Details of the evaluation results of Example-4 are described below.

Figure 0005042924
Figure 0005042924

表4に実施例−4の評価結果を示す。本発明の金属筐体(本発明例−38〜43)は、原板に熱伝導率が200W/m・K以上のめっき層を施していても、表面積向上率を10%以上にすることで、凹凸を設けていない平坦な金属板で作成した筐体(比較例−45)より筐体内部の温度をより低くすることができることを確認した。また、実施例−1の表1の本発明例−2と表4の本発明例−38とを比較、および、表1の本発明例−3と本発明例−40とを比較すると、原板にAl鋼板22を用いた方が、EGを用いたものより筐体熱特性(凹凸有無の比較)が好適であり、めっき層の熱伝導率が200W/m・K以上であること好適であることを確認した。   Table 4 shows the evaluation results of Example-4. Even if the metal casing of the present invention (Invention Examples -38 to 43) is applied with a plating layer having a thermal conductivity of 200 W / m · K or more on the original plate, the surface area improvement rate is 10% or more. It was confirmed that the temperature inside the casing could be made lower than that of a casing (Comparative Example-45) made of a flat metal plate without unevenness. In addition, the present invention example-2 in Table 1 of Example-1 is compared with the present invention example-38 in Table 4, and the present invention example-3 in Table 1 and the present invention example-40 are compared. The case using the Al steel plate 22 is more suitable for the case thermal characteristics (comparison of unevenness) than that using the EG, and it is preferable that the thermal conductivity of the plating layer is 200 W / m · K or more. It was confirmed.

[実施例−5]
板厚0.6mmのアルミめっき鋼板(SA1E、伸び率40%、r値1.6、アルミ付着量片面あたり200g/m)を原板に用いて、実施例−1の本発明例−1〜6及び比較例−7,8と同じ金属板サンプルを作成し、実施例−1実施と同じ評価試験を行った。なお、アルミ付着量片面あたり200g/mのめっき層は、めっき厚み約74μmとなる(アルミの比重より換算)ため、アルミめっき鋼板(SA1E、伸び率40%、r値1.6、アルミ付着量片面あたり200g/m)を以降、Al鋼板74と称する。
[Example-5]
Example-1 of the invention-1 of Example-1 using an aluminum-plated steel plate with a thickness of 0.6 mm (SA1E, elongation 40%, r value 1.6, aluminum adhesion amount 200 g / m 2 per side) as an original plate 6 and Comparative Examples-7 and 8, the same metal plate samples were prepared, and the same evaluation test as in Example-1 was performed. In addition, since the plating layer of 200 g / m 2 per one surface of the aluminum adhesion amount has a plating thickness of about 74 μm (converted from the specific gravity of aluminum), an aluminum plated steel plate (SA1E, elongation 40%, r value 1.6, aluminum adhesion) Hereinafter, 200 g / m 2 ) per one side of the quantity is referred to as an Al steel plate 74.

以下実施例−5の評価結果の詳細について述べる。   Details of the evaluation results of Example-5 are described below.

Figure 0005042924
Figure 0005042924

表5に実施例−5の評価結果を示す。本発明の金属筐体(本発明例−46〜51)は、原板に熱伝導率が200W/m・K以上のめっき層を50μm以上施していても、表面積向上率を10%以上にすることで、凹凸を設けていない平坦な金属板で作成した筐体(比較例−53)より筐体内部の温度をより低くすることができることを確認した。また、実施例−4の表4の本発明例−39と表5の本発明例−47とを比較すると、200W/m・K以上のめっき層の厚みを50μm以上にした方(実施例−47)が、50μm未満のもの(実施例−39)より筐体熱特性(凹凸有無の比較)が好適であった。   Table 5 shows the evaluation results of Example-5. In the metal casing of the present invention (Invention Examples -46 to 51), the surface area improvement rate should be 10% or more even when the original plate is plated with a thermal conductivity of 200 W / m · K or more of 50 μm or more. Thus, it was confirmed that the temperature inside the casing could be made lower than that of the casing (Comparative Example-53) made of a flat metal plate without unevenness. Further, when Example-39 in Table 4 of Example-4 and Example-47 of Invention in Table 5 were compared, the thickness of the plating layer of 200 W / m · K or more was 50 μm or more (Example- 47) was more suitable for the case thermal characteristics (comparison of the presence / absence of unevenness) than that of less than 50 μm (Example 39).

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

金属板に凹凸を設けた際の断面形状の例を説明するための説明図である。It is explanatory drawing for demonstrating the example of the cross-sectional shape at the time of providing an unevenness | corrugation in a metal plate. 勾配角度θについて説明するための説明図である。It is explanatory drawing for demonstrating gradient angle (theta). 勾配角度θについて説明するための説明図である。It is explanatory drawing for demonstrating gradient angle (theta). 本実施例で製造したサンプル金属板について説明するための説明図である。It is explanatory drawing for demonstrating the sample metal plate manufactured by the present Example. 筐体の熱特性試験方法を説明するための説明図である。It is explanatory drawing for demonstrating the thermal-characteristic test method of a housing | casing.

符号の説明Explanation of symbols

1 試験筐体
2 熱吸収性金属板
3 ヒーター
4 温度コントローラー
5 熱電対
6 デジタル温度計
1 Test Case 2 Heat Absorbing Metal Plate 3 Heater 4 Temperature Controller 5 Thermocouple 6 Digital Thermometer

Claims (9)

内部に発熱源を有する筐体を構成する面のうち、少なくとも1面を成す金属板の両面の赤外線放射率が、各々0.7以上であり、
且つ、該金属板に、下記式1で定義される表面積向上率が10%以上100%以下となる凹凸を設け
前記凹凸の凸部の山の勾配斜面と凸部を設けていない平面部とのなす角度を勾配角度θと定義した場合、θ≦45°であることを特徴とする、機器筐体。
Figure 0005042924
Infrared emissivity of both surfaces of the metal plate constituting at least one of the surfaces constituting the housing having the heat source inside is 0.7 or more,
And the unevenness | corrugation which the surface area improvement rate defined by following formula 1 becomes 10% or more and 100% or less is provided in this metal plate ,
An apparatus housing characterized in that θ ≦ 45 ° when an angle formed between a sloped slope of a mountain of convex and concave portions and a flat portion not provided with a convex portion is defined as a gradient angle θ .
Figure 0005042924
前記筐体の少なくとも一面を構成する前記金属板の両面が、熱吸収性材と、バインダーとしての樹脂と、を含有する熱吸収性皮膜であることを特徴とする、請求項に記載の機器筐体。 Wherein both surfaces of the metal plate constituting at least one surface of the housing, and a heat absorbing material, characterized in that the resin as a binder, a heat absorbing coating containing, according to claim 1 device Enclosure. 前記筐体の少なくとも一面を構成する前記金属板が、38%以上の伸びを有する金属板に予め熱吸収性皮膜を被覆したものを成形加工して得られるものであることを特徴とする、請求項1または2に記載の機器筐体。 The metal plate constituting at least one surface of the housing is obtained by molding and processing a metal plate having an elongation of 38% or more previously coated with a heat-absorbing film. Item 3. The device casing according to Item 1 or 2 . 前記筐体の少なくとも一面を構成する前記金属板の少なくとも内面側が、熱伝導性を有する熱吸収性皮膜であることを特徴とする、請求項1〜のいずれかに記載の機器筐体。 Wherein at least the inner surface side of the metal plate constituting at least one surface of the housing, characterized in that it is a heat absorbing film having thermal conductivity, equipment housing according to any one of claims 1-3. 前記熱伝導性を有する熱吸収性皮膜が、熱吸収性物質と、熱伝導性物質と、バインダーとしての樹脂と、を含有する皮膜であることを特徴とする、請求項に記載の機器筐体。 5. The equipment casing according to claim 4 , wherein the heat-absorbing film having heat conductivity is a film containing a heat-absorbing substance, a heat-conducting substance, and a resin as a binder. body. 前記熱伝導性物質が、100℃での熱伝導率が80w/m・K以上である物質であり、
且つ、乾燥皮膜中の前記熱伝導性物質の添加量が、10vol%以上であることを特徴とする、請求項に記載の機器筐体。
The thermally conductive substance is a substance having a thermal conductivity at 100 ° C. of 80 w / m · K or more,
And the addition amount of the said heat conductive substance in a dry film is 10 vol% or more, The apparatus housing | casing of Claim 5 characterized by the above-mentioned.
前記樹脂のガラス転移温度が10〜35℃であることを特徴とする、請求項2〜6のいずれかに記載の機器筐体。 The apparatus housing according to claim 2 , wherein the resin has a glass transition temperature of 10 to 35 ° C. 前記熱吸収性皮膜が下記a)〜d)の条件を満たすことを特徴とする、請求項またはに記載の機器筐体。
a)バインダー樹脂が、数平均分子量5000〜25000、ガラス転移温度10〜35℃であるポリエステル樹脂をアミノプラスト樹脂またはイソシアネートで架橋したものである。
b)熱吸収性物質が、カーボンブラックである。
c)熱伝導性物質が粒状であり、且つ、その平均粒径Dが、熱吸収性皮膜の膜厚tに対して0.8t≦D≦1.2tの範囲内である。
d)熱吸収性皮膜中にフッ素系ワックスが添加されている。
The equipment casing according to claim 5 or 6 , wherein the heat absorbing film satisfies the following conditions a) to d).
a) The binder resin is a polyester resin having a number average molecular weight of 5000 to 25000 and a glass transition temperature of 10 to 35 ° C. crosslinked with an aminoplast resin or isocyanate.
b) The heat absorbing material is carbon black.
c) The heat conductive material is granular, and the average particle diameter D is in the range of 0.8 t ≦ D ≦ 1.2 t with respect to the film thickness t of the heat absorbing film.
d) A fluorine-based wax is added to the heat-absorbing film.
前記筐体の少なくとも一面を構成する熱吸収性皮膜を被覆した金属板が、プレコート金属板であることを特徴とする、請求項2〜8のいずれかに記載の機器筐体。
The device casing according to any one of claims 2 to 8, wherein the metal plate coated with a heat-absorbing film constituting at least one surface of the casing is a pre-coated metal plate.
JP2008144288A 2008-06-02 2008-06-02 Equipment housing Active JP5042924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144288A JP5042924B2 (en) 2008-06-02 2008-06-02 Equipment housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144288A JP5042924B2 (en) 2008-06-02 2008-06-02 Equipment housing

Publications (2)

Publication Number Publication Date
JP2009286092A JP2009286092A (en) 2009-12-10
JP5042924B2 true JP5042924B2 (en) 2012-10-03

Family

ID=41455767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144288A Active JP5042924B2 (en) 2008-06-02 2008-06-02 Equipment housing

Country Status (1)

Country Link
JP (1) JP5042924B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054001A (en) * 2010-08-31 2012-03-15 Nitto Denko Corp Heat dissipation housing, lithium battery pack using the same, and semiconductive tape for heat dissipation
JP5368396B2 (en) * 2010-09-01 2013-12-18 株式会社神戸製鋼所 Resin-coated metal material and electronic device parts using the metal material
JP5234138B2 (en) * 2011-05-06 2013-07-10 船井電機株式会社 Heat sink
KR101514412B1 (en) * 2012-04-12 2015-04-22 주식회사 유니코정밀화학 Heat radiation sheet
JP2015106632A (en) * 2013-11-29 2015-06-08 富士通株式会社 Electronic device
CN104383971B (en) * 2014-12-16 2016-03-09 常熟市环境试验设备有限公司 Ageing oven
WO2024084018A1 (en) * 2022-10-20 2024-04-25 Thyssenkrupp Steel Europe Ag Flat steel product for producing a steel component by hot forming, method for the production thereof and method for producing the steel component

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120431A (en) * 1986-11-10 1988-05-24 Nec Corp Semiconductor device for electric power
US4801992A (en) * 1986-12-01 1989-01-31 Motorola Inc. Three dimensional interconnected integrated circuit
JPH01226326A (en) * 1988-03-08 1989-09-11 Sukairaito Kogyo Kk Far infrared rays radiation plate
JPH0484496A (en) * 1990-07-27 1992-03-17 Nippon Light Metal Co Ltd Cage for electronic apparatus
JP3463302B2 (en) * 1992-09-18 2003-11-05 株式会社日立製作所 Compressor cooling system
JPH11248348A (en) * 1998-02-26 1999-09-14 Ngk Insulators Ltd Far infrared heater furnace
JP4332072B2 (en) * 2004-06-07 2009-09-16 新日本製鐵株式会社 High carbon steel plate with excellent workability and hardenability
JP2006114828A (en) * 2004-10-18 2006-04-27 Tabuchi Electric Co Ltd Electromagnetic inductor
JP4767822B2 (en) * 2005-12-06 2011-09-07 新日本製鐵株式会社 Surface-treated metal plate

Also Published As

Publication number Publication date
JP2009286092A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5042924B2 (en) Equipment housing
US7279218B2 (en) Coated body having excellent thermal radiation property used for members of electronic device
JP4527587B2 (en) Painted metal material with excellent heat dissipation and electronic equipment parts using the same
KR100539847B1 (en) Metal plate and molded article using the same
WO2007138409A1 (en) Organic coated metallic substrate with enhanced heat transfer properties and method of production thereof
KR101666053B1 (en) Heat Radiant Paint and nanotubes and Method for forming Heat Radiant coating layer of using the same
JP3563731B2 (en) Painted body for electronic equipment with excellent heat dissipation and conductivity
JP2010069748A (en) Resin-coated aluminum sheet
JP4188857B2 (en) Coated body for electronic device members with excellent heat dissipation and electronic device parts
KR100704063B1 (en) Resin-coated metal sheet
JP5309699B2 (en) Surface-treated metal plate, metal housing, metal cover, and electrical and electronic equipment
KR100563919B1 (en) High thermal emissive coated bodies for electronic equipment parts
WO2005015112A1 (en) Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method
JP2007181984A (en) Resin-coated aluminum sheet material which is excellent in heat dissipating property, conductivity and processability
JP2009196126A (en) Resin-coated aluminum material excellent in machinability, electric conductivity, and radiation property
JP5368396B2 (en) Resin-coated metal material and electronic device parts using the metal material
JP2004134722A (en) Cabinet for electric/electronic apparatus with high cooling power
JP2008149600A (en) Resin-coated aluminum material, enclosure for electronic equipment or home appliance using resin-coated aluminum material and electronic equipment or home appliance using this enclosure
JP2004224017A (en) Painted steel sheet with high cooling power
US20240034889A1 (en) Resin-coated aluminum alloy sheet and resin composition for resin-coated aluminum alloy sheet
JP3930796B2 (en) High heat dissipation silicon wafer, semiconductor device and manufacturing method thereof
JP3796249B2 (en) Coated body for electronic equipment members having excellent heat dissipation, self-cooling and electrical conductivity, and electronic equipment parts
JP3796232B2 (en) Painted body for electronic equipment with excellent heat dissipation
JP2008207092A (en) Coated steel plate, processed goods and panel for thin-shaped television
JP5789242B2 (en) Coated metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R151 Written notification of patent or utility model registration

Ref document number: 5042924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350