JP5037438B2 - ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法 - Google Patents

ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法 Download PDF

Info

Publication number
JP5037438B2
JP5037438B2 JP2008161052A JP2008161052A JP5037438B2 JP 5037438 B2 JP5037438 B2 JP 5037438B2 JP 2008161052 A JP2008161052 A JP 2008161052A JP 2008161052 A JP2008161052 A JP 2008161052A JP 5037438 B2 JP5037438 B2 JP 5037438B2
Authority
JP
Japan
Prior art keywords
hole
base
inner cover
helium gas
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008161052A
Other languages
English (en)
Other versions
JP2010003356A5 (ja
JP2010003356A (ja
Inventor
貢記 上船
貴子 早川
好之 廣野
勝 村西
英明 前田
Original Assignee
エイチジーエスティーネザーランドビーブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイチジーエスティーネザーランドビーブイ filed Critical エイチジーエスティーネザーランドビーブイ
Priority to JP2008161052A priority Critical patent/JP5037438B2/ja
Priority to US12/488,501 priority patent/US8248724B2/en
Publication of JP2010003356A publication Critical patent/JP2010003356A/ja
Publication of JP2010003356A5 publication Critical patent/JP2010003356A5/ja
Application granted granted Critical
Publication of JP5037438B2 publication Critical patent/JP5037438B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B25/00Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
    • G11B25/04Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
    • G11B25/043Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/1486Control/regulation of the pressure, e.g. the pressure inside the housing of a drive

Landscapes

  • Moving Of Heads (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、ディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法に関し、特に、密閉筐体内に低密度ガスを再注入するための封止手法に関する。
近年のハードディスク・ドライブ(以下、HDD)は、大容量・高記録密度、さらには高速アクセスに対する要求から、磁気ディスクを高速回転させ、ヘッド・ジンバル・アセンブリ(以下においてHGA)を高速駆動させている。このため、少なからず、空気の乱れ(風乱)が生じ、磁気ディスクやHGAに振動が発生する。この風乱振動は、高密度に記録された磁気ディスク上のデータにヘッドを位置決めする際の大きな障害となる。風乱の発生はランダムであり、その大きさや周期を予測することは難しく、迅速かつ正確な位置決め制御は、複雑・困難になるためである。また、風乱振動は騒音の要因ともなり装置の静粛性を損なう要因ともなる。
高速回転に伴う装置内の空気の作用で発生する問題としては、上記以外に消費電力の増加がある。磁気ディスクを高速で回転させると、その近傍の空気も一緒に引きずられて回転する。一方、磁気ディスクから離れた空気は静止しているため、この間にせん断力が発生し、ディスク回転を止めようとする負荷となる。これは風損と呼ばれ、高速回転になればなるほど大きくなる。この風損に逆らって高速回転を行うには、モータは大きな出力を必要とし、大きな電力を必要とする。
ここで、前記風乱及び風損は装置内部の気体の密度に比例することに着目し、密閉されたHDD内において、空気の代わりに低密度の気体を封入して風乱や風損を低減しようとするアイデアがある。空気より低密度の気体としては、水素やヘリウムなどが考えられるが、実使用を考慮すると、効果が大きく、安定していて安全性の高いヘリウムが最適と考えられる。ヘリウム・ガスを封入したHDDでは、上記問題を解決し、迅速かつ正確な位置決め制御、省電力、良好な静粛性を実現できる。
しかし、低密度の気体は、その分子が小さく、拡散係数は大きいため、通常のHDDに用いられている筐体では、密閉性が低く、通常使用中に、低密度の気体が簡単に漏出してしまうという課題があった。そこで、ヘリウム・ガスなどの低密度の気体(以下において低密度ガス)を密封可能にすべく、例えば、特許文献1、2のような従来例が提案されている。
米国特許出願公開第2005/0068666号明細書 特開2007−280555号公報
上述のように、ヘリウム・ガスなどの低密度ガスは非常に漏出しやすい気体であるため、HDDに対する封止方法としては溶接、あるいは半田付けが考えられる。また、HDDの組み立て後の検査工程において不良と判定された場合、そのHDD内の部品を交換して修復することが行われる。この修復を容易に行うことができるように、低密度ガスを封入した後、検査工程が終了するまでは、溶接、半田付けを行わないようにすることが望ましい。
そこで、上記特許文献1は、このジレンマを解決する手法の一つとして、カバーを二重にして封止する方法を開示している。この方法は、検査工程終了まで、ヘリウム・ガスの透過性が低いガスケットを用いた分解交換容易な一次カバーをベースに固定し、検査合格後に二次カバーをとりつけて溶接もしくは半田付けにより接合、密閉する。このように、二重カバー構造を利用することで、HDD内にヘリウム・ガスを封入すると共に、検査後の分解交換を容易に行うことができる。
完成したHDDからのヘリウム・ガスの漏れを防止するため、溶接もしくは半田付けによる二次カバーの接合部分にヘリウム・ガスのリークが存在しないことを検査する。この検査においてヘリウム・ガスのリークが発見されると、そのリーク箇所を溶接もしくは半田付けにより補修する。リーク孔が小さくヘリウム・ガスのリーク量が少ない場合、補修後のHDD内に十分なヘリウム・ガスが残っているため、HDDは設計されたパフォーマンスを示すことができる。
しかし、リーク孔が大きい、あるいは複数のリーク箇所が存在することでリーク箇所の補修に時間がかかる場合、筐体からのヘリウム・ガスのリーク量が大きくなる。リークにより筐体内のヘリウム・ガスが規定量未満となり、HDDが設計された性能を実現できない場合、筐体内にヘリウム・ガスを、もう一度、封入することが必要となる。しかし、半田や溶接により接合した二次カバーを有する筐体を分解するには多くの作業と時間がかかり、特に、溶接により密閉されている場合にその分解は困難である。
あるいは、製造時のリーク検査をパスした密閉HDDであっても、ユーザの使用環境下において、その筐体内からヘリウム・ガスが徐々に漏れ出て、内部のヘリウム・ガスが規定量未満まで減少することが考えられる。この場合においても、HDDの筐体内にヘリウム・ガスを、再度、封入することが必要である。
従って、ヘリウム・ガスなどの低密度ガスが筐体内に封入されているHDDを完成した後、容易に、そして効率的に、などの低密度ガスをHDDの筐体内に再封入することができる技術が望まれる。
本発明の一態様は、密閉された筐体を有するディスク・ドライブに対して、低密度ガスを再注入する方法である。この方法は、密閉された筐体を有するディスク・ドライブを設置する。前記密閉された筐体の外部と内部を貫通する孔から低密度ガスを再注入する。前記孔を金属層と接着層とを有する封止ラベルによりふさぐ。これにより、密閉筐体を有するディスク・ドライブに低密度ガスを容易に再封入することができる。
好ましい例において、前記筐体の外面から、前記孔を形成し、前記孔から前記低密度ガスを再注入する。これにより、筐体の製造において低密度ガスを再注入するための孔を形成する必要がなく、製造効率の低下を避けることができる。さらに好ましくは、前記筐体の外表面上に保護ラベルがはってあり、前記保護ラベルをはがした位置に前記孔を形成する。これにより、新たに孔を形成することによるリーク経路の生成を防ぐことができる。
前記孔から、前記筐体内に配置されているフィルタを介して、前記低密度ガスを前記筐体内に再注入することが好ましい。これにより、部品が実装されている筐体内部への塵埃の侵入を防ぐことができる。さらに前記筐体は、ベースと、前記ベースに固定された内側カバーと、前記ベースに接合され前記内側カバーを覆う外側カバーと、を有し、前記孔は前記外側カバーにあり、前記外側カバーの孔と、前記内側カバーに予め形成されている孔と、前記内側カバーの孔の内側にあるフィルタと、を介して、前記低密度ガスを前記ベース内に再注入することが好ましい。これにより、部品が実装されている筐体内部への塵埃の侵入を防ぎつつ、容易かつ効率的に低密度ガスを再注入することができる。
前記筐体は、ベースと、前記ベースに固定された内側カバーと、前記ベースに接合され前記内側カバーを覆う外側カバーと、を有し、前記筐体は、前記外側カバーからその対面までのギャップがその周囲よりも大きい部分を有し、前記低密度ガスを再注入するための前記孔を、前記部分内の前記外側カバーに形成することが好ましい。これにより、新たに孔を形成する際に筐体に傷がつくことを避けることができる。
さらに、前記内側カバーは、前記ベースに対して、ガスケットを介して固定されており、前記部分は前記ガスケットの内側にあり、前記内側カバーに形成されている凹部を含み、前記外側カバーの前記凹部と対向する位置に、前記低密度ガスを再注入するための前記孔を形成することが好ましい。これにより、筐体の外形を小さくすることができる。
あるいは、前記内側カバーは、前記ベースに対して、ガスケットを介して固定されており、前記部分は前記ガスケットの外側にあり、前記内側カバーに形成されている孔を介して前記ベースの一部に対向する位置に、前記低密度ガスを再注入するための前記孔を形成することが好ましい。これにより、より確実に、新たに孔を形成する際に新たなリーク経路が生成されることを避けることができる。
好ましくは、前記孔の径は2.0mm以下であり、さらに好ましくは、前記封止ラベルの径は10mm以上である。これにより、効果的に低密度ガスの再注入と孔の封止を行うことができる。
好ましい他の例において、前記孔は予め形成されており、前記孔は金属薄膜と接着層とを有する封止ラベルでふさがれており、前記封止シールをはがして、前記孔から低密度ガスを再注入し、前記低密度ガスの再注入後に、前記孔を新しい封止ラベルでふさぐ。これにより、新たに孔を形成することによる筐体の破損や新たなリーク経路の生成を確実に避けることができる。
本発明の他の態様に係るディスク・ドライブは、ベースと前記ベースに接合されているカバーとを有する密閉された筐体と、前記ベース内にあるディスクと、前記ベース内において前記ディスクを回転するモータと、前記ベース内において前記ディスクにアクセスするヘッド・スライダと、前記ベース内において前記ヘッド・スライダを支持し、前記ヘッド・スライダを前記ディスク上で移動する移動機構と、前記密閉された筐体内に封入されている低密度ガスと、前記筐体の外側と内側を貫通する前記低密度ガスの再注入部を覆うように貼付されたラベルとを有する。これにより、密閉筐体を有するディスク・ドライブに低密度ガスを容易に再封入することができる。
好ましくは、前記カバーの内側にガスケットを設けた第2のカバーを設ける。これにより、筐体を仮密閉した状態で、ディスク・ドライブのテストを行うことができる。さらに好ましくは、前記第2のカバーに、前記低密度ガスを前記ベース内に再注入する貫通孔を設ける。これにより、筐体外面に設けた孔から低密度ガスを容易に再注入することができる。あるいは、前記カバーと前記第2のカバーとは、前記再注入部と前記貫通孔とを繋ぐ通路の一部を構成する接着シートにより接着されていることが好ましい。これにより、二つのカバーの強度を上げると共に、効率的に低密度ガスを再注入することができる。好ましい例において、前記再注入部に予め孔を設け、前記ラベルはその孔を封止する密閉ラベルである。これにより、容易に低密度ガスを再注入することができる。
本発明によれば、密閉筐体を有するディスク・ドライブに低密度ガスを容易に再封入することができる。
以下に、本発明の好ましい実施の形態を説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略及び簡略化がなされている。又、各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略されている。本実施形態においては、ディスク・ドライブの一例として、ハードディスク・ドライブ(HDD)について説明する。
本形態のHDDは密閉筐体を有し、その筐体内部に空気よりも密度が低いガス(低密度ガス)が封入されている。図1は、本実施形態に係る密閉HDDの構成を模式的に示す分解斜視図である。HDDは、ヘッド・ディスク・アセンブリ10(以下においてHDA)と、HDA10の外部底面に固定された制御回路基板(不図示)とを有している。HDA10は、ベース102、一次カバーである内側カバー201、接着層301、そして、二次カバーである外側カバー401を有している。これらが筐体の主要部品となる。
外側カバー401の外側表面に、封止ラベル411が付着されている。封止ラベル411は、外側カバー401に形成されている低密度ガス再注入用孔(図1において不図示)を塞いでいる。低密度ガス再注入用孔とそれを塞ぐ封止ラベル411については後に詳述する。
内側カバー201は、ガスケット(図1において不図示)を介してベース102にネジによって固定される。図1においては、内側カバー201のネジ用孔211a〜211fが示されている。内側カバー201は、これらの他、スピンドル・モータ用及びアクチュエータ用のネジ用孔211g〜211jが形成されている。
ベース102と内側カバー201とが形成する内部の収容空間内には、HDA10を構成する各構成部品が収容されている。なお、ネジ用孔211a〜211jを含む内側カバー201の複数のネジ用孔は、封止ラベル(不図示)により塞がれる。また、低密度ガスをベース102と内側カバー201とが形成する内部の収容空間内に注入するための孔213が凹部214内に形成されている。この孔213については後に詳述する。
図1に明示した各構成要素について説明を行う前に、図2を参照して、内側カバー201とベース102とが形成する収容空間内の構成について説明を行う。なお、収容空間内の各構成要素の動作は、制御回路基板上の制御回路が制御する。HDDの各構成要素は、ベース102内に収容されている。
ヘッド・スライダ105は、データを記憶するディスクである磁気ディスク101へアクセス(リードもしくはライト)する。ヘッド・スライダ105は、外部ホスト(不図示)との間で入出力されるデータを書き込み及び/又は読み出しを行うヘッド素子部と、そのヘッド素子部がその面上に形成されているスライダとを有する。ヘッド素子部は、電気信号を磁界に変換する記録素子及び/又は磁気ディスク101からの磁界を電気信号に変換する再生素子を有する。
アクチュエータ106は、ヘッド・スライダ105を支持し、ボイス・コイル・モータ(VCM)109によって駆動されて回動軸107において回動する。アクチュエータ106及びVCM109のアセンブリはヘッド・スライダ105の移動機構である。アクチュエータ106は、ヘッド・スライダ105が配置された長手方向におけるその先端部から、サスペンション110、アーム111、及びフラットコイル113の順で結合された各構成部材を有する。VCM109は、フラットコイル113とステータ・マグネット(不図示)などの要素から構成されている。サスペンション110とヘッド・スライダ105とによって、ヘッド・ジンバル・アセンブリ(HGA)を構成する。
ベース102に固定されたスピンドル・モータ(SPM)103は、磁気ディスク101を所定の角速度で回転する。磁気ディスク101からのデータの読み取り/書き込みのため、アクチュエータ106は回転している磁気ディスク101のデータ領域上空でヘッド・スライダ105を移動する。スライダの空気軸受面(Air Bearing Surface:ABS)と回転している磁気ディスク101との間の空気の粘性による圧力が、サスペンション110によって磁気ディスク101方向に加えられる圧力とバランスすることによって、ヘッド・スライダ105は磁気ディスク101上を、ギャップを置いて浮上する。
磁気ディスク101の回転が停止する等のときには、アクチュエータ106はヘッド・スライダ105をデータ領域からランプ115に退避させる。尚、ヘッド・スライダ105がデータ書き込み/読み出し処理を行わない場合に、磁気ディスク101の内周に配置されているゾーンに退避するCSS(Contact Start and Stop)方式に、本発明を適用することも可能である。HDDは、1もしくは複数枚の、片面記憶あるいは両面記憶の磁気ディスクを有する。
図1に戻って、本形態のHDA10の筐体は、上記各構成部品を収容するベース102、ベース102の上部開口を塞ぐ内側カバー201、内側カバー201を覆うように配置された外側カバー401、そして内側カバー201と外側カバー401との間にあって、それらを接着する接着層301を有している。本形態の接着層301の外形は、外側カバー401及び内側カバー201の外形よりも小さい。接着層301には、スリット311が形成されている。このスリット311については後に詳述する。
接着層301は、外側カバー401と内側カバー201とを接着している。溶接などによって固定するため、あるいは筐体サイズが規格で決められていることなどから、外側カバー401は一般に薄く形成され、その強度が低い。このため、接着層301が外側カバー401を内側カバー201に接着固定することで、外側カバー401を補強する。
本形態のHDDは、収容空間内に空気よりも密度が小さい低密度ガスが封入される。これによって、磁気ディスク101の回転やアクチュエータ106の回動による風乱、風損を抑制する。使用する低密度ガスは、水素ガスやヘリウム・ガスが考えられるが、効果が大きく、安定していて安全性の高いヘリウム・ガスが最適であり、以下においてはヘリウム・ガスを例として説明する。
HDDは、取り外し可能な内側カバー201と、ヘリウム・ガスの漏れを防ぐ外側カバー401とを有しており、製造工程におけるリワークを容易とすると共に、最終製品としてHDDからヘリウム・ガスが漏れ出ることを効果的に防止することができる。HDDの製造は、ヘッド・スライダ105を製造し、ヘッド・スライダ105とは別に、サスペンション110を製造する。ヘッド・スライダ105をサスペンション110に固着してHGAを製造する。その後、HGAにアーム111及びフラットコイル113を固定して、アクチュエータ106とヘッド・スライダ105とのアセンブリであるヘッド・スタック・アセンブリ(HSA)を製造する。
製造されたHSAの他、SPM103、磁気ディスク101などの構成部品をベース102内に実装した後、内側カバー201をネジによってベース102に固定する。図3は、本形態のHDD1の筐体構造を模式的に示す断面図である。図3において、ベース102内の構成部品は省略されている。図3に示すように、内側カバー201とベース102との間には、フッ素ゴムなどの弾性体で形成されたリング状のガスケット216が配置されている。内側カバー201は、ステンレス、アルミニウム、真鍮などの板材で形成される。ガスケット216は、ベース102の内部空間を囲むように内側カバー201に設けられており、ヘリウム・ガスをベース102と内側カバー201との間の空間に仮密封できる構造となっている。図において、スピンドル・モータ用ネジ用孔211gは、封止ラベル231で封止されている。
ガスケット216が固着した内側カバー201をベース102に固定した後、内側カバー201とベース102とが構成する空間内にヘリウム・ガスを封入する。内側カバー201に形成されている孔213からヘリウム・ガスをベース102内に注入する。例えば、チャンバ内に組み立てた上記アセンブリを配置し、チャンバの真空引きとヘリウム・ガス充填とを繰り返すことでヘリウム・ガスを注入する。
この処理により、内側カバー201の孔213から内部にヘリウム・ガスが入り込み、アセンブリの内部空間がヘリウム・ガスで満たされる。アセンブリをチャンバから取り出し、内側カバー201の孔213を封止ラベル(不図示)で塞ぐ。これにより、ヘリウム・ガスが、ベース102と内側カバー201との間の空間に仮密封される。
内側カバー201とベース102とが構成する空間内にヘリウム・ガスが封入された状態において、制御回路基板をそのアセンブリに実装し、外側カバー401を固定する前にサーボ書き込みやHDDの動作検査を行う。従って、サーボ書き込み及び検査工程においては、外側カバー401と接着層301とは、まだ実装されていない。
検査工程は、仕様・性能レベルをクリアできていない不良部品がないか検査する。不良部品が発見された場合、その装置を組み立て工程に戻し、一度取り付けた内側カバー201を外し、その不良部品のみを交換する修復作業(リワーク)を行う。内側カバー201はネジよって固定されているに過ぎず、簡単に取り外すことができるため、リワーク処理を妨げることはない。
検査工程において仕様・性能レベルをクリアした装置は、再度、組み立て工程に移行し、接着層301と外側カバー401とが実装される。外側カバー401を接合する前に、内側カバー201の孔213を塞いでいた封止ラベルを剥がす。これにより、外側カバー401を接合した後のリーク検査を実効あるものとする。筐体内のヘリウム・ガスが漏れる可能性が高い箇所として、ベース102と外側カバー401の接合箇所が挙げられる。当該箇所を完全に密封すべく、図1に示すベース102の壁上に形成されているリッジ124上面に、外側カバー401をレーザ溶接あるいは半田接合する。図4の例は、外側カバー401とリッジ124との溶接による接合部461を示している。
図1及び4に示すように、リッジ124はベース102の上部開口及び内側カバー201の周囲を囲んでおり、外側カバー401とリッジ124との接合部461も、それらを囲むように形成される。外側カバー401の接合により、筐体内の空間が密封される。レーザ溶接あるいは半田接合を行う場合は、その耐久性・信頼性やコストの観点から、ベース102と外側カバー401の材料を選定する必要がある。
例えば、アルミニウム・ダイキャストで成型したベース102及びプレスあるいは切削により形成されたアルミニウムの外側カバー401、あるいは、銅とマグネシウムの含有量が比較的少ないアルミニウム合金から冷鍛で形成したベース102及びプレスあるいは切削により形成されたアルミニウムの外側カバー401を選定するのが好ましい。
HDDの製造工程は、外側カバー401をベース102に接合した後に、HDA10のリーク検査を行う。特に、外側カバー401とベース102との接合部461からのヘリウム・ガスのリーク検査は重要である。リーク検査は、ヘリウム・ガス検出器を使用する。ベース102と内側カバー201との空間に封入されていたヘリウム・ガスの一部は、内側カバーの孔213から出て行き、外側カバー401と内側カバー201との間に存在する。外側カバー401の接合部に欠陥が存在すると、その場所からヘリウム・ガスが漏れる。ヘリウム・ガス検出器によりヘリウム・ガス・リークを検出すると、そのリーク箇所を半田あるいは溶接により塞ぐ。
リーク箇所の補修までのリーク量が少ない場合は問題がない。しかし、筐体からのヘリウム・ガスのリーク量が多いと、筐体内のヘリウム・ガスが規定量未満となり、HDDが異常動作を示すあるいは所望のパフォーマンスを発揮できなくなる。このような場合、HDA10の筐体内にヘリウム・ガスを、再度、封入することが必要となる。
本形態のHDDの製造方法は、ヘリウム・ガスのリークがありそのリーク箇所を補修した場合は常に、あるいは、リーク箇所を補修しさらにヘリウム・ガスのリーク量が多い場合に、ヘリウム・ガスの再封入を行う。筐体内に必要量のヘリウム・ガスが存在するか否かは、例えば、補修した後のHDA10のテスト工程において、スピンドル・モータやアクチュエータの動作に必要な電力を測定することで特定することができる。
本形態のHDDの製造において、ヘリウム・ガス再注入用孔を形成する位置及びその近傍である再注入部に筐体内外を貫通する孔を新たに形成し、その孔からヘリウム・ガスを筐体内に再注入する。孔を形成した後においては、この孔及びその近傍部分が再注入部である。このように、再注入部は、孔が開いていなければ空ける予定の場所とその近傍、既に孔が開いていれば、孔とその近傍である。ヘリウム・ガスの再注入後、さらに、この再注入部の孔を封止ラベルにより塞ぐ。これにより、外側カバー401を接合した後に、筐体を分解することなく、容易にヘリウム・ガスを筐体内に再封入することができる。
ヘリウム・ガスの再封入は、例えば、次の方法で行うことができる。外側カバー401にヘリウム・ガスの再注入用の孔を形成する。ヘリウム・ガス再注入用孔を形成したHDAをチャンバ内に配置する。チャンバ内を真空にした後、さらに、チャンバ内にヘリウム・ガスを充填する。
これにより、HDAの筐体内に、ヘリウム・ガス再注入用孔からヘリウム・ガスが注入される。ヘリウム・ガスの充填率を上げるためには、チャンバ内の真空引きとヘリウム・ガスの充填を複数回繰り返す。ヘリウム・ガスの再注入が終了すると、HDAをチャンバ内から取り出し、あるいは、チャンバ内にあるHDAに対して、封止ラベル411を貼り付け、ヘリウム・ガス再注入用孔を塞ぐ。
図4(a)、(b)は、外側カバー401に形成したヘリウム・ガス再注入用孔412及びその近傍の構造を示す斜視図である。図4(a)において、再注入用孔412の近くにおいてHDA10を切断した切断面が示されている。図4(b)は、図4(a)において円で囲まれた部分の拡大図である。
図4(b)において、外側カバー401に孔412が形成されている。孔412は、ドリルや針などのジグを使用して空けることができる。孔412は、外側カバー401を貫通し、筐体の内外をつないでいる。外側カバー401の外側表面において点線で囲まれている領域は、孔412を塞ぐ封止ラベル411が付着する領域である。封止ラベル411は、孔412の全領域と重なっている。孔412が小径の孔であり、封止ラベル411に塞がれた孔412からヘリウム・ガスが漏れ出ることはない。
外側カバー401の孔412と対向する位置において、内側カバー201の孔212が形成されている。さらに、内側カバーの孔212は、ベース102の凹部125に露出している部分に形成されている。外側カバーの孔412は、スピンドル軸方向において見たときに内側カバーの孔212と重なっており、内側カバーの孔212の外形は、外側カバーの孔412よりも大きい。
同様に、外側カバーの孔412は、スピンドル軸方向において見たときにベースの凹部125と重なっており、凹部125の外形は外側カバーの孔412よりも大きい。このように、外側カバーの孔412は内側カバーの孔212を介して、ベースの凹部125につながっている。従って、外側カバーの孔412の形成位置から、ベースの凹部125底面までのギャップはその周囲よりも大きい。
外側カバー401に孔412を形成するため、ドリルや針などのジグを外側カバー401の外側から内側に差し込む。このとき、ジグ先端が逃げるための空間が存在しない場合、外側カバー401の下にある内側カバー201やベース102を傷つけるおそれがある。あるいは、外側カバー401に孔412を形成する位置のすぐ下に内側カバー201やベース102が存在して外側カバー401の下に空間がない場合にジグにより孔412を空けにくくなる。
本例においては、外側カバー401に孔412を形成する位置は、内側カバーの孔212を介して、ベース102の凹部125底面に対向している。従って、ジグの先端は、外側カバー401に孔412を形成した後に、内側カバー201の孔212を貫通し、さらに、凹部125にいたることができる。このため、容易に孔412を形成することができると共に、孔412の形成においてジグにより内側カバー201やベース102を傷つけることがない。
図4(b)に示すように、外側カバーの孔412、内側カバーの孔212、そしてベースの凹部125は、スピンドル軸方向において見た場合、ガスケット216の外側にある。このため、ジグの先端がガスケット216の内側の部品に接触することがなく、より安全に外側カバー401に孔412を形成することができる。
図5は、外側カバーの孔412から注入されたヘリウム・ガスの通路(流路)を模式的に示している。図5は、外側カバー401を外した上体のHDA10の上面図である。ベース102には、内側カバー201が固定されており、内側カバー201の上に接着層301が接着している。外側カバーの孔412の位置は、図5に示した内側カバーの孔212の位置に存在する。
外側カバーの孔412から注入したヘリウム・ガスは、図5の矢印で示すように、接着層301とベース102のリッジ124との間の空間を流れる。ヘリウム・ガスは、接着層301のスリット311から露出している内側カバー201の凹部214内に形成されている孔213(図1を参照)から、内側カバー201とベース102との間の空間内に入る。接着層301と内側カバーの孔213との間には間隙が存在するので、接着層301が内側カバーの孔213に入るヘリウム・ガスを妨げることはない。このように、接着層301はヘリウム・ガスの通路の一部を構成している。これにより、内側カバー201と外側カバー401の強度を上げると共に、効率的にヘリウム・ガスをベース102内部に入れることができる。
図6(a)、(b)は、内側カバー102に形成されている孔213近傍の構造を示すための斜視図である。図(a)において、孔213の近くにおいてHDA10を切断した切断面が示されている。図6(b)は、図6(a)において円で囲まれた部分の拡大図である。内側カバー102の内側には、孔213と重なる位置に、フィルタ217が固定されている。フィルタ217は、外部から内側カバー102の内部に塵埃が侵入することを防止する。典型的には、フィルタ217は、樹脂筐体と、筐体内部の吸湿材、そしてフィルタ部材とを有している。
再注入されるヘリウム・ガスは、孔213から、フィルタ217を介して、主要部品が実装されている内部空間に入る。フィルタ217を介してヘリウム・ガスを再注入することによって、ヘリウム・ガスと共に塵埃が内部に入ることを防止し、ヘリウム・ガス再注入処理の信頼性を高めることができる。
フィルタ217は、磁気ディスクの記録面上から外れて、磁気ディスクと重ならない位置に配置されていることが好ましい。フィルタ217を配置するためには、内側カバー201の下にある程度の空間が必要となると共に、外部から入ったヘリウム・ガスが磁気ディスクに直接に吹き付けられることで、磁気ディスク表面が曇ることを避けることができるからである。
上記好ましい例において、ヘリウム・ガス再注入用孔412がガスケット216の外側にある。以下において、スピンドル軸方向において見た場合に、ヘリウム・ガス再注入用孔412がガスケット216の内側にある例を説明する。図7(a)、(b)は、ヘリウム・ガス再注入用孔412が、内側カバー201の凹部214と対向する位置に形成されているHDA10を示している。
図7(a)は、ヘリウム・ガス再注入用孔412の近傍において切断したHDA10を示す図であり、図7(b)は、図7(a)において円で囲まれた部分の拡大図である。外側カバー401の外表面に点線で示しているのは、封止ラベル411の添付領域である。上記例と同様に、封止ラベル411は、孔412の全領域と重なっている。孔412が小径の孔であり、封止ラベル411に塞がれた孔412からヘリウム・ガスが漏れ出ることはない。
図7(a)、(b)に示す内側カバー201及びフィルタ217の構造は、図6(a)、(b)を参照して説明した構造と同じである。外側カバーの孔412の下側に内側カバーの凹部214が存在し、外側カバーの孔412を形成する位置の対面は、凹部214の面である。このため、孔412が形成される位置における外側カバー401と内側カバー201との間のギャップは、内側カバーの凹部214の外側の周囲領域よりも大きい。このように、孔412を形成する位置が内側カバーの凹部214と重なった位置にあるので、外側カバー401の外側からジグにより孔412を形成するとき、ジグ先端の逃げのための空間が確保され、孔412を安全、容易に形成することができる。
図7(a)、(b)の例においては、内側カバーの凹部214と外側カバー401とで画定される空間内に、外側カバーの孔412と内側カバーの孔213とが存在している。このため、外側カバーの孔412から再注入されたヘリウム・ガスは、すぐに内側カバーの孔213に達し、内側カバー201の内側の空間へと入っていく。外側カバーの孔412から再注入されたヘリウム・ガスが接着層301によって遮られないように、ジグにより接着層301に新たな孔を形成するのではなく、接着層301は、外側カバーの孔412と内側カバーの孔213とをつなぐ孔を予め形成しておくことが好ましい。
本例においては、外側カバーの孔412はガスケット216の内側で形成される。このため、ガスケット216の外側に孔412を形成するための領域が不要であり、HDA10の外形を小さくすることができる。また、孔412の下には内側カバーの凹部214が存在するため、ジグによる内側カバー201の損傷を避けることができる。内側カバーの凹部214内に孔213が存在するため、ヘリウム・ガス流路のために接着層301を除去する面積を小さくことができる。
上記例は、外側カバー401にヘリウム・ガス再注入のための孔412を形成する。以下において、ベース102にヘリウム・ガス再注入のための孔を形成する例を説明する。図8(a)は、ベース102の底面に形成されているヘリウム・ガス再注入のための孔127を示す平面図である。孔127の周囲を囲む点線は、孔127を塞ぐ封止ラベル128が貼り付けられる領域を示している。
図8(b)は、孔127におけるベース102の断面図である。ベース102の内側には孔127を覆うようにフィルタ129が配置されている。フィルタ129は吸湿材291とフィルタ部材292とを有しており、フィルタ部材292と孔127との間に吸湿材291が存在する。より詳しくは、ベース102内部底面に溝218が形成されており、孔127はその溝218に通じている。吸湿材291は孔127及び溝218の露出している。孔127からベース内部に入ったヘリウム・ガスは、ベース102内部底面の溝218を通り、フィルタ部材292を介してベース102の内部空間へ拡散していく。
上記各例のヘリウム・ガス再注入方法は、HDA10の筐体に孔を形成し、その孔を介して筐体外部から内部にヘリウム・ガスを再注入する。再注入後の孔を封止ラベルにより塞ぐことで、孔からヘリウム・ガスが漏れ出ることを防ぐことができる。封止ラベルは、金属層と接着層とを有する複数層で構成されている。図9は、封止ラベルの好ましい例を模式的に示している。図9において、封止ラベル80は、内側から、接着層801、内側樹脂層802、金属層803、外側樹脂層804の順序で積層されている。
典型的に、各層の形状は同一である。上記各例の封止ラベルは円形であるが、封止ラベルは円形以外の形状を有していてもよい。接着層801は、典型的には、アクリル系樹脂で形成される。金属層803は、典型的には、アルミニウム箔あるいは蒸着により形成したアルミニウム薄膜である。内側樹脂層802及び外側樹脂層804は、典型的には、ポリエチレンテレフタレート(PET)で形成される。
封止ラベル80の各層の膜厚は、設計により適切な値が選択される。例えば、50μmの金属層803と、25μmの他の層で封止ラベル80を構成することができる。封止ラベル80は、封止ラベル80の強度を増すため、あるいは金属層803の酸化防止のために、内側樹脂層802及び外側樹脂層804を有することが好ましいが、その一方あるいは双方を省略してもよい。
HDA10の再注入部の外部表面のヘリウム・ガス再注入用孔を形成する位置及びその近傍には、保護ラベルを貼っておくことが好ましい。保護ラベルは、例えば、封止ラベルと同じ構造及び寸法のラベルを使用することができる。なお、本明細書でラベルとは、封止ラベルと保護ラベルを含む上位の概念を意味する。ヘリウム・ガス再注入用孔の近傍に傷が存在する場合、ヘリウム・ガス再注入用孔を形成することでリーク経路が形成される危険がある。そのため、ヘリウム・ガス再注入用孔を形成する位置及びその近傍、つまり再注入部をカバーする保護ラベルを貼っておくことによって、ヘリウム・ガス再注入用孔を形成することによるリーク経路の形成を防ぐことができる。
ヘリウム・ガスの再注入は、製造したHDA10の一部のみに必要であることから、上記各例のように、ヘリウム・ガスのリークが存在するHDA10に対してのみ孔を新たに形成し、その孔からヘリウム・ガスを再注入することが好ましい。これに対して、HDA10の部品製造において予めヘリウム・ガス再注入孔を形成しておくことができる。ヘリウム・ガス再注入孔は、封止ラベルによって塞いで置く。
ヘリウム・ガス再注入処理は、封止ラベルを剥がし、露出した孔からヘリウム・ガスを再注入し、その後、その孔を新しい封止ラベルにより塞ぐ。予めヘリウム・ガス再注入孔を形成しておくことで、新たに孔を形成する必要がなく、孔形成による部品の破損をより確実に避けることができる。
ヘリウム・ガス再注入用孔が大きすぎる場合、温度変化や気圧変化により、封止ラベルの剥がれ及びヘリウム・ガスのリークが起きる。このため、ヘリウム・ガス再注入用孔の径は、2.0mm以下であることが好ましい。ヘリウム・ガス再注入用孔が円形ではない場合、最も大きい径が2.0mm以下であることが好ましい。ヘリウム・ガス再注入用孔の径の下限は、ヘリウム・ガスの再注入の効率の点から決めることができ、例えば、径を0.1mm以上とする。ヘリウム・ガス再注入用孔が円形ではない場合、最も小さい径が0.1mmとすればよい。
封止ラベルの寸法は、ヘリウム・ガス再注入用孔の寸法に対して十分に大きいことが重要である。ここで、封止ラベルの寸法は、金属層及び接着層の小さい方の寸法である。封止ラベルが円形である場合、ヘリウム・ガス再注入用孔の中心を通る直線方向において、封止ラベルの寸法は10mm以上であることが好ましい。封止ラベルが円形でない場合、上記直線方向における封止ラベルの最小寸法が10mm以上であることが好ましい。
ヘリウム・ガス再注入用孔の寸法と封止ラベルの寸法とについて測定を行った。図10は、10mm径の円形封止ラベルと18mm径の円形封止ラベルのそれぞれで、ヘリウム・ガス再注入用孔を塞いだ場合のリーク・レートの各測定結果を示している。測定に使用した封止ラベルは、50μm接着層、50μmアルミニウム層、そして25μm外側層PET層で構成されていた。測定は、複数の異なる径の円形孔について行った。測定した孔の径は、0.6mm、0.9mm、1.3mm、2.0mm、そして3.0mmであった。また、ベースに孔を形成した複数台のHDAと外側カバーに孔を形成した複数台のHDAのそれぞれについて測定を行った。
図10において、X軸はヘリウム・ガス再注入用孔の径、Y軸はリーク・レートを示している。X軸の単位はmm、Y軸の単位は、Pa・m/sである。図10のグラフは、複数台のHDAの平均値を示している。測定は、各寸法のヘリウム・ガス再注入用孔と封止ラベルとを有するHDAを、チャンバイ内に配置し、チャンバイ内を真空に引いた後、ヘリウム・ガスのリーク・レートをヘリウム測定器によりリーク・レートを測定した。
図10のグラフに示すように、2.0mm以下のヘリウム・ガス再注入用孔に対して、10mm径の円形封止ラベルと18mm径の円形封止ラベルの双方が、十分は封止性能を示した。3.0mmのヘリウム・ガス再注入用孔を有するHDA内、18mm径の円形封止ラベルとベース孔を有するHDA以外のHDAの測定におい封止ラベルが剥がれてしまい、リーク・レートを測定することはできなかった。以上の結果から、2.0mm径以下のヘリウム・ガス再注入用孔に対して、10mm径以上の封止ラベルが十分な封止性能を示すことを確認できた。
以上、本発明を好ましい実施形態を例として説明したが、本発明が上記の実施形態に限定されるものではない。当業者であれば、上記の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。例えば、本発明はHDDに特に有用であるが、それ以外のディスク・ドライブに適用してもよい。外側カバーとベースとは、半田、特に溶接により接合することが好ましいが、他の方法を排除するものではない。また、設計によっては、接着層を形成しなくてもよい。本発明は内側カバーを有していないディスク・ドライブに適用することができる。
本実施形態に係る密閉HDDの構成を模式的に示す分解斜視図である。 本実施形態に係るHDDの内部構造を模式的に示す平面図である。 本形態に係るHDDの筐体構造を模式的に示す断面図である。 本実施形態係る外側カバーに形成したヘリウム・ガス再注入用孔及びその近傍の構造を模式的に示す図である。 本実施形態において、外側カバーの孔から注入されたヘリウム・ガスの流路及びヘリウム・ガスの流れについて説明する図である。 本実施形態において、内側カバーに形成されている孔の近傍の構造を示すための図である。 本実施形態において、外側カバーのヘリウム・ガス再注入用孔の近傍において切断したHDAを示す図である。 本実施形態において、ベースの底面に形成されているヘリウム・ガス再注入のための孔を模式的に示す図である。 本実施形態に係る封止ラベルの構造を模式的に示す図である。 本実施形態のHDAにおいて、10mm径の円形封止ラベルと18mm径の円形封止ラベルのそれぞれで、ヘリウム・ガス再注入用孔を塞いだ場合のリーク・レートの各測定結果を示している。
符号の説明
10 ヘッド・ディスク・アセンブリ(HDA)、101 磁気ディスク
102 ベース、103 スピンドル・モータ、105 ヘッド・スライダ
106 アクチュエータ、107 回動軸、109 ボイス・コイル・モータ
110 サスペンション、111 アーム、113 フラットコイル
115 ランプ、124 リッジ、125 ベースの凹部
127 ヘリウム・ガス再注入用孔、128 封止ラベル、129 フィルタ
201 内側カバー、211a〜211j ネジ用孔
212 ヘリウム・ガス再注入用孔を形成するための孔
213 ヘリウム・ガス注入用孔、214 内側カバーの凹部、
216 ガスケット、217 フィルタ、301 接着層、311 スリット
401 外側カバー、411 封止ラベル、412 ヘリウム・ガス再注入用孔
80 封止ラベル、801 接着層、802 内側樹脂層、803 金属層
804 外側樹脂層

Claims (6)

  1. 密閉された筐体を有するディスク・ドライブを設置し、
    前記密閉された筐体の外部と内部を貫通する孔を、前記筐体の外面から形成し、
    前記孔から低密度ガスを再注入し、
    前記孔を金属層と接着層とを有する封止ラベルによりふさ
    密閉された筐体を有するディスク・ドライブに対して、低密度ガスを再注入する方法であって、
    前記筐体は、ベースと、前記ベースに固定された内側カバーと、前記ベースに接合され前記内側カバーを覆う外側カバーと、を有し、
    前記筐体は、前記外側カバーからその対面までのギャップがその周囲よりも大きい部分を有し、
    前記低密度ガスを再注入するための前記孔を、前記部分内の前記外側カバーに形成する、方法。
  2. 前記内側カバーは、前記ベースに対して、ガスケットを介して固定されており、
    前記部分は前記ガスケットの内側にあり、前記内側カバーに形成されている凹部を含み、
    前記外側カバーの前記凹部と対向する位置に、前記低密度ガスを再注入するための前記孔を形成する、
    請求項に記載の方法。
  3. 前記内側カバーは、前記ベースに対して、ガスケットを介して固定されており、
    前記部分は前記ガスケットの外側にあり、
    前記内側カバーに形成されている孔を介して前記ベースの一部に対向する位置に、前記低密度ガスを再注入するための前記孔を形成する、
    請求項に記載の方法。
  4. ベースと、前記ベースに固定された内側カバーと、前記ベースに接合され前記内側カバーを覆う外側カバーと、を有し、前記外側カバーからその対面までのギャップがその周囲よりも大きい部分を有する密閉された筐体と、
    前記ベース内にあるディスクと、
    前記ベース内において前記ディスクを回転するモータと、
    前記ベース内において前記ディスクにアクセスするヘッド・スライダと、
    前記ベース内において前記ヘッド・スライダを支持し、前記ヘッド・スライダを前記ディスク上で移動する移動機構と、
    前記密閉された筐体内に封入されている低密度ガスと、
    前記筐体の外側と内側を貫通する前記低密度ガスの再注入部を覆うように貼付されたラベルと、を備え、
    前記低密度ガスを再注入するための前記再注入部を、前記部分内の前記外側カバーに設けた、ディスク・ドライブ。
  5. 前記内側カバーは、前記ベースに対して、ガスケットを介して固定されており、
    前記部分は前記ガスケットの内側にあり、前記内側カバーに形成されている凹部を含み、
    前記外側カバーの前記凹部と対向する位置に、前記低密度ガスを再注入するための前記再注入部を設けた、
    請求項4に記載のディスク・ドライブ。
  6. 前記内側カバーは、前記ベースに対して、ガスケットを介して固定されており、
    前記部分は前記ガスケットの外側にあり、
    前記内側カバーに形成されている孔を介して前記ベースの一部に対向する位置に、前記低密度ガスを再注入するための前記再注入部を形成する、
    請求項4に記載のディスク・ドライブ。
JP2008161052A 2008-06-19 2008-06-19 ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法 Active JP5037438B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008161052A JP5037438B2 (ja) 2008-06-19 2008-06-19 ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法
US12/488,501 US8248724B2 (en) 2008-06-19 2009-06-19 Disk drive and method of re-injecting low density gas in a hermetically sealed disk enclosure of a disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161052A JP5037438B2 (ja) 2008-06-19 2008-06-19 ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法

Publications (3)

Publication Number Publication Date
JP2010003356A JP2010003356A (ja) 2010-01-07
JP2010003356A5 JP2010003356A5 (ja) 2011-06-30
JP5037438B2 true JP5037438B2 (ja) 2012-09-26

Family

ID=41584962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161052A Active JP5037438B2 (ja) 2008-06-19 2008-06-19 ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法

Country Status (2)

Country Link
US (1) US8248724B2 (ja)
JP (1) JP5037438B2 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037438B2 (ja) 2008-06-19 2012-09-26 エイチジーエスティーネザーランドビーブイ ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法
US8085488B2 (en) * 2009-08-27 2011-12-27 Hitachi Global Storage Technologies Netherlands B.V. Predicting operational problems in a hard-disk drive (HDD)
US8687307B1 (en) * 2010-11-18 2014-04-01 Western Digital Technologies, Inc. Disk drive detecting gas leaking from head disk assembly
US8659849B2 (en) * 2011-12-29 2014-02-25 HGST Netherlands B.V. Hermetically resealable hard-disk drive configured for recharging with a low-density gas
US8699179B1 (en) 2013-03-14 2014-04-15 Western Digital Technologies, Inc. Hermetically sealed disk drive with fill port valve
US8854766B1 (en) 2013-08-07 2014-10-07 Western Digital Technologies, Inc. Disk drive having a conformal peripheral foil seal having an opening covered by a central metal cap
US9458936B2 (en) * 2013-11-20 2016-10-04 Seagate Technology Llc Apparatus with polymer permeability path
US9001458B1 (en) * 2013-12-06 2015-04-07 HGST Netherlands B.V. Hard disk drive sealed in helium using a secondary container
US9025284B1 (en) 2014-02-26 2015-05-05 Western Digital Technologies, Inc. Disk drive with self sealing screw attachment of actuator pivot
US20150294691A1 (en) * 2014-04-09 2015-10-15 HGST Netherlands B.V. Sealed disk media enclosure
US10079043B2 (en) * 2014-04-22 2018-09-18 Entrotech, Inc. Method of sealing a re-workable hard disk drive
US9536572B2 (en) * 2014-05-16 2017-01-03 Seagate Technology Llc Apparatus with sealed cavity formed by at least one impermeable weld
US10002645B2 (en) 2014-06-09 2018-06-19 Entrotech, Inc. Laminate-wrapped hard disk drives and related methods
US9683138B2 (en) 2015-06-26 2017-06-20 Nitto Denko Corporation Pressure-sensitive adhesive sheet and magnetic disk drive
US10679680B2 (en) * 2015-10-13 2020-06-09 Seagate Technology Llc Method and apparatus with multiple cavities
US9721620B2 (en) 2015-12-09 2017-08-01 Western Digital Technologies, Inc. Hermetic sealing of hard disk drive using laminated film seal
US9704539B2 (en) * 2015-12-09 2017-07-11 Western Digital Technologies, Inc. Hermetic sealing of hard disk drive using laminated film seal
US9721619B2 (en) 2015-12-09 2017-08-01 Western Digital Technologies, Inc. Hermetic sealing of hard disk drive using laminated film seal
US9570114B1 (en) 2016-01-15 2017-02-14 HGST Netherlands B.V. Laminated film-packed hard disk drive for hermetic sealing
US10525668B2 (en) 2016-03-02 2020-01-07 Nitto Denko Corporation Pressure-sensitive adhesive sheet
JP6450702B2 (ja) * 2016-04-04 2019-01-09 Aosテクノロジーズ株式会社 ハードディスクドライブに内蔵されたプラッタに記憶されたデータの読取方法
US9916872B1 (en) 2016-12-20 2018-03-13 Western Digital Technologies, Inc. Double-barrier vacuum seal for sealed data storage system
JP2018160300A (ja) * 2017-03-23 2018-10-11 株式会社東芝 ディスク装置
US10262698B2 (en) 2017-06-21 2019-04-16 Western Digital Technologies, Inc. Intermittent operation of compartmented pneumatics for sealed data storage system
US10153005B1 (en) 2017-08-04 2018-12-11 Western Digital Technologies, Inc. Container flange configurations with increased diffusion length for hermetic sealing of data storage systems and devices
JP2019040649A (ja) * 2017-08-23 2019-03-14 株式会社東芝 ディスク装置
JP2020054118A (ja) * 2018-09-27 2020-04-02 日本電産株式会社 モータ及びディスク駆動装置
US10699753B2 (en) 2018-10-16 2020-06-30 Seagate Technology Llc Stop member proximate to formed-in-place gasket of a drive enclosure cover
US10622027B1 (en) * 2018-11-28 2020-04-14 Western Digital Technologies, Inc. Magnetic storage device with improved top cover gasket and associated method of manufacture
US11348619B2 (en) * 2020-07-16 2022-05-31 Western Digital Technologies, Inc. Dual gasket for manufacturing of hermetically-sealed hard disk drive
JP2022038646A (ja) * 2020-08-27 2022-03-10 ミネベアミツミ株式会社 ベース部材、スピンドルモータおよびハードディスク駆動装置
JP2022180054A (ja) * 2021-05-24 2022-12-06 株式会社東芝 磁気記録再生装置、及びその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292289A (ja) * 1985-06-20 1986-12-23 Nippon Telegr & Teleph Corp <Ntt> 磁気デイスク装置
JPS6271078A (ja) * 1985-09-21 1987-04-01 Nippon Telegr & Teleph Corp <Ntt> 密封型磁気デイスク装置
JPS62137790A (ja) * 1985-12-11 1987-06-20 Hitachi Ltd 密封形磁気記録装置
JPS62175988A (ja) * 1986-01-28 1987-08-01 Mitsubishi Electric Corp 固定磁気デイスク装置
JPS62175986A (ja) * 1986-01-28 1987-08-01 Mitsubishi Electric Corp 固定磁気デイスク装置
JPS62279591A (ja) * 1986-05-28 1987-12-04 Hitachi Ltd 密封型磁気デイスク装置
JPS6432482A (en) * 1987-07-28 1989-02-02 Nec Corp Magnetic disk device
JPH0636548A (ja) * 1992-07-21 1994-02-10 Nec Corp 磁気ディスク装置
US5454157A (en) * 1992-10-14 1995-10-03 Maxtor Corporation Method of manufacturing a hermetically sealed disk drive
JPH08161861A (ja) * 1994-12-01 1996-06-21 Hitachi Ltd 磁気ディスク装置
JP3413562B2 (ja) 1994-12-07 2003-06-03 株式会社日立製作所 気密封止容器および気密封止方法
JPH1055662A (ja) * 1996-08-13 1998-02-24 Nec Corp 磁気ディスク装置
US6900962B1 (en) * 1997-09-05 2005-05-31 Seagate Technology Llc High performance standard configuration disc drive having smaller-than-standard discs
KR100440947B1 (ko) * 1999-01-12 2004-07-21 삼성전자주식회사 하드디스크 드라이브용 필터링장치
JP2001021810A (ja) * 1999-07-07 2001-01-26 Nikon Corp 干渉顕微鏡
JP4827315B2 (ja) * 2001-04-26 2011-11-30 日東電工株式会社 ハードディスクドライブ用粘着ラベル及び該粘着ラベルを使用したハードディスクドライブの駆動時発生音低減方法
US7218473B2 (en) * 2002-03-22 2007-05-15 Seagate Technology Llc Two-stage sealing of a data storage assembly housing to retain a low density atmosphere
US7123440B2 (en) * 2003-09-29 2006-10-17 Hitachi Global Storage Technologies Netherlands B.V. Hermetically sealed electronics arrangement and approach
US7570454B1 (en) * 2004-05-04 2009-08-04 Maxtor Corporation Fill valve with a press-fit member for a sealed housing
US7236321B1 (en) * 2006-01-10 2007-06-26 Hitachi Global Storage Technologies Netherlands B.V. Method for preventing data loss in a hard disk drive by projecting reduction in helium concentration using insitu non-repeatable runout
JP2007280555A (ja) 2006-04-11 2007-10-25 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置
JP2007328880A (ja) * 2006-06-09 2007-12-20 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置及びその製造方法
JP2008090886A (ja) * 2006-09-29 2008-04-17 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置及びその製造方法
JP5043444B2 (ja) * 2007-01-12 2012-10-10 エイチジーエスティーネザーランドビーブイ ディスク・ドライブ装置及びその製造方法
JP5129964B2 (ja) * 2007-01-19 2013-01-30 エイチジーエスティーネザーランドビーブイ ディスク・ドライブ装置及びその製造方法
JP2008310891A (ja) * 2007-06-15 2008-12-25 Hitachi Global Storage Technologies Netherlands Bv ディスク・ドライブ装置及びその製造方法
JP5037438B2 (ja) 2008-06-19 2012-09-26 エイチジーエスティーネザーランドビーブイ ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法

Also Published As

Publication number Publication date
US8248724B2 (en) 2012-08-21
US20110038076A1 (en) 2011-02-17
JP2010003356A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5037438B2 (ja) ディスク・ドライブ及びディスク・ドライブの密閉筐体内に低密度ガスを再注入する方法
JP5043444B2 (ja) ディスク・ドライブ装置及びその製造方法
JP5129964B2 (ja) ディスク・ドライブ装置及びその製造方法
US8564900B2 (en) Hermetically-sealed disk drive device with flow amount adjuster and low-density gas sealed therein
JP5049017B2 (ja) 磁気ディスク装置及びその製造方法
US8659849B2 (en) Hermetically resealable hard-disk drive configured for recharging with a low-density gas
JP2009245570A (ja) ベースの製造方法及びディスク・ドライブ装置の製造方法
JP2008171482A (ja) ディスク・ドライブ装置
JP2007335022A (ja) 磁気ディスク装置
US7929247B2 (en) Magnetic disk drive and manufacturing method thereof
US9001458B1 (en) Hard disk drive sealed in helium using a secondary container
US10134448B2 (en) Hermetically-sealed data storage device for increased disk diameter
US20130222947A1 (en) Removable cover assembly for a data storage device
JP2007328851A (ja) 磁気ディスク装置
US9852777B2 (en) Hermetically-sealed hard disk drive cover perimeter adhesive seal
US9570114B1 (en) Laminated film-packed hard disk drive for hermetic sealing
KR20060045564A (ko) 데이터 소거 장치, 데이터 소거 방법 및 기록 디스크에서보 패턴을 기록하는 방법
US20090097375A1 (en) Disk drive device and manufacturing method thereof
JP2007328880A (ja) 磁気ディスク装置及びその製造方法
US10121518B1 (en) Reducing leak rate in adhesive-based hermetically-sealed data storage devices and systems
JP5052250B2 (ja) 密閉型ディスク・ドライブ装置及びその製造方法
US9429494B1 (en) Leakage test method for a hermetically sealed disk drive enclosure
US20240096372A1 (en) Disk drive and disk drive manufacturing method
JP2007164846A (ja) ディスクドライブ装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250