JP5039877B2 - Manufacturing method of rare earth metal bond magnet - Google Patents

Manufacturing method of rare earth metal bond magnet Download PDF

Info

Publication number
JP5039877B2
JP5039877B2 JP2007243701A JP2007243701A JP5039877B2 JP 5039877 B2 JP5039877 B2 JP 5039877B2 JP 2007243701 A JP2007243701 A JP 2007243701A JP 2007243701 A JP2007243701 A JP 2007243701A JP 5039877 B2 JP5039877 B2 JP 5039877B2
Authority
JP
Japan
Prior art keywords
rare earth
metal bond
earth metal
bond magnet
binder phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007243701A
Other languages
Japanese (ja)
Other versions
JP2009076631A (en
Inventor
芳文 中村
佳実 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007243701A priority Critical patent/JP5039877B2/en
Publication of JP2009076631A publication Critical patent/JP2009076631A/en
Application granted granted Critical
Publication of JP5039877B2 publication Critical patent/JP5039877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、希土類系メタルボンド磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth metal bond magnet.

従来、希土類磁石は、メタルボンド磁石の材料として用いられている。メタルボンド磁石は、希土類磁石粉末に結合相を配合して圧縮成形することにより製造され、焼結型の磁石に比べて寸法精度が高く複雑な形状に成形でき、歩留まりが少ない等の利点を有している。   Conventionally, rare earth magnets have been used as materials for metal bonded magnets. Metal bonded magnets are manufactured by blending rare earth magnet powder with a binder phase and compression-molding, and have advantages such as high dimensional accuracy and complex shape compared to sintered magnets, and low yield. is doing.

希土類系メタルボンド磁石の材料となる希土類磁石として、例えば、SmCo17等のSm−Co系の磁石、Nd−Fe−B系の磁石、Sm−Fe−N系の磁石がある。Sm−Co系の磁石は、コストが高い材料として知られているが、耐熱性が優れているため、高耐熱が要求される場合に用いられる。 Examples of rare earth magnets that can be used as materials for rare earth metal bond magnets include Sm—Co magnets such as Sm 2 Co 17 , Nd—Fe—B magnets, and Sm—Fe—N magnets. Sm—Co magnets are known as high-cost materials, but are excellent in heat resistance, and are used when high heat resistance is required.

また、Nd−Fe−B系の磁石は、耐熱性、耐食性に劣るものの、液体急冷法では、磁化方向がランダムに向いている等方性に関わらず、高磁性材料として知られている。
いわゆる、HDDR法(Hydrogenation Decomposition Desorption Recombination法)では、異方性磁石粉末にし、さらに高い磁気特性を有するものが知られている。
Nd-Fe-B magnets are known as high magnetic materials, although they are inferior in heat resistance and corrosion resistance, regardless of isotropic properties in which the magnetization direction is randomly oriented in the liquid quenching method.
In the so-called HDDR method (Hydrogenation Decomposition Desorption Recombination method), anisotropic magnet powders having higher magnetic properties are known.

最近では、上記磁気特性に匹敵する高い磁気特性を有し、かつ比較的安価な希土類磁石材料としてSm−Fe−N系磁石も注目を浴びている。
このような希土類磁石を材料とするメタルボンド磁石は、音響・映像機器、回転機機、通信機器、計測機器、自動車部品等の多分野で用いられ、需要が高まるにつれ、磁気特性向上のほか、工業的生産性、機械的強度、耐食性等の向上が要求されている。
Recently, Sm—Fe—N-based magnets have attracted attention as rare earth magnet materials having high magnetic properties comparable to the above magnetic properties and relatively inexpensive.
Metal bond magnets made from such rare earth magnets are used in many fields such as audio / video equipment, rotating machines, communication equipment, measuring equipment, automobile parts, etc. Improvements in industrial productivity, mechanical strength, corrosion resistance, and the like are required.

メタルボンド磁石の製造には、硬化処理中の希土類磁石の酸化を抑制し、磁気特性の低下を防ぐ必要があるが、特殊な熱処理炉を用いる場合、酸素を完全に取り去ることは熱処理炉の構成上困難である。これに対し、高純度窒素又はアルゴンガス等の不活性ガスによる置換、真空引きを行うと、時間及び費用がかかり生産効率を悪化させるばかりか、目的とする磁気特性を得ることは困難であった。   In the manufacture of metal bonded magnets, it is necessary to suppress the oxidation of rare earth magnets during the curing process and prevent deterioration of the magnetic properties. However, when using a special heat treatment furnace, it is necessary to remove oxygen completely. It is difficult. On the other hand, substitution with an inert gas such as high-purity nitrogen or argon gas and evacuation required time and cost, and deteriorated production efficiency, and it was difficult to obtain the desired magnetic characteristics. .

これに対し、結合層を樹脂とするメタルボンド磁石においては、磁石粉末の表面を樹脂で均一に被覆することにより、製造工程中の磁石粉末の酸化を抑制し、磁気特性および機械強度の向上を図る方法が提案されている(特許文献1)。
特開平06−302418号 公報
In contrast, in metal bond magnets with a bonding layer as a resin, the surface of the magnet powder is uniformly coated with the resin, thereby suppressing the oxidation of the magnet powder during the manufacturing process and improving the magnetic properties and mechanical strength. A method for achieving this has been proposed (Patent Document 1).
Japanese Patent Laid-Open No. 06-302418

一方、電子部品の小型化に伴い、電子部品はリフローによる半田付けが一般化している。このため磁石部品においても耐熱性が求められ、メタルボンド磁石においても200〜300℃の耐熱性が要求されている。   On the other hand, with the miniaturization of electronic components, electronic components are generally soldered by reflow. For this reason, heat resistance is also required for magnet parts, and heat resistance of 200 to 300 ° C. is also required for metal bond magnets.

成形に優れている結合相を樹脂とするメタルボンド磁石では、樹脂の耐熱温度で部品の耐熱温度が支配されるため、本要求には答えられない。
本発明は、上記問題点を解消するためになされたものであって、その目的は、磁気特性を劣化させることなく、成形性に優れかつ耐熱性を向上させた希土類メタルボンド磁石の製造方法を提供することにある。
In a metal bond magnet using a binder phase that is excellent for molding as a resin, the heat resistance temperature of the component is governed by the heat resistance temperature of the resin, and thus this requirement cannot be answered.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a rare earth metal bonded magnet having excellent moldability and improved heat resistance without deteriorating magnetic properties. It is to provide.

請求項1の発明は、希土類系磁石粉末、金属結合相および添加剤からなる混合物を圧縮成形し、圧縮成形した成形品に前記金属結合相を選択的に発熱させるマイクロ波を照射して前記金属結合相を焼結させ、前記マイクロ波は、1GHz以上、30GHz以下であることを要旨とする。 The invention according to claim 1, rare earth magnet powder, a mixture comprising a metal binding phase and additives to compression molding, the gold using microwave radiation for selectively heating said metal binder phase in the compression molded shaped article The genus binder phase is sintered, and the microwave is 1 GHz or more and 30 GHz or less .

請求項2の発明は、請求項1に記載の希土類系メタルボンド磁石の製造方法において、マイクロ波を照射して前記金属結合相を焼結させた前記成形品を、真空又は不活性ガス中で冷却することを要旨とする。   The invention of claim 2 is the method for producing a rare earth metal bond magnet according to claim 1, wherein the molded product obtained by sintering the metal binder phase by irradiating microwaves is vacuum or in an inert gas. The gist is to cool.

請求項の発明は、請求項1又は2に記載の希土類系メタルボンド磁石の製造方法において、前記成形品に対し窒素原子を含む雰囲気下でマイクロ波を照射し、前記希土類系磁石粉末の窒化と金属結合相の焼結とを同時に行うことを要旨とする。 According to a third aspect of the present invention, in the method for producing a rare earth metal bond magnet according to the first or second aspect , the molded article is irradiated with microwaves in an atmosphere containing nitrogen atoms to nitride the rare earth magnet powder. And the simultaneous sintering of the metal binder phase.

請求項の発明は、請求項1〜のいずれか1つに記載の希土類系メタルボンド磁石の製造方法において、希土類系磁石粉末の平均粒径は、2〜150μmであることを要旨とする。 The invention according to claim 4 is the method for producing a rare earth metal bond magnet according to any one of claims 1 to 3 , wherein the average particle diameter of the rare earth magnet powder is 2 to 150 μm. .

請求項1の発明によれば、希土類系磁石粉末及び金属結合相からなる混合物を圧縮成形し、金属結合相を選択的に発熱させるマイクロ波を成形品に照射する。このため、金属結合相を自己発熱させ、試料全体を均一に昇温することができる。この結果、金属結合相を瞬時に焼結することができるとともに、処理時間を短縮化できる。しかも、成形品に照射されるマイクロ波は、1GHz以上、30GHz以下であるため、アーク放電の発生を抑制するとともに、成形品を所望の温度範囲内に昇温することができる。 According to the present invention, compression molding a mixture comprising a rare earth magnet powder and a metal binder phase, and morphism light of the metal binding phase moldings microwaves to selectively heat generation. Thus, metallic bonds phases were self-heating, it is possible to uniformly raise the temperature of the whole sample. As a result, the metal binder phase can be sintered instantaneously and the processing time can be shortened. And since the microwave irradiated to a molded article is 1 GHz or more and 30 GHz or less, while suppressing generation | occurrence | production of arc discharge, it can heat up a molded article within a desired temperature range.

請求項2の発明によれば、マイクロ波照射を行った後、真空又は不活性ガス中で冷却するので、希土類系磁石粉末の酸化を抑制し、良好な磁気特性を維持することができる According to the second aspect of the present invention, after the microwave irradiation, cooling is performed in a vacuum or an inert gas, so that oxidation of the rare earth magnet powder can be suppressed and good magnetic properties can be maintained .

請求項の発明によれば、希土類系磁石粉末の窒化と、金属結合相の焼結を同時に行うので、処理時間を短縮化することができる。
請求項の発明によれば、希土類系磁石粉末として、平均粒径が2〜150μmの粉末を用いるため、磁石粉末の酸化を抑制するとともに、磁化方向を揃えながら成形する際に粒子を所望の磁化方向に揃えることができる。
According to the invention of claim 3 , since the nitriding of the rare earth magnet powder and the sintering of the metal binder phase are simultaneously performed, the processing time can be shortened.
According to the fourth aspect of the present invention, since the powder having an average particle diameter of 2 to 150 μm is used as the rare earth magnet powder, the particles of the desired particle size can be reduced when the magnet powder is molded while the magnetization direction is aligned. It can be aligned with the magnetization direction.

本発明の希土類元素−遷移金属系(以下、R−TM系という)の希土類メタルボンド磁石の製造方法について以下の工程毎に説明する。尚、Rは希土類元素のうち少なくとも1種若しくは2種以上の元素であり、TMは遷移金属元素の少なくとも1種若しくは2種以上の元素である。
(1)希土類系磁石粉末
本発明のR−TM系合金を構成する希土類元素は、Y(イットリウム)と、ランタノイド元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu)等を好適に用いることができる。特にPr、NdまたはSmを用いると、著しい磁気特性を高めることができる。また、2種以上の希土類元素を組み合わせることにより、磁気特性の残留磁束密度と保持力を向上させることができる。
The method for producing a rare earth element-transition metal (hereinafter referred to as R-TM) rare earth metal bonded magnet of the present invention will be described for each of the following steps. Note that R is at least one or more elements among rare earth elements, and TM is at least one or more elements of transition metal elements.
(1) Rare earth magnet powder The rare earth elements constituting the R-TM alloy of the present invention are Y (yttrium) and lanthanoid elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy). , Ho, Er, Tm, Yb, and Lu) can be preferably used. In particular, when Pr, Nd, or Sm is used, remarkable magnetic properties can be enhanced. Moreover, the residual magnetic flux density and coercive force of magnetic characteristics can be improved by combining two or more rare earth elements.

具体的には、SmCo、SmCo17といったSm−Co系磁石粉末や、HDDR法又は液体急冷法により製造されるNdFe14B等のNd−Fe−B系磁石粉末を用いることができる。また、Smを主とする希土類元素と、Feを主とする遷移金属と、Nを主とする格子間元素とを基本成分とするSm−Fe−N系磁石粉末を用いることができる。また、上記した希土類磁石粉末を2種以上混合してもよい。 Specifically, Sm—Co based magnet powder such as SmCo 5 or Sm 2 Co 17 or Nd—Fe—B based magnet powder such as Nd 2 Fe 14 B manufactured by HDDR method or liquid quenching method may be used. it can. In addition, Sm—Fe—N-based magnet powders containing, as basic components, rare earth elements mainly containing Sm, transition metals mainly containing Fe, and interstitial elements mainly containing N can be used. Two or more kinds of the rare earth magnet powders described above may be mixed.

以上のR−TM系又はR−TM−N系の希土類磁石粉末は、一般的な溶解鋳造法の場合、希土類金属及び遷移金属等を所定の配合比で調合して、不活性ガス雰囲気中で高周波溶解する。さらに、得られた合金インゴットを熱処理し、ジョークラッシャー、ジェットミル又はアトライター等の粉砕機で所定の粘度に粉砕する。   The above R-TM or R-TM-N rare earth magnet powder is prepared by mixing rare earth metals and transition metals at a predetermined blending ratio in an inert gas atmosphere in the case of a general melt casting method. High frequency melting. Further, the obtained alloy ingot is heat-treated and pulverized to a predetermined viscosity by a pulverizer such as a jaw crusher, a jet mill or an attritor.

液体急冷法では、上記したように作製した合金インゴットに対し、合金溶湯を高速で回転するローラに吐出し、ロールの外周面と接触させることで合金溶湯を急冷して合金薄帯を作製する。この合金薄帯を上記粉砕機にて所定の粒度に粉砕する。この溶解時、不可避的不純物として、C、B等が含まれても特に問題はない。   In the liquid quenching method, an alloy ingot produced as described above is discharged onto a roller that rotates at high speed and brought into contact with the outer peripheral surface of the roll, whereby the molten alloy is quenched to produce an alloy ribbon. The alloy ribbon is pulverized to a predetermined particle size by the pulverizer. There is no particular problem even if C, B, and the like are included as inevitable impurities during the dissolution.

磁石粉末の粒径としては、平均粒径2〜150μmが好ましい。2μm未満では、酸化されやすい他、メタルボンド磁石作成時に凝集或いはスプリングバックによる密度の向上が得られず、磁気特性が低いものとなる。また、平均粒径が150μmを超える場合には、磁場をかけて磁化方向を揃えながら成形する際に、粒子が所望の磁化方向に向かず、磁気特性の低下を引き起こす。
(2)金属結合相
金属結合相は、特に限定されないが、銅、コバルト、スズ、リン、亜鉛、銀、ニッケル、鉄、アルミニウム、モリブデン、クロム、チタン、マンガン、およびタングステンから選択される1種または2種以上の金属等を用いることができる。金属結合相は、200℃〜300℃の低融点金属が好ましい。磁石粉末と金属結合相との焼結界面は拡散相が形成されている。メタルボンド磁石の機械的特性の向上を拡散相の求める場合には、磁石粉末と同じ元素が金属結合相に含まれていることが望ましい。
(3)添加剤
添加剤は特に限定されないが、界面活性剤、カップリング剤、潤剤、離型剤、難燃剤、安定剤、無機充填剤や顔料等を用いることができる。この添加剤は、金型へ充填するための流動性、磁場をかけて磁化方向を揃えるための滑り性、金型から取り出す際の離型性、成形体の撥水性、密度向上或いは強度向上を示すものであればよく、複数種類の添加剤を組み合わせて用いてもよい。
(4)混合
上記希土類系磁石粉末、金属結合相あるいは添加剤をアトライター、ヘンシェルミキサー又はVブレンダー等で混合分散させ造粒することにより、コンパウンドを得る。特に金属結合相及び添加剤を均一に混合するため、有機溶剤等で混合脱気し、造粒粉を作成することが好ましい。
(5)圧縮成形
磁場を印加するための電磁石を金型に具備したプレス装置を用い、コンパウンドを金型内に充填し、10kOe(エルステッド)以上の磁場中又は無磁場中で、1ton以上の圧力で圧縮成形する。
The average particle size of the magnet powder is preferably 2 to 150 μm. If it is less than 2 μm, it is easy to oxidize, and density improvement due to aggregation or springback cannot be obtained when forming a metal bond magnet, resulting in low magnetic properties. On the other hand, when the average particle diameter exceeds 150 μm, the particles are not directed in the desired magnetization direction when the magnetic field is applied and the magnetization direction is aligned, which causes a decrease in magnetic properties.
(2) Metal bonded phase The metal bonded phase is not particularly limited, but is selected from copper, cobalt, tin, phosphorus, zinc, silver, nickel, iron, aluminum, molybdenum, chromium, titanium, manganese, and tungsten. Alternatively, two or more kinds of metals can be used. The metal binder phase is preferably a low melting point metal at 200 ° C to 300 ° C. A diffusion phase is formed at the sintered interface between the magnet powder and the metal binder phase. When the diffusion phase is required to improve the mechanical characteristics of the metal bond magnet, it is desirable that the same element as the magnet powder is contained in the metal binder phase.
(3) Additive The additive is not particularly limited, and surfactants, coupling agents, lubricants, mold release agents, flame retardants, stabilizers, inorganic fillers, pigments, and the like can be used. This additive provides fluidity for filling the mold, slipperiness for aligning the magnetization direction by applying a magnetic field, releasability when taking out from the mold, water repellency, density improvement or strength improvement of the molded body. As long as it is shown, a plurality of types of additives may be used in combination.
(4) Mixing The above rare earth magnet powder, metal binder phase or additive is mixed and dispersed with an attritor, Henschel mixer, V blender or the like, and granulated to obtain a compound. In particular, in order to uniformly mix the metal binder phase and the additive, it is preferable to prepare a granulated powder by mixing and deaeration with an organic solvent or the like.
(5) Compression molding Using a press apparatus equipped with an electromagnet for applying a magnetic field in a mold, the compound is filled in the mold, and a pressure of 1 ton or more in a magnetic field of 10 kOe (Oersted) or no magnetic field. Compression molding with.

液体急冷法で作成される等方性磁性材料の成形は無磁場でもよいが、異方性材料の希土類磁石粉末は、10kOe未満になると、磁化方向に向かないため10kOe以上必要である。また、金型温度を50〜150℃に上げて成形すると、添加剤の効果により粒子の滑りが良くなるため、成形圧力を低くすることができるとともに、金型の耐久性向上を図ることができる。
(6)金属結合相の焼結
圧縮成形が終了すると、本実施形態では、得られた成形品に対してマイクロ波を照射することで金属結合相を焼結させる。このように希土類磁石粉末かつまたは金属結合相を選択的かつ急速に自己発熱させることによって、750〜900℃まで数分で昇温する。このとき、試料全体が均一に昇温することにより、密度差が少なく歪みのない希土類系メタルボンド磁石を得ることができる。また、マイクロ波照射により数分で所定温度まで昇温することができるので、処理時間の短縮化するとともに磁石粉末の酸化を抑制することができる。
The isotropic magnetic material produced by the liquid quenching method may be molded without a magnetic field, but the rare earth magnet powder of anisotropic material needs to be 10 kOe or more because it is not suitable for the magnetization direction when it is less than 10 kOe. Further, when the mold temperature is raised to 50 to 150 ° C., particle slipping is improved by the effect of the additive, so that the molding pressure can be lowered and the durability of the mold can be improved. .
(6) Sintering of metal binder phase When compression molding is completed, in this embodiment, the metal binder phase is sintered by irradiating the obtained molded product with microwaves. In this way, the rare earth magnet powder and / or the metallic binder phase is selectively and rapidly self-heated, and the temperature is raised to 750 to 900 ° C. in a few minutes. At this time, by heating the entire sample uniformly, a rare earth metal bond magnet with little difference in density and no distortion can be obtained. Moreover, since the temperature can be raised to a predetermined temperature in a few minutes by microwave irradiation, the treatment time can be shortened and oxidation of the magnet powder can be suppressed.

成形品に照射するマイクロ波は、1GHz以上30GHz以下が好ましい。1GHz未満では、アーク放電が生じやすく、30GHzを超えると所望する温度以上に加熱されてしまう。また、雰囲気は、磁石の酸化抑制の観点から真空又は窒素等の不活性ガス中がより好ましい。   The microwave applied to the molded product is preferably 1 GHz or more and 30 GHz or less. If it is less than 1 GHz, arc discharge tends to occur, and if it exceeds 30 GHz, it will be heated to a desired temperature or higher. The atmosphere is more preferably in an inert gas such as vacuum or nitrogen from the viewpoint of suppressing oxidation of the magnet.

さらに、金属結合相の焼結と希土類磁石粉末の窒化を同時に行う場合は、窒素0.1〜5MPaの圧力下が好ましい。0.1MPa未満では、窒化が粒子内部まで侵入せず表面のみに止まり、5MPaを超えると粒子表面において、過剰窒化となる。   Further, when sintering the metal binder phase and nitriding the rare earth magnet powder at the same time, a pressure of 0.1 to 5 MPa of nitrogen is preferable. If it is less than 0.1 MPa, nitridation does not penetrate into the inside of the particle and stops only on the surface, and if it exceeds 5 MPa, excessive nitridation occurs on the particle surface.

また、窒化する希土類磁石粉末は、R−TM系を主成分とするものが好ましく、Sm−Fe系、Nd−Fe系等の希土類磁石粉末等を用いることができる。
(7)冷却処理
マイクロ波照射を行った後、金属結合相を焼結させた成形品の冷却処理を行う。即ち、マイクロ波の照射を終了すると、希土類磁石粉末自身は迅速に冷却されるものの、多少の酸化は免れない。これに対し、マイクロ波の照射出力を低下しながら、冷却させる方法も試みたが、ある出力以下になると酸化反応が優先的になり僅かではあるが磁気特性の低下が見られる。このため、真空引き、あるいは、窒素、アルゴン等の不活性ガス中にて室温まで冷却する必要があり、外部冷却を併用して行うことも場合によっては好ましい。
Further, the rare earth magnet powder to be nitrided is preferably composed mainly of R-TM system, and rare earth magnet powder such as Sm-Fe system and Nd-Fe system can be used.
(7) Cooling treatment After performing microwave irradiation, a cooling treatment is performed on the molded product obtained by sintering the metal binder phase. That is, when the microwave irradiation is finished, the rare earth magnet powder itself is rapidly cooled, but some oxidation is inevitable. On the other hand, a method of cooling while reducing the microwave irradiation output was also tried. However, when the output is lower than a certain output, the oxidation reaction is preferential and a slight decrease in magnetic properties is observed. For this reason, it is necessary to evacuate or cool to room temperature in an inert gas such as nitrogen or argon, and it is preferable in some cases to perform external cooling in combination.

次に、上記のように構成した本実施形態の効果を以下に記載する。
(1)本実施形態では、希土類磁石粉末、金属結合相及び添加剤からなる混合物を圧縮成形し、その成形品にマイクロ波を照射する。これによって、希土類磁石粉末かつまたは金属結合相を選択的かつ急速に自己発熱させることができ、試料全体(成形品全体)を均一に昇温し低温で焼結できる。
Next, effects of the present embodiment configured as described above will be described below.
(1) In this embodiment, a mixture comprising a rare earth magnet powder, a metal binder phase and an additive is compression molded, and the molded product is irradiated with microwaves. As a result, the rare earth magnet powder and / or the metal binder phase can be selectively and rapidly self-heated, and the entire sample (the entire molded product) can be uniformly heated and sintered at a low temperature.

結合相である金属を低融点かつあるいは微粉とすることで、金属結合相の焼結温度を下げることが可能であり、磁石粉末の表面拡散を僅かに抑えることができる。これにより、従来の焼結磁石で問題となる焼結収縮による形状変化や、焼結温度環境による磁石粉末の磁石特性の劣化を無くすことが可能である。   By making the metal that is the binder phase have a low melting point and / or fine powder, the sintering temperature of the metal binder phase can be lowered, and the surface diffusion of the magnet powder can be slightly suppressed. Thereby, it is possible to eliminate the shape change due to sintering shrinkage and the deterioration of the magnet characteristics of the magnet powder due to the sintering temperature environment, which are problems with conventional sintered magnets.

さらに、結合相を金属にすることで、リフロー耐熱性、機械的強度は、樹脂結合相を有するメタルボンド磁石より優れた特性を得ることができる。
また、成形品にマイクロ波を照射する際、真空又は窒素等の不活性ガスの雰囲気で行うため、磁石の酸化が抑制される。
Furthermore, by using a metal as the binder phase, reflow heat resistance and mechanical strength can be obtained with characteristics superior to those of a metal bond magnet having a resin binder phase.
Further, since the molded product is irradiated with microwaves in an atmosphere of an inert gas such as vacuum or nitrogen, the oxidation of the magnet is suppressed.

(2)本実施形態では、金属結合相を焼結させた成形品を、真空又は不活性ガス中で冷却するので、希土類磁石粉末の酸化を抑制し、良好な磁気特性を維持することができる。
(3)本実施形態では、成形品に照射するマイクロ波の周波数を、1GHz以上、30GHz以下の範囲にした。このため、低周波数で発生しやすいアーク放電を抑制することができる。また、周波数が高すぎることにより所望の温度以上に加熱されてしまうことを防止し、成形品を所望の温度範囲に加熱することができる。
(2) In this embodiment, since the molded product obtained by sintering the metal binder phase is cooled in a vacuum or an inert gas, oxidation of the rare earth magnet powder can be suppressed and good magnetic properties can be maintained. .
(3) In the present embodiment, the frequency of the microwave applied to the molded product is in the range of 1 GHz or more and 30 GHz or less. For this reason, the arc discharge which is easy to generate | occur | produce at a low frequency can be suppressed. Moreover, it can prevent that it heats more than desired temperature because a frequency is too high, and can heat a molded article to a desired temperature range.

(4)本実施形態では、窒化雰囲気でかつ0.1〜5MPaの加圧下で成形品に対しマイクロ波を照射することにより、希土類磁石粉末の窒化と金属結合相の焼結とを同時に行うことを可能にした。このため、窒化工程と金属結合相の焼結とを別に行う場合に比較して処理時間を短縮化することができる。   (4) In this embodiment, the nitriding of the rare earth magnet powder and the sintering of the metal binder phase are performed simultaneously by irradiating the molded product with microwaves in a nitriding atmosphere and under a pressure of 0.1 to 5 MPa. Made possible. For this reason, processing time can be shortened compared with the case where a nitriding process and sintering of a metal binder phase are performed separately.

(5)本実施形態では、希土類磁石粉末の平均粒径を、2〜150μmにした。このため、磁石の表面積が大きくなることによる磁石の酸化を抑制するとともに、磁化方向を揃えながら成形する際に粒子に所望の磁化方向に揃えることができる。   (5) In this embodiment, the average particle diameter of the rare earth magnet powder is set to 2 to 150 μm. For this reason, while suppressing the oxidation of the magnet by the surface area of a magnet becoming large, when shape | molding, aligning a magnetization direction, it can align with a particle | grain desired magnetization direction.

Claims (4)

希土類系磁石粉末、金属結合相および添加剤からなる混合物を圧縮成形し、圧縮成形した成形品に前記金属結合相を選択的に発熱させるマイクロ波を照射して前記金属結合相を焼結させ
前記マイクロ波は、1GHz以上、30GHz以下である
ことを特徴とする希土類系メタルボンド磁石の製造方法。
Rare earth magnet powder, compression molding a mixture comprising a metal binding phase and additives, said metal binder phase in the compression molded shaped article is irradiated with microwaves to selectively heat generation by sintering the metals bonded phase ,
The method of manufacturing a rare earth metal bond magnet, wherein the microwave is 1 GHz or more and 30 GHz or less .
請求項1に記載の希土類系メタルボンド磁石の製造方法において、
マイクロ波を照射して前記金属結合相を焼結させた前記成形品を、真空又は不活性ガス中で冷却することを特徴とする希土類系メタルボンド磁石の製造方法。
In the manufacturing method of the rare earth metal bond magnet according to claim 1,
A method for producing a rare earth metal bond magnet, characterized in that the molded article obtained by sintering the metal binder phase by irradiation with microwaves is cooled in a vacuum or an inert gas.
請求項1又は2に記載の希土類系メタルボンド磁石の製造方法において、
前記成形品に対し窒素原子を含む雰囲気下でマイクロ波を照射し、前記希土類系磁石粉末の窒化と金属結合相の焼結とを、同時に行うことを特徴とする希土類系メタルボンド磁石の製造方法。
In the manufacturing method of the rare earth metal bond magnet according to claim 1 or 2 ,
A method for producing a rare earth metal bond magnet, wherein the molded article is irradiated with microwaves in an atmosphere containing nitrogen atoms, and nitridation of the rare earth magnet powder and sintering of a metal binder phase are performed simultaneously. .
請求項1〜のいずれか1つに記載の希土類系メタルボンド磁石の製造方法において、
希土類系磁石粉末の平均粒径は、2〜150μmであることを特徴とする希土類系メタルボンド磁石の製造方法。
In the manufacturing method of the rare earth metal bond magnet according to any one of claims 1 to 3 ,
The method for producing a rare earth metal bond magnet, wherein the rare earth magnet powder has an average particle diameter of 2 to 150 μm.
JP2007243701A 2007-09-20 2007-09-20 Manufacturing method of rare earth metal bond magnet Expired - Fee Related JP5039877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243701A JP5039877B2 (en) 2007-09-20 2007-09-20 Manufacturing method of rare earth metal bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243701A JP5039877B2 (en) 2007-09-20 2007-09-20 Manufacturing method of rare earth metal bond magnet

Publications (2)

Publication Number Publication Date
JP2009076631A JP2009076631A (en) 2009-04-09
JP5039877B2 true JP5039877B2 (en) 2012-10-03

Family

ID=40611346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243701A Expired - Fee Related JP5039877B2 (en) 2007-09-20 2007-09-20 Manufacturing method of rare earth metal bond magnet

Country Status (1)

Country Link
JP (1) JP5039877B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070827A1 (en) * 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare earth anisotropic magnet and process for production thereof
US20130266473A1 (en) * 2012-04-05 2013-10-10 GM Global Technology Operations LLC Method of Producing Sintered Magnets with Controlled Structures and Composition Distribution
KR101641795B1 (en) * 2014-12-24 2016-07-22 주식회사 포스코 Method for manufacturing R-T-B-based sintered magnet
JP6620570B2 (en) * 2016-01-28 2019-12-18 Tdk株式会社 Method for producing metal bonded magnet
CN111566766B (en) * 2017-12-28 2022-11-15 昭和电工材料株式会社 Method for producing rare earth metal bonded magnet and rare earth metal bonded magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585816A (en) * 1991-09-30 1993-04-06 Tokin Corp Production of ni-zn ferrite
JPH05135978A (en) * 1991-11-14 1993-06-01 Seiko Epson Corp Manufacture of rare earth element magnet
JP4709340B2 (en) * 1999-05-19 2011-06-22 株式会社東芝 Bond magnet manufacturing method and actuator
JP2001151575A (en) * 1999-11-26 2001-06-05 Kyocera Corp Method of producing aluminum nitride sintered compact
JP2004124122A (en) * 2002-09-30 2004-04-22 Sumitomo Special Metals Co Ltd Method for imparting durability against liquid fuel to annular bond magnet
JP4605436B2 (en) * 2004-03-26 2011-01-05 Tdk株式会社 Sintered magnet sintering jig and method of manufacturing sintered magnet

Also Published As

Publication number Publication date
JP2009076631A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP5334175B2 (en) Anisotropic bonded magnet manufacturing method, magnetic circuit, and anisotropic bonded magnet
JP2011042837A (en) Magnetically anisotropic magnet material and production method therefor
JP5039877B2 (en) Manufacturing method of rare earth metal bond magnet
EP1993110A1 (en) Method of manufacturing rare-earth magnet powder and method of manufacturing rare-earth bonded magnet
JP5039878B2 (en) Method for producing rare earth sintered magnet and method for producing rare earth bonded magnet
WO2003085684A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
KR20180096334A (en) A Fabricating method of magnet of Nd-Fe-B system
JP5757394B2 (en) Rare earth permanent magnet manufacturing method
JP7167665B2 (en) Rare earth magnet and manufacturing method thereof
US20080298995A1 (en) Method of manufacturing rare-earth bond magnet
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JP3731597B2 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and manufacturing method thereof
KR20200144853A (en) Manufacturing method of sintered magnet
JP7309260B2 (en) Manufacturing method of sintered magnet
JP2016066675A (en) Rare earth isotropic bond magnet
KR102600123B1 (en) Manufacturing method of sintered magnet
KR20200023107A (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
JP2009158860A (en) Method of manufacturing bond magnet, bond magnet, and manufacturing apparatus
JP2005312300A (en) Power motor
JP2006144048A (en) Method for producing rare earth-transition metal-nitrogen based magnet powder, composition for bond magnet using the same, and bond magnet
JP6620570B2 (en) Method for producing metal bonded magnet
CN114999756A (en) Alloy binder, composite rare earth permanent magnetic material and preparation method thereof
JP2012186212A (en) Manufacturing method for magnetic member, and magnetic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees