JP5035653B2 - Hybrid laser processing equipment - Google Patents

Hybrid laser processing equipment Download PDF

Info

Publication number
JP5035653B2
JP5035653B2 JP2005079458A JP2005079458A JP5035653B2 JP 5035653 B2 JP5035653 B2 JP 5035653B2 JP 2005079458 A JP2005079458 A JP 2005079458A JP 2005079458 A JP2005079458 A JP 2005079458A JP 5035653 B2 JP5035653 B2 JP 5035653B2
Authority
JP
Japan
Prior art keywords
inclined surface
liquid
laser
nozzle
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005079458A
Other languages
Japanese (ja)
Other versions
JP2006255768A (en
Inventor
良治 小関
基 佐々木
吉博 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Corp filed Critical Shibuya Corp
Priority to JP2005079458A priority Critical patent/JP5035653B2/en
Priority to PCT/JP2005/019298 priority patent/WO2006100798A1/en
Priority to US11/885,854 priority patent/US7705266B2/en
Priority to CN2005800491587A priority patent/CN101142050B/en
Priority to KR1020077021127A priority patent/KR101198341B1/en
Priority to EP05795416.6A priority patent/EP1859890B1/en
Publication of JP2006255768A publication Critical patent/JP2006255768A/en
Application granted granted Critical
Publication of JP5035653B2 publication Critical patent/JP5035653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/122Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in a liquid, e.g. underwater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1436Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/006Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material without particles or pellets for deburring, removal of extended surface areas or jet milling of local recessions, e.g. grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor

Description

本発明はハイブリッドレーザ加工装置に関し、具体的には、噴射ノズルが噴射した液柱にレーザ光を導光して被加工物の加工を行うハイブリッドレーザ加工装置に関する。   The present invention relates to a hybrid laser processing apparatus, and more specifically, to a hybrid laser processing apparatus that processes a workpiece by guiding laser light to a liquid column ejected by an ejection nozzle.

従来、噴射孔を有する噴射ノズルと、当該噴射ノズルに高圧の液体を供給する液体供給手段と、レーザ光を発振するレーザ発振器と、該レーザ発振器から発振されたレーザ光を集光する集光レンズとを備え、上記液体供給手段から供給された液体を噴射孔から液柱にして外部に噴射させると共に、集光レンズによって上記液柱にレーザ光を導光して、被加工物の加工を行うハイブリッドレーザ加工装置が知られている。
このようなハイブリッドレーザ加工装置として、加工ヘッドの先端に液柱ビームを噴射するノズル通路の形成されたノズルブロックを設け、フォーカスレンズがレーザ光を上記ノズル通路の入口開口に集光することで、ノズル通路より噴出する液体ビームにレーザビームを導光するものが知られている。(特許文献1)
また、他のハイブリッドレーザ加工装置として、加工ヘッドの内部に被加工物に向けて縮径する円錐面と円筒面とを形成し、上記円筒面の先端より柱状に水を噴射させるとともに、レーザ光をこれら上記円錐面および円筒面に反射させることで、レーザ光を噴射された水に導光するものが知られている。(特許文献2)
特表平10−500903号公報 特開2001−321977号公報
Conventionally, an injection nozzle having an injection hole, liquid supply means for supplying high-pressure liquid to the injection nozzle, a laser oscillator that oscillates laser light, and a condensing lens that condenses the laser light oscillated from the laser oscillator The liquid supplied from the liquid supply means is made into a liquid column from the injection hole and ejected to the outside, and a laser beam is guided to the liquid column by a condenser lens to process the workpiece. A hybrid laser processing apparatus is known.
As such a hybrid laser processing apparatus, a nozzle block formed with a nozzle passage for injecting a liquid column beam is provided at the tip of the processing head, and the focus lens focuses the laser light on the inlet opening of the nozzle passage. One that guides a laser beam to a liquid beam ejected from a nozzle passage is known. (Patent Document 1)
Further, as another hybrid laser processing apparatus, a conical surface and a cylindrical surface that are reduced in diameter toward the workpiece are formed inside the processing head, and water is ejected in a columnar shape from the tip of the cylindrical surface, and laser light is emitted. The laser beam is guided to the jetted water by reflecting the laser beam on the conical surface and the cylindrical surface. (Patent Document 2)
Japanese National Patent Publication No. 10-500903 JP 2001-321977 A

しかしながら、特許文献1の場合、フォーカスレンズはレーザビームの焦点を上記ノズル通路の入口開口に位置させなければならず、入口開口を小径にすればするほど、レーザビームの焦点の調整が困難となる。
また、特許文献2の場合、レーザ光が円錐面および円筒面で反射を繰り返す結果、噴射された水柱に導光されるレーザ光は、当該水柱の境界面への入射角が小さくなりすぎてしまい、レーザ光が水柱の外部に飛び出してしまうといった問題がある。
さらに、上記円錐面および円筒面でレーザ光を何度も反射させているので、これら円錐面および円筒面の全体に鏡面加工等の処理を施す必要があり、加工ヘッドのコストが高いという問題がある。
このような問題に鑑み、本発明は集光レンズによるレーザ光の焦点位置の調整が容易で、導光されたレーザ光が液柱より外部に飛び出すことがなく、しかも製造コストを低廉にすることの可能なハイブリッドレーザ加工装置を提供するものである。
However, in the case of Patent Document 1, the focus lens must position the focal point of the laser beam at the inlet opening of the nozzle passage, and the smaller the inlet opening, the more difficult the adjustment of the focal point of the laser beam. .
In the case of Patent Document 2, as a result of the laser beam being repeatedly reflected by the conical surface and the cylindrical surface, the incident angle of the laser beam guided to the jetted water column to the boundary surface of the water column becomes too small. There is a problem that the laser beam jumps out of the water column.
Furthermore, since the laser beam is reflected many times by the conical surface and the cylindrical surface, it is necessary to perform a process such as mirror finishing on the entire conical surface and the cylindrical surface, and there is a problem that the cost of the processing head is high. is there.
In view of such problems, the present invention makes it easy to adjust the focal position of the laser beam by the condenser lens, so that the guided laser beam does not jump out of the liquid column, and the manufacturing cost is reduced. The present invention provides a hybrid laser processing apparatus capable of the following.

すなわち、本発明のハイブリッドレーザ加工装置は、噴射孔を有する噴射ノズルと、当該噴射ノズルに高圧の液体を供給する液体供給手段と、レーザ光を発振するレーザ発振器と、該レーザ発振器から発振されたレーザ光を集光する集光レンズと、上記噴射ノズルと集光レンズとが設けられた加工ヘッドとを備え、上記液体供給手段から供給された液体を噴射孔から液柱にして外部に噴射させると共に、集光レンズによって上記液柱にレーザ光を導光して、被加工物の加工を行うハイブリッドレーザ加工装置において、
上記噴射ノズルの上記噴射孔に、被加工物に向けて縮径する第1傾斜面と、当該第1傾斜面の最小径部に接続されるともに上記第1傾斜面よりも被加工物側に形成されて被加工物に向けて拡径する第2傾斜面とを形成し、
上記集光レンズの焦点を上記第1傾斜面の最小径部よりも被加工物側に超えた位置に設定するとともに上記噴射孔より噴射された液柱の内部に設定し、かつ上記噴射孔内に照射されたレーザ光のうち、上記第1傾斜面によって遮られる部分を該第1傾斜面で一度だけ反射させてから上記液柱に導光するように設定するとともに、上記第2傾斜面によって上記液柱を囲繞するエアポケットを形成することを特徴としている。
In other words, the hybrid laser processing apparatus of the present invention is generated by an injection nozzle having an injection hole, a liquid supply means for supplying high-pressure liquid to the injection nozzle, a laser oscillator that oscillates laser light, and the laser oscillator. A condensing lens for condensing the laser beam; and a processing head provided with the ejection nozzle and the condensing lens; and the liquid supplied from the liquid supply means is ejected to the outside from the ejection hole as a liquid column. At the same time, in the hybrid laser processing apparatus for processing the workpiece by guiding the laser beam to the liquid column by the condenser lens,
The injection hole of the injection nozzle is connected to a first inclined surface that is reduced in diameter toward the workpiece, and is connected to a minimum diameter portion of the first inclined surface, and closer to the workpiece than the first inclined surface. Forming a second inclined surface that is formed and expands toward the workpiece;
The focal point of the condensing lens is set at a position beyond the minimum diameter portion of the first inclined surface on the workpiece side, set inside the liquid column ejected from the ejection hole , and in the ejection hole of the laser beam irradiated to a portion to be intercepted by the first inclined surface and sets to guide the by reflecting only once the first inclined surface to the liquid column, by the second inclined surface An air pocket surrounding the liquid column is formed.

上記発明によれば、上記噴射孔に形成された傾斜面の最小径部の径で液柱が噴射されるが、上記集光レンズはレーザ光を上記最小径部よりも小さく集光する必要は無く、少なくともレーザ光を噴射孔の入口より小さくして、上記傾斜面で反射するように集光すれば良いので、レーザ光の焦点位置の調整が容易となる。
また、レーザ光の焦点を上記傾斜面の最小径部よりも被加工物側に設定し、レーザ光を上記傾斜面に反射させようとすると、上記傾斜面の円錐角よりも集光されるレーザ光の円錐角のほうが小さくなり、これによりレーザ光が傾斜面で反射する回数を抑えることができる。
このため、液柱に導光されるレーザ光の液柱と外気との境界面への入射角が大きくなり、レーザ光が液柱より外部に飛び出すのが防止され、さらには噴射ノズル内部の鏡面加工等の範囲を少なくして噴射ノズルのコストを低廉にすることができる。
According to the invention, the liquid column is ejected with the diameter of the smallest diameter portion of the inclined surface formed in the ejection hole, but the condensing lens needs to collect the laser beam smaller than the smallest diameter portion. However, at least the laser beam is made smaller than the entrance of the injection hole and condensed so as to be reflected by the inclined surface, so that the focal position of the laser beam can be easily adjusted.
In addition, when the focal point of the laser beam is set on the workpiece side with respect to the minimum diameter portion of the inclined surface, and the laser beam is reflected on the inclined surface, the laser beam is collected more than the cone angle of the inclined surface. The cone angle of the light becomes smaller, which can reduce the number of times the laser light is reflected by the inclined surface.
For this reason, the incident angle of the laser beam guided to the liquid column to the boundary surface between the liquid column and the outside air is increased, the laser beam is prevented from jumping out of the liquid column, and further the mirror surface inside the injection nozzle The range of processing and the like can be reduced, and the cost of the injection nozzle can be reduced.

以下図示実施例について説明すると、図1には本発明にかかるハイブリッドレーザ加工装置1を示し、液体の噴射により形成した液柱Wにレーザ光Lを導光することで、被加工物2を所要形状に切断加工する装置となっている。
このハイブリッドレーザ加工装置1は、上記被加工物2を支持する加工テーブル3と、レーザ光Lを発振するレーザ発振器4と、水等の液体を供給する液体供給手段としての高圧ポンプ5と、被加工物2に向けて液体を液柱Wとして噴射するとともに、レーザ光Lを上記液柱Wに導光する加工ヘッド6とを備えている。
上記加工テーブル3は従来公知であるので詳細な説明をしないが、上記被加工物2を加工ヘッド6に対して水平方向に移動させるようになっており、また上記加工ヘッド6は図示しない昇降手段によって垂直方向に移動するようにされている。
本実施例では、上記被加工物2として板厚の薄い半導体ウエハを切断加工し、この他にもエポキシ樹脂板や樹脂と金属からなる複合材料なども切断加工することができる。また、切断加工のほかにも、被加工物2表面に対して溝加工を行うことも可能である。
また上記レーザ発振器4はYAGレーザであり、加工に応じてCW発振又はパルス発振が可能であり、またその出力やパルスの発振周期を適宜調整できるようになっている。
さらに、レーザ発振器4としてこの他にも半導体レーザやCOレーザ等を用いることも可能であるが、COレーザのように照射されるレーザ光Lが水に吸収されやすい波長である場合には、加工ヘッド6より噴射される液体をレーザ光Lが吸収されないような液体にすればよい。
The illustrated embodiment will be described below. FIG. 1 shows a hybrid laser processing apparatus 1 according to the present invention. A laser beam L is guided to a liquid column W formed by jetting a liquid, so that a workpiece 2 is required. It is a device that cuts into a shape.
The hybrid laser processing apparatus 1 includes a processing table 3 that supports the workpiece 2, a laser oscillator 4 that oscillates laser light L, a high-pressure pump 5 that serves as a liquid supply unit that supplies a liquid such as water, A processing head 6 that injects liquid toward the workpiece 2 as a liquid column W and guides the laser beam L to the liquid column W is provided.
The processing table 3 is conventionally known and will not be described in detail. However, the workpiece 2 is moved in the horizontal direction with respect to the processing head 6, and the processing head 6 is not shown. It is intended to move vertically.
In the present embodiment, a thin semiconductor wafer can be cut as the workpiece 2, and an epoxy resin plate or a composite material made of resin and metal can also be cut. In addition to the cutting process, it is also possible to perform a groove process on the surface of the workpiece 2.
The laser oscillator 4 is a YAG laser, which can perform CW oscillation or pulse oscillation according to processing, and can appropriately adjust its output and pulse oscillation period.
In addition to this, a semiconductor laser, a CO 2 laser, or the like can be used as the laser oscillator 4. However, when the laser light L irradiated has a wavelength that is easily absorbed by water, such as a CO 2 laser. The liquid ejected from the processing head 6 may be a liquid that does not absorb the laser light L.

次に上記加工ヘッド6について説明すると、加工ヘッド6は図示しない昇降手段に固定された平板状のフレーム11と、上記レーザ光Lを集光する集光レンズ12と、上記高圧ポンプ5より供給された液体を液柱Wにして噴射するとともに、当該液柱Wにレーザ光Lを導光する噴射ノズル13と、上記集光レンズ12と噴射ノズル13の相対位置や角度を調整する調整手段14とを備えている。
なお図1では、説明のため図示下方側(後述する第6プレート41より下方)の断面図は、図2におけるI−Iの断面で切断した断面図となっている。
上記フレーム11はレーザ発振器4によって発振されるレーザ光Lの光軸上に設けられており、レーザ光Lの光軸が通過する位置には円形の貫通孔11aが形成されている。
上記集光レンズ12はレーザ光Lの光軸上に配置され、円筒状のレンズホルダ21の下端に保持されるとともに、このレンズホルダ21は略十字型(図2参照)の取付ステー22を介してフレーム11の下面に固定されている。
なお、図2は、図1におけるII−IIの断面で切断した断面図となっているが、説明のため、下記第2保持円筒28bについては表示を省略している。
また上記噴射ノズル13もレーザ光Lの光軸上に配置されており、この噴射ノズル13は円筒状のノズルホルダ23の下端に保持されると共に、当該ノズルホルダ23は上記調整手段14によって移動するようになっている。
Next, the processing head 6 will be described. The processing head 6 is supplied from a flat frame 11 fixed to a lifting means (not shown), a condensing lens 12 for condensing the laser light L, and the high-pressure pump 5. The liquid nozzle W to eject the liquid to the liquid column W and guide the laser light L to the liquid column W; and adjusting means 14 to adjust the relative position and angle of the condenser lens 12 and the ejection nozzle 13; It has.
In FIG. 1, a cross-sectional view on the lower side of the drawing (below a sixth plate 41 described later) is a cross-sectional view taken along the line II in FIG.
The frame 11 is provided on the optical axis of the laser beam L oscillated by the laser oscillator 4, and a circular through hole 11a is formed at a position where the optical axis of the laser beam L passes.
The condenser lens 12 is disposed on the optical axis of the laser beam L, and is held at the lower end of a cylindrical lens holder 21. The lens holder 21 is attached via a substantially cross-shaped (see FIG. 2) mounting stay 22. Are fixed to the lower surface of the frame 11.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, but for the sake of explanation, the following second holding cylinder 28 b is not shown.
The ejection nozzle 13 is also disposed on the optical axis of the laser beam L. The ejection nozzle 13 is held at the lower end of a cylindrical nozzle holder 23 and the nozzle holder 23 is moved by the adjusting means 14. It is like that.

図3は上記噴射ノズル13およびノズルホルダ23の拡大図を示し、上記ノズルホルダ23には被加工物2側から順に、小径部23a、中径部23b、大径部23cが形成され、上記噴射ノズル13は上記小径部23aの下端にリング状の保持部材24を用いて固定されている。
上記噴射ノズル13はステンレス製で、噴射ノズル13の中央には噴射孔13aが形成され、該噴射孔13aには、被加工物2に向けて縮径する第1傾斜面13bと、当該第1傾斜面13bよりも被加工物2側に形成されて被加工物2に向けて拡径する第2傾斜面13cとが形成されている。
上記第1傾斜面13bと第2傾斜面13cとは、最小径部13dで接続されており、上記第1傾斜面13bには、レーザ光Lを反射させるための鏡面加工が施されている。
また、後に詳述するように、上記第1傾斜面13bの角度は、上記集光レンズ12によって集光されるレーザ光Lの円錐角よりも大きくなるように設定されている。
FIG. 3 is an enlarged view of the injection nozzle 13 and the nozzle holder 23. A small diameter portion 23a, a medium diameter portion 23b, and a large diameter portion 23c are formed on the nozzle holder 23 in this order from the workpiece 2 side. The nozzle 13 is fixed to the lower end of the small diameter portion 23a using a ring-shaped holding member 24.
The injection nozzle 13 is made of stainless steel, and an injection hole 13 a is formed at the center of the injection nozzle 13. The injection hole 13 a has a first inclined surface 13 b that decreases in diameter toward the workpiece 2, and the first A second inclined surface 13c that is formed closer to the workpiece 2 than the inclined surface 13b and expands toward the workpiece 2 is formed.
The first inclined surface 13b and the second inclined surface 13c are connected by a minimum diameter portion 13d, and the first inclined surface 13b is mirror-finished for reflecting the laser light L.
As will be described in detail later, the angle of the first inclined surface 13b is set to be larger than the cone angle of the laser light L condensed by the condenser lens 12.

上記ノズルホルダ23の中径部23bには、シール部材25を介してガラス板26がはめ込まれ、このガラス板26は上記中径部23bの内周面に加工されたねじ部に螺合するナット27によって固定されている。
また、上記小径部23aの位置には、小径部23aを中心に同心円上に等間隔に4つの接続口23dが形成されており、この接続口23dは液体通路23eを介して小径部23aに連通し、上記高圧ポンプ5によって送液された液体は上記ガラス板26よりも下方の小径部23a内に供給される。
そして上記保持部材24の中央には、上記第2傾斜面13cよりも大径の貫通孔が設けられており、この貫通孔は上記第2傾斜面13cと共に、噴射ノズル13から噴射される液柱Wを囲繞するエアポケットPを構成している。
A glass plate 26 is fitted into the middle diameter portion 23b of the nozzle holder 23 via a seal member 25, and the glass plate 26 is a nut that is screwed into a screw portion processed on the inner peripheral surface of the middle diameter portion 23b. 27 is fixed.
Further, at the position of the small diameter portion 23a, four connection ports 23d are formed at equal intervals on a concentric circle with the small diameter portion 23a as the center, and the connection ports 23d communicate with the small diameter portion 23a through the liquid passage 23e. The liquid fed by the high-pressure pump 5 is supplied into the small-diameter portion 23 a below the glass plate 26.
A through hole having a diameter larger than that of the second inclined surface 13c is provided in the center of the holding member 24. The through hole is a liquid column ejected from the injection nozzle 13 together with the second inclined surface 13c. An air pocket P surrounding W is formed.

上記調整手段14は、上記ノズルホルダ23を保持する保持円筒28と、当該保持円筒28を水平方向に移動させるXY軸ステージ29と、XY軸ステージ29を垂直方向に移動させるZ軸ステージ30と、Z軸ステージ30の角度を変更させる角度調整ステージ31とを備えている。
上記保持円筒28は円筒状の第1保持円筒28aおよび第2保持円筒28bから構成され、このうち第1保持円筒28aは上記XY軸ステージ29に固定され、第2保持円筒28bの下端には上記ノズルホルダ23が固定されている。そして噴射ノズル13における噴射孔13aの中心軸と第1,第2保持円筒28a,28bの中心軸とが一致するようになっている。
また、上記第2保持円筒28bの内部には上記レンズホルダ21が相互に接触しないように収容されており、第1保持円筒28aおよび第2保持円筒28bは、上記レンズホルダ21をフレーム11に固定する上記取付ステー22と干渉しないよう、上記4本の連結部材32(図2参照)によって連結されている。
The adjusting means 14 includes a holding cylinder 28 that holds the nozzle holder 23, an XY axis stage 29 that moves the holding cylinder 28 in the horizontal direction, a Z axis stage 30 that moves the XY axis stage 29 in the vertical direction, An angle adjustment stage 31 that changes the angle of the Z-axis stage 30 is provided.
The holding cylinder 28 includes a cylindrical first holding cylinder 28a and a second holding cylinder 28b. The first holding cylinder 28a is fixed to the XY axis stage 29, and the lower end of the second holding cylinder 28b The nozzle holder 23 is fixed. The central axis of the injection hole 13a in the injection nozzle 13 and the central axes of the first and second holding cylinders 28a and 28b are made to coincide with each other.
The lens holder 21 is accommodated inside the second holding cylinder 28b so as not to contact each other. The first holding cylinder 28a and the second holding cylinder 28b fix the lens holder 21 to the frame 11. The four connecting members 32 (see FIG. 2) are connected so as not to interfere with the mounting stays 22.

上記XY軸ステージ29は、上記第1保持円筒28aを固定する第1プレート33と、第1プレート33を下方から保持する第2プレート34と、第2プレート34を下方から保持する第3プレート35と、第1保持円筒28aを図示左右方向のX軸方向と、図示奥行き方向のY軸方向とに移動させるマイクロメータ36,37とを備えている。
上記第1〜第3プレート33〜35の中央にはそれぞれ貫通孔33a〜35aが形成され、第1プレート33の貫通孔33aには、第1プレート33の上面に固定された固定部材33bにより、上記第1保持円筒28aが垂下するように固定されている。
また図4に示すように、第1〜第3プレート33〜35は平面的に略正方形の形状を有し、その側面がそれぞれ上記X軸方向及びY軸方向を向くように設置されている。
さらに、上記第1プレート33と第2プレート34とは、X軸方向に形成された図示しないレールによってX軸方向に相対移動し、上記第2プレート34と第3プレート35とは、Y軸方向に形成されたレール35b(図1参照)によってY軸方向に相対移動するようになっている。
そして上記マイクロメータ36、37は上記第2プレート34の側面にそれぞれX軸方向及びY軸方向に向けて固定され、第1プレート33の側面には、マイクロメータ36によって押圧可能な位置に突起33cが設けられ、上記第3プレート35の側面には、上記マイクロメータ37の先端によって押圧可能な位置に突起35cが設けられている。
このような構成により、X軸方向を向いたマイクロメータ36によって上記突起33cを押圧することで、ノズルホルダ23を保持円筒28および第1プレート33ごとX軸方向に移動させることができ、またY軸方向を向いたマイクロメータ37を操作することで、ノズルホルダ23を保持円筒28および第1、第2プレート33、34ごとY軸方向に移動させることができる。
The XY axis stage 29 includes a first plate 33 that fixes the first holding cylinder 28a, a second plate 34 that holds the first plate 33 from below, and a third plate 35 that holds the second plate 34 from below. And micrometers 36 and 37 for moving the first holding cylinder 28a in the X-axis direction in the horizontal direction in the figure and the Y-axis direction in the depth direction in the figure.
Through holes 33a to 35a are formed at the centers of the first to third plates 33 to 35, respectively, and the through holes 33a of the first plate 33 are fixed by fixing members 33b fixed to the upper surface of the first plate 33. The first holding cylinder 28a is fixed so as to hang down.
As shown in FIG. 4, the first to third plates 33 to 35 have a substantially square shape in plan view, and are disposed so that the side surfaces thereof face the X-axis direction and the Y-axis direction, respectively.
Further, the first plate 33 and the second plate 34 are moved relative to each other in the X-axis direction by a rail (not shown) formed in the X-axis direction, and the second plate 34 and the third plate 35 are moved in the Y-axis direction. The rail 35b (see FIG. 1) formed on the Y-axis moves relative to each other.
The micrometers 36 and 37 are fixed to the side surfaces of the second plate 34 in the X-axis direction and the Y-axis direction, respectively, and the projections 33c are formed on the side surfaces of the first plate 33 at positions that can be pressed by the micrometer 36. On the side surface of the third plate 35, a projection 35c is provided at a position that can be pressed by the tip of the micrometer 37.
With such a configuration, the nozzle holder 23 can be moved together with the holding cylinder 28 and the first plate 33 in the X-axis direction by pressing the projection 33c with the micrometer 36 facing the X-axis direction. By operating the micrometer 37 facing the axial direction, the nozzle holder 23 can be moved in the Y-axis direction together with the holding cylinder 28 and the first and second plates 33 and 34.

上記Z軸ステージ30はその上面に上記第3プレート35を固定する第4プレート38と、上記角度調整ステージ31の上面に固定された第5プレート39と、第4、第5プレート38,39の間に設けられた2つのハンドル40とを備え、第4、第5プレート38,39の中央には、移動する第1保持円筒28aと接触しない範囲で貫通孔38a,39aが形成されている。
ここで、上記ハンドル40は従来公知のジャッキスクリュー方式によって第4プレート38を昇降させるものであり、その構成については詳細な説明を省略する。
そしてこのZ軸ステージ30によれば、上記ハンドル40のいずれか一方を操作することで第4プレート38は第5プレート39に対して平行を保ったまま昇降し、上記ノズルホルダ23を保持円筒28及びXY軸ステージ29ごと昇降させることができる。
The Z-axis stage 30 has a fourth plate 38 for fixing the third plate 35 on its upper surface, a fifth plate 39 fixed on the upper surface of the angle adjusting stage 31, and fourth and fifth plates 38, 39. There are two handles 40 provided between them, and through holes 38a and 39a are formed in the center of the fourth and fifth plates 38 and 39 in a range not contacting the moving first holding cylinder 28a.
Here, the handle 40 raises and lowers the fourth plate 38 by a conventionally known jack screw system, and detailed description of the configuration is omitted.
According to the Z-axis stage 30, the fourth plate 38 is moved up and down while maintaining parallel to the fifth plate 39 by operating any one of the handles 40, and the nozzle holder 23 is held in the holding cylinder 28. The XY axis stage 29 can be moved up and down.

そして角度調整ステージ31は、その上面に上記Z軸ステージ30を固定する第6プレート41と、上記フレーム11を貫通し、その先端で第6プレート41を下方から保持する支点ボルト42と、同じく第6プレート41を下方から保持する2本の調整ボルト43(図5参照)とを備えている。
図2に示すように、上記第6プレート41は略正方形の形状を有しており、上記支点ボルト42は、第6プレート41の四隅のうちのいずれかの隅部を下面から支持し、上記調整ボルト43は、上記支点ボルト42を挟んだ位置の隅部を下面から支持するようになっている。
図5に示すように、上記支点ボルト42および調整ボルト43の先端は半球状に加工され、その先端は第6プレート41に埋設された受け部材44の凹部44aに収容されるようになっている。
そして、上記調整ボルト43はフレーム11の下面側に位置するダイヤル43aによってボルトの先端を上下に移動させることができるようになっており、これら2つの調整ボルト43を用いることで、第6プレート41のフレーム11に対する傾きを変更することができる。
すなわち、2つの調整ボルト43により、上記ノズルホルダ23のフレーム11に対する傾きを、保持円筒28およびXY軸ステージ29、Z軸ステージ30ごと調整することができる。
このような構成を有する調整手段14によれば、XY軸ステージ29および角度調整ステージ31を用いることで、レーザ発振器4より照射されたレーザ光Lの光軸に対し、噴射ノズル13より噴射される液柱Wの位置と角度とを一致させることができ、またZ軸ステージ30を用いることで、集光レンズ12によって集光されるレーザ光Lの焦点位置を、液柱Wの方向に沿って移動させることができる。
The angle adjustment stage 31 has a sixth plate 41 that fixes the Z-axis stage 30 on the upper surface thereof, a fulcrum bolt 42 that passes through the frame 11 and holds the sixth plate 41 from below at the tip thereof, 6 plate 41 is provided with two adjusting bolts 43 (see FIG. 5) for holding from below.
As shown in FIG. 2, the sixth plate 41 has a substantially square shape, and the fulcrum bolt 42 supports any one of the four corners of the sixth plate 41 from the lower surface. The adjustment bolt 43 is configured to support a corner portion at a position sandwiching the fulcrum bolt 42 from the lower surface.
As shown in FIG. 5, the distal ends of the fulcrum bolt 42 and the adjustment bolt 43 are processed into a hemispherical shape, and the distal ends thereof are accommodated in the recesses 44 a of the receiving member 44 embedded in the sixth plate 41. .
The adjustment bolt 43 can be moved up and down by a dial 43 a located on the lower surface side of the frame 11. By using these two adjustment bolts 43, the sixth plate 41 can be moved. Can be changed with respect to the frame 11.
That is, the tilt of the nozzle holder 23 with respect to the frame 11 can be adjusted by the two adjusting bolts 43 together with the holding cylinder 28, the XY axis stage 29, and the Z axis stage 30.
According to the adjustment means 14 having such a configuration, the XY axis stage 29 and the angle adjustment stage 31 are used to inject from the injection nozzle 13 with respect to the optical axis of the laser light L irradiated from the laser oscillator 4. The position and angle of the liquid column W can be matched, and the focal position of the laser light L condensed by the condenser lens 12 can be adjusted along the direction of the liquid column W by using the Z-axis stage 30. Can be moved.

図6は上記噴射ノズル13の拡大図を示しており、この図において、レーザ光Lの光軸と噴射ノズル13より噴射される液柱Wの中心軸とは、上記調整手段14のXY軸ステージ29及び角度調整ステージ31によって一致するように調整されている。
本実施例では、噴射ノズル13の噴射孔13aの第1傾斜面13bの最小径部13dの径は50μm、最大径部13eの径は80μm、最小径部13dから最大径部13eまでのZ軸方向の距離は100μmとなっており、また第1傾斜面の円錐角θ1は、集光レンズ12によって集光されるレーザ光Lの円錐角θ2よりも大きくなるように設定されている。
この状態で上記高圧ポンプ5によってノズルホルダ23内に液体を供給すると、当該液体はノズルホルダ23の小径部23a内を経て、上記噴射ノズル13の噴射孔13aより被加工物2に向けて噴射される。
このとき、第1傾斜面13bの下部には第2傾斜面13c及び保持部材24の貫通孔によって、エアポケットPが形成されているため、噴射された液体は拡散することなく、第1傾斜面13bの最小径部13dの径とほぼ同径の液柱Wとなって噴射される。
次に、レーザ発振器4よりレーザ光4が発振され、このレーザ光Lは集光レンズ12によって集光された後、上記ガラス板26とノズルホルダ23の小径部23a内に充満する液体とを透過して、上記噴射ノズル13へと照射される。
本実施例では、上記Z軸ステージ30を調整することで、レーザ光Lの焦点が上記第1傾斜面13bの最小径部13dを越えた液柱W内に位置し、かつ、レーザ光Lが噴射孔13aの最大径部13eよりも小さく集光されるようになっている。
なお、図6には破線により噴射ノズル13がない場合のレーザ光Lの焦点を示している。
このようにして集光されたレーザ光Lは、最小径部13dよりも外側の部分が上記第1傾斜面13bによって遮られ、当該部分が一度だけ第1傾斜面13bに反射した後、上記液柱Wにおける外気との境界面で臨界角より大きい入射角で反射を繰り返しながら被加工物2まで導光される。
FIG. 6 shows an enlarged view of the injection nozzle 13, in which the optical axis of the laser light L and the central axis of the liquid column W injected from the injection nozzle 13 are the XY axis stage of the adjusting means 14. 29 and the angle adjustment stage 31 are adjusted so as to coincide with each other.
In this embodiment, the diameter of the minimum diameter portion 13d of the first inclined surface 13b of the injection hole 13a of the injection nozzle 13 is 50 μm, the diameter of the maximum diameter portion 13e is 80 μm, and the Z axis from the minimum diameter portion 13d to the maximum diameter portion 13e. The distance in the direction is 100 μm, and the cone angle θ1 of the first inclined surface is set to be larger than the cone angle θ2 of the laser light L condensed by the condenser lens 12.
In this state, when a liquid is supplied into the nozzle holder 23 by the high-pressure pump 5, the liquid passes through the small diameter portion 23 a of the nozzle holder 23 and is sprayed toward the workpiece 2 from the spray hole 13 a of the spray nozzle 13. The
At this time, since the air pocket P is formed in the lower part of the first inclined surface 13b by the second inclined surface 13c and the through hole of the holding member 24, the injected liquid does not diffuse and the first inclined surface The liquid column W having the same diameter as that of the minimum diameter portion 13d of 13b is ejected.
Next, laser light 4 is oscillated from the laser oscillator 4, and this laser light L is condensed by the condenser lens 12 and then transmitted through the glass plate 26 and the liquid filling the small diameter portion 23 a of the nozzle holder 23. Then, the spray nozzle 13 is irradiated.
In the present embodiment, by adjusting the Z-axis stage 30, the focal point of the laser beam L is located in the liquid column W beyond the minimum diameter portion 13d of the first inclined surface 13b, and the laser beam L is The light is condensed smaller than the maximum diameter portion 13e of the injection hole 13a.
In FIG. 6, the focal point of the laser beam L when there is no injection nozzle 13 is indicated by a broken line.
The laser light L thus collected is shielded by the first inclined surface 13b at a portion outside the minimum diameter portion 13d, and the portion is reflected by the first inclined surface 13b only once. The light is guided to the workpiece 2 while being repeatedly reflected at an incident angle larger than the critical angle at the boundary surface between the column W and the outside air.

このように、本実施例のハイブリッドレーザ加工装置1によれば、レーザ光Lの焦点を噴射ノズル13における第1傾斜面13bの最小径部13dを越えた液柱W内に設定し、最小径部13bより外側に位置するレーザ光Lは上記第1傾斜面13bに反射して液柱W内に導光されるので、レーザ光Lの焦点位置がZ軸方向に多少ずれていても、レーザ光Lを液柱Wに導光することができ、上記Z軸ステージ30によるレーザ光Lの焦点位置の調整が容易となる。
これに対し、上記特許文献1では、噴射ノズルの開口部にレーザ光の焦点を設定しなければならず、焦点位置がZ軸方向にずれてしまうと、噴射ノズルにレーザ光が反射して液柱内にレーザ光が導光されないばかりか、レーザ光が予期しない壁面に照射されてしまい、加工ヘッド自体が損傷してしまうおそれがあった。
また、レーザ光Lは第1傾斜面13bに一度だけ反射するようになっているので、噴射ノズル13に対する鏡面加工等の範囲を少なくすることができ、また本実施例の場合、レーザ光Lの反射によって噴射ノズル13の反射面が損傷しても、ノズルホルダ23の先端に設けられた噴射ノズル13だけを交換すれば良いので、製造コストとランニングコストを低減することができる。
これに対し、上記特許文献2では噴射ノズル内で何度もレーザ光を反射させているので、鏡面加工等の範囲を広くする必要があり、またレーザ光の反射によって噴射ノズルが損傷した場合、噴射ノズル全体の交換・修理が必要となるので、製造コストとランニングコストが高いものとなっていた。
さらに、レーザ光Lは第1傾斜面13bに一度だけ反射するようになっているので、液柱W内の外気との境界面で反射するレーザ光Lの入射角が必要以上に小さくなることは無く、液柱の境界面におけるレーザ光の入射角を臨界角よりも大きくすることができるので、レーザ光Lが液柱Wより外気中に飛び出してしまうことはない。
これに対し、上記特許文献2では噴射ノズル内で何度もレーザ光を反射させており、反射のたびに噴射ノズル内壁面での入射角が小さくなってしまうことから、液柱の境界面におけるレーザ光の入射角が臨界角よりも小さくなってしまい、レーザ光が外気中に飛び出してしまうおそれがあった。
Thus, according to the hybrid laser processing apparatus 1 of the present embodiment, the focal point of the laser light L is set in the liquid column W beyond the minimum diameter portion 13d of the first inclined surface 13b in the injection nozzle 13, and the minimum diameter is set. Since the laser beam L located outside the portion 13b is reflected by the first inclined surface 13b and guided into the liquid column W, the laser beam L can be obtained even if the focal position of the laser beam L is slightly shifted in the Z-axis direction. The light L can be guided to the liquid column W, and the adjustment of the focal position of the laser light L by the Z-axis stage 30 is facilitated.
On the other hand, in Patent Document 1, the focal point of the laser beam must be set at the opening of the ejection nozzle. When the focal position is shifted in the Z-axis direction, the laser beam is reflected by the ejection nozzle and the liquid Not only is the laser beam not guided into the column, but the laser beam is irradiated to an unexpected wall surface, which may damage the machining head itself.
Further, since the laser beam L is reflected only once on the first inclined surface 13b, the range of mirror surface processing or the like for the injection nozzle 13 can be reduced, and in this embodiment, the laser beam L Even if the reflection surface of the injection nozzle 13 is damaged due to reflection, it is only necessary to replace the injection nozzle 13 provided at the tip of the nozzle holder 23, so that the manufacturing cost and running cost can be reduced.
On the other hand, in the above-mentioned Patent Document 2, since the laser light is reflected many times in the injection nozzle, it is necessary to widen the range such as mirror finishing, and when the injection nozzle is damaged by the reflection of the laser light, Since the entire injection nozzle needs to be replaced and repaired, the manufacturing cost and running cost were high.
Furthermore, since the laser light L is reflected only once on the first inclined surface 13b, the incident angle of the laser light L reflected at the boundary surface with the outside air in the liquid column W is less than necessary. In addition, since the incident angle of the laser beam at the boundary surface of the liquid column can be made larger than the critical angle, the laser beam L does not jump out of the liquid column W into the outside air.
On the other hand, in the above-mentioned Patent Document 2, the laser beam is reflected many times in the injection nozzle, and the incident angle on the inner wall surface of the injection nozzle is reduced every time the reflection is performed. There is a possibility that the incident angle of the laser beam becomes smaller than the critical angle and the laser beam jumps out into the outside air.

なお、上記実施例において、噴射ノズル13はステンレス製であって第1傾斜面13bに鏡面加工を施しているが、上記第1傾斜面13bにレーザ光Lを反射させるコーティングを施せば、噴射ノズル13の素材を他の素材とすることも可能である。
また、上記実施例では集光レンズ12はフレーム11に固定され、集光レンズ12の位置や角度を調整できないようになっているが、別途調整手段を設けて、集光レンズ12の位置や角度の調整をすることも可能である。
In the above embodiment, the injection nozzle 13 is made of stainless steel, and the first inclined surface 13b is mirror-finished. However, if the first inclined surface 13b is coated to reflect the laser light L, the injection nozzle 13 It is also possible to use 13 materials as other materials.
In the above embodiment, the condensing lens 12 is fixed to the frame 11 so that the position and angle of the condensing lens 12 cannot be adjusted. It is also possible to make adjustments.

本実施例におけるハイブリッドレーザ加工装置の断面図。Sectional drawing of the hybrid laser processing apparatus in a present Example. 図1のII―II断面における平面図。The top view in the II-II cross section of FIG. 噴射ノズル及びノズルホルダについての断面図。Sectional drawing about an injection nozzle and a nozzle holder. XY軸ステージについての平面図。The top view about an XY-axis stage. 図2のV−V断面における断面図。Sectional drawing in the VV cross section of FIG. 噴射ノズルについての拡大断面図。The expanded sectional view about an injection nozzle.

符号の説明Explanation of symbols

1 ハイブリッドレーザ加工装置 2 被加工物
4 レーザ発振器 5 高圧ポンプ
6 加工ヘッド 12 集光レンズ
13 噴射ノズル 13a 噴射孔
13b 第1傾斜面 13c 第2傾斜面
13d 最小径部 14 調整手段
L レーザ光 W 液柱
DESCRIPTION OF SYMBOLS 1 Hybrid laser processing apparatus 2 Workpiece 4 Laser oscillator 5 High pressure pump 6 Processing head 12 Condensing lens 13 Injection nozzle 13a Injection hole 13b 1st inclined surface 13c 2nd inclined surface 13d Minimum diameter part 14 Adjustment means L Laser beam W Liquid Pillar

Claims (3)

噴射孔を有する噴射ノズルと、当該噴射ノズルに高圧の液体を供給する液体供給手段と、レーザ光を発振するレーザ発振器と、該レーザ発振器から発振されたレーザ光を集光する集光レンズと、上記噴射ノズルと集光レンズとが設けられた加工ヘッドとを備え、上記液体供給手段から供給された液体を噴射孔から液柱にして外部に噴射させると共に、集光レンズによって上記液柱にレーザ光を導光して、被加工物の加工を行うハイブリッドレーザ加工装置において、
上記噴射ノズルの上記噴射孔に、被加工物に向けて縮径する第1傾斜面と、当該第1傾斜面の最小径部に接続されるともに上記第1傾斜面よりも被加工物側に形成されて被加工物に向けて拡径する第2傾斜面とを形成し、
上記集光レンズの焦点を上記第1傾斜面の最小径部よりも被加工物側に超えた位置に設定するとともに上記噴射孔より噴射された液柱の内部に設定し、かつ上記噴射孔内に照射されたレーザ光のうち、上記第1傾斜面によって遮られる部分を該第1傾斜面で一度だけ反射させてから上記液柱に導光するように設定するとともに、上記第2傾斜面によって上記液柱を囲繞するエアポケットを形成することを特徴とするハイブリッドレーザ加工装置。
An injection nozzle having an injection hole, a liquid supply means for supplying high-pressure liquid to the injection nozzle, a laser oscillator that oscillates laser light, a condenser lens that condenses the laser light oscillated from the laser oscillator, A processing head provided with the jet nozzle and a condensing lens; the liquid supplied from the liquid supply means is ejected from the ejection hole as a liquid column and ejected to the outside; In a hybrid laser processing apparatus that guides light and processes a workpiece,
The injection hole of the injection nozzle is connected to a first inclined surface that is reduced in diameter toward the workpiece, and is connected to a minimum diameter portion of the first inclined surface, and closer to the workpiece than the first inclined surface. Forming a second inclined surface that is formed and expands toward the workpiece;
The focal point of the condensing lens is set at a position beyond the minimum diameter portion of the first inclined surface on the workpiece side, set inside the liquid column ejected from the ejection hole , and in the ejection hole of the laser beam irradiated to a portion to be intercepted by the first inclined surface and sets to guide the by reflecting only once the first inclined surface to the liquid column, by the second inclined surface A hybrid laser processing apparatus, wherein an air pocket surrounding the liquid column is formed.
上記噴射ノズルは上記第2傾斜面よりも大径の貫通孔の設けられた保持部材によって上記加工ヘッドに固定され、
上記貫通孔は上記第2傾斜面と共に上記液柱を囲繞するエアポケットを形成することを特徴とする請求項1に記載のハイブリッドレーザ加工装置。
The injection nozzle is fixed to the processing head by a holding member provided with a through hole having a diameter larger than that of the second inclined surface.
The hybrid laser processing apparatus according to claim 1 , wherein the through hole forms an air pocket surrounding the liquid column together with the second inclined surface .
上記加工ヘッドに、上記集光レンズと噴射ノズルとを相対移動させて、上記集光レンズによって集光されるレーザ光と、上記噴射ノズルより噴射される液柱との位置を調整する調整手段を設けることを特徴とする請求項1または請求項2のいずれかに記載のハイブリッドレーザ加工装置。 Adjusting means for adjusting the position of the laser beam condensed by the condenser lens and the liquid column ejected from the ejection nozzle by relatively moving the condenser lens and the ejection nozzle to the processing head. The hybrid laser processing apparatus according to claim 1 , wherein the hybrid laser processing apparatus is provided.
JP2005079458A 2005-03-18 2005-03-18 Hybrid laser processing equipment Active JP5035653B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005079458A JP5035653B2 (en) 2005-03-18 2005-03-18 Hybrid laser processing equipment
PCT/JP2005/019298 WO2006100798A1 (en) 2005-03-18 2005-10-20 Hybrid laser processing system
US11/885,854 US7705266B2 (en) 2005-03-18 2005-10-20 Hybrid laser processing apparatus
CN2005800491587A CN101142050B (en) 2005-03-18 2005-10-20 Hybrid laser processing system
KR1020077021127A KR101198341B1 (en) 2005-03-18 2005-10-20 Hybrid laser processing system
EP05795416.6A EP1859890B1 (en) 2005-03-18 2005-10-20 Hybrid laser processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079458A JP5035653B2 (en) 2005-03-18 2005-03-18 Hybrid laser processing equipment

Publications (2)

Publication Number Publication Date
JP2006255768A JP2006255768A (en) 2006-09-28
JP5035653B2 true JP5035653B2 (en) 2012-09-26

Family

ID=37023491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079458A Active JP5035653B2 (en) 2005-03-18 2005-03-18 Hybrid laser processing equipment

Country Status (6)

Country Link
US (1) US7705266B2 (en)
EP (1) EP1859890B1 (en)
JP (1) JP5035653B2 (en)
KR (1) KR101198341B1 (en)
CN (1) CN101142050B (en)
WO (1) WO2006100798A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119480A (en) * 2007-11-12 2009-06-04 Shibuya Kogyo Co Ltd Laser beam machining method and apparatus therefor
DE102008053729C5 (en) * 2008-10-29 2013-03-07 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser processing nozzle for processing sheet metal
EP2189236B1 (en) 2008-11-21 2012-06-20 Synova S.A. Method and apparatus for improving reliability of a machining process
US8525074B2 (en) 2008-12-26 2013-09-03 Denso Corporation Machining method and machining system for micromachining a part in a machine component
CN101508060B (en) * 2009-03-20 2011-04-20 厦门大学 Micro laser beam precise finishing optical device
JP5287448B2 (en) * 2009-04-10 2013-09-11 澁谷工業株式会社 Laser processing method and laser processing apparatus
JP5479024B2 (en) * 2009-10-27 2014-04-23 パナソニック株式会社 Joining method and joining apparatus
JP5071487B2 (en) * 2010-01-06 2012-11-14 株式会社デンソー Laser processing apparatus and laser processing method
CN103534056B (en) * 2011-05-19 2016-01-13 村田机械株式会社 Laser machine
JP5220914B2 (en) * 2011-05-25 2013-06-26 株式会社スギノマシン Laser processing equipment
CN102423875B (en) * 2011-08-24 2013-11-06 上海交通大学 Ultrahigh pressure water jetting sheet material progressive processing spray nozzle based on laser auxiliary heating and application thereof
CN102500928A (en) * 2011-10-31 2012-06-20 重庆长安汽车股份有限公司 Micro-water-column guiding laser micromachining device
CH707657A1 (en) 2013-02-21 2014-08-29 Waterjet Robotics Ag C O Matthias Straubhaar A process for drilling at least one hole in a workpiece by means of a machining beam from liquid.
US10307864B2 (en) * 2013-12-13 2019-06-04 Avonisys Ag Methods and systems to keep a work piece surface free from liquid accumulation while performing liquid-jet guided laser based material processing
US10092980B1 (en) * 2014-05-30 2018-10-09 Avonisys Ag Method for coupling a laser beam into a liquid-jet
US8859988B1 (en) * 2014-05-30 2014-10-14 Jens Guenter Gaebelein Method for coupling a laser beam into a liquid-jet
US9932803B2 (en) * 2014-12-04 2018-04-03 Saudi Arabian Oil Company High power laser-fluid guided beam for open hole oriented fracturing
DE102015209261A1 (en) * 2015-05-21 2016-11-24 Robert Bosch Gmbh Method for laser drilling or laser cutting a workpiece and system for laser drilling or laser cutting
EP3124165B1 (en) * 2015-07-28 2020-06-17 Synova S.A. Process of treating a workpiece using a liquid jet guided laser beam
CN105195903B (en) * 2015-10-21 2017-10-17 北京中科思远光电科技有限公司 A kind of micro- water knife processing unit (plant) of laser punched for turbo blade
DE102015224115B4 (en) * 2015-12-02 2021-04-01 Avonisys Ag LASER BEAM PROCESSING DEVICE WITH A COUPLING DEVICE FOR COUPLING A FOCUSED LASER BEAM INTO A JET OF LIQUID
US10335900B2 (en) 2016-03-03 2019-07-02 General Electric Company Protective shield for liquid guided laser cutting tools
US10160059B2 (en) 2016-03-03 2018-12-25 General Electric Company Decoupled liquid-jet guided laser nozzle cap
EP3466597A1 (en) * 2017-10-05 2019-04-10 Synova S.A. Apparatus for machining a workpiece with a laser beam
JP7201343B2 (en) * 2018-06-19 2023-01-10 株式会社ディスコ Laser processing equipment
US20230056508A1 (en) * 2021-08-19 2023-02-23 Raytheon Technologies Corporation Method and system for drilling ceramic

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643284A1 (en) * 1986-12-18 1988-06-30 Aesculap Ag METHOD AND DEVICE FOR CUTTING A MATERIAL BY MEANS OF A LASER BEAM
IL92427A0 (en) * 1989-02-08 1990-07-26 Gen Electric Laser welding apparatus and process
FR2676913B1 (en) 1991-05-28 1993-08-13 Lasag Ag MATERIAL ABLATION DEVICE, PARTICULARLY FOR DENTISTRY.
US5356081A (en) * 1993-02-24 1994-10-18 Electric Power Research Institute, Inc. Apparatus and process for employing synergistic destructive powers of a water stream and a laser beam
US5810469A (en) 1993-03-26 1998-09-22 Weinreich; Steve Combination light concentrating and collimating device and light fixture and display screen employing the same
DE9407288U1 (en) * 1994-05-02 1994-08-04 Trumpf Gmbh & Co Laser cutting machine with focus position adjustment
DE4418845C5 (en) 1994-05-30 2012-01-05 Synova S.A. Method and device for material processing using a laser beam
JP3871240B2 (en) * 2000-05-16 2007-01-24 澁谷工業株式会社 Hybrid processing equipment
JP2003151924A (en) * 2001-08-28 2003-05-23 Tokyo Seimitsu Co Ltd Dicing method and dicing apparatus
US20030108295A1 (en) 2001-12-10 2003-06-12 Guanghua Huang Optical funnel
JP2004122173A (en) * 2002-10-02 2004-04-22 Nippon Sharyo Seizo Kaisha Ltd Laser microjet working apparatus
JP3740136B2 (en) 2003-06-11 2006-02-01 財団法人 日本宇宙フォーラム Method for evaluating the crystal quality of polymers
JP2005034889A (en) * 2003-07-17 2005-02-10 Shibuya Kogyo Co Ltd Working apparatus

Also Published As

Publication number Publication date
EP1859890B1 (en) 2013-05-01
KR20070114356A (en) 2007-12-03
KR101198341B1 (en) 2012-11-06
CN101142050A (en) 2008-03-12
WO2006100798A1 (en) 2006-09-28
JP2006255768A (en) 2006-09-28
EP1859890A1 (en) 2007-11-28
US7705266B2 (en) 2010-04-27
US20080169275A1 (en) 2008-07-17
CN101142050B (en) 2010-12-08
EP1859890A4 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5035653B2 (en) Hybrid laser processing equipment
JP4997723B2 (en) Hybrid laser processing equipment
CN102292188B (en) Method and apparatus for improving reliability of a machining process
KR101954375B1 (en) Laser machining apparatus
JP3871240B2 (en) Hybrid processing equipment
JP2007061914A (en) Hybrid machining device
CN105195903B (en) A kind of micro- water knife processing unit (plant) of laser punched for turbo blade
CN110125532B (en) Method, system and equipment for processing workpiece by water-guided laser
JP2014116486A (en) Laser processing device
JP4123390B2 (en) Hybrid machining apparatus and hybrid machining method
JP5740886B2 (en) Laser processing equipment
JP2005034889A (en) Working apparatus
JP4269230B2 (en) Axis alignment method for hybrid machining apparatus and hybrid machining apparatus
JP2013121598A (en) Method for cutting workpiece, and laser machining device
JP5846797B2 (en) Laser processing equipment
JP2009119480A (en) Laser beam machining method and apparatus therefor
JP6000101B2 (en) Laser processing equipment
JP5501100B2 (en) Laser processing equipment
JP5013430B2 (en) Laser processing equipment
KR20180131917A (en) Laser processing module and laser processing apparatus having the same
JP5501099B2 (en) Laser processing equipment
JP2018079512A (en) Laser processing device
JP2013158799A (en) Laser processing apparatus and laser processing method
JP2011251321A (en) Laser machining device
JP2015205296A (en) Laser processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5035653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150