JP5041518B2 - Antistatic composition and antistatic hard coat formation - Google Patents

Antistatic composition and antistatic hard coat formation Download PDF

Info

Publication number
JP5041518B2
JP5041518B2 JP2007098944A JP2007098944A JP5041518B2 JP 5041518 B2 JP5041518 B2 JP 5041518B2 JP 2007098944 A JP2007098944 A JP 2007098944A JP 2007098944 A JP2007098944 A JP 2007098944A JP 5041518 B2 JP5041518 B2 JP 5041518B2
Authority
JP
Japan
Prior art keywords
antistatic
hard coat
composition
urethane acrylate
resin component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007098944A
Other languages
Japanese (ja)
Other versions
JP2008255224A (en
Inventor
亮太 永松
真吾 袖澤
俊幸 桐生
容史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2007098944A priority Critical patent/JP5041518B2/en
Publication of JP2008255224A publication Critical patent/JP2008255224A/en
Application granted granted Critical
Publication of JP5041518B2 publication Critical patent/JP5041518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、帯電防止用組成物に関し、更に詳細には、安定した帯電防止機能を有し、導電性が優れる帯電防止用組成物およびそれを硬化させた帯電防止ハードコート形成物に関する。   The present invention relates to an antistatic composition, and more particularly to an antistatic composition having a stable antistatic function and excellent electrical conductivity, and an antistatic hard coat formed by curing the composition.

従来、パネルやフィルム表面への塵付着防止などのために、基材表面に帯電(静電)防止機能を付与したコーティングを行う方法が種々提案されている。特に近年使用量が増加しているプラスチック製品について、その大きい帯電量と硬度が低い欠点を補うためにスクラッチ防止や擦り傷防止性能を有するハードコート機能を付与した帯電防止コーティング剤およびコーティング方法が検討されている。   Conventionally, various methods have been proposed for coating the surface of a base material with an antistatic (static) function in order to prevent dust from adhering to the panel or film surface. In particular, anti-static coating agents and coating methods with hard coat functions that have anti-scratch and scratch-preventing performance have been studied to compensate for the drawbacks of large charge amount and low hardness for plastic products that have been used in recent years. ing.

ところで、帯電防止のためには、コーティング層に導電性を持たせることが基本であり、このために種々の検討がなされている。そして、導電性を持たせるためには、まず金属の使用が考えられるが、導電性の高い透明金属層を設ける場合は、優れた導電物性を得られる反面、スパッタでの金属蒸着では生産設備が大規模になる不利益があり、さらに金属膜単体では強度が不足するため、通常積層フィルム中に用いられることになり、別途ハードコート層を設ける必要があった。   By the way, in order to prevent electrification, it is fundamental to impart conductivity to the coating layer, and various studies have been made for this purpose. In order to provide conductivity, the use of metal can be considered first. However, when a transparent metal layer with high conductivity is provided, excellent electrical properties can be obtained, but production equipment is not suitable for metal deposition by sputtering. There is a disadvantage of large scale, and the strength of the metal film alone is insufficient, so that it is usually used in a laminated film, and it is necessary to provide a separate hard coat layer.

また、帯電防止性を付与したコート剤として、例えば、四級アンモニウム塩構造のような有機カチオン性物質を配合する技術(特許文献1、2)や、有機スルホン酸塩のようなアニオン性物質を配合する技術も知られている(特許文献3)。その他、有機π電子共役ポリマーを配合する技術等も検討されている。しかしながら、これらの技術を以ってしても、硬度や耐摩耗性については十分に高いとは言い難かった。   In addition, as a coating agent imparted with antistatic properties, for example, a technique of blending an organic cationic substance such as a quaternary ammonium salt structure (Patent Documents 1 and 2) or an anionic substance such as an organic sulfonate The technique to mix | blend is also known (patent document 3). In addition, techniques for blending organic π-electron conjugated polymers are also being studied. However, even with these techniques, it was difficult to say that hardness and wear resistance were sufficiently high.

更に、有機カチオン性物質には、硬度を上げるために用いられるコロイダルシリカと均一配合が困難であり、また、有機アニオン性物質は有機溶媒への溶解性が低く透明性が低下する等の問題もあり、高硬度化と帯電防止性を両立する上で妨げとなっていた。また、架橋型有機カチオンを用いてブリードを抑制する技術(特許文献4)も知られているが、この技術では多官能アクリルエステル系ハードコート剤において、硬度は保持できるものの充分な帯電防止性能が得られなかった。   Furthermore, organic cationic substances are difficult to mix uniformly with colloidal silica used to increase hardness, and organic anionic substances have problems such as low solubility in organic solvents and reduced transparency. Therefore, it has been a hindrance in achieving both high hardness and antistatic properties. In addition, a technique for suppressing bleeding using a cross-linked organic cation (Patent Document 4) is also known. In this technique, a polyfunctional acrylic ester hard coat agent has sufficient antistatic performance although it can maintain hardness. It was not obtained.

更にまた、導電性フィラーをコーティング剤に分散させる技術が提案されているが(特許文献5〜7)、これらの技術は、高い透明性と導電性を両立させうるコーティング層を得るには至っていない。   Furthermore, techniques for dispersing the conductive filler in the coating agent have been proposed (Patent Documents 5 to 7), but these techniques have not yet achieved a coating layer that can achieve both high transparency and conductivity. .

通常、微粒子を含有した組成物およびその硬化皮膜の透明性と表面抵抗率は微粒子の分散状態によって大きく変動する。この場合、分散性が高まるほど透明性が向上するが、反対に導電性が低下することが多い。これは粒子間距離が充分に接近していなければ、硬化物全体としての電気伝導が起こらないことに由来し、各粒子が個々に完全分散している系においては導電性が極端に低くなるためである。よって、導電性微粒子を添加している場合には、適度に粒子の凝集を促すか、樹脂に対して非常に多い粒子を添加して表面抵抗率を減少させ、帯電防止機能を発揮させる必要がある。   Usually, transparency and surface resistivity of a composition containing fine particles and a cured film thereof greatly vary depending on the dispersion state of the fine particles. In this case, as the dispersibility increases, the transparency improves, but conversely, the conductivity often decreases. This is because if the distance between the particles is not sufficiently close, electrical conduction as a whole cured product does not occur, and in a system in which each particle is completely dispersed individually, the conductivity becomes extremely low. It is. Therefore, when conductive fine particles are added, it is necessary to appropriately promote the aggregation of the particles or to add a very large amount of particles to the resin to reduce the surface resistivity and to exert an antistatic function. is there.

また、これらに用いられる導電性フィラーや金属蒸着膜においては、地球上に僅かしか存在しないインジウムやアンチモンなどのレアメタルを用いるため、その供給量や価格が不安定であるという問題もあった。   In addition, the conductive fillers and metal vapor deposition films used for these use rare metals such as indium and antimony, which are present only slightly on the earth, so that there is a problem that their supply amount and price are unstable.

特開平10−279833号公報Japanese Patent Laid-Open No. 10-279833 特開2000−80169号公報JP 2000-80169 A 特開2000−95970号公報JP 2000-95970 A 特開2005−347068号公報JP 2005-347068 A 特開平10−244618号公報Japanese Patent Laid-Open No. 10-244618 特開平10−235807号公報JP 10-235807 A 特開平6−263903号公報JP-A-6-263903

従って本発明が解決しようとする課題は、上記のような問題を発生させる事なく、安価で良好な帯電防止性を発現する帯電防止用組成物およびこれを用いたハードコート用形成物を提供することである。   Accordingly, the problem to be solved by the present invention is to provide an antistatic composition that exhibits good antistatic properties at low cost without causing the above-mentioned problems, and a hard coat formation using the same. That is.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、ウレタンアクリレート樹脂成分中に、2つのアリル基を有するアルキルアンモニウムカチオンと、特定のフルオロアルキルスルホン酸の塩を配合することにより、ウレタンアクリレート樹脂成分が重合した際に、アルキルアンモニウムカチオンがウレタンアクリレート樹脂中に組み込まれ、高い導電性と硬度を達成しうることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor, by blending an alkylammonium cation having two allyl groups and a salt of a specific fluoroalkylsulfonic acid in the urethane acrylate resin component, When the urethane acrylate resin component was polymerized, it was found that an alkyl ammonium cation was incorporated into the urethane acrylate resin to achieve high conductivity and hardness, and the present invention was completed.

すなわち本発明は、下記一般式〔1〕   That is, the present invention provides the following general formula [1]

Figure 0005041518
Figure 0005041518

(式中、RおよびRは、それぞれ炭素数1〜4のアルキル基を示すか、これらが一緒になって炭素数4又は5のアルキレン基を形成しても良く、Rは炭素数1〜4のフルオロアルキル基を示す。)
で表されるジアリルジアルキルアンモニウムカチオンのフルオロアルキルスルホン酸塩を、ウレタンアクリレート樹脂成分に含有せしめてなる帯電防止用組成物である。
(In the formula, R 1 and R 2 each represent an alkyl group having 1 to 4 carbon atoms, or they may be combined to form an alkylene group having 4 or 5 carbon atoms, and R 3 may have a carbon number. 1-4 represents a fluoroalkyl group.)
An antistatic composition comprising a urethane acrylate resin component containing a fluoroalkylsulfonic acid salt of a diallyldialkylammonium cation represented by the formula:

また本発明は、上記の帯電防止用組成物を用いて得られる帯電防止ハードコート形成物である。   Moreover, this invention is an antistatic hard-coat formation obtained by using said antistatic composition.

本発明の帯電防止用組成物を用いて形成された形成物では、ジアリルジアルキルアンモニウムカチオンのフルオロアルキルスルホン酸塩(以下、「化合物(1)」という)が、ウレタンアクリレート樹脂成分の硬化後に下記構造となってポリマー中に組み込まれる。   In the formed product using the antistatic composition of the present invention, the fluoroalkyl sulfonate of diallyldialkylammonium cation (hereinafter referred to as “compound (1)”) has the following structure after curing of the urethane acrylate resin component: And incorporated into the polymer.

Figure 0005041518
(式中、R、Rは炭素数1〜4のアルキル基またはこれらが一緒になって形成するアルキレン基を示し、Xはフルオロアルキルスルホン酸アニオンを表す。)
Figure 0005041518
(In the formula, R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms or an alkylene group formed by combining them, and X represents a fluoroalkylsulfonic acid anion.)

このようにカチオン成分がウレタンアクリレート樹脂成分と共に架橋或いはカチオン成分がポリマー化する事により、ブリードアウトが抑制される。また、樹脂本来の色調にも影響を与えず、硬度も低下せず良好な導電性を発現する。   In this way, the cation component is cross-linked with the urethane acrylate resin component or the cation component is polymerized, so that bleeding out is suppressed. In addition, it does not affect the original color tone of the resin and does not decrease the hardness, and exhibits good conductivity.

本発明の帯電防止用組成物において導電性付与剤として用いられる化合物〔1〕の構成カチオンとしては、ジアリルジメチルアンモニウム、ジアリルジエチルアンモニウム、ジアリルジプロピルアンモニウム、ジアリルジブチルアンモニウム、ジアリルピロリジニウム、ジアリルエチルメチルアンモニウム、ジアリルプロピルメチルアンモニウム、ジアリルブチルメチルアンモニウム等が挙げられる。   As the constituent cation of the compound [1] used as the conductivity imparting agent in the antistatic composition of the present invention, diallyldimethylammonium, diallyldiethylammonium, diallyldipropylammonium, diallyldibutylammonium, diallylpyrrolidinium, diallylethyl Examples include methylammonium, diallylpropylmethylammonium, diallylbutylmethylammonium and the like.

また、化合物〔1〕の構成アニオンとしては、CFSO、CSO、CSO、CSO等を挙げることができる。コスト、性能を考慮すると特にCFSOが好ましい。 Examples of the constituent anion of the compound [1] include CF 3 SO 3 , C 2 F 5 SO 3 , C 3 F 7 SO 3 , and C 4 F 9 SO 3 . In view of cost and performance, CF 3 SO 3 is particularly preferable.

化合物〔1〕の構成カチオンおよび構成アニオンは、いずれも公知化合物であり、化合物〔1〕は、これら構成カチオンのハロゲン塩と、構成アニオンのアルカリ金属塩とを、溶媒中で反応させることにより製造される。   The constituent cation and constituent anion of compound [1] are both known compounds, and compound [1] is produced by reacting a halogen salt of these constituent cations with an alkali metal salt of the constituent anion in a solvent. Is done.

一方、本発明の帯電防止組成物において用いられるウレタンアクリレート樹脂成分としては、以下のものが挙げられる。   On the other hand, examples of the urethane acrylate resin component used in the antistatic composition of the present invention include the following.

具体的には、例えば、イソシアネート化合物と水酸基含有(メタ)アクリレートとの反応物が挙げられる。このうち、イソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物が挙げられる。また、水酸基含有(メタ)アクリレートとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の単官能のものや、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等のものが挙げられる。好ましいウレタンアクリレートとしては、イソシアネート化合物と水酸基含有メタアクリレートを、OH基とNCO基の比として1:1で付加させたもの等を挙げる事ができる。   Specific examples include a reaction product of an isocyanate compound and a hydroxyl group-containing (meth) acrylate. Among these, as an isocyanate compound, isocyanate compounds, such as hexamethylene diisocyanate, tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, are mentioned, for example. Examples of the hydroxyl group-containing (meth) acrylate include monofunctional ones such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta. Examples include (meth) acrylate. Preferred urethane acrylates include those obtained by adding an isocyanate compound and a hydroxyl group-containing methacrylate at a ratio of OH group to NCO group of 1: 1.

上記ウレタンアクリレート樹脂成分には、更に有機物により表面処理したシリカ粒子などを添加しても良い。   You may add the silica particle surface-treated with the organic substance to the said urethane acrylate resin component further.

本発明の帯電防止用組成物の製造において、ウレタンアクリレート樹脂成分に対する化合物(1)の添加量は、樹脂成分100質量部に対して1〜40質量部が好ましいが、性能発現しやすい添加量としては1質量部以上がより好ましく、硬度を保持するには20質量部以下がより好ましい。   In the production of the antistatic composition of the present invention, the addition amount of the compound (1) to the urethane acrylate resin component is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the resin component. Is more preferably 1 part by mass or more, and more preferably 20 parts by mass or less for maintaining the hardness.

また、本発明の帯電防止用組成物の製造においては、硬化前の組成物の粘度を調整するために、希釈溶剤を用いても良い。これらは非重合性であれば特に限定なく用いることができ、例えばトルエン、キシレン、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル等が挙げられ、これらは単独、もしくは2種類以上を合わせて用いても良い。   In the production of the antistatic composition of the present invention, a diluent solvent may be used to adjust the viscosity of the composition before curing. These can be used without particular limitation as long as they are non-polymerizable, for example, toluene, xylene, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether Ethylene glycol monomethyl ether and the like, and these may be used alone or in combination of two or more.

本発明の帯電防止用組成物は、ウレタンアクリレート樹脂成分の重合開始のために、光重合開始剤や、熱重合開始剤を添加することができる。このうち、光重合開始剤としては、例えば2,2−エトキシアセトフェノン、1−ヒドロキシシクロへキシルフェニルケトン、ジベンゾイル、ベンゾイル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、p−メトキシベンゾフェノン、ミヒラーケトン、アセトフェノン、2−クロロチオキサントン等が挙げられる。これらは単独、もしくは2種以上を合わせて用いても良い。   In the antistatic composition of the present invention, a photopolymerization initiator or a thermal polymerization initiator can be added to initiate polymerization of the urethane acrylate resin component. Among these, examples of the photopolymerization initiator include 2,2-ethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, dibenzoyl, benzoyl, benzoin methyl ether, benzoin ethyl ether, p-methoxybenzophenone, Michler ketone, acetophenone, 2- Examples include chlorothioxanthone. These may be used alone or in combination of two or more.

また、加熱により硬化させる場合は、従来公知の熱重合開始剤(ラジカル開始剤)を用いる事ができ、例えばケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。これらは単独、もしくは2種類以上を合わせて用いても良い。   In the case of curing by heating, a conventionally known thermal polymerization initiator (radical initiator) can be used. For example, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy Examples include dicarbonate. These may be used alone or in combination of two or more.

更に、本発明の帯電防止用組成物には、必要に応じて、性能を損なわない範囲で、顔料、充填剤、界面活性剤、分散剤、可塑剤、紫外線吸収剤、レベリング剤、酸化防止剤等を添加しても良い。これらは単独、もしくは2種類以上を合わせて用いても良い。   Furthermore, the antistatic composition of the present invention can be applied to a pigment, a filler, a surfactant, a dispersant, a plasticizer, an ultraviolet absorber, a leveling agent, an antioxidant as long as the performance is not impaired. Etc. may be added. These may be used alone or in combination of two or more.

更にまた、本発明の帯電防止用組成物は、ポリエーテル骨格を持たせることにより硬度が低下するものの導電性は向上するので、ポリエリチレングリコール、ポリプロピレングリコール等を持つアクリレート、メタクリレート、ウレタンアクリレートを含有させても良い。   Furthermore, since the antistatic composition of the present invention is reduced in hardness by having a polyether skeleton, the conductivity is improved. Therefore, an acrylate, methacrylate, urethane acrylate having polyerythylene glycol, polypropylene glycol or the like is added. It may be included.

本発明の帯電防止用組成物は、ハードコートを設けるべき基材上に、公知のスプレーコート、グラビアコート、ロールコート、バーコート等の塗工手段で塗布した後、活性エネルギー線の照射ないし加熱を行えばよい。上記ハードコートを設ける基材としては、特に制限はなく、ポリエチレン、ポリプロピレン、ポリエステル、再生セルロース、ジアセチルセルロース、トリアセチルセルロース、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリスチレン、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリイミド、ナイロン等が挙げられる。好ましくは透明性に優れるトリアセチルセルロース、ポリエチレンテレフタレート、ポリカーボネートである。また、硬化させる帯電防止ウレタンアクリレート組成物に照射する活性エネルギー線は紫外線(UV)、電子線(EB)等、公知のいずれの活性エネルギー線でも良い。   The antistatic composition of the present invention is applied to a substrate on which a hard coat is to be provided by a known spray coat, gravure coat, roll coat, bar coat or other coating means, and then irradiated or heated with active energy rays. Can be done. The substrate for providing the hard coat is not particularly limited, and polyethylene, polypropylene, polyester, regenerated cellulose, diacetyl cellulose, triacetyl cellulose, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polystyrene, polyethylene terephthalate (PET), Examples include polycarbonate (PC), polyimide, and nylon. Preferred are triacetyl cellulose, polyethylene terephthalate and polycarbonate which are excellent in transparency. The active energy ray applied to the antistatic urethane acrylate composition to be cured may be any known active energy ray such as ultraviolet (UV) or electron beam (EB).

以上説明した本発明の帯電防止用組成物は、ジアリルジアルキルアンモニウムカチオンとフルオロアルキルスルホン酸との塩を帯電防止剤として用いるものであるが、この塩類のカチオン成分とウレタンアクリレート樹脂成分とが重合し、ポリマー化する。このように高分子化することにより導電性付与剤がブリードアウトすることが抑制される。また、この帯電防止剤(イオン導電剤)がほとんど無色なため樹脂本来の色調に影響を与えず透明性を保持する事が可能である。また、本発明の帯電防止剤はイオン液体の性状を示している上、ウレタンアクリレート樹脂成分への溶解性に優れている。   The antistatic composition of the present invention described above uses a salt of diallyldialkylammonium cation and fluoroalkylsulfonic acid as an antistatic agent, and the cationic component of this salt and the urethane acrylate resin component are polymerized. To polymerize. By polymerizing in this way, the conductivity imparting agent is prevented from bleeding out. Further, since this antistatic agent (ionic conductive agent) is almost colorless, it is possible to maintain transparency without affecting the original color tone of the resin. Further, the antistatic agent of the present invention exhibits the properties of an ionic liquid and is excellent in solubility in a urethane acrylate resin component.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例により何ら制約されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1
ウレタンアクリレート(アートレジンUN−3320HS;根上工業社製)樹脂固形分100質量部に対し、帯電防止剤としてジアリルジメチルアンモニウム・トリフルオロメタンスルホン酸を5質量部、イルガキュア184(チバスペシャリティーケミカルズ)を1質量部、メチルエチルケトン100質量部を混合し、2mm厚のPET板にコーティングロッド#60を用いて塗布した。
Example 1
Urethane acrylate (Art Resin UN-3320HS; manufactured by Negami Kogyo Co., Ltd.) 100 parts by mass of resin solid content, 5 parts by mass of diallyldimethylammonium trifluoromethanesulfonic acid as an antistatic agent, and 1 Irgacure 184 (Ciba Specialty Chemicals) Mass parts and 100 parts by mass of methyl ethyl ketone were mixed and applied to a 2 mm thick PET plate using a coating rod # 60.

これを70℃、3分加熱して、溶剤を飛ばした後、紫外線照射装置トスキュア401(東芝ライテック社)にて10秒間UV照射を行った。   This was heated at 70 ° C. for 3 minutes to remove the solvent, and then irradiated with UV for 10 seconds using an ultraviolet irradiation apparatus Toscure 401 (Toshiba Lighting & Technology).

試料を50%RH、25℃の環境下に2昼夜放置した後、表面抵抗率を測定した。この結果表面抵抗率は4×10Ω/□と良好な値を示し、外観はブリードや曇りも見られなかった。また鉛筆硬度をJIS−K6849に準じて評価し、5回の測定で3回以上鉛筆芯の痕が残らないものを良好としたところ、4/5と良好であった(表1には、3Hによる試験の結果を5回とも痕が残らないものを5/5のように表記した)。 The sample was left for 2 days in an environment of 50% RH and 25 ° C., and then the surface resistivity was measured. As a result, the surface resistivity showed a good value of 4 × 10 9 Ω / □, and the appearance was neither bleed nor cloudy. Also, the pencil hardness was evaluated according to JIS-K6849, and it was found to be 4/5 as good as the one with no trace of the pencil lead remaining 3 times or more after 5 measurements (Table 1 shows 3H The result of the test according to (5) is shown as 5/5 in which no trace remains.)

実施例2〜4
実施例1の帯電防止剤及びその添加量を変え、その他は同様にして表面抵抗率を測定した。この結果を表1に示す。また、添加した導電性付与剤を以下に示す。
Examples 2-4
The surface resistivity was measured in the same manner except that the antistatic agent of Example 1 and the amount of the antistatic agent were changed. The results are shown in Table 1. Moreover, the added electroconductivity imparting agent is shown below.

Figure 0005041518
化合物1:
ジアリルジメチルアンモニウムクロライドとトリフルオロメタンスルホン酸ナトリウムとを等モルで水中に入れて反応させ、濃縮後、固形分を分離した油状物を減圧乾燥して得る。
化合物2:
ジアリルエチルメチルアンモニウムクロライドとトリフルオロメタンスルホン酸ナトリウムとを等モルで水中に入れて反応させ、濃縮後、固形分を分離した油状物を減圧乾燥して得る。
化合物3:
ジアリルプロピルメチルアンモニウムクロライドとトリフルオロメタンスルホン酸ナトリウムとを等モルで水中に入れて反応させ、濃縮後、固形分を分離した油状物を減圧乾燥して得る。
化合物4:
ジアリルジメチルアンモニウムクロライドとペンタフルオロエタンスルホン酸ナトリウムとを等モルで水中に入れて反応させ、濃縮後、固形分を分離した油状物を減圧乾燥して得る。
Figure 0005041518
Compound 1:
Diallyldimethylammonium chloride and sodium trifluoromethanesulfonate are reacted in equimolar amounts in water and concentrated. After concentration, an oily product separated from the solid content is dried under reduced pressure.
Compound 2:
Diallylethylmethylammonium chloride and sodium trifluoromethanesulfonate are reacted in equimolar amounts in water, reacted, concentrated, and then dried to obtain an oily product whose solid content has been separated.
Compound 3:
Diallylpropylmethylammonium chloride and sodium trifluoromethanesulfonate are reacted in equimolar amounts in water, reacted, concentrated, and then dried to obtain an oily substance from which the solid content has been separated.
Compound 4:
Diallyldimethylammonium chloride and sodium pentafluoroethanesulfonate are reacted in equimolar amounts in water and concentrated. After concentration, an oily product separated from the solid is dried under reduced pressure.

実施例5〜6
実施例1の帯電防止剤を5質量部から7質量部(実施例5)又は10質量部(実施例6)にして同様に表面抵抗率、外観を観察した。結果を表1に示す。
Examples 5-6
The surface resistivity and appearance were similarly observed by changing the antistatic agent of Example 1 from 5 parts by mass to 7 parts by mass (Example 5) or 10 parts by mass (Example 6). The results are shown in Table 1.

比較例1〜2
実施例1の帯電防止剤をビス(トリフルオロメタンスルホニル)イミドリチウム(以下、「LiTFSI」と記す)(比較例1)、トリフルオロメタンスルホン酸リチウム(以下、「LiTF」と記す)(比較例2)に変えた他は同様にして表面抵抗率測定、外観を観察した。
Comparative Examples 1-2
The antistatic agent of Example 1 was bis (trifluoromethanesulfonyl) imide lithium (hereinafter referred to as “LiTFSI”) (Comparative Example 1), lithium trifluoromethanesulfonate (hereinafter referred to as “LiTF”) (Comparative Example 2). The surface resistivity was measured and the appearance was observed in the same manner except that it was changed to.

比較例3〜4
実施例1の帯電防止剤を1−エチル−3−メチルイミダゾリウム・トリフルオロメタンスルホン酸(以下、「EMI−TF」と記す)(比較例3)、N−ブチル−3−メチルピリジニウムトリフルオロメタンスルホン酸(以下、「BMP−TF」と記す)(比較例4)に変えた他は同様にして表面抵抗率測定、外観を観察した。この結果を表1に示す。
Comparative Examples 3-4
The antistatic agent of Example 1 is 1-ethyl-3-methylimidazolium trifluoromethanesulfonic acid (hereinafter referred to as “EMI-TF”) (Comparative Example 3), N-butyl-3-methylpyridinium trifluoromethanesulfone. Surface resistivity measurement and appearance were observed in the same manner except that the acid (hereinafter referred to as “BMP-TF”) (Comparative Example 4) was used. The results are shown in Table 1.

Figure 0005041518
Figure 0005041518

実施例1〜4、比較例1〜4で作成した試料の表面を、水に濡らし軽く絞ったコットンを用いて10回拭いた。次いで、乾いたコットンで拭き、その後24時間放置した。24時間経過後、表面抵抗率を測定した。測定後の表面抵抗率の変化度合いを抵抗変化率(%)として示した。この結果を表2に示す。   The surfaces of the samples prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were wiped 10 times using cotton that had been wetted in water and lightly squeezed. Then it was wiped with dry cotton and then left for 24 hours. After 24 hours, the surface resistivity was measured. The degree of change in surface resistivity after measurement was shown as the rate of change in resistance (%). The results are shown in Table 2.

Figure 0005041518
Figure 0005041518

以上の実施例の結果から、本発明の帯電防止ウレタンアクリレート樹脂組成物を用いて形成された帯電防止ハードコート形成物は、帯電防止性に優れ、添加される帯電防止剤が低濃度でも帯電防止性能を発現させる事が確認された。これに対し、比較例のリチウム塩類では充分な導電性が得られず、湿度変化による変動も非常に大きく、EMI−TFやBMP−TFでは十分な膜硬度が得られなかった。更に、水拭きによる帯電防止剤の性能低下度合いについて試験した結果、本発明の帯電防止剤では性能低下が少ないのに対し、EMIやBMPでは性能低下が著しかった。   From the results of the above examples, the antistatic hard coat formed by using the antistatic urethane acrylate resin composition of the present invention is excellent in antistatic properties, and even when the added antistatic agent is at a low concentration, it is antistatic. It was confirmed that the performance was exhibited. On the other hand, the lithium salt of the comparative example could not obtain sufficient conductivity, and the fluctuation due to humidity change was very large, and EMI-TF and BMP-TF could not obtain sufficient film hardness. Furthermore, as a result of testing the degree of performance degradation of the antistatic agent by wiping with water, the performance degradation was small with EMI and BMP, while the performance degradation with the antistatic agent of the present invention was small.

帯電防止用組成物は電気絶縁性を有する基体に塗付、重合させる事により、基体上に帯
電防止ハードコート形成物を形成し、基体に導電性を付与する事ができる。
The antistatic composition can be applied to a substrate having electrical insulation and polymerized to form an antistatic hard coat formed on the substrate, thereby imparting conductivity to the substrate.

そして、本発明の帯電防止用組成物を塗布する基体としては、この組成物を塗布、硬化させて被膜を形成させるものであれば、なんら制約を受けず利用することができる。この基体としては、例えば、光ディスク、各種ディスプレーに用いられるプラスチックフィルム等が挙げられる。   And as a base | substrate which apply | coats the antistatic composition of this invention, if this composition is apply | coated and hardened and a film is formed, it can utilize without being restrict | limited at all. Examples of the substrate include an optical disk and a plastic film used for various displays.

Claims (2)

下記一般式〔1〕
Figure 0005041518
(式中、R及びRは、それぞれ炭素数1〜4のアルキル基を示すか、これらが一緒になって炭素数4又は5のアルキレン基を形成しても良く、Rは炭素数1〜4のフルオロアルキル基を示す。)
で表されるジアリルジアルキルアンモニウムカチオンのフルオロアルキルスルホン酸塩を、ウレタンアクリレート樹脂成分に含有せしめてなる帯電防止用組成物を用いて得られる帯電防止ハードコート形成物であって、
前記帯電防止用組成物が、
ウレタンアクリレート樹脂成分100質量部に対し、ジアリルジアルキルアンモニウムカチオンのフルオロアルキルスルホン酸塩を1〜20質量部添加してなり、
かつ、光重合開始剤またはラジカル開始剤が添加されてなる帯電防止用組成物であることを特徴とする帯電防止ハードコート形成物。
The following general formula [1]
Figure 0005041518
(In the formula, R 1 and R 2 represents an alkyl group having 1 to 4 carbon atoms, respectively, may form an alkylene group having 4 or 5 carbon atoms they together, R 3 is the number of carbon atoms 1-4 represents a fluoroalkyl group.)
An antistatic hard coat formed by using an antistatic composition comprising a urethane acrylate resin component containing a fluoroalkylsulfonic acid salt of a diallyldialkylammonium cation represented by :
The antistatic composition is
1 to 20 parts by mass of a fluoroalkyl sulfonate of diallyldialkylammonium cation is added to 100 parts by mass of the urethane acrylate resin component,
An antistatic hard coat formed product, which is an antistatic composition to which a photopolymerization initiator or a radical initiator is added.
表面抵抗率が、10〜1012Ω/□である請求項に記載の帯電防止ハードコート
形成物。
The antistatic hard coat formed product according to claim 1 , wherein the surface resistivity is 10 8 to 10 12 Ω / □.
JP2007098944A 2007-04-05 2007-04-05 Antistatic composition and antistatic hard coat formation Active JP5041518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098944A JP5041518B2 (en) 2007-04-05 2007-04-05 Antistatic composition and antistatic hard coat formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098944A JP5041518B2 (en) 2007-04-05 2007-04-05 Antistatic composition and antistatic hard coat formation

Publications (2)

Publication Number Publication Date
JP2008255224A JP2008255224A (en) 2008-10-23
JP5041518B2 true JP5041518B2 (en) 2012-10-03

Family

ID=39979129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098944A Active JP5041518B2 (en) 2007-04-05 2007-04-05 Antistatic composition and antistatic hard coat formation

Country Status (1)

Country Link
JP (1) JP5041518B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214490B2 (en) * 2008-03-31 2013-06-19 三洋化成工業株式会社 Active energy ray-curable antistatic resin composition
US20120225301A1 (en) 2009-08-28 2012-09-06 Hunt Bryan V Optical device with antistatic coating
EP2470497A2 (en) 2009-08-28 2012-07-04 3M Innovative Properties Company Polymerizable ionic liquid comprising multifunctional cation and antistatic coatings
US8816029B2 (en) * 2009-08-28 2014-08-26 3M Innovative Properties Company Compositions and articles comprising polymerizable ionic liquid mixture, and methods of curing
RU2012131166A (en) 2009-12-22 2014-01-27 3М Инновейтив Пропертиз Компани CURABLE DENTAL COMPOSITIONS AND ARTICLES CONTAINING POLYMERIZABLE IONIC LIQUIDS
JP5509920B2 (en) * 2010-02-24 2014-06-04 帝人株式会社 PHOTOCURABLE RESIN COMPOSITION, ARTICLE HAVING THE CURED CELL
DE102010018235A1 (en) 2010-04-23 2011-10-27 Bayer Materialscience Ag Polymeric antistatic
CN103038299A (en) * 2010-06-01 2013-04-10 理研科技株式会社 Composition for use as coating material and adhesive, method for adhesive bonding, and laminated products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3092511B2 (en) * 1996-03-29 2000-09-25 荒川化学工業株式会社 Active energy ray-curable coating agent for plastic and plastic molded article surface-treated with the coating agent
JP4989813B2 (en) * 1999-03-15 2012-08-01 共栄社化学株式会社 Urethane (meth) acrylate oligomer and antistatic coating composition containing the same
JP4592334B2 (en) * 2004-06-02 2010-12-01 日本カーリット株式会社 Conductivity imparting agent and conductive resin composition
JP4412598B2 (en) * 2004-07-20 2010-02-10 第一工業製薬株式会社 Ionic polymer gel electrolyte and precursor composition thereof
JP4888680B2 (en) * 2004-11-15 2012-02-29 パイオトレック株式会社 Antistatic agent and method of using the same
JP2006245261A (en) * 2005-03-03 2006-09-14 Seiko Epson Corp Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus

Also Published As

Publication number Publication date
JP2008255224A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5041518B2 (en) Antistatic composition and antistatic hard coat formation
KR101107918B1 (en) Antistatic compositioin, and moldings, coating material, antistatic coating substance and adhesive thereof, as well as method for producing the same
JP5684444B2 (en) Antistatic hard coat composition and molded article on which antistatic hard coat layer is formed
US20080045636A1 (en) Antistatic agent composition
JP5338126B2 (en) Antistatic hard coat film-forming coating material, antistatic hard coat film, plastic substrate with antistatic hard coat film, and method for producing plastic substrate with antistatic hard coat film
US20060167126A1 (en) Ultraviolet-curable antistatic hard coating resin composition
EP3536752B1 (en) Coating composition
JP4871495B2 (en) Antistatic composition, method for producing the same, and molded article using the same
KR102076644B1 (en) Antistatic composition, method product, antistatic paint, antistatic coating, antistatic adhesive, and method of producing the antistatic composition
JP2008156430A (en) Antistatic composition and antistatic hard coat-formed article
JP2005170996A (en) Radiation curable conductive composition
JP4963813B2 (en) Antistatic hard coat resin composition and use thereof
WO2003055950A1 (en) Coating composition and antistatic hard-coated film
JP5033515B2 (en) Antistatic composition, molded article using the same, paint, antistatic coating, color resist composition for liquid crystal panel and method for producing the same
JP2003268316A (en) Coating composition for forming hard coat layer, and hard coat film
JP2005247939A (en) Hard coat film and method for producing the same
JP2002060735A (en) Glare-proof antistatic hard coating resin composition and glare-proof antistatic hard coating film form
KR20100053277A (en) Water dispersion anti static hard coating solution, and hard coating film and image display apparatus using the same
JP2004231912A (en) Active energy beam curable antistatic composition, antistatic molded article and antistatic coated article
JP6054081B2 (en) Conductive polymer composition and method for producing the same, paint containing the conductive polymer composition, and antistatic coating
JP2005316425A (en) Low refractive index layer and image display device using the same
EP3536751B1 (en) Coating composition
KR20180067549A (en) Active energy ray-curable resin composition, paint, coating film, and film
KR20210131483A (en) Antistatic hard coating composition and hard coating material having UV hardenability comprising the same
JP2005298624A (en) Conductive hard coat composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5041518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250