JP5032596B2 - Method and apparatus for producing gas from air in the form of gases and liquids with high flexibility by cryogenic distillation - Google Patents

Method and apparatus for producing gas from air in the form of gases and liquids with high flexibility by cryogenic distillation Download PDF

Info

Publication number
JP5032596B2
JP5032596B2 JP2009553189A JP2009553189A JP5032596B2 JP 5032596 B2 JP5032596 B2 JP 5032596B2 JP 2009553189 A JP2009553189 A JP 2009553189A JP 2009553189 A JP2009553189 A JP 2009553189A JP 5032596 B2 JP5032596 B2 JP 5032596B2
Authority
JP
Japan
Prior art keywords
pressure
air
turbine
heat exchange
supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009553189A
Other languages
Japanese (ja)
Other versions
JP2010531424A (en
Inventor
ギヤール、アラン
ポントン、グザビエ
ル・ボ、パトリック
Original Assignee
レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of JP2010531424A publication Critical patent/JP2010531424A/en
Application granted granted Critical
Publication of JP5032596B2 publication Critical patent/JP5032596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04139Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

ガスを液体又は気体の形態で空気から製造する従来の方法は、特徴的な方法アーキテクチャを有していた。例えば、
・主成分(O2、N2、Ar)を、大気圧又はそれよりも僅かに高い圧力で製造していた空気分離装置、
・圧縮機を使用して製品を圧縮する工程、
・前記成分の各々のうちの全て又は一部を必要な場合に液体の形態で製造することを可能にしていた、独立した窒素液化サイクル
が見出されるであろう。
Prior methods of producing gas from air in liquid or gaseous form had a characteristic method architecture. For example,
An air separation device in which the main components (O 2 , N 2 , Ar) were produced at atmospheric pressure or slightly higher pressure,
The process of compressing the product using a compressor,
An independent nitrogen liquefaction cycle will be found that allowed all or part of each of the components to be produced in liquid form when needed.

実施される3つの「機能」(分離、圧縮、液化)の各々は、他の2つの運転に影響を及ぼすことなく独立して実行又は停止され得たので、この構成は、使用に関するかなりのフレキシビリティ(souplesse)を与えていた。   Since each of the three “functions” performed (separation, compression, liquefaction) could be performed or stopped independently without affecting the other two operations, this configuration provides considerable flexibility in use. Gave souplesse.

それにも拘わらず、この構成は、機能毎に1つの装置を必要とするこの設計の非常に高い費用を踏まえると、競争力の著しい欠如という不利益を被っている。   Nevertheless, this configuration suffers from a significant lack of competitiveness given the very high cost of this design, which requires one device per function.

我々が統合法と呼んでいる空気からガスを製造する最新の方法は、それらが、これら3つの機能を1つの装置に集約させ得るという利点を有している。空気又は場合によっては窒素を膨張させるサイクルを含んだ所謂「ポンプ式」装置は、同一の装置が、空気の成分を、加圧された気体の形態及び液体の形態で製造するのを可能にする。   The latest methods of producing gas from air, which we call the integrated method, have the advantage that they can consolidate these three functions into one device. A so-called “pumped” device that includes a cycle of expanding air or possibly nitrogen allows the same device to produce components of air in the form of pressurized gas and liquid. .

これらのうち、欧州特許出願公開第0504029号又は仏国出願公開第2688052号に記載されている、製品を加圧下で配送するために多段気化を含んだ方法は、それらが、これら機能を1つの高圧空気圧縮器に集約させることを可能にするので、特に魅力的である。全体のエネルギー効率は従来の方法と同等であり、投資金額は遥かに低い。   Of these, the methods described in European Patent Application No. 054029 or French Patent Application No. 2268522, which include multi-stage vaporization to deliver products under pressure, are those that perform one of these functions. It is particularly attractive because it allows it to be concentrated in a high pressure air compressor. The overall energy efficiency is comparable to traditional methods and the investment is much lower.

対照的に、製造のフレキシビリティは、機能の「スリーインワン」集約によって影響を受け、全体に影響を及ぼすことなく1つの機能を運転又は停止することはより困難となる。   In contrast, manufacturing flexibility is affected by “three-in-one” aggregation of functions, making it more difficult to run or shut down one function without affecting the whole.

本発明の目的は、従来の方法によって提供されるフレキシビリティを維持しつつ、統合法の複数の経済的利点を集約することが可能となることにある。   It is an object of the present invention to be able to aggregate multiple economic advantages of the integration method while maintaining the flexibility provided by conventional methods.

本発明は、中圧(une moyenne pression)で動作する少なくとも1つの中圧塔と、低圧で動作する低圧塔とを含んだ複数の塔からなり、これらが互いに熱的に結合しているシステムにおいて、極低温蒸留を使用して少なくとも一種のガスを空気から製造する方法であって、第1及び第2運転モードにおいて、
a)圧縮された空気流の全ては、中圧塔の圧力を少なくとも5bar上回る高圧まで高められ、主たる圧力として知られたこの高圧において精製され、
b)この主たる圧力は、場合により、要求される製品に応じて変化し得るものであり、
c)少なくとも前記主たる圧力にある前記空気流の第1部分は、熱交換ラインにおいて、その中間の温度まで冷却され、少なくとも第1タービンにおいて膨張し、
d)場合により、空気流の第2部分は、吸気及び送出条件が第1タービンのものと最大で5bar及び最大で15℃だけ異なるか又は圧力及び温度に関して同一である、少なくとも第2タービン(21B)において膨張し、
e)場合により、前記第1タービン又は第3タービンによって提供される仕事は、少なくとも部分的に、スーパーチャージャー(surpresseur)に必要とされる仕事のために使用され、
f)第1タービンの吸気圧は、前記中圧よりも遥かに高く、場合によっては前記主たる圧力よりも高く、
g)第1タービンの送出圧は、前記中圧以上であり、好ましくは前記中圧と実質的に等しく、
h)或る/前記スーパーチャージャーは、空気流の少なくとも一部分を、熱交換ラインにおいて極低温(<−100℃)まで冷却される主たる空気の圧力以上の高圧へと圧縮し、この与圧された流れを熱交換ラインに戻し、ここで、少なくとも一部が、コールドエンドにおいて液化するようになり、その後、膨張に続いて、複数の塔からなるシステム内へと送られ、
i)複数の塔からなるシステムからの加圧された液体製品は、熱交換ラインにおいて気化され、
第1運転モードにおいて、
j)補助タービンは、主たる熱交換ラインにおいて冷却された空気流の或る気体部分を吸気し、
k)補助タービンの吸気圧は、前記主たる圧力よりも高いか又はそれと実質的に等しく、好ましくは前記主たる圧力よりも少なくとも2絶対バール高いか又はそれと実質的に等しく、
l)補助タービンの送出圧は、大気圧よりも高いか又はそれと実質的に等しく、好ましくは前記低圧と実質的に等しく、
m)補助タービンにおいて膨張した空気流の少なくとも一部は、熱交換ラインにおいて暖められ、
n)空気の成分の一部は、最終製品として、液体の形態で製造され、
第2運転モードにおいて、
o)補助タービンにおいて処理される空気の流量は、第1運転モード中に前記補助タービンにおいて処理される流れと比べて低減され、場合によってはゼロへと低減され、
p)最終製品としての液体の製造は、第1運転モードにおける最終製品としての液体の製造と比べて低減され、場合によってはゼロまで低減される方法を提供する。
The present invention relates to a system comprising a plurality of towers including at least one intermediate pressure tower operating at an intermediate pressure (une moyenne pression) and a low pressure tower operating at a low pressure, which are thermally coupled to each other. A method of producing at least one gas from air using cryogenic distillation, in the first and second operating modes,
a) All of the compressed air stream is raised to a high pressure at least 5 bar above the pressure in the medium pressure column and purified at this high pressure, known as the main pressure,
b) This main pressure can in some cases vary depending on the required product;
c) at least a first portion of the air stream at the main pressure is cooled to an intermediate temperature in a heat exchange line and expanded at least in the first turbine;
d) Optionally, the second part of the air flow is at least a second turbine (21B), wherein the intake and delivery conditions differ from those of the first turbine by a maximum of 5 bar and a maximum of 15 ° C. or are identical with respect to pressure and temperature. )
e) Optionally, the work provided by the first turbine or the third turbine is used, at least in part, for work required for a supercharger.
f) The intake pressure of the first turbine is much higher than the intermediate pressure, and in some cases higher than the main pressure,
g) the delivery pressure of the first turbine is greater than or equal to the intermediate pressure, preferably substantially equal to the intermediate pressure;
h) Some / the supercharger compresses at least a portion of the air flow to a high pressure above the pressure of the main air that is cooled to cryogenic (<-100 ° C.) in the heat exchange line The stream is returned to the heat exchange line, where at least a portion becomes liquefied at the cold end and is then sent into a multi-column system following expansion,
i) Pressurized liquid product from a multi-column system is vaporized in a heat exchange line;
In the first operation mode,
j) The auxiliary turbine draws in a certain gas part of the air stream cooled in the main heat exchange line,
k) the intake pressure of the auxiliary turbine is higher than or substantially equal to the main pressure, preferably at least 2 absolute bar higher than or substantially equal to the main pressure;
l) the delivery pressure of the auxiliary turbine is greater than or substantially equal to atmospheric pressure, preferably substantially equal to the low pressure;
m) At least part of the air flow expanded in the auxiliary turbine is warmed in the heat exchange line;
n) Some of the components of air are produced in liquid form as the final product,
In the second operation mode,
o) the flow rate of air processed in the auxiliary turbine is reduced compared to the flow processed in the auxiliary turbine during the first operating mode, and in some cases reduced to zero;
p) The production of the liquid as the final product provides a method that is reduced compared to the production of the liquid as the final product in the first mode of operation and possibly reduced to zero.

任意の他の側面に従うと、
−全てのタービンは、空気スーパーチャージャーによって制動される。
−前記タービンのうちの1つと接続された少なくとも1つのスーパーチャージャーは、周囲温度で吸気を行う。
−全てのスーパーチャージャーのうち、第1タービンに機械的に接続されたスーパーチャージャーのみが、−100℃を下回る吸気温度を有している。
−第1タービンの吸気温度は、酸素擬似気化温度(la temperature de pseudo vaporisation de l'oxygene)から、最大で15℃だけ異なる。
−第2モード中、入ってくる主たる空気の流量は低減され、好ましくは、補助タービンに送られる空気の流量の第2モード中における減少と少なくとも等しい流量だけ低減される。
−主たる空気の流量の変化は、圧縮機の可変翼によってもたらされる。
−主たる空気の流量の変化は、補助空気圧縮機の始動及び/又は停止によってもたらされる。
−前記主たる空気圧は、第1モードと第2モードとで異なる。
−空気の第1部分は、第1タービンの上流で、実質的に前記主たる圧力よりも高い圧力で第1タービンに入るように、主たる圧力よりも高い圧力まで与圧される。
−補助タービンの吸気温度は、第1タービンの吸気温度よりも高い。
−補助タービンにおいて膨張した空気は、大気へと排出される。
According to any other aspect,
-All turbines are braked by an air supercharger.
At least one supercharger connected to one of the turbines takes in air at ambient temperature.
-Of all superchargers, only the supercharger mechanically connected to the first turbine has an intake air temperature below -100 ° C.
The intake temperature of the first turbine differs from the oxygen pseudo vaporization temperature by a maximum of 15 ° C.
-During the second mode, the incoming main air flow rate is reduced, preferably by a flow rate that is at least equal to the reduction during the second mode of the air flow rate sent to the auxiliary turbine.
-The change in the main air flow is brought about by the variable blades of the compressor.
-The change in the main air flow is caused by starting and / or stopping the auxiliary air compressor.
The main air pressure is different between the first mode and the second mode;
The first part of the air is pressurized upstream of the first turbine to a pressure higher than the main pressure so that it enters the first turbine at a pressure substantially higher than the main pressure;
The intake temperature of the auxiliary turbine is higher than the intake temperature of the first turbine;
-The air expanded in the auxiliary turbine is discharged into the atmosphere.

本発明の他の側面は、複数の空気分離塔からなるシステム用の及びそこから来る流れを冷却及び加熱するためのユニットであって、熱交換ラインと、第1タービンと、補助タービンと、スーパーチャージャーとを備えており、熱交換ラインは、
i)第1精製空気流を受け取るための、スーパーチャージャーに接続された少なくとも1つの流路と、
ii)スーパーチャージャーの送出側に接続され、第1タービンに接続された少なくとも1つの流路と、
iii)加熱されるようになる少なくとも2つの流体(35、37)を受け取るための少なくとも2つの流路と、
iv)第2精製空気流量を受け取るための、補助タービンの吸気側と接続された少なくとも1つの流路と
を備えており、補助タービンの送出側は、加熱されるべき空気のための少なくとも1つの流路に接続されているユニットを提供する。
Another aspect of the present invention is a unit for cooling and heating a system comprising a plurality of air separation towers and a flow coming therefrom, comprising a heat exchange line, a first turbine, an auxiliary turbine, a super And a heat exchange line
i) at least one flow path connected to the supercharger for receiving the first purified air stream;
ii) at least one flow path connected to the delivery side of the supercharger and connected to the first turbine;
iii) at least two flow paths for receiving at least two fluids (35, 37) to become heated;
iv) at least one flow path connected to the intake side of the auxiliary turbine for receiving the second purified air flow rate, the delivery side of the auxiliary turbine having at least one for the air to be heated Provide a unit connected to the flow path.

このユニットは、運転中に、以下の条件、
i)補助タービンの吸気温度が、第1タービンの吸気温度よりも高いこと、
ii)補助タービンの吸気温度が、スーパーチャージャーの吸気温度よりも高いこと、
iii)スーパーチャージャーの吸気温度が、第1タービンの吸気温度よりも低いこと、
iv)スーパーチャージャーの送出温度が、第1タービンの吸気温度よりも高いこと、
v)スーパーチャージャーの送出温度が、補助タービンの送出温度よりも高いこと
のうちの1つが満たされるように構成されていてもよい。
This unit will operate under the following conditions:
i) the intake temperature of the auxiliary turbine is higher than the intake temperature of the first turbine;
ii) the auxiliary turbine intake air temperature is higher than the supercharger intake air temperature;
iii) the intake temperature of the supercharger is lower than the intake temperature of the first turbine;
iv) the delivery temperature of the supercharger is higher than the intake temperature of the first turbine;
v) It may be configured such that one of the supercharger delivery temperatures is higher than the auxiliary turbine delivery temperature.

ここで提案されるものは、上で説明したような、単一機械式(de type mono-machines)の方法の製造のフレキシビリティを、
・欧州特許出願公開第0504029号に記載されたものと同様の方法を使用して、ユニットの液体製造を低減する若しくは中止するという選択肢を提示するか、
・又は、仏国出願公開第2688052号に記載されているものと同様の方法を用いて、液体を効率的に製造する選択肢を提示することによって、
・及び、何れか一方を、可逆的に及び何れの場合でも望ましいエネルギー効率で行うという選択肢を提示することによって向上させることである。
What is proposed here is the manufacturing flexibility of the de type mono-machines method as described above,
Presents an option to reduce or discontinue liquid production of the unit using a method similar to that described in EP 054029;
Or by presenting options for the efficient production of liquids, using methods similar to those described in French Application 2680805
And improving by presenting the option to do either one reversibly and in any case with the desired energy efficiency.

この方法は、知られている蒸留システム(互いに熱的に接続された中圧塔および低圧塔、場合によっては、中間圧力(pression intermediaire)塔及び/又は混合塔及び/又はアルゴン混合物塔など)を用い、少なくとも2つの膨張タービンを必要とする。   This process involves a known distillation system (such as a medium pressure column and a low pressure column thermally connected to each other, in some cases a pression intermediaire column and / or a mixing column and / or an argon mixture column). Used and requires at least two expansion turbines.

2つの流量は、それらの圧力が単に圧力低下分だけ異なる場合、実質的に等しい圧力にある。   The two flow rates are at substantially equal pressures if their pressures differ by just a pressure drop.

補助タービンに吸気される空気の流量の気体部分は、第1及び/又は第2タービンにおいて前もって膨張させられ、場合によっては、中圧塔に送られ且つこの中圧塔から抜き出されて、主たる熱交換ラインにおいて暖められた後に補助タービンに送られる。   The gaseous portion of the flow rate of air drawn into the auxiliary turbine is pre-expanded in the first and / or second turbines and, in some cases, sent to the intermediate pressure tower and extracted from the intermediate pressure tower. After being warmed in the heat exchange line, it is sent to the auxiliary turbine.

第1運転モードでは、液体製品の生産物は、全ての最終製品を合わせると、複数の塔(又は、中圧塔のみが空気を供給される場合は、1つの塔)へと送られた空気流の1%又は2%又は5%を構成する。   In the first mode of operation, the product of the liquid product is the air sent to multiple towers (or one tower if only the medium pressure tower is supplied with air) when all final products are combined. It constitutes 1% or 2% or 5% of the stream.

ここで、本発明の方法で動作し得る空気分離プラントを示す図面を参照しながら、本発明をより詳細に説明する。   The present invention will now be described in more detail with reference to the drawings showing an air separation plant that can operate with the method of the present invention.

図1では、主たる圧縮器からの圧縮された空気流1が、スーパーチャージャー3において、中圧塔の圧力を少なくとも5絶対バール上回る高圧まで与圧され、この高圧は、主たる圧力として知られている。この主たる圧力は、例えば、10乃至25絶対バールであり得る。次に、この主たる圧力において、流れ5は、水及び二酸化炭素の点で精製される(図示していない)。与圧され且つ精製された全ての空気流5は、熱交換ライン7へと送られ、ここで、温度T1まで冷却される。この温度で、流れ5は2つに分けられ、液化するようになり且つ複数の塔からなるシステムへと送られる流れ9と、流れ11とを形成する。流れ11は、加圧酸素33の気化温度と最大で±5℃だけ異なる温度T1で熱交換ライン7を出て、コールドスーパーチャージャー(surpresseur froid)13へと送られて、前記中圧よりも遥かに高く、場合によっては主たる圧力よりも高い圧力にある流れ15を製造する。コールドスーパーチャージャーを出る際にT2の温度にある流れ15は、熱交換ライン7において、T1よりも高い温度T3まで冷却される。この温度T3で、流れ15は、2つの流れ17、19に分けられる。流れ17は、タービン21において、加圧酸素33の擬似気化温度近傍の温度T3から膨張する。   In FIG. 1, the compressed air stream 1 from the main compressor is pressurized in the supercharger 3 to a high pressure that is at least 5 absolute bar above the pressure in the medium pressure tower, this high pressure being known as the main pressure. . This main pressure can be, for example, 10 to 25 absolute bar. Next, at this main pressure, stream 5 is purified in terms of water and carbon dioxide (not shown). All the pressurized and purified air stream 5 is sent to a heat exchange line 7 where it is cooled to a temperature T1. At this temperature, stream 5 is split into two, forming stream 9 and stream 11 that become liquefied and sent to a multi-column system. The stream 11 exits the heat exchange line 7 at a temperature T1 that differs from the vaporization temperature of the pressurized oxygen 33 by a maximum of ± 5 ° C. and is sent to a surpresseur froid 13 where it is far above the intermediate pressure. To produce a stream 15 that is at a higher pressure, possibly higher than the main pressure. The stream 15 that is at the temperature of T2 as it exits the cold supercharger is cooled in the heat exchange line 7 to a temperature T3 that is higher than T1. At this temperature T3, stream 15 is divided into two streams 17,19. The flow 17 expands in the turbine 21 from a temperature T3 in the vicinity of the pseudo vaporization temperature of the pressurized oxygen 33.

タービン21の吸気圧は、スーパーチャージャー13の送出圧と等しく、それ故に、前記中圧よりも遥かに高く(少なくとも5バール高く)、場合によっては主たる圧力よりも高く、その送出圧は、前記中圧以上であり、好ましくは前記中圧と実質的に等しい。前記中圧以上の圧力、好ましくは前記中圧と実質的に等しい圧力へと膨張した流れは、流れ25として、複数の塔からなるシステムに送られる。流れ19は、熱交換ラインにおいて冷却され続け、気体の形態で、複数の塔からなるシステムへと送られる。   The intake pressure of the turbine 21 is equal to the delivery pressure of the supercharger 13 and is therefore much higher (at least 5 bar higher) than the intermediate pressure and in some cases higher than the main pressure, the delivery pressure being Greater than or equal to the pressure, preferably substantially equal to the intermediate pressure. The stream expanded to a pressure above the intermediate pressure, preferably a pressure substantially equal to the intermediate pressure, is sent as a stream 25 to a multi-column system. Stream 19 continues to be cooled in the heat exchange line and is sent in gaseous form to a multi-column system.

コールドスーパーチャージャー13は、タービン21によって駆動される。   The cold supercharger 13 is driven by the turbine 21.

残りの窒素流量は、熱交換ラインにおいて暖められる。   The remaining nitrogen flow is warmed in the heat exchange line.

ポンプ33において加圧された液体酸素35の流れは、熱交換ライン7において気化するようになる。   The flow of the liquid oxygen 35 pressurized in the pump 33 is vaporized in the heat exchange line 7.

任意に、複数の塔からなるシステムからの液体酸素以外の液体は、加圧され、熱交換ライン7において気化され、その後、加圧製品として使用される。   Optionally, liquids other than liquid oxygen from a multi-column system are pressurized, vaporized in the heat exchange line 7 and then used as a pressurized product.

第1運転モードに従うと、空気部分25は、主たる圧力にある精製空気5から抜き出され且つ熱交換ライン7において冷却される。−100℃を下回り且つT2よりも高い温度T4で、この部分25は、タービン27に送られ、ここで膨張されられて、温度T5となり、空気流29を形成する。この空気流は、熱交換ラインにおいて暖められる。   According to the first operating mode, the air portion 25 is extracted from the purified air 5 at the main pressure and cooled in the heat exchange line 7. At a temperature T 4 below −100 ° C. and higher than T 2, this portion 25 is sent to a turbine 27 where it is expanded to a temperature T 5 and forms an air stream 29. This air flow is warmed in the heat exchange line.

液体製品は、複数の塔からなるシステムから、最終製品32として抜き出される。この例では、この装置の唯一の製品が液体酸素であるが、もちろん、他の製品を液体形態で製造することが可能である。   The liquid product is extracted as a final product 32 from a system consisting of a plurality of towers. In this example, the only product of this device is liquid oxygen, but of course other products can be produced in liquid form.

第2運転モードに従うと、補助タービン27において処理される空気の流量25は、場合によってはゼロまで低減され、入ってくる主たる空気流1の流量は、補助タービン27へと送られる空気の流量の減少と少なくとも等しい流量分だけ低減され、液体37の製造は、場合によってはゼロまで減少する。   According to the second operating mode, the flow rate 25 of air processed in the auxiliary turbine 27 is reduced to zero in some cases, and the flow rate of the incoming main air stream 1 is that of the flow rate of air sent to the auxiliary turbine 27. Reduced by a flow rate at least equal to the reduction, the production of the liquid 37 is possibly reduced to zero.

2つの運転モード間の流れ1の流量のこの変化は、圧縮機の可変翼によって及び/又は補助空気圧縮機の始動及び/又は停止によってもたらされる。   This change in the flow 1 flow rate between the two modes of operation is brought about by the variable blades of the compressor and / or by starting and / or stopping the auxiliary air compressor.

これら2つの運転モードは、装置のこれら運転モードのみによって構成されていてもよいし、或いは、他の運転モードがあってもよい。   These two operation modes may be constituted only by these operation modes of the apparatus, or there may be other operation modes.

コールドスーパーチャージが主たる圧力を上回る圧力から為されるように、これらは、空気を主たる圧力に高めるホットスーパーチャージ(surpression chaude)とコールドスーパーチャージとの間に、圧縮工程(スーパーチャージャー3B)を含んでもよい。   These include a compression step (supercharger 3B) between a hot supercharge that raises the air to the main pressure and a cold supercharge so that the cold supercharge is made from a pressure above the main pressure. But you can.

好ましくは、タービン21は、スーパーチャージャー13によって駆動され、スーパーチャージャー3は、補助タービン27を駆動する。   Preferably, the turbine 21 is driven by the supercharger 13 and the supercharger 3 drives the auxiliary turbine 27.

Claims (10)

中圧で動作する少なくとも1つの中圧塔と、低圧で動作する低圧塔とを含んだ複数の塔からなり、これらが互いに熱的に結合しているシステムにおいて、極低温蒸留を使用して少なくとも1種のガスを空気から製造する方法であって、第1及び第2運転モードにおいて、
a)圧縮された空気流の全ては、前記中圧塔の圧力を少なくとも5bar上回る第1の空気圧まで高められ、前記第1の空気圧において精製され、
b)前記第1の空気圧は、要求される製品に応じて変化し得るものであり、
c)少なくとも前記第1の空気圧にある前記空気流の第1部分は、熱交換ライン(7)において、その中間の温度まで冷却され、少なくとも第1タービン(21)において膨張し、
d)前記空気流の第2部分は、吸気及び送出条件が前記第1タービンのものと最大で5bar及び最大で15℃だけ異なるか又は圧力及び温度に関して同一である、少なくとも第2タービン(21B)において膨張させられ、
e)前記第1タービンによって提供される仕事は、少なくとも部分的に、スーパーチャージャーに必要とされる仕事のために使用され、
f)前記第1タービンの吸気圧は前記中圧よりも少なくとも5bar高く、
g)前記第1タービンの送出圧は前記中圧以上であり、
h)或る/前記スーパーチャージャー(13)は、前記空気流の少なくとも一部分を、前記熱交換ラインにおいて極低温まで冷却される前記第1の空気圧以上の高圧へと圧縮し、この与圧された流れを前記熱交換ラインに戻し、ここで、少なくとも一部が、コールドエンドにおいて液化するようになり、その後、膨張に続いて、前記複数の塔からなるシステム内へと送られ、
i)前記複数の塔からなるシステムからの加圧された液体製品(35)は、前記熱交換ラインにおいて気化され、
前記第1運転モードにおいて、
j)補助タービン(27)は、前記主たる熱交換ラインにおいて冷却された前記空気流の或る気体部分を吸気し、
k)前記補助タービンの吸気圧は前記第1の空気圧以上であり、
l)前記補助タービンの送出圧は大気圧以上であり、
m)前記補助タービンにおいて膨張した前記空気流の少なくとも一部は、前記熱交換ラインにおいて暖められ、
n)前記空気の成分の一部は、最終製品として、液体の形態で製造され、
前記第2運転モードにおいて、
o)前記補助タービンにおいて処理される空気の流量は、前記第1運転モード中に前記補助タービンにおいて処理される流れと比べて低減され、
p)最終製品としての液体の製造は、前記第1運転モードにおける最終製品としての液体の製造と比べて低減される方法。
In a system comprising a plurality of columns comprising at least one medium pressure column operating at medium pressure and a low pressure column operating at low pressure, which are thermally coupled together, at least using cryogenic distillation A method for producing one kind of gas from air, in the first and second operation modes,
a) all of the compressed air stream is increased to a first air pressure that is at least 5 bar above the pressure in the medium pressure tower and purified at the first air pressure;
b) the first air pressure can vary depending on the required product;
c) a first portion of the air flow at least at the first air pressure is cooled to an intermediate temperature in the heat exchange line (7) and expanded at least in the first turbine (21);
d) The second part of the air flow is at least a second turbine (21B) whose intake and delivery conditions differ from those of the first turbine by a maximum of 5 bar and a maximum of 15 ° C. or are identical with respect to pressure and temperature. Inflated,
e) the work provided by the first turbine is used at least in part for the work required for the supercharger;
f) the intake pressure of the first turbine is at least 5 bar higher than the intermediate pressure;
g) The delivery pressure of the first turbine is not less than the intermediate pressure,
h) Some / the supercharger (13) compresses at least a portion of the air flow to a high pressure above the first air pressure that is cooled to cryogenic temperatures in the heat exchange line and is pressurized A stream is returned to the heat exchange line, where at least a portion becomes liquefied at the cold end, and then, following expansion, is sent into a system of the plurality of towers;
i) Pressurized liquid product (35) from the multi-column system is vaporized in the heat exchange line;
In the first operation mode,
j) Auxiliary turbine (27) inhales a gas portion of the air stream cooled in the main heat exchange line;
k) the intake pressure of the auxiliary turbine is greater than or equal to the first air pressure;
l) The delivery pressure of the auxiliary turbine is greater than atmospheric pressure;
m) at least a portion of the air flow expanded in the auxiliary turbine is warmed in the heat exchange line;
n) some of the components of the air are produced in liquid form as the final product;
In the second operation mode,
o) the flow rate of air processed in the auxiliary turbine is reduced compared to the flow processed in the auxiliary turbine during the first operating mode;
p) A method in which the production of liquid as a final product is reduced compared to the production of liquid as a final product in the first operating mode.
請求項1記載の方法であって、全ての前記タービンは、空気スーパーチャージャー(3、13)によって制動される方法。  2. The method according to claim 1, wherein all the turbines are braked by an air supercharger (3, 13). 請求項1又は2記載の方法であって、前記タービンのうちの1つと接続された少なくとも1つのスーパーチャージャー(3)は、周囲温度で吸気を行う方法。  3. A method according to claim 1 or 2, wherein at least one supercharger (3) connected to one of the turbines takes in air at ambient temperature. 請求項1乃至3の何れか1項記載の方法であって、全ての前記スーパーチャージャーのうち、前記第1タービン(21)に機械的に接続されたスーパーチャージャー(13)のみが、−100℃を下回る吸気温度を有している方法。  4. The method according to claim 1, wherein, of all the superchargers, only the supercharger (13) mechanically connected to the first turbine (21) is −100 ° C. 5. A method that has an intake air temperature below. 請求項1乃至4の何れか1項記載の方法であって、前記第2モード中、圧縮される空気流の流量は低減され、前記補助タービン(27)に送られる空気の流量の前記第2モードにおける減少と少なくとも等しい流量だけ低減される方法。5. A method according to any one of the preceding claims , wherein during the second mode, the flow rate of the compressed air stream is reduced and the second flow rate of the air sent to the auxiliary turbine (27). A method in which the flow rate is reduced by at least equal to the reduction in mode. 請求項5記載の方法であって、主たる空気の流量(1)の変動は、圧縮機の可変翼によってもたらされる方法。 6. A method as claimed in claim 5 , wherein the variation of the main air flow rate (1) is caused by the variable blades of the compressor. 請求項5又は6記載の方法であって、主たる空気の流量(1)の変動は、補助空気圧縮機の始動及び/又は停止によってもたらされる方法。7. A method according to claim 5 or 6 , wherein the variation of the main air flow (1) is caused by starting and / or stopping the auxiliary air compressor. 請求項1乃至7の何れか1項記載の方法であって、前記第1の空気圧は、前記第1モードと前記第2モードとで異なる方法。The method according to any one of claims 1 to 7 , wherein the first air pressure is different between the first mode and the second mode. 請求項1乃至8の何れか1項記載の方法であって、前記空気の前記第1部分は、前記第1の空気圧よりも高い圧力で前記第1タービンに入るように、前記第1タービン(21)の上流で前記第1の空気圧よりも高い圧力まで与圧される方法。9. The method according to any one of claims 1 to 8, wherein the first portion of the air enters the first turbine at a pressure higher than the first air pressure. 21) A method in which the pressure is increased to a pressure higher than the first air pressure upstream of 21). 請求項1乃至9の何れか1項記載の方法であって、前記補助タービン(27)の吸気温度は、前記第1タービン(21)の吸気温度よりも高い方法。The method according to any one of claims 1 to 9 , wherein the intake temperature of the auxiliary turbine (27) is higher than the intake temperature of the first turbine (21).
JP2009553189A 2007-03-13 2008-03-12 Method and apparatus for producing gas from air in the form of gases and liquids with high flexibility by cryogenic distillation Expired - Fee Related JP5032596B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0753788A FR2913759B1 (en) 2007-03-13 2007-03-13 METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
FR0753788 2007-03-13
PCT/FR2008/050418 WO2008129198A2 (en) 2007-03-13 2008-03-12 Method and apparatus for the production of gas from air in highly flexible gaseous and liquid form by cryogenic distillation

Publications (2)

Publication Number Publication Date
JP2010531424A JP2010531424A (en) 2010-09-24
JP5032596B2 true JP5032596B2 (en) 2012-09-26

Family

ID=38870300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009553189A Expired - Fee Related JP5032596B2 (en) 2007-03-13 2008-03-12 Method and apparatus for producing gas from air in the form of gases and liquids with high flexibility by cryogenic distillation

Country Status (8)

Country Link
US (1) US20110011130A1 (en)
EP (1) EP2118601B1 (en)
JP (1) JP5032596B2 (en)
CN (1) CN101883963B (en)
BR (1) BRPI0808718B1 (en)
FR (1) FR2913759B1 (en)
RU (1) RU2479806C2 (en)
WO (1) WO2008129198A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2176610B1 (en) * 2007-08-10 2019-04-24 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for the separation of air by cryogenic distillation
CA2695820A1 (en) * 2007-08-10 2009-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Proced Es Georges Claude Process and apparatus for the separation of air by cryogenic distillation
FR2948184B1 (en) 2009-07-20 2016-04-15 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
DE102010052544A1 (en) * 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
DE102010052545A1 (en) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
FR2973486B1 (en) * 2011-03-31 2013-05-03 Air Liquide AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION
TWI582041B (en) * 2011-06-03 2017-05-11 半導體能源研究所股份有限公司 Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US9249524B2 (en) * 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
FR2985305B1 (en) * 2012-01-03 2017-12-22 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR PRODUCING PRESSURIZED AIR GAS USING A CRYOGENIC SURPRESSOR
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP3179186A1 (en) * 2015-12-07 2017-06-14 Linde Aktiengesellschaft Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus
US10359231B2 (en) 2017-04-12 2019-07-23 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
EP3438585A3 (en) 2017-08-03 2019-04-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for defrosting a device for air separation by cryogenic distillation and device adapted to be defrosted using this method
FR3069913B1 (en) * 2017-08-03 2020-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR3072451B1 (en) * 2017-10-13 2022-01-21 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU645007A1 (en) * 1972-03-03 1979-01-30 Предприятие П/Я А-3605 Method of joint obtaining of gaseous and liquid components of air
IT1019710B (en) * 1974-07-12 1977-11-30 Nuovo Pignone Spa PROCESS AND EQUIPMENT FOR THE PRODUCTION OF HIGH PERCENTAGES OF OS SIGEN AND / OR NITROGEN IN THE LIQUID STATE
DE3012062A1 (en) * 1980-03-28 1981-10-08 Linde Ag, 6200 Wiesbaden Gaseous oxygen prodn. for fluctuating demand - uses liquefied buffer storage for minor fluctuations but has standby compressors for major fluctuations in demand
DE3738559A1 (en) * 1987-11-13 1989-05-24 Linde Ag METHOD FOR AIR DISASSEMBLY BY DEEP TEMPERATURE RECTIFICATION
JP2736543B2 (en) * 1989-04-17 1998-04-02 日本酸素株式会社 Air liquefaction separation method
FR2652409A1 (en) * 1989-09-25 1991-03-29 Air Liquide REFRIGERANT PRODUCTION PROCESS, CORRESPONDING REFRIGERANT CYCLE AND THEIR APPLICATION TO AIR DISTILLATION.
JP2909678B2 (en) 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
FR2688052B1 (en) * 1992-03-02 1994-05-20 Maurice Grenier PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN AND / OR GAS NITROGEN UNDER PRESSURE BY AIR DISTILLATION.
FR2692664A1 (en) * 1992-06-23 1993-12-24 Lair Liquide Process and installation for producing gaseous oxygen under pressure.
US5355681A (en) * 1993-09-23 1994-10-18 Air Products And Chemicals, Inc. Air separation schemes for oxygen and nitrogen coproduction as gas and/or liquid products
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
GB9515907D0 (en) * 1995-08-03 1995-10-04 Boc Group Plc Air separation
JP2875206B2 (en) * 1996-05-29 1999-03-31 日本エア・リキード株式会社 High purity nitrogen production apparatus and method
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
FR2787560B1 (en) * 1998-12-22 2001-02-09 Air Liquide PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES
US6808364B2 (en) * 2002-12-17 2004-10-26 General Electric Company Methods and apparatus for sealing gas turbine engine variable vane assemblies
FR2851330B1 (en) * 2003-02-13 2006-01-06 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF A GASEOUS AND HIGH PRESSURE PRODUCTION OF AT LEAST ONE FLUID SELECTED AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC DISTILLATION OF AIR
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
FR2854682B1 (en) * 2003-05-05 2005-06-17 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
FR2865024B3 (en) * 2004-01-12 2006-05-05 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
US20060272353A1 (en) * 2005-05-20 2006-12-07 Gabbita Venkata Maruthi Prasad Process and apparatus for the separation of air by cryogenic distillation

Also Published As

Publication number Publication date
US20110011130A1 (en) 2011-01-20
JP2010531424A (en) 2010-09-24
EP2118601A2 (en) 2009-11-18
RU2009137758A (en) 2011-04-20
BRPI0808718B1 (en) 2019-09-24
FR2913759A1 (en) 2008-09-19
CN101883963A (en) 2010-11-10
BRPI0808718A2 (en) 2014-08-12
WO2008129198A3 (en) 2011-07-07
EP2118601B1 (en) 2017-12-20
CN101883963B (en) 2013-09-18
FR2913759B1 (en) 2013-08-16
RU2479806C2 (en) 2013-04-20
WO2008129198A2 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP5032596B2 (en) Method and apparatus for producing gas from air in the form of gases and liquids with high flexibility by cryogenic distillation
AU2012229026B2 (en) Cryogenic air separation method and system
US8695377B2 (en) Process and apparatus for the separation of air by cryogenic distillation
JP2010530947A (en) Method and device for producing gases in the form of gases and liquids from air with high flexibility and by cryogenic distillation
JP2009529648A (en) Cryogenic air separation method and apparatus
JP2009529648A5 (en)
JP4417954B2 (en) Cryogenic distillation method and system for air separation
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
US6257020B1 (en) Process for the cryogenic separation of gases from air
CN103827613B (en) For producing the method for gas-pressurized by low temperature distillation
JP4908634B2 (en) Method and apparatus for separating air by cryogenic distillation
CN105378411B (en) Produce method, the air separation plant, the method and apparatus produced electricl energy of at least one air products
US5454226A (en) Process and plant for liquefying a gas
JPS61105086A (en) Method and device for liquefying permanent gas flow
EP1726900A1 (en) Process and apparatus for the separation of air by cryogenic distillation
RU2433363C1 (en) Method and apparatus for air separation by cryogenic distillation
CN114017990B (en) Small air separation device for preparing low-pressure low-purity oxygen and medium-pressure nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees