JP5031541B2 - Silicon nitride sintered body, circuit board, and power semiconductor module - Google Patents

Silicon nitride sintered body, circuit board, and power semiconductor module Download PDF

Info

Publication number
JP5031541B2
JP5031541B2 JP2007332222A JP2007332222A JP5031541B2 JP 5031541 B2 JP5031541 B2 JP 5031541B2 JP 2007332222 A JP2007332222 A JP 2007332222A JP 2007332222 A JP2007332222 A JP 2007332222A JP 5031541 B2 JP5031541 B2 JP 5031541B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
crystal grains
region
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007332222A
Other languages
Japanese (ja)
Other versions
JP2009155126A (en
Inventor
誠一郎 平原
慎也 横峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007332222A priority Critical patent/JP5031541B2/en
Publication of JP2009155126A publication Critical patent/JP2009155126A/en
Application granted granted Critical
Publication of JP5031541B2 publication Critical patent/JP5031541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、窒化珪素質焼結体および回路基板ならびにパワー半導体モジュールに関る。
The present invention is, you about the beauty circuitry board and the power semiconductor module Oyo silicon nitride sintered body.

従来、自動車用エンジン部材、耐熱構造部材、切削工具その他産業用部材に、高強度、高靱性の窒化珪素質焼結体が用いられていた(例えば、特許文献1参照)。   Conventionally, high-strength, high-toughness silicon nitride-based sintered bodies have been used for automobile engine members, heat-resistant structural members, cutting tools, and other industrial members (see, for example, Patent Document 1).

この特許文献1では、β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子と粒界相とからなる窒化珪素質焼結体であって、焼結体に対して5〜60vol%が、内部に、この結晶粒子の他の部分よりもAl存在量が多いAl多領域を有する結晶粒子から構成されていることが記載されている。 In this patent document 1, it is a silicon nitride based sintered body composed of at least one kind of crystal particles and a grain boundary phase among β-Si 3 N 4 and β-sialon, and is 5 to 60 vol with respect to the sintered body. % Is composed of crystal grains having an Al multi-region in which Al abundance is higher than the other parts of the crystal grains.

そして、この窒化珪素質焼結体では、結晶粒子内にβサイアロン核を有するため、結晶粒子内に内部応力を発生させ、さらに、βサイアロン核を有する結晶粒子は粒成長するため、アスペクト比が高くなり、焼結体の強度と靱性を向上できることが記載されている。
特開平2−263764号公報
Since this silicon nitride sintered body has β sialon nuclei in crystal grains, an internal stress is generated in the crystal grains, and crystal grains having β sialon nuclei grow, so that the aspect ratio is It is described that the strength and toughness of the sintered body can be improved.
JP-A-2-263764

近年においては、窒化珪素質焼結体は多種多様の用途に用いられており、用途によっては、高熱伝導性が要求されているものもある。例えば、大電力で動作する半導体を実装する、いわゆるパワー半導体モジュールに使用する絶縁回路基板に窒化珪素質焼結体を用いることが知られているが、このような絶縁回路基板では、パワー半導体から発する熱を拡散して放熱する必要がある。   In recent years, silicon nitride-based sintered bodies have been used for a wide variety of applications, and depending on the application, high thermal conductivity is required. For example, it is known to use a silicon nitride-based sintered body for an insulating circuit board used for a so-called power semiconductor module for mounting a semiconductor that operates at high power. It is necessary to dissipate the heat generated by diffusing.

例えば、絶縁回路基板では、上記したように放熱性(高熱伝導率)、薄型化、高強度高靱性化が要求されているが、上記特許文献1に開示された窒化珪素質焼結体を回路基板として用いた場合には、高強度高靱性化が図られ、薄型化を達成することができるが、回路基板の熱伝導率が低く、パワー半導体から発する熱を十分に放熱することができないという問題があった。   For example, in an insulated circuit board, as described above, heat dissipation (high thermal conductivity), thinning, and high strength and toughness are required, but the silicon nitride sintered body disclosed in Patent Document 1 is used as a circuit. When used as a substrate, high strength and toughness can be achieved and thinning can be achieved, but the thermal conductivity of the circuit board is low, and the heat generated from the power semiconductor cannot be sufficiently dissipated. There was a problem.

すなわち、特許文献1の窒化珪素質焼結体では、結晶粒子内にβサイアロン核を有するため、結晶粒子内に内部応力を発生させ、さらに、β−サイアロン核を有する結晶粒子は粒成長し、アスペクト比が高くなるため、焼結体の強度と靱性を向上できるものの、特許文献1では、BET比表面積が10あるいは5m/g程度のβ−サイアロン粉末を、原料全量に対して5〜20質量%添加しており、これにより、焼成時に多くのβ−サイアロンが完全に溶融または表面が溶融してβ−サイアロン核が小さくなり、結晶粒子内に大量のAlが分散、固溶し、窒化珪素質焼結体の熱伝導率が低くなり、放熱性が低下するという問題があった。 That is, in the silicon nitride-based sintered body of Patent Document 1, since β sialon nuclei are present in crystal grains, internal stress is generated in the crystal grains, and crystal grains having β-sialon nuclei grow, Although the aspect ratio becomes high, the strength and toughness of the sintered body can be improved. However, in Patent Document 1, β-sialon powder having a BET specific surface area of about 10 or 5 m 2 / g is used in an amount of 5 to 20 with respect to the total amount of raw materials. In this way, a large amount of β-sialon is completely melted or the surface is melted and β-sialon nuclei are reduced during firing, and a large amount of Al is dispersed and solid-dissolved in the crystal grains. There has been a problem that the thermal conductivity of the silicon-based sintered body is lowered and heat dissipation is reduced.

本発明は、高強度化および高靱性化を図ることができるとともに、放熱性を向上することができる窒化珪素質焼結体およびその製法ならびに回路基板、パワー半導体モジュールを提供することを目的とする。   An object of the present invention is to provide a silicon nitride-based sintered body that can be increased in strength and toughness, and that can improve heat dissipation, a manufacturing method thereof, a circuit board, and a power semiconductor module. .

本発明者等は、添加するβ−サイアロン粉末として、BET比表面積が小さいものを用い、かつ添加量を少なくすることにより、結晶粒子内に、この結晶粒子の他の領域よりもAl存在量が多いAl多領域を有する組織とすることができ、高強度化および高靱性化を図ることができる。また粒径の大きいβ−サイアロン粉末を用いることにより、焼成時におけるβ−サイアロンの溶融を抑制できるとともに、結晶粒子内のAl多領域にAlを集中して存在させることができ、Alの結晶粒子内への分散抑制されていることにより、窒化珪素質焼結体の放熱性を向上できることを見出し、本発明に至った。
The present inventors use a β-sialon powder to be added having a small BET specific surface area, and by reducing the addition amount, the amount of Al present in the crystal particles is larger than that in other regions of the crystal particles. It can be set as the structure | tissue which has many Al many area | regions, and high intensity | strength and high toughness can be achieved . Further, by using a large β- sialon powder having a particle size, Rutotomoni can suppress melting of β- sialon during firing, can Rukoto be present to concentrate Al to Al multi region within the crystal grains, Al by dispersion in the crystal grains is suppressed, it found that can improve the heat dissipation of the silicon nitride sintered body, leading to the present invention.

即ち、本発明の窒化珪素質焼結体は、β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子と粒界相とからなる窒化珪素質焼結体であって、焼結体全量中に対するAlの含有量が0.053〜0.422質量%であり、前記結晶粒子内に、該結晶粒子の他の領域よりもAl存在量が多いAl多領域を有、該Al多領域は、平均径が2μm以上5μm以下であり、前記他の領域に囲まれていることを特徴とする。
That is, the silicon nitride sintered material of the present invention is a β-Si 3 N 4 and β- least one crystalline grains and a grain boundary phase and the silicon nitride sintered body consisting of sialon sintered a 0.053 to 0.422 mass% content of Al to the body the total amount, in the crystal grains, have a Al multi region is large Al abundance than other regions of the crystal grains, the Al multi region, an average diameter is at 2μm or more 5μm or less, and wherein that you have been surrounded by the other region.

このような窒化珪素質焼結体では、結晶粒子内に、該結晶粒子の他の領域よりもAl存在量が多いAl多領域を有するため、このAl多領域を有する結晶粒子が、Al多領域を有ない他の結晶粒子よりも大きく粒成長し、アスペクト比が高くなることから、焼結体の強度と靱性を向上できる。
In such a silicon nitride sintered body, the crystal grains, because they have other areas Al multidomain often Al abundance than of the crystal grains, the crystal grains having the Al multizone, A l multi grain growth greater than other crystal particles not being closed space, from high a Rukoto aspect ratio, can improve the strength and toughness of the sintered body.

また、Alは平均径2μm以上5μm以下のAl多領域に集中して存在し、しかも焼結体全量中に対するAlの含有量が0.053〜0.422質量%、望ましくは0.159〜0.238質量%と少ないため、結晶粒子内に分散する量が少なくなり、これにより焼結体の熱伝導率を高くすることができ、放熱性を向上できる。
Further, Al is present concentrated in the following Al multidomain 5μm or mean diameter 2 [mu] m, deer also the content of Al to in sintered body the total amount of from 0.053 to 0.422 wt%, preferably 0.159~ Since the amount is as small as 0.238% by mass, the amount dispersed in the crystal particles is reduced, whereby the thermal conductivity of the sintered body can be increased and the heat dissipation can be improved.

さらに、Al多領域の平均径が2μm以上と大きいため、結晶粒子内の内部応力が大きくなり、さらに結晶粒子のアスペクト比が大きくなり、強度、靱性をさらに向上できる。   Further, since the average diameter of the Al multi-region is as large as 2 μm or more, the internal stress in the crystal grains is increased, the aspect ratio of the crystal grains is further increased, and the strength and toughness can be further improved.

また、本発明の窒化珪素質焼結体は、前記Al多領域を有する結晶粒子が、焼結体の任意断面において面積比で7〜25%存在することを特徴とする。このような窒化珪素質焼結体では、焼結体の強度、靱性を高めることができるとともに、Al多領域を有する結晶粒子を適度に存在させるため、Al量を少なくすることができ、焼結体の放熱性を高くすることができる。   In addition, the silicon nitride sintered body of the present invention is characterized in that the crystal grains having the Al multi-region are present in an area ratio of 7 to 25% in an arbitrary cross section of the sintered body. In such a silicon nitride-based sintered body, the strength and toughness of the sintered body can be increased, and since crystal grains having many Al regions are present appropriately, the amount of Al can be reduced, and the sintered body can be sintered. The heat dissipation of the body can be increased.

本発明の窒化珪素質焼結体は、窒化珪素粉末および粒界相形成粉末に、BET比表面積が2m/g以下のβ−サイアロン粉末を全固形分中0.139〜8.105質量%、望ましくは0.416〜4.726質量%添加混合し、これを成形した後、焼成することによって得られる。
Silicon nitride sintered body of the present invention, the silicon powder and grain boundary phase-forming nitride powder, BET specific surface area of 2m 2 / g or less of β- sialon powder on the total solids in the 0.139 to 8.105 wt% desirably admixed 0.416 to 4.726 wt%, after forming this, Ru obtained by baking.

従来の特許文献1では、BET比表面積が5m/g程度のβ−サイアロン粉末を用いており、BET比表面積が大きい(一般的には微粒)β−サイアロン粉末が焼成時に大量に溶融し、Al多領域が消失したり、Al多領域が小さくなり、Alの結晶粒子内への分散、固溶量が多くなる。さらにβ−サイアロン粉末の添加量が、原料全量に対して5〜20質量%と多いため、この点からもAlの結晶粒子内への分散、固溶量が多くなり、窒化珪素質焼結体の熱伝導率が低下していた。 In conventional Patent Document 1, β-sialon powder having a BET specific surface area of about 5 m 2 / g is used, and β-sialon powder having a large BET specific surface area (generally fine particles) is melted in a large amount during firing. The Al multi-region disappears or the Al multi-region becomes small, and the amount of Al dispersed and dissolved in the crystal grains increases. Further, since the addition amount of β-sialon powder is as large as 5 to 20% by mass with respect to the total amount of the raw material, the dispersion and solid solution amount of Al in the crystal grains also increases from this point, and the silicon nitride sintered body The thermal conductivity of was reduced.

これに対して、本発明の窒化珪素質焼結体は、添加されるβ−サイアロン粉末のBET比表面積が2m/g以下と小さいため、β−サイアロン粉末の粒径は大きく、焼成時に溶融する量が少なく、平均径が2μm以上のAl多領域を形成し、また、β−サイアロン粉末の添加量も全量中0.139〜8.105質量%、望ましくは0.416〜4.726質量%と少ないため、Alの結晶粒子内への分散、固溶量が少なくなり、放熱性を高めることができる。
In contrast, the silicon nitride sintered body of the present invention, since the BET specific surface area of beta-sialon powder to be added is as small as 2m 2 / g or less, beta-sialon powder having a particle size is large, it melted during firing The amount of Al to be formed is small and the average diameter is 2 μm or more, and the added amount of β-sialon powder is 0.139 to 8.105% by mass, preferably 0.416 to 4.726% by mass. Therefore, the amount of Al dispersed in the crystal grains and the amount of solid solution are reduced, and the heat dissipation can be improved.

本発明の回路基板は、上記窒化珪素質焼結体に導体層を形成してなることを特徴とする。このような回路基板では、窒化珪素質焼結体の強度および靱性を向上できるため、回路基板を薄くすることができ、しかも窒化珪素質焼結体の熱伝導率を向上できるため、回路基板の放熱性を向上できる。これにより、例えば、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   The circuit board of the present invention is characterized in that a conductor layer is formed on the silicon nitride sintered body. In such a circuit board, since the strength and toughness of the silicon nitride sintered body can be improved, the circuit board can be thinned, and the thermal conductivity of the silicon nitride sintered body can be improved. Heat dissipation can be improved. Thereby, for example, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

本発明のパワー半導体モジュールは、パワー半導体を上記回路基板に実装してなるものである。このようなパワー半導体モジュールでは、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   The power semiconductor module of the present invention is obtained by mounting a power semiconductor on the circuit board. In such a power semiconductor module, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

本発明の窒化珪素質焼結体では、結晶粒子内に、該結晶粒子の他の領域よりもAl存在量が多いAl多領域を有、このAl多領域を有する結晶粒子が、Al多領域を有ない他の結晶粒子よりも大きく粒成長し、アスペクト比が高くなることから、焼結体の強度と靱性を向上させることができる。また、Alは多くが平均径2μm以上5μm以下のAl多領域に集中して存在し、しかもAlは焼結体全量中0.053〜0.422質量%と少ないため、結晶粒子内に分散する量が少なくなり、これにより焼結体の熱伝導率を高くすることができ、放熱性を向上できる。
The silicon nitride sintered body of the present invention, in the crystal grains, have a Al multi region is large Al abundance than other regions of the crystal grains, the crystal grains having the Al multi-region, A l multi grain growth greater than other crystal particles not being closed space, from Rukoto a high aspect ratio, it is possible to improve the strength and toughness of the sintered body. Further , most of Al is concentrated in many Al regions having an average diameter of 2 μm or more and 5 μm or less , and since Al is as small as 0.053 to 0.422% by mass in the total amount of the sintered body, it is dispersed in the crystal grains. This reduces the amount, which can increase the thermal conductivity of the sintered body and improve the heat dissipation.

本発明の回路基板では、窒化珪素質焼結体の強度、靱性を向上できるため、回路基板を薄くすることができ、しかも窒化珪素質焼結体の熱伝導率を向上できるため、回路基板の放熱性を向上できる。これにより、例えば、パワー半導体から発する熱を回路基板から拡散して放熱することができる。   In the circuit board of the present invention, since the strength and toughness of the silicon nitride sintered body can be improved, the circuit board can be thinned and the thermal conductivity of the silicon nitride sintered body can be improved. Heat dissipation can be improved. Thereby, for example, the heat generated from the power semiconductor can be diffused from the circuit board and dissipated.

本発明のパワー半導体モジュールでは、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   In the power semiconductor module of the present invention, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

本発明の回路基板は、窒化珪素質焼結体からなる母基板に導体層(金属回路を含む)を形成してなるもので、少なくとも母基板の上面、または下面、さらには上下両面に導体層を設けたもので、この導体層には、パワー半導体が搭載される。   The circuit board of the present invention is formed by forming a conductor layer (including a metal circuit) on a mother substrate made of a silicon nitride sintered body, and at least on the upper surface or the lower surface of the mother substrate, and further on both upper and lower surfaces. In this conductor layer, a power semiconductor is mounted.

そして、窒化珪素質焼結体からなる母基板は、図1、2に示すように、β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子1と粒界相3とからなる窒化珪素質焼結体であって、焼結体全量中に対するAlの含有量が0.053〜0.422質量%、望ましくは0.159〜0.238質量%含有し、結晶粒子1内に、該結晶粒子1の他の領域よりもAl存在量が多いAl多領域5を有、Al多領域5は、平均径2μm以
5μm以下であり、前記他の領域に囲まれている。
The mother substrate made of the silicon nitride sintered body is composed of at least one crystal grain 1 and grain boundary phase 3 among β-Si 3 N 4 and β-sialon as shown in FIGS. It is a silicon nitride sintered body, and the Al content in the total amount of the sintered body is 0.053 to 0.422% by mass, preferably 0.159 to 0.238% by mass. , have a Al multi-zone 5 Al abundance greater than other regions of the crystal grains 1, Al multi region 5 has an average diameter of less than 2μm than <br/> on 5 [mu] m, the other region that is surrounded.

Alを、焼結体全量中0.053〜0.422質量%としたのは、Alが焼結体全量中0.053質量%よりも少ない場合には、強度、靱性が低下するからである。一方、0.422質量%よりも多い場合には、添加するβ−サイアロン粉末のBET比表面積、および量にもよるが、添加したβ−サイアロン粉末が焼成時に液相に溶出し、β−Siが析出する際に、Alが結晶粒子内に分散、固溶する量が多くなって焼結体の熱伝導性が低下するからである。Alは、熱伝導性向上という観点から、焼結体全量中0.159〜0.238質量%であることが望ましい。 The reason why Al is 0.053 to 0.422% by mass in the total amount of the sintered body is that when Al is less than 0.053% by mass in the total amount of the sintered body, strength and toughness are lowered. . On the other hand, when the content is more than 0.422% by mass, the added β-sialon powder is eluted into the liquid phase during firing, depending on the BET specific surface area and the amount of the added β-sialon powder, and β-Si This is because when 3 N 4 precipitates, the amount of Al dispersed and dissolved in the crystal particles increases, and the thermal conductivity of the sintered body decreases. From the viewpoint of improving thermal conductivity, Al is preferably 0.159 to 0.238% by mass in the total amount of the sintered body.

本発明では、β−SiにAlが固溶したものをβ−サイアロンと呼ぶ。サイアロンは、一般式Si6−zAl8−zで表されるが、結晶粒子内に該結晶粒子の他の領域よりもAl存在量が多いAl多領域5を有するとは、結晶粒子がβ−サイアロンの場合、Al多領域の一般式中のZ値は、その他の領域のZ値に比べて2倍以上、つまり2倍以上Al含有量が多い領域を有することを指す。Al多領域5は、図2では、一点鎖線で示したが、実際は、Alの含有量で規定されるもので、走査電子顕微鏡による反射電子像あるいは二次電子像と波長分散型マイクロアナライザー分析などの対比により、Al多領域5であることを確認できる。
In the present invention, what Al is solid-soluble in β-Si 3 N 4 is referred to as β- SiAlON. Sialon is represented by the general formula Si 6-z Al z O z N 8-z , and the crystal grain has an Al multi-region 5 having a larger amount of Al than other regions of the crystal grain. When the crystal grains are β-sialon, the Z value in the general formula of the Al multi-region indicates that it has a region where the Al content is two times or more, that is, two times or more higher than the Z value of other regions . Although the Al multi-region 5 is shown by a one-dot chain line in FIG. 2, it is actually defined by the Al content, such as a reflected electron image or secondary electron image by a scanning electron microscope and wavelength dispersion type microanalyzer analysis. From the comparison, it can be confirmed that the Al region 5 is present.

また、β−Siからなる結晶粒子内に、該結晶粒子の他の領域よりもAl存在量が多いAl多領域5を有するとは、Alが固溶していないβ−Siからなる結晶粒子内に、β−Si Alが固溶したAl多領域5が存在することをいう。
In addition, in the crystal particle made of β-Si 3 N 4 , the Al multi-region 5 having a larger Al abundance than other regions of the crystal particle means that β-Si 3 N in which Al is not solid-solved. the crystal particles made of 4 means that the a l multi region 5 Al is solid-dissolved in beta-Si 3 N 4 is present.

このAl多領域5の寸法は、添加するβ−サイアロン粉末の粒径と同等か、もしくは僅かに小さくなる。本発明では、Al多領域5の平均径が2μm以上とされている。Al多領域5の平均径を2μm以上とすることにより、結晶粒子内に分散、固溶するAl量を低減し、熱伝導性を向上できる。さらに、Al多領域の平均径が2μm以上と大きいため、結晶粒子内の内部応力が大きくなり、さらに結晶粒子のアスペクト比が大きくなり、強度および靱性を向上できるという効果もある。   The dimension of the Al multi-region 5 is equal to or slightly smaller than the particle diameter of the added β-sialon powder. In the present invention, the average diameter of the Al multi-region 5 is set to 2 μm or more. By setting the average diameter of the Al multi-region 5 to 2 μm or more, the amount of Al dispersed and dissolved in the crystal particles can be reduced, and the thermal conductivity can be improved. Furthermore, since the average diameter of the Al multi-region is as large as 2 μm or more, the internal stress in the crystal grains is increased, the aspect ratio of the crystal grains is increased, and the strength and toughness can be improved.

Al多領域5の平均径が2μmよりも小さい場合、Alが結晶粒子内に分散して、固溶する量が多くなり、焼結体の熱伝導性が低下するからである。そして、高強度を達成するという点から、Al多領域5の平均径はμm以下である。
This is because when the average diameter of the Al multi-region 5 is smaller than 2 μm, Al is dispersed in the crystal particles and the amount of solid solution increases, and the thermal conductivity of the sintered body is lowered. Then, from the viewpoint of achieving high strength, the average diameter of the Al multi-region 5 is Ru der 5 [mu] m or less.

Al多領域5を有するβ−Siおよびβ−サイアロンの結晶粒子1は、アスペクト比が平均3〜8、結晶粒子1の短軸長さは平均3〜15μmとされている。 The β-Si 3 N 4 and β-sialon crystal particles 1 having the Al multi-region 5 have an average aspect ratio of 3 to 8, and the minor axis length of the crystal particles 1 is 3 to 15 μm on average.

本発明では、Al多領域5を有する結晶粒子1が、焼結体の任意断面において面積比で7〜25%存在することが望ましい。これにより、焼結体の強度および靱性を高めることができるとともに、Al多領域5を有する結晶粒子1を適度に存在させることができ、焼結体の放熱性を高くすることができる。   In the present invention, it is desirable that the crystal particles 1 having the Al multi-region 5 exist in an area ratio of 7 to 25% in an arbitrary cross section of the sintered body. Thereby, while being able to raise the intensity | strength and toughness of a sintered compact, the crystal particle 1 which has Al many area | region 5 can be made to exist moderately, and the heat dissipation of a sintered compact can be made high.

また、本発明の窒化珪素質焼結体には、原料中に含まれる、あるいは工程から混入するNa、K、Fe、Ca、Ba、MnおよびB等の不可避不純物を混入しており、これらの不可避不純物は、焼結体全量中に合量で0.5質量%以下であることが望ましい。これにより焼結体の熱拡散率の低下を抑制でき、結果として焼結体の熱伝導率を向上できる。
Further, the silicon nitride sintered body of the present invention is contained in the raw material, or you mixed from step N a, K, Fe, Ca , Ba, and mixed with inevitable impurities, such as Mn and B, These inevitable impurities are preferably 0.5% by mass or less in the total amount of the sintered body. Thereby, the fall of the thermal diffusivity of a sintered compact can be suppressed, and the thermal conductivity of a sintered compact can be improved as a result.

さらに、焼結体中には、希土類元素を酸化物換算で全量中1〜20質量%含有することが、焼結性を向上させるという点から望ましい。窒化珪素は前述したように、難焼結性であるので、焼結助剤を添加することが望ましく、一般的に知られている希土類元素酸化物、例えば特にY、Er、Dyなどを焼結助剤として1〜20質量%添加含有することができる。 Furthermore, it is desirable that the sintered body contains rare earth elements in an amount of 1 to 20% by mass in terms of oxides from the viewpoint of improving the sinterability. As described above, since silicon nitride is difficult to sinter, it is desirable to add a sintering aid, and generally known rare earth element oxides such as Y 2 O 3 and Er 2 O 3 in particular. , Dy 2 O 3 or the like can be added as a sintering aid in an amount of 1 to 20% by mass.

ここで、希土類元素の酸化物換算量を焼結体全量中1〜20質量%としたのは、1質量%未満では焼結助剤として機能が不十分であり、また、20質量%を超えると焼結体中に低熱伝導率のアモルファス相や低熱伝導率の結晶相が増加して焼結体の熱伝導率が低下する傾向にあるからである。希土類元素の酸化物換算量は、焼結性および熱拡散率向上という観点から、焼結体全量中2〜17質量%であることが望ましい。焼結助剤としては、Er、SiOであることが望ましい。 Here, the oxide equivalent amount of the rare earth element is set to 1 to 20% by mass in the total amount of the sintered body. If the amount is less than 1% by mass, the function as the sintering aid is insufficient, and exceeds 20% by mass. This is because the amorphous phase having a low thermal conductivity and the crystalline phase having a low thermal conductivity increase in the sintered body and the thermal conductivity of the sintered body tends to decrease. The oxide equivalent amount of the rare earth element is desirably 2 to 17% by mass in the total amount of the sintered body from the viewpoint of improving the sinterability and the thermal diffusivity. As the sintering aid, Er 2 O 3 and SiO 2 are desirable.

焼結助剤としてAlを添加しても良いが、その添加量は、Alが焼結体全量中0.053〜0.422質量%となる範囲内とする必要がある。 Al 2 O 3 may be added as a sintering aid, but the addition amount needs to be within a range where Al is 0.053 to 0.422% by mass in the total amount of the sintered body.

β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子は、焼結体全量中80〜91.5質量%含有することが望ましい。 It is desirable that at least one crystal particle of β-Si 3 N 4 and β-sialon is contained in an amount of 80 to 91.5% by mass in the total amount of the sintered body.

本発明の回路基板の製法は、窒化珪素質焼結体からなる母基板に導体層を形成して作製される。母基板は、窒化珪素粉末および粒界相形成粉末に、BET比表面積2m/g以下のβ−サイアロン粉末を全固形分中0.139〜8.105質量%、望ましくは0.416〜4.726質量%添加混合し、これを成形した後、1750〜1980℃で焼成して作製することができる。 The circuit board manufacturing method of the present invention is manufactured by forming a conductor layer on a mother board made of a silicon nitride sintered body. The mother substrate is composed of silicon nitride powder and grain boundary phase forming powder, and β-sialon powder having a BET specific surface area of 2 m 2 / g or less in a total solid content of 0.139 to 8.105% by mass, preferably 0.416 to 4%. 726 mass% added and mixed, and after molding this, it can be produced by firing at 1750 to 1980 ° C.

β−サイアロン粉末を全固形分中0.139〜8.105質量%、望ましくは0.416〜4.726質量%添加混合するとは、窒化珪素粉末、粒界相形成粉末およびβ−サイアロン粉末の合量(全固形分)中、0.139〜8.105質量%、望ましくは0.416〜4.726質量%がβ−サイアロン粉末であることを意味する。   Adding β-sialon powder in an amount of 0.139 to 8.105% by mass, preferably 0.416 to 4.726% by mass in the total solid content means that silicon nitride powder, grain boundary phase forming powder and β-sialon powder are mixed. It means that 0.139 to 8.105% by mass, preferably 0.416 to 4.726% by mass in the total amount (total solid content) is β-sialon powder.

窒化珪素粉末は、酸素を2.0質量%以下、不純物陽イオンとしてのNa、K、Fe、Ca、Ba、MnおよびBを合計で0.5質量%以下、α相型窒化珪素を90質量%以上含有し、平均粒径1μm以下の粉末を用いることが望ましい。
Silicon nitride powder, oxygen 2.0 mass% or less, N a as an impurity cations, K, Fe, Ca, Ba, 0.5 wt% or less in total of Mn and B, 90 and α-phase type silicon nitride It is desirable to use a powder containing at least mass% and having an average particle size of 1 μm or less.

β−サイアロン粉末としては、一般式Si6−zAl8−z(0<z≦4)で表されるものを使用できる。このβ−サイアロン粉末は、BET比表面積2m/g以下のものを使用する。BET比表面積が2m/gよりも大きい場合には、焼成時に溶融し易く、Alが結晶粒子内に分散固溶し、熱伝導性が低下する傾向にあるからである。特には、BET比表面積1m/g以下のものを使用することが望ましい。 As the β-sialon powder, a powder represented by the general formula Si 6-z Al z O z N 8-z (0 <z ≦ 4) can be used. As this β-sialon powder, one having a BET specific surface area of 2 m 2 / g or less is used. This is because when the BET specific surface area is larger than 2 m 2 / g, it is easily melted at the time of firing, Al tends to be dispersed and dissolved in the crystal particles, and the thermal conductivity tends to decrease. In particular, it is desirable to use a BET specific surface area of 1 m 2 / g or less.

また、β−サイアロン粉末は、原料全量中0.139〜8.105質量%添加混合する。β−サイアロン粉末のBET比表面積が小さくても、その表面の一部は溶融するため、上限量を超えて添加した場合に熱伝導率が低下する。一方、下限量より少なく添加した場合は、高強度と高靭性が実現できない。   Moreover, 0.139-8.105 mass% addition mixing of (beta) -sialon powder is carried out with respect to the raw material whole quantity. Even if the BET specific surface area of the β-sialon powder is small, a part of the surface thereof melts, so that the thermal conductivity is lowered when added in excess of the upper limit. On the other hand, when added in less than the lower limit, high strength and high toughness cannot be realized.

このβ−サイアロン粉末は、原料全量中0.416〜4.726質量%添加することが望ましい。   The β-sialon powder is preferably added in an amount of 0.416 to 4.726% by mass based on the total amount of raw materials.

本発明の回路基板の母基板は、熱伝導率は95W・m/K以上、特には、110W・m/K以上のものが得られる。強度は、790MPa以上、特には870MPa以上のものが得られる。さらには、靱性については、7.3MPa・m1/2以上、特には7.5MPa・m1/2以上ものが得られる。 As the mother board of the circuit board of the present invention, a thermal conductivity of 95 W · m / K or more, particularly 110 W · m / K or more can be obtained. A strength of 790 MPa or more, particularly 870 MPa or more is obtained. Furthermore, as for toughness, 7.3 MPa · m 1/2 or more, particularly 7.5 MPa · m 1/2 or more is obtained.

さらに、本発明の回路基板の母基板では、熱伝導率が高いため、しかも高強度高靱性であるため、厚さを薄くすることにより、窒化アルミニウムに比べてもそん色のない高放熱性の母基板が得られ、一方、より強度を高くするため、0.5mm以上の厚みとした場合でも、熱伝導率が高いため、回路基板として用いることができる。 Furthermore, since the mother board of the circuit board of the present invention has high thermal conductivity and high strength and high toughness, by reducing the thickness, it has high heat dissipation that is comparable to aluminum nitride. On the other hand, in order to increase the strength, even when the thickness is 0.5 mm or more, since the thermal conductivity is high, it can be used as a circuit board.

本発明のパワー半導体モジュールは、母基板の導体層にパワー半導体を接続し、パワー半導体を上記回路基板に実装して構成されている。このようなパワー半導体モジュールでは、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   The power semiconductor module of the present invention is configured by connecting a power semiconductor to a conductor layer of a mother board and mounting the power semiconductor on the circuit board. In such a power semiconductor module, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

出発原料として、窒化珪素α相を95質量%含み、酸素を1質量%含み、平均粒径0.5μmの窒化珪素粉末と、BET比表面積0.70〜0.81m/gのβ−サイアロン粉末(z=0.5〜4)と、平均粒径1.0μmのY粉末、平均粒径1.0μmのEr粉末、平均粒径1.0μmのDy粉末を用意した。尚、試料No.14についてはそれぞれBET比表面積が2m/g、試料No.4、15については10m/g程度、試料No.33については5m/g程度のβ−サイアロン粉末を用いた。BET比表面積はガス吸着法により測定した。 As starting materials, silicon nitride α phase containing 95% by mass of silicon nitride α phase, 1% by mass of oxygen, silicon nitride powder having an average particle size of 0.5 μm, and β-sialon having a BET specific surface area of 0.70 to 0.81 m 2 / g Powder (z = 0.5-4), Y 2 O 3 powder having an average particle diameter of 1.0 μm, Er 2 O 3 powder having an average particle diameter of 1.0 μm, and Dy 2 O 3 powder having an average particle diameter of 1.0 μm Prepared. Sample No. 14 each have a BET specific surface area of 2 m 2 / g, sample No. 4 and 15, about 10 m 2 / g, sample No. For 33, β-sialon powder of about 5 m 2 / g was used. The BET specific surface area was measured by a gas adsorption method.

これらの原料粉末を用いて、表1に示す組成比率になるように秤量し、溶媒としてイソプロピルアルコールを、メディアとして窒化珪素焼結体製のボールを加えて振動ミルにて72時間混合した。その後スラリーはイソプロピルアルコールを乾燥させて混合粉体とし、この混合粉末を0.5ton/cmの圧力で金型プレスした後、3ton/cmの圧力にて静水圧プレスを施して成形体を得た。 These raw material powders were weighed so as to have the composition ratios shown in Table 1, and isopropyl alcohol as a solvent and balls made of a silicon nitride sintered body as a medium were added and mixed in a vibration mill for 72 hours. Thereafter, the slurry is dried with isopropyl alcohol to form a mixed powder, and this mixed powder is die-pressed at a pressure of 0.5 ton / cm 3 , and then subjected to an isostatic pressing at a pressure of 3 ton / cm 3 to obtain a molded body. Obtained.

次いで、窒化珪素焼結体製の鉢の中に、窒化珪素粉末にSiO粉末を加えたとも材を充填し、上記成形体をこのとも材の中に埋め込んだ後、0.9MPaの圧力の窒素ガス雰囲気下で1950℃の温度にて焼成して試料となる焼結体を得た。 Next, in a pot made of a silicon nitride sintered body, silicon nitride powder and SiO 2 powder are added, and the material is filled. After the molded body is embedded in the material, the pressure is 0.9 MPa. A sintered body as a sample was obtained by firing at a temperature of 1950 ° C. in a nitrogen gas atmosphere.

こうして得られた試料について、Al量を蛍光X線分析(検量線法)により求めた。焼結体の結晶粒子を収束イオンビーム(FIB)装置によってサブミクロン厚みで微細加工し、波長分散型X線マイクロアナライザー(EPMA)にてAl多領域を確認し、その後Al多領域を上記微細加工し、その都度走査電子顕微鏡分析反射電子像(組成差像)にてサイズの確認を繰り返し行ってAl多領域の直径を求めた。   For the sample thus obtained, the Al content was determined by fluorescent X-ray analysis (calibration curve method). Sintered crystal grains are finely processed with a focused ion beam (FIB) apparatus to a submicron thickness, and a multi-area Al is confirmed with a wavelength dispersive X-ray microanalyzer (EPMA). Each time, the size was repeatedly checked with a scanning electron microscope analysis reflection electron image (composition difference image) to obtain the diameter of the Al multi-region.

同様に10か所のAl多領域の直径を求めて平均してAl多領域の平均径とした。また、焼結体の任意の5断面の走査電子顕微鏡分析反射電子像(組成差像)を用いて、Al多領域を有する結晶粒子の面積比を画像解析装置により求め、これらを平均してAl多領域を有する結晶粒子の面積比とした。   Similarly, the diameters of 10 Al multi-regions were obtained and averaged to obtain the average diameter of the Al multi-regions. In addition, using a scanning electron microscope analysis reflection electron image (composition difference image) of arbitrary five cross sections of the sintered body, the area ratio of crystal grains having multiple Al regions is obtained by an image analyzer, and these are averaged to obtain Al. The area ratio of crystal grains having multiple regions was used.

また、各試料について、熱拡散率と比熱をレーザーフラッシュ法(試料の両面にAu蒸着し、両面を黒化処理して25℃でルビーレーザーパルス光を均一に照射)にて測定し、測定した熱拡散率と比熱とアルキメデス法で求めた密度を掛け合わせて熱伝導率を算出した。また、破壊靭性はJIS規格R1607−1995、R1610−1991により求め、三点曲げ強度はJIS1601−1995により求めた。これらの結果を表2に記載した。
In addition, for each sample, the thermal diffusivity and specific heat were measured and measured by a laser flash method (Au deposition was performed on both sides of the sample, both sides were blackened, and the ruby laser pulse light was uniformly irradiated at 25 ° C.). The thermal conductivity was calculated by multiplying the thermal diffusivity, the specific heat, and the density determined by the Archimedes method. Fracture toughness was determined according to JIS standards R1607-1995 and R1610-1991, and three-point bending strength was determined according to JIS1601-1995. These results are shown in Table 2.

この表1、2によれば、本発明の範囲内にある試料No.2、3、5〜14、16〜24、27〜32は熱伝導率が95[W/m・K]以上、三点曲げ強度が790MPa以上、靭性が7.3MPa・m1/2以上の優れた特性を有していることがわかる。一方、範囲外にあるもの、具体的に例えばAl量が少なく、β−サイアロンの添加量が少なく、Al多領域を有する結晶体の面積比が低い試料No.1は三点曲げ強度と靭性が低く、Al量が多い試料No.26、あるいはAl量が多く、β−サイアロンの添加量が多い試料No.25は熱伝導率が低くなった。また、β−サイアロンのBET比表面積が大きく、Al多領域の平均径が2μmよりも小さい試料No.4、15、33は熱伝導率が低くなった。 According to Tables 1 and 2, sample Nos. Within the scope of the present invention. 2, 3, 5-14, 16-24, 27-32 have a thermal conductivity of 95 [W / m · K] or more, a three-point bending strength of 790 MPa or more, and a toughness of 7.3 MPa · m 1/2 or more. It turns out that it has the outstanding characteristic. On the other hand, samples out of the range, specifically, for example, sample No. 1 with a small amount of Al, a small amount of β-sialon, and a low area ratio of a crystal having an Al multiple region. Sample No. 1 has a low three-point bending strength and toughness and a large amount of Al. 26, or sample No. 2 with a large amount of Al and a large amount of β-sialon added. No. 25 had low thermal conductivity. In addition, the sample No. 1 in which β-sialon has a large BET specific surface area and the Al multi-region average diameter is smaller than 2 μm. 4, 15, and 33 had low thermal conductivity.

焼結体の走査電子顕微鏡分析反射電子像(組成差像)写真である。It is a scanning electron microscope analysis reflection electron image (composition difference image) photograph of a sintered compact. 焼結体の模式図である。It is a schematic diagram of a sintered compact.

符号の説明Explanation of symbols

1:結晶粒子
3:粒界相
5:Al多領域
1: Crystal grain 3: Grain boundary phase 5: Al multiple region

Claims (4)

β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子と粒界相とからなる窒化珪素質焼結体であって、焼結体全量中に対するAlの含有量が0.053〜0.422質量%であり、前記結晶粒子内に、該結晶粒子の他の領域よりもAl存在量が多いAl多領域を有、該Al多領域は、平均径が2μm以上5μm以下であり、前記他の領域に囲まれていることを特徴とする窒化珪素質焼結体。 A silicon nitride sintered body composed of at least one kind of crystal grains of β-Si 3 N 4 and β-sialon and a grain boundary phase, wherein the Al content in the total amount of the sintered body is 0.053 to 0.053. a 0.422 wt%, the crystal grains, have a Al multi region is large Al abundance than other regions of the crystal grains, the Al multi-region, an average diameter be 2μm or more 5μm or less the other area surrounded by optionally silicon nitride sintered material according to claim Rukoto. 前記Al多領域を有する結晶粒子が、焼結体の任意断面において面積比で7〜25%存在することを特徴とする請求項1記載の窒化珪素質焼結体。 2. The silicon nitride based sintered body according to claim 1, wherein the crystal grains having the Al multi-region are present in an area ratio of 7 to 25% in an arbitrary cross section of the sintered body. 請求項1または2記載の窒化珪素質焼結体に導体層を形成してなることを特徴とする回路基板。 A circuit board comprising a conductive layer formed on the silicon nitride sintered body according to claim 1. パワー半導体を請求項記載の回路基板に実装してなることを特徴とするパワー半導体モジュール。 A power semiconductor module comprising a power semiconductor mounted on the circuit board according to claim 3 .
JP2007332222A 2007-12-25 2007-12-25 Silicon nitride sintered body, circuit board, and power semiconductor module Active JP5031541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332222A JP5031541B2 (en) 2007-12-25 2007-12-25 Silicon nitride sintered body, circuit board, and power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332222A JP5031541B2 (en) 2007-12-25 2007-12-25 Silicon nitride sintered body, circuit board, and power semiconductor module

Publications (2)

Publication Number Publication Date
JP2009155126A JP2009155126A (en) 2009-07-16
JP5031541B2 true JP5031541B2 (en) 2012-09-19

Family

ID=40959541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332222A Active JP5031541B2 (en) 2007-12-25 2007-12-25 Silicon nitride sintered body, circuit board, and power semiconductor module

Country Status (1)

Country Link
JP (1) JP5031541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171502A1 (en) * 2015-04-24 2016-10-27 Taegutec Ltd. Sialon composite and cutting tools made thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142889B2 (en) * 2008-08-27 2013-02-13 京セラ株式会社 Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module
JP2014040355A (en) * 2012-08-23 2014-03-06 Ntn Corp Method for manufacturing a sialon sintered body and sialon sintered body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101777A (en) * 1993-10-01 1995-04-18 Natl Inst For Res In Inorg Mater Silicon nitride sintered compact and its production
JP3501317B2 (en) * 1995-07-21 2004-03-02 日産自動車株式会社 High thermal conductivity silicon nitride sintered body and insulating substrate made of silicon nitride sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171502A1 (en) * 2015-04-24 2016-10-27 Taegutec Ltd. Sialon composite and cutting tools made thereof
US10221102B2 (en) 2015-04-24 2019-03-05 Taegutec, Ltd. Sialon composite and cutting tools made thereof

Also Published As

Publication number Publication date
JP2009155126A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
EP2377839B1 (en) Silicon nitride substrate manufacturing method
JP4997431B2 (en) Method for producing high thermal conductivity silicon nitride substrate
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
US5508240A (en) Aluminum nitride sintered body and method for manufacturing the same
JPWO2018221504A1 (en) Aluminum nitride sintered body and semiconductor holding device
CN107365155B (en) Low-temperature sintering aid system of aluminum nitride ceramic
JP5031541B2 (en) Silicon nitride sintered body, circuit board, and power semiconductor module
JP4571728B2 (en) Silicon nitride sintered body and manufacturing method thereof
WO2020059035A1 (en) Aluminum nitride sintered compact and method for producing same
JP6284609B2 (en) Aluminum nitride sintered body
JP5142889B2 (en) Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP4773744B2 (en) Method for producing aluminum nitride sintered body
WO2021117829A1 (en) Plate-like silicon nitride-based sintered body and method for producing same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP5265859B2 (en) Aluminum nitride sintered body
JPH06191953A (en) Aluminum nitride sintered compact
JP2016098159A (en) Aluminum nitride sintered body and method for manufacturing the same
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2002293641A (en) Silicon nitride-based sintered compact
KR102299212B1 (en) High Strength Aluminum Nitride Sintered Body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3