JP5035798B2 - Fine particle light capture and rotation control device - Google Patents

Fine particle light capture and rotation control device Download PDF

Info

Publication number
JP5035798B2
JP5035798B2 JP2007258057A JP2007258057A JP5035798B2 JP 5035798 B2 JP5035798 B2 JP 5035798B2 JP 2007258057 A JP2007258057 A JP 2007258057A JP 2007258057 A JP2007258057 A JP 2007258057A JP 5035798 B2 JP5035798 B2 JP 5035798B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
fine particles
light
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007258057A
Other languages
Japanese (ja)
Other versions
JP2009058926A (en
Inventor
希典 河村
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007258057A priority Critical patent/JP5035798B2/en
Publication of JP2009058926A publication Critical patent/JP2009058926A/en
Application granted granted Critical
Publication of JP5035798B2 publication Critical patent/JP5035798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、多分割円形パターン電極と外部制御電極を有する液晶光学デバイスにおける屈折率分布を楕円形状や円形状に制御することで、光捕捉した光学的もしくは幾何学的異方性を有する微粒子を基板面に垂直な方向すなわち極角方向に微粒子を立ち上げるための回転トルクを発生させ、微粒子の位置を制御することができる技術に関わるものである。  The present invention controls the refractive index distribution in a liquid crystal optical device having a multi-divided circular pattern electrode and an external control electrode into an elliptical shape or a circular shape, so that fine particles having optical or geometric anisotropy captured by light are captured. The present invention relates to a technique capable of generating rotational torque for raising fine particles in a direction perpendicular to a substrate surface, that is, a polar angle direction, and controlling the position of the fine particles.

微粒子や細胞等の微細な観察対象物を非接触で移動させるためのマニピュレータがある。このマニピュレータではレーザ光の焦点を観察対象物に照射し、光圧により観察対象物を捕捉して移動制御等を行うことができる。  There are manipulators for moving fine observation objects such as fine particles and cells in a non-contact manner. In this manipulator, it is possible to perform movement control and the like by irradiating the observation object with the focal point of the laser beam and capturing the observation object with light pressure.

このような動作を行うため、光の放射圧を利用した微粒子の位置制御(レーザマニピュレーション)技術があり、レーザ光源と集光レンズとの間の光軸上に、移動可能な付加レンズ系やマイクロミラー等を配置し、機械的アクチュエータ等による制御が行われている。  In order to perform this kind of operation, there is a technology for controlling the position of fine particles (laser manipulation) using the radiation pressure of light, and an additional lens system or micro that can move on the optical axis between the laser light source and the condenser lens. A mirror or the like is arranged, and control by a mechanical actuator or the like is performed.

レーザ光の焦点を移動制御するための手段として一本または複数本の微粒子捕捉用レーザ光により光捕捉した微粒子の制御方法が特許文献1に報告されている。  As a means for controlling the movement of the focal point of laser light, Patent Document 1 reports a method for controlling fine particles captured by one or a plurality of fine particle capturing laser beams.

光ファイバを介してレーザ光を微粒子に照射して捕捉し、微粒子の移動を光ファイバの移動により制御する手段が特許文献2に報告されている。  Japanese Patent Application Laid-Open No. H10-228707 reports a means for capturing fine particles by irradiating them with an optical fiber and controlling the movement of the fine particles by moving the optical fiber.

位相変調型の空間光変調器を用いて出力ホログラムパターン形成による微粒子光捕捉及び捕捉位置の制御に関する手段が特許文献3に報告されている。また、液体中における光圧回転体に関する手段が特許文献4に報告されている。  Patent Document 3 reports means relating to fine particle light capturing and capturing position control by forming an output hologram pattern using a phase modulation type spatial light modulator. Further, Patent Document 4 reports a means related to a light pressure rotator in a liquid.

一方、軸対称な不均一電界による液晶分子配向効果に基づく屈折率の空間分布特性を利用した液晶マイクロレンズが提案されており、この液晶マイクロレンズ構造において、直径が数100μm以下の円形穴型パターンをスリットにより分割し、対向する一対の各電極部分にそれぞれ異なる電圧を印加することで、光軸に垂直な平面内で焦点の位置を変える液晶マイクロレンズが考案されている(特許文献5)。  On the other hand, a liquid crystal microlens using a spatial distribution characteristic of a refractive index based on a liquid crystal molecule alignment effect by an axially symmetric non-uniform electric field has been proposed. In this liquid crystal microlens structure, a circular hole pattern having a diameter of several hundred μm or less. A liquid crystal microlens has been devised that changes the position of the focal point in a plane perpendicular to the optical axis by dividing each by a slit and applying different voltages to each of a pair of opposing electrode portions (Patent Document 5).

また、機械的な駆動部がなく電圧のみで焦点距離を可変制御できる直径が数mm程度の液晶レンズを構成する手段が特許文献6及び特許文献7に報告されている。  Further, Patent Document 6 and Patent Document 7 report means for forming a liquid crystal lens having a diameter of about several millimeters that can be variably controlled by a voltage alone without a mechanical drive unit.

さらに、スリットにより穴型パターンの電極を8分割し、直径方向に対向する対の電極を同電位とする電圧を加えて電位分布を形成することで、楕円形状の屈折率分布を形成し、入射光に対する光学的特性を可変制御できるアナモルフィック液晶レンズが特許文献8に報告されている。  Furthermore, an electrode having a hole pattern is divided into eight by a slit, and a potential distribution is formed by applying a voltage that makes the pair of electrodes facing in the diametrical direction have the same potential, thereby forming an elliptical refractive index distribution. Patent Document 8 reports an anamorphic liquid crystal lens capable of variably controlling optical characteristics with respect to light.

前記のアナモルフィック液晶レンズに第3の電極を付与することで光学的特性を向上させた構造の液晶光学デバイスと集光レンズを組み合わせることで、液体中の微粒子の移動操作を行う手段が、特許文献9に報告されており、この方法によると微粒子の3次元移動制御のみならず、回転制御動作も可能であることが開示されている。  Means for performing a moving operation of fine particles in a liquid by combining a condensing lens with a liquid crystal optical device having a structure in which optical characteristics are improved by applying a third electrode to the anamorphic liquid crystal lens, It is reported in Patent Document 9, and it is disclosed that according to this method, not only three-dimensional movement control of fine particles but also rotation control operation is possible.

光捕捉移動装置の応用範囲は遺伝子解析手法等のバイオ分野での微細胞の移動に利用されており、特許文献10に報告されている。  The application range of the light capturing and moving apparatus is used for the movement of microcells in the bio field such as a gene analysis method, and is reported in Patent Document 10.

特開H5−88107公報JP H5-88107 特開H9−43434公報JP H9-43434 特開2004−138906公報JP 2004-138906 A 特開平8−61218公報JP-A-8-61218 特開平11−109304公報JP-A-11-109304 特開2004−4616公報Japanese Patent Laid-Open No. 2004-4616 特開2006−91826公報JP 2006-91826 A 特開2006−91392公報JP 2006-91392 A 特開2006−235319公報JP 2006-235319 A 特開2001−165840公報JP 2001-165840 A

上述した従来の微粒子光移動装置では、レーザ光の焦点位置を移動させて微粒子の位置を制御するために、レンズ等の光学部品を機械的アクチュエータ等により制御している。しかし、これでは高精度の機械的制御系が必要となる。  In the conventional fine particle light moving device described above, optical components such as lenses are controlled by a mechanical actuator or the like in order to control the position of the fine particles by moving the focal position of the laser beam. However, this requires a highly accurate mechanical control system.

また、位相変調型の空間光変調器を用いて出力ホログラムパターン形成による微粒子光捕捉及び捕捉位置を制御する方法もあるが、空間光変調器が高価であり、しかも光学的もしくは幾何学的異方性を持つ微粒子を極角方向へ回転することが難しい。  There is also a method of controlling the capture of fine particle light and the capture position by forming an output hologram pattern using a phase modulation type spatial light modulator, but the spatial light modulator is expensive and optically or geometrically anisotropic. It is difficult to rotate fine particles with the property in the polar angle direction.

光学的もしくは幾何学的異方性を持つ微粒子を面内方向に対して回転するには、複数本のレーザ光を用いる等の方法が考えられているが、周辺構成部品が大がかりとなり、小型化、軽量化には不向きであり、しかも光学部品等を高精度に位置決めする必要がある。また、高精度に微細加工を施した光圧回転体を用いることで、光圧により発生したトルクにより回転を行うことができるが、細胞等の回転位置制御を行うことは難しい。  In order to rotate fine particles with optical or geometric anisotropy in the in-plane direction, methods such as using multiple laser beams have been considered, but the peripheral components become large and downsizing It is unsuitable for weight reduction, and it is necessary to position optical components with high accuracy. Further, by using a light pressure rotator that has been finely processed with high precision, it is possible to perform rotation by torque generated by light pressure, but it is difficult to control the rotational position of cells and the like.

円形パターン電極をスリットにより分割して各電極に所定の電圧を加えることで動作する液晶光学デバイスと集光レンズを組み合わせた微粒子移動制御装置では、微粒子の3次元位置制御及び基板面内での回転制御が可能であるが、基板面に垂直な方向すなわち極角方向への回転制御を行うことができないという問題があった。  In a fine particle movement control device that combines a condensing lens and a liquid crystal optical device that operates by dividing circular pattern electrodes by slits and applying a predetermined voltage to each electrode, three-dimensional position control of fine particles and rotation within the substrate surface Although control is possible, there is a problem that rotation control in a direction perpendicular to the substrate surface, that is, in a polar angle direction cannot be performed.

そこで、この発明の目的とするところは、レーザ光の焦点位置を簡単な構成の制御手段で調整でき、しかもレーザ光の位相分布特性を可変することができるため、光学部品を高精度に位置決めする必要がなく、光学的もしくは幾何学的異方性を有する微粒子を、3次元位置制御及び面内方向での回転制御のみならず、基板面に垂直な方向への極角方向制御を行うことが可能である微粒子回転制御装置を提供するところにある。  Accordingly, an object of the present invention is to adjust the focal position of the laser beam with a control means having a simple configuration and to change the phase distribution characteristic of the laser beam, thereby positioning the optical component with high accuracy. The fine particles having optical or geometric anisotropy can be controlled not only in three-dimensional position control and in-plane rotation control but also in polar angle control in a direction perpendicular to the substrate surface. The object of the present invention is to provide a fine particle rotation control device that is possible.

この発明は、上記の問題を解決するために、透明な第1の電極を有する第1の基板と、この第1の基板に平行に対向した第2の基板と、前記第2の基板の外部にあって前記第1の基板と反対側に配置してそれぞれ独立に電圧を印加できるようにスリットにより複数に分割された円形パターンを有する第2の電極と、前記第1の基板と第2の基板との間に収容された液晶分子を配向させた液晶層を備え、前記第2の電極の外部に絶縁層を介して第3の電極を配置し、前記複数に分割された第2の電極とは独立に電圧を印加できるように構成された液晶光学デバイスと対物レンズにより集光したレーザ光を用いて、焦点付近で光捕捉した光学的もしくは幾何学的異方性を有する微粒子を、基板面に平行な面内方向及び3次元位置制御のみならず基板面に垂直な方向、すなわち極角方向へ回転制御すること、また前記微粒子を基板面に対して斜め又は垂直状に光捕捉して3次元位置制御を行うこと、及び基板面から傾いた状態に保持しながら回転制御することを基本とする。  In order to solve the above-described problem, the present invention provides a first substrate having a transparent first electrode, a second substrate facing the first substrate in parallel, and an outside of the second substrate. A second electrode having a circular pattern divided into a plurality of slits so as to be arranged on the opposite side of the first substrate and capable of independently applying a voltage, and the first substrate and the second substrate. A liquid crystal layer in which liquid crystal molecules accommodated between the substrate and the substrate are aligned; a third electrode is disposed outside the second electrode through an insulating layer; Using a liquid crystal optical device configured to be able to apply a voltage independently of the laser beam collected by the objective lens and the optical or geometrical anisotropy particles captured near the focal point, the substrate In-plane direction parallel to the surface and 3D position control Controlling rotation in a direction perpendicular to the surface, that is, in a polar angle direction, capturing light of the fine particles obliquely or perpendicularly to the substrate surface, performing three-dimensional position control, and inclining from the substrate surface Basically, the rotation is controlled while being held.

この発明によれば、微粒子光操作装置における液晶光学デバイスを通過する光捕捉レーザ光の位相分布特性を可変することで、光学的もしくは幾何学的異方性を有する透明微粒子または微細胞の位置移動を行うことができ、前記微粒子の方向を自由に回転することができる。また、液晶光学デバイスの電圧を制御することにより、回転応答特性を向上することができる。  According to the present invention, the position movement of the transparent fine particles or microcells having optical or geometric anisotropy can be achieved by changing the phase distribution characteristics of the light-capturing laser light that passes through the liquid crystal optical device in the fine-particle light manipulation device. And the direction of the fine particles can be freely rotated. In addition, the rotational response characteristic can be improved by controlling the voltage of the liquid crystal optical device.

以下で図面を参照してこの発明の実施形態を詳細に説明する。図1はこの発明に関わる微粒子回転制御装置の構成例を示している。レーザ光源113、レーザ光を平行光とするための2枚の凸レンズ111,112、ミラー11、液晶光学デバイス14、高開口数の対物レンズ12、サンプルホルダ13が配置される。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration example of a fine particle rotation control apparatus according to the present invention. A laser light source 113, two convex lenses 111 and 112 for converting the laser light into parallel light, a mirror 11, a liquid crystal optical device 14, a high numerical aperture objective lens 12, and a sample holder 13 are arranged.

サンプルを観察する鏡筒部には対物レンズ15、接眼レンズ17、レーザ光を減衰するフィルタ16、撮像カメラ(例えばCCDカメラ)18が取り付けられている。  An objective lens 15, an eyepiece lens 17, a filter 16 for attenuating laser light, and an imaging camera (for example, a CCD camera) 18 are attached to the lens barrel for observing the sample.

撮像カメラからの画像出力信号は、パーソナルコンピュータなどのモニタ19に供給されている。  An image output signal from the imaging camera is supplied to a monitor 19 such as a personal computer.

レーザ光源113からのレーザ光は凸レンズ111,112により平行光にされ、ミラー11により液晶光学デバイス14に導かれる。液晶光学デバイス14においてその光学特性を制御し、対物レンズ12を介してサンプルホルダ13の液体に分散した微粒子(観察対象物)に焦点を合わせ、この微粒子を捕捉することができる。  Laser light from the laser light source 113 is collimated by the convex lenses 111 and 112 and guided to the liquid crystal optical device 14 by the mirror 11. The optical characteristics of the liquid crystal optical device 14 can be controlled, and the fine particles (observation target) dispersed in the liquid of the sample holder 13 can be focused through the objective lens 12 and captured.

光捕捉した微粒子の3次元移動及び回転は電圧制御部110を操作し、多分割電極及び外部制御電極を有する液晶光学デバイスの各電極に印加する電圧や時間、切り替えのタイミング等をコントロールすることにより、捕捉レーザ光のレーザ波面、光学特性の制御と回転応答の高速化を行うことが可能である。  The three-dimensional movement and rotation of the light trapped fine particles are controlled by operating the voltage control unit 110 to control the voltage and time applied to each electrode of the liquid crystal optical device having the multi-divided electrode and the external control electrode, the switching timing, and the like. It is possible to control the laser wavefront and optical characteristics of the trapped laser light and speed up the rotational response.

本発明で用いた液晶光学デバイス14の模式図を図2(a)及び(b)に示し、基本構成と基本動作について詳しく説明する。第3の基板(ガラス基板)25は酸化インジウムスズ(ITO)材からなる第3の電極となる透明な外部制御電極22が付いている。第2の基板28にフォトリソグラフィー法により作製した8分割円形パターンアルミ薄膜の第2電極21が形成されており、円形パターン電極の直径は例えば3.8mmである。  2A and 2B are schematic views of the liquid crystal optical device 14 used in the present invention, and the basic configuration and basic operation will be described in detail. The third substrate (glass substrate) 25 is provided with a transparent external control electrode 22 serving as a third electrode made of indium tin oxide (ITO). A second electrode 21 of an 8-divided circular pattern aluminum thin film produced by a photolithography method is formed on the second substrate 28, and the diameter of the circular pattern electrode is, for example, 3.8 mm.

8分割円形パターン電極付きガラス基板28の片面と第1の基板としての透明な第1の電極(ITO材)付きガラス基板29表面に,ポリイミド配向膜を塗布し,一方向にラビング処理を施している。第1の基板29と第2の基板28の2枚の基板を球状スペーサ211(例えば直径110μm)と紫外線硬化型接着剤を用いて貼り合わせ、前記の2枚の基板間に液晶材料23を封入している。  A polyimide alignment film is applied to one side of a glass substrate 28 with an 8-divided circular pattern electrode and the surface of a glass substrate 29 with a transparent first electrode (ITO material) as a first substrate, and a rubbing treatment is performed in one direction. Yes. Two substrates of the first substrate 29 and the second substrate 28 are bonded together using a spherical spacer 211 (for example, 110 μm in diameter) and an ultraviolet curable adhesive, and the liquid crystal material 23 is sealed between the two substrates. is doing.

8分割円形パターン電極付きの第2の基板28と外部制御電極付きの第3の基板を例えば40μmの球状スペーサ210を介して張り合わせている。  The second substrate 28 with the eight-divided circular pattern electrode and the third substrate with the external control electrode are bonded to each other via a spherical spacer 210 of 40 μm, for example.

上記の液晶光学デバイスを駆動する場合、特許文献9で開示されているように、図2(b)に示すように外部制御電極としての第3の電極22と第1の電極24の間に電圧Vを印加し、8分割円形パターンを有する第2の電極21における各電極にVからVの電圧を印加することにより、焦点距離とレーザ光の偏向特性を制御することが可能である。加えて、出射光の波面制御を行うことができることから、出射光のビーム形状を円形から楕円形状まで自由に制御することができる。各電極の電圧制御には、電圧コントロール部110により調節できるようになっている。When driving the above liquid crystal optical device, as disclosed in Patent Document 9, a voltage is applied between the third electrode 22 and the first electrode 24 as external control electrodes as shown in FIG. By applying V 0 and applying a voltage from V A to V H to each electrode in the second electrode 21 having an eight-divided circular pattern, it is possible to control the focal length and the laser beam deflection characteristics. . In addition, since the wavefront control of the emitted light can be performed, the beam shape of the emitted light can be freely controlled from a circular shape to an elliptical shape. The voltage control of each electrode can be adjusted by the voltage control unit 110.

図3(a)、(b)は8分割円形パターン電極である第2の電極(V〜V)に印加する電圧駆動法1及び電圧駆動法2を示している。ここで、第3の外部制御電極22の電圧V=10Vとしている。図3(a)に示すように、各電極に時間間隔▲1▼〜▲4▼で正弦波電圧の実効値V=54V、V=38V及びV=27Vを印加し、切り替えを行うことで、機械的な動作を伴うことなく、楕円形状に分布した長軸方向及び短軸方向の屈折率分布を時系列かつ一方向に回転制御することができる。FIGS. 3A and 3B show a voltage driving method 1 and a voltage driving method 2 applied to the second electrodes (V A to V H ) which are eight-divided circular pattern electrodes. Here, the voltage V 0 of the third external control electrode 22 is set to 10V. As shown in FIG. 3A, sine wave voltage effective values V a = 54 V, V b = 38 V, and V c = 27 V are applied to each electrode at time intervals {circle over (1)} to {circle over (4)} to perform switching. Accordingly, the refractive index distribution in the major axis direction and the minor axis direction distributed in an elliptical shape can be rotationally controlled in a time series and in one direction without any mechanical operation.

図3(b)に示すように電圧駆動法2において、図3(a)と同様に8分割された第2の円形パターン電極に印加する電圧をV=54V、V=38V及びV=27Vとする場合、Δt=100msの間だけ2倍または4倍の高電圧Va→b、Vb→cまたはVc→aを印加することで、液晶分子の回転方向を方向づけることができる。そのため、楕円形状に分布した屈折率分布の長軸方向及び短軸方向を高速に回転することが可能となる。As shown in FIG. 3B, in the voltage driving method 2, the voltages applied to the second circular pattern electrode divided into eight as in FIG. 3A are V a = 54 V, V b = 38 V, and V c. = 27V, the rotation direction of the liquid crystal molecules can be oriented by applying a high voltage V a → b , V b → c or V c → a twice or 4 times during Δt = 100 ms. . Therefore, the major axis direction and minor axis direction of the refractive index distribution distributed in an elliptical shape can be rotated at high speed.

図1に示したように、液晶光学デバイス14と高開口数の対物レンズ12と組み合わせた光捕捉回転制御装置において、レーザ光を液体に分散した棒状微粒子32に照射し、図3(a)または(b)に示した電圧を各電極に印加することで、対物レンズ12を出射した焦点位置で楕円形状の光強度分布となる。レーザ光の焦点面において、光強度分布の長軸方向と棒状微粒子の長軸方向と一致させ光捕捉を行い、レーザ光における楕円形状の光強度分布を面内で回転させることで棒状微粒子への回転トルクが発生し、微粒子を回転することができる(図4(a))。したがって、レーザ光の焦点面において、楕円形状の光強度分布の長軸方向と光学的もしくは幾何学的異方性を有する微粒子の長軸方向と一致させ光捕捉を行うことにより微粒子の回転の制御が容易となる。  As shown in FIG. 1, in a light capturing / rotation control device combined with a liquid crystal optical device 14 and an objective lens 12 having a high numerical aperture, a rod-shaped fine particle 32 dispersed in a liquid is irradiated with laser light, and FIG. By applying the voltage shown in (b) to each electrode, an elliptical light intensity distribution is obtained at the focal position where the objective lens 12 is emitted. At the focal plane of the laser beam, light is captured by matching the long axis direction of the light intensity distribution with the long axis direction of the rod-shaped fine particles, and the elliptical light intensity distribution in the laser beam is rotated in the plane to thereby convert the rod-shaped fine particles to the rod-shaped fine particles. A rotational torque is generated, and the fine particles can be rotated (FIG. 4A). Therefore, on the focal plane of the laser beam, the rotation of the fine particles can be controlled by capturing the light by matching the long axis direction of the elliptical light intensity distribution with the long axis direction of the fine particles having optical or geometric anisotropy. Becomes easy.

図4(b)は棒状微粒子の一方の端部に焦点を合わせ、面方向に対して垂直な極角方向に焦点距離を制御することにより、棒状微粒子を面に対して垂直に立たせた場合の模式図を示している。方位角θのみならず極角φ方向へ棒状微粒子の回転制御を行うことができる。  FIG. 4B shows a case where the rod-shaped fine particles are made to stand perpendicular to the surface by focusing on one end of the rod-shaped fine particles and controlling the focal length in the polar angle direction perpendicular to the surface direction. A schematic diagram is shown. The rotation of the rod-shaped fine particles can be controlled not only in the azimuth angle θ but also in the polar angle φ direction.

図4(c)に示したように,8分割円形パターンから成る第2の電極の電圧を制御することでレーザ光の偏向を行うことも可能である。この効果を利用することで、液体中に分散した微粒子を光捕捉し,光軸に対して垂直な方向に微粒子を移動させることができる。しかも、光学的もしくは幾何学的異方性を有する微粒子を斜めに保持しながら、位置の移動や微粒子が基板面に対してある角度傾いた状態で回転制御することができる。  As shown in FIG. 4C, it is also possible to deflect the laser light by controlling the voltage of the second electrode formed of an eight-divided circular pattern. By utilizing this effect, the fine particles dispersed in the liquid can be captured and moved in the direction perpendicular to the optical axis. In addition, while maintaining fine particles having optical or geometric anisotropy obliquely, it is possible to control the rotation while the position is moved or the fine particles are inclined at an angle with respect to the substrate surface.

本発明の一実施形態に関わる多分割液晶光学デバイスを2枚の偏光板により挟み、各々の電極に電圧を印加することにより得られた光軸方向からみた光の位相分布(干渉縞)を図5示している(実施例1)。第2の電極において、各々の対をなす円形パターン電極に異なる電圧を加えることで楕円形状の干渉縞が生じ、干渉縞の密度(位相分布特性)を制御することができる。加えて、楕円形状に分布した長軸方向及び短軸方向の屈折率分布を回転制御することができる。  The phase distribution (interference fringes) of light viewed from the optical axis direction obtained by sandwiching a multi-division liquid crystal optical device according to an embodiment of the present invention between two polarizing plates and applying a voltage to each electrode is shown. 5 (Example 1). In the second electrode, by applying different voltages to each pair of circular pattern electrodes, elliptical interference fringes are generated, and the density (phase distribution characteristics) of the interference fringes can be controlled. In addition, the refractive index distribution in the major axis direction and the minor axis direction distributed in an elliptical shape can be rotationally controlled.

本発明の一実施形態に関わる多分割液晶光学デバイスを2枚の偏光板により挟み、円形パターン領域における光軸方向から得られた光の位相分布において、干渉縞中心を円形パターンの中心からずれた状態で時計方向に回転するように第2の電極において各々の円形パターン電極に電圧を印加した場合に観察した干渉縞を図6(a)〜(j)に示す(実施例2)。各々の電極に異なる電圧を加えることで、干渉縞の密度分布を制御することができ、且つ干渉縞の分布を回転制御することができる。すなわち、このような駆動法により、微粒子を基板面に対してある角度傾けた状態で回転制御することができる。  The multi-divided liquid crystal optical device according to an embodiment of the present invention is sandwiched between two polarizing plates, and the center of the interference fringes is shifted from the center of the circular pattern in the phase distribution of light obtained from the optical axis direction in the circular pattern region. FIGS. 6A to 6J show interference fringes observed when a voltage is applied to each circular pattern electrode in the second electrode so as to rotate clockwise in the state (Example 2). By applying different voltages to each electrode, the density distribution of interference fringes can be controlled, and the distribution of interference fringes can be rotationally controlled. That is, by such a driving method, the rotation of the fine particles can be controlled while being tilted at an angle with respect to the substrate surface.

本発明の液晶光学デバイスにおける円形パターン領域での楕円形状干渉縞における長軸方向を45°(時計方向)毎に回転する場合の回転角度における応答時間特性を図7に示している。(実施例3)各電極に図3(a)で示した電圧駆動法1(i)の場合よりも図3(b)で示した電圧駆動法2における2倍の電圧(ii)または4倍の電圧(iii)をΔt=600ms間印加することで,面内方向での屈折率分布を高速に切り換えることが可能である。  FIG. 7 shows response time characteristics at the rotation angle when the major axis direction of the elliptical interference fringe in the circular pattern region in the liquid crystal optical device of the present invention is rotated by 45 ° (clockwise). (Embodiment 3) The voltage (ii) or quadruple of the voltage driving method 2 shown in FIG. 3 (b) is applied to each electrode in the voltage driving method 1 (i) shown in FIG. 3 (a). Is applied for Δt = 600 ms, the refractive index distribution in the in-plane direction can be switched at high speed.

本発明の光捕捉回転制御装置において、光捕捉した棒状微粒子の回転角−応答時間特性を図8に示す。(実施例4) 液晶光学デバイスにおける各電極に任意の面内方向の屈折率分布が得られるように最適な電圧制御を行うことで、棒状微粒子を任意方向に連続的に回転することができる。さらに、電圧駆動法2における瞬時電圧を印加することで,従来の棒状微粒子の回転制御よりも高速に動作させることが可能となる。  FIG. 8 shows the rotation angle-response time characteristics of the rod-shaped fine particles that have been light-captured in the light-trapping rotation control device of the present invention. (Example 4) By performing optimal voltage control so that a refractive index distribution in an arbitrary in-plane direction can be obtained for each electrode in a liquid crystal optical device, rod-shaped fine particles can be continuously rotated in an arbitrary direction. Furthermore, by applying an instantaneous voltage in the voltage driving method 2, it is possible to operate at higher speed than the conventional rotation control of rod-shaped fine particles.

本発明の光捕捉回転制御装置において、液晶光学デバイスにおける円形パターン電極の各電極に楕円形状の屈折率分布を持つように電圧を印加し、棒状微粒子(直径:11μm、長さ:35μm)を回転、さらに位置の移動行った。その後、棒状微粒子の中心部からずれた位置で、液晶光学デバイスにおける屈折率分布を楕円形状から円形状になるように円形パターンから成る第2の電極の電圧を制御したときの微粒子の様子を図9に示す。(実施例5)異方性の微粒子の中心からずれた位置で液晶光学デバイスの屈折率分布を楕円形状から円形状に可変し、光捕捉することにより、極角方向へ微粒子を回転制御することができる。  In the light trapping rotation control device of the present invention, a voltage is applied to each electrode of the circular pattern electrode in the liquid crystal optical device so as to have an elliptical refractive index distribution, and rod-shaped fine particles (diameter: 11 μm, length: 35 μm) are rotated. And the position moved further. Thereafter, the state of the fine particles when the voltage of the second electrode made of a circular pattern is controlled so that the refractive index distribution in the liquid crystal optical device changes from an elliptical shape to a circular shape at a position shifted from the center of the rod-like fine particles is illustrated. 9 shows. (Example 5) The refractive index distribution of the liquid crystal optical device is changed from an elliptical shape to a circular shape at a position deviated from the center of the anisotropic fine particles, and the fine particles are controlled to rotate in the polar angle direction by capturing light. Can do.

マイクロマシーン技術や微細胞の結合及び切断へのバイオメディカル分野等幅広い分野への応用が期待できる。  Applications in a wide range of fields such as micromachine technology and biomedical fields for binding and cutting of microcells can be expected.

この発明に関わる微粒子光捕捉回転制御装置の概略を説明した図である。It is the figure explaining the outline of the fine particle light capture rotation control apparatus concerning this invention. 図1に用いられた液晶光学デバイスの概略図である。It is the schematic of the liquid crystal optical device used for FIG. 実施の形態の動作を説明するために示した電圧波形の例を示す図である。It is a figure which shows the example of the voltage waveform shown in order to demonstrate operation | movement of embodiment. 本発明の微粒子回転及び移動を説明するために示した概略図である。It is the schematic shown in order to demonstrate fine particle rotation and movement of this invention. 本発明の一実施形態に関わる多分割液晶光学デバイスを2枚の偏光板により挟み、個々の電極に電圧を印加することにより得られた楕円形状の干渉パターンを示す図である。(実施例1)It is a figure which shows the elliptical interference pattern obtained by pinching the multi-division liquid crystal optical device concerning one Embodiment of this invention with two polarizing plates, and applying a voltage to each electrode. (Example 1) 本発明の一実施形態に関わる多分割液晶光学デバイスにおいて、個々の電極に異なる電圧を印加し、電圧制御することにより得られた干渉パターンを示す図である。(実施例2)It is a figure which shows the interference pattern obtained by applying a different voltage to each electrode and controlling the voltage in the multi-division liquid crystal optical device according to the embodiment of the present invention. (Example 2) 本発明の液晶光学デバイスにおける楕円形状の屈折率分布の回転角応答時間を示している図である。(実施例3)It is a figure which shows the rotation angle response time of the elliptical refractive index distribution in the liquid crystal optical device of this invention. (Example 3) 本発明の光捕捉回転制御装置における棒状微粒子の回転角応答時間を示している図である。(実施例4)It is a figure which shows the rotation angle response time of the rod-shaped microparticles | fine-particles in the light capture rotation control apparatus of this invention. (Example 4) 本発明の光捕捉回転制御装置を用いて、棒状微粒子を極角方向に回転した場合の写真である。(実施例5)It is a photograph at the time of rotating rod-shaped fine particles in the polar angle direction using the light capture rotation control device of the present invention. (Example 5)

符号の説明Explanation of symbols

11 反射ミラー
12 対物レンズ
13 サンプルホルダ
14 液晶光学デバイス
15 観察用対物レンズ
16 干渉フィルタ
17 接眼レンズ
18 CCDカメラ
19 画像取り込みPC
110 電圧コントロール部
111 レンズ
112 レンズ
113 レーザ光源
21 8分割円形電極から成る第2の電極
22 第3の電極
23 液晶層
24 第1の電極
25 第3の基板
26 円形パターンからなる第2の電極用電源
27 外部制御電極用電源
28 第2の基板
29 第1の基板
210 球状スペーサ
211 球状スペーサ
31 サンプルホルダ
32 棒状ガラス微粒子
DESCRIPTION OF SYMBOLS 11 Reflection mirror 12 Objective lens 13 Sample holder 14 Liquid crystal optical device 15 Objective lens 16 for observation Interference filter 17 Eyepiece 18 CCD camera 19 Image capture PC
110 Voltage control unit 111 Lens 112 Lens 113 Laser light source 21 Second electrode 22 composed of eight divided circular electrodes 22 Third electrode 23 Liquid crystal layer 24 First electrode 25 Third substrate 26 For second electrode composed of circular pattern Power supply 27 Power supply for external control electrode 28 Second substrate 29 First substrate 210 Spherical spacer 211 Spherical spacer 31 Sample holder 32 Rod-shaped glass particles

Claims (3)

透明な第1の電極を有する第1の基板と、この第1の基板に平行に対向した第2の基板と、前記第2の基板の外部にあって前記第1の基板と反対側に配置してそれぞれ独立に電圧を印可できるようにスリットにより複数に分割された円形パターンを有する第2の電極と、前記第1の基板と第2の基板との間に収容された液晶分子を配向させた液晶層を備え、前記第2の電極の外部に絶縁層を介して第3の電極を配置し、前記複数に分割された第2の電極と独立に電圧を印可できるように構成された液晶光学デバイスと対物レンズとの組み合わせにより集光したレーザ光を用いて、焦点付近で光捕捉した光学的もしくは幾何学的異方性を有する微粒子を、基板面に平行な面内方向での回転制御及び3次元位置制御するのみならず、光学的もしくは幾何学的異方性を有する微粒子の中心からずれた位置で、液晶光学デバイスにおける屈折率分布を楕円形状から円形状にすることで、基板面に垂直な方向、すなわち極角方向へ回転制御することを特徴とする微粒子光捕捉回転制御装置。
A first substrate having a transparent first electrode; a second substrate facing the first substrate in parallel; and disposed outside the second substrate and on the opposite side of the first substrate. And aligning liquid crystal molecules accommodated between the first substrate and the second substrate with a second electrode having a circular pattern divided into a plurality of slits so that voltages can be applied independently. A liquid crystal layer configured to dispose a third electrode through an insulating layer outside the second electrode, and to apply a voltage independently of the plurality of divided second electrodes. Using laser light collected by a combination of an optical device and objective lens, rotation control of fine particles with optical or geometric anisotropy captured near the focal point in the in-plane direction parallel to the substrate surface and not only three-dimensional position control, optical also lay At a position shifted from the center of fine particles having a geometric anisotropy, by the circular shape of the refractive index distribution in the liquid crystal optical device from an elliptical shape to control rotation in a direction perpendicular to the substrate surface, i.e. the polar angle direction A fine particle light capturing and rotating control device characterized by the above.
前記微粒子光捕捉回転制御装置において、光学的もしくは幾何学的異方性を有する微粒子を基板面に対して斜め又は垂直状に光捕捉し、前記光捕捉した微粒子の3次元位置制御を行うことを特徴とする請求項1に記載の微粒子光捕捉回転制御装置。
In the fine particle light capturing and rotating control device, fine particles having optical or geometric anisotropy are light-obtained obliquely or perpendicularly to the substrate surface, and the three-dimensional position control of the light-captured fine particles is performed. The fine particle light capture and rotation control device according to claim 1, characterized in that:
前記微粒子光捕捉回転制御装置において、光学的もしくは幾何学的異方性を有する微粒子を基板面に傾けて保持した状態で、回転制御することを特徴とする請求項1又は2のいずれか1項に記載の微粒子光捕捉回転制御装置。 In the particulate light trapping rotation control device, optical or fine particles having a geometric anisotropy in a state of holding inclined to the substrate surface, any one of claims 1 or 2, characterized in that to control rotation The fine particle light capture and rotation control device according to claim 1.
JP2007258057A 2007-08-31 2007-08-31 Fine particle light capture and rotation control device Expired - Fee Related JP5035798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258057A JP5035798B2 (en) 2007-08-31 2007-08-31 Fine particle light capture and rotation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007258057A JP5035798B2 (en) 2007-08-31 2007-08-31 Fine particle light capture and rotation control device

Publications (2)

Publication Number Publication Date
JP2009058926A JP2009058926A (en) 2009-03-19
JP5035798B2 true JP5035798B2 (en) 2012-09-26

Family

ID=40554676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258057A Expired - Fee Related JP5035798B2 (en) 2007-08-31 2007-08-31 Fine particle light capture and rotation control device

Country Status (1)

Country Link
JP (1) JP5035798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182516A (en) * 2015-07-21 2015-12-23 大连理工大学 Method for tunably capturing and screening particles above liquid crystal substrate through utilizing linearly polarized planar light waves

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397214B (en) * 2020-11-18 2022-11-15 中国人民解放军国防科技大学 Device and method for realizing photoinduced orbital rotation based on four-beam optical trap
JPWO2022195765A1 (en) * 2021-03-17 2022-09-22
CN113740214B (en) * 2021-11-08 2022-01-25 深圳大学 Intelligent analysis method and device based on holographic evanescent wave optical tweezers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235319A (en) * 2005-02-25 2006-09-07 Japan Science & Technology Agency Device for controlling movement of particulate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182516A (en) * 2015-07-21 2015-12-23 大连理工大学 Method for tunably capturing and screening particles above liquid crystal substrate through utilizing linearly polarized planar light waves

Also Published As

Publication number Publication date
JP2009058926A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
EP2681533B1 (en) Systems and methods for illumination phase control in fluorescence microscopy
Pesce et al. Step-by-step guide to the realization of advanced optical tweezers
US9772484B2 (en) Light modulating device
JP4897382B2 (en) Apparatus for applying optical gradient forces
US11842825B2 (en) Vortex-pair beam based optical tweezer system
JP6306856B2 (en) Micro body control device
Chen et al. Optical trapping and rotating of micro-particles using the circular Airy vortex beams
JP5035798B2 (en) Fine particle light capture and rotation control device
WO2011105618A1 (en) Microscope device, optical pickup device, and light irradiation device
KR100641722B1 (en) Apparatus for applying optical gradient forces
JP2006235319A (en) Device for controlling movement of particulate
US20040090632A1 (en) Optical rotation of microscopic particles
Yang et al. A review of liquid crystal spatial light modulators: devices and applications
JP5885546B2 (en) OPTICAL ELEMENT, MICROSCOPE DEVICE PROVIDED WITH OPTICAL ELEMENT, AND METHOD FOR ASSEMBLY OF OPTICAL ELEMENT
JP2008216641A (en) Two-dimensional hologram pattern, and method for generation of laguerre-gaussian beam, and optical manipulation system
Carmon et al. Controlled alignment of bacterial cells with oscillating optical tweezers
JP2014098790A (en) Optical tweezers apparatus
Kawamura et al. Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes
CN108227174B (en) Microstructure light illumination super-resolution fluorescence microscopic imaging method and device
JP2018087885A (en) Polarization control device and polarization control method
Yuan et al. Dynamic steering beams for efficient force measurement in optical manipulation
CN103257443A (en) Handheld confocal optical endoscope
JP5181096B2 (en) Polarization imaging element
Kawamura et al. Laser manipulation by using liquid crystal devices with variable-focusing and beam-steering functions
Kawamura et al. Optical tweezers system by using a liquid crystal optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees