JP5031192B2 - Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery Download PDF

Info

Publication number
JP5031192B2
JP5031192B2 JP2005058537A JP2005058537A JP5031192B2 JP 5031192 B2 JP5031192 B2 JP 5031192B2 JP 2005058537 A JP2005058537 A JP 2005058537A JP 2005058537 A JP2005058537 A JP 2005058537A JP 5031192 B2 JP5031192 B2 JP 5031192B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
active material
electrode active
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005058537A
Other languages
Japanese (ja)
Other versions
JP2005317511A (en
Inventor
重人 岡田
準一 山木
敏康 木藪
堅次 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005058537A priority Critical patent/JP5031192B2/en
Publication of JP2005317511A publication Critical patent/JP2005317511A/en
Application granted granted Critical
Publication of JP5031192B2 publication Critical patent/JP5031192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池用の正極活物質に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery.

ポータブル電子機器用の二次電池として、非水電解質リチウム二次電池が実用化されており、広く用いられている。しかし、その正極活物質としては、資源としての埋蔵量が少なく高価なCoの化合物であるLiCoO2が用いられており、資源として豊富な元素を主に含有する化合物からなる非水電解質二次電池用正極活物質が求められている。 As secondary batteries for portable electronic devices, non-aqueous electrolyte lithium secondary batteries have been put into practical use and are widely used. However, as the positive electrode active material, LiCoO 2 , which is an expensive Co compound with a small reserve as a resource, is used, and a non-aqueous electrolyte secondary battery comprising a compound mainly containing abundant elements as a resource There is a need for positive electrode active materials.

そこで、資源として豊富な元素である鉄とナトリウムとの複合酸化物であるNaFeO2が非水電解質二次電池用の正極活物質として提案され、このものは、Na22とFe34を混合して空気中において600〜700℃で焼成することにより得られることも知られている(例えば、非特許文献1参照。)。 Therefore, NaFeO 2 , which is a complex oxide of iron and sodium, which is an abundant element as a resource, has been proposed as a positive electrode active material for non-aqueous electrolyte secondary batteries, which is Na 2 O 2 and Fe 3 O 4. It is also known that it can be obtained by mixing and baking in air at 600 to 700 ° C. (see, for example, Non-Patent Document 1).

マテリアル・リサーチ・ブレティン(Marterial Research Bulletin)、(米国)、ペルガモン プレス(Pergamon Press)、1994年、Vol.29、No.6、p.659−666Material Research Bulletin (USA), Pergamon Press, 1994, Vol. 29, no. 6, p. 659-666

上記のNaFeO2は、X線回折における面間隔2.20Åのピーク強度を、面間隔5.36Åのピーク強度で除した値が2.3であり、このものからなる正極活物質を用いてなる非水電解質二次電池は、放電電圧が放電とともに急速に低下するという問題点があった(例えば、非特許文献1参照。)。 The above-mentioned NaFeO 2 has a value obtained by dividing the peak intensity of 2.20 面 plane spacing in X-ray diffraction by the peak intensity of 5.36 面 plane spacing, using a positive electrode active material made of this. The non-aqueous electrolyte secondary battery has a problem that the discharge voltage decreases rapidly with discharge (for example, see Non-Patent Document 1).

そこで本発明の目的は、放電電圧が放電とともに急速に低下することのない非水電解質二次電池を与え、主に鉄とナトリウムとの複合酸化物からなる非水電解質二次電池用正極活物質およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a nonaqueous electrolyte secondary battery in which the discharge voltage does not rapidly decrease with discharge, and is mainly a positive electrode active material for a nonaqueous electrolyte secondary battery composed of a complex oxide of iron and sodium. And providing a manufacturing method thereof.

本発明者らは、主に鉄とナトリウムとを含有する複合酸化物からなる正極活物質について鋭意検討した結果、六方晶の結晶構造を有し、X線回折分析において特定の二つの回折ピークの強度比が一定の範囲である前記複合酸化物を正極活物質として用いることにより、放電電圧が放電とともに急速に低下することのない非水電解質二次電池が得られることを見出した。さらに、本発明者らは、そのような正極活物質が、主にナトリウム化合物と鉄化合物とを含有する金属化合物混合物を加熱するにあたり、一定温度未満での温度上昇中において特定の雰囲気中で加熱することにより得られることを見出し、本発明を完成するに到った。   As a result of intensive studies on a positive electrode active material mainly composed of a composite oxide containing iron and sodium, the present inventors have a hexagonal crystal structure, and have two specific diffraction peaks in X-ray diffraction analysis. It has been found that a nonaqueous electrolyte secondary battery in which the discharge voltage does not rapidly decrease with discharge can be obtained by using the composite oxide having a certain strength ratio as a positive electrode active material. Furthermore, the present inventors have heated such a positive electrode active material in a specific atmosphere during a temperature rise below a certain temperature when heating a metal compound mixture mainly containing a sodium compound and an iron compound. As a result, the inventors have found out that it can be obtained and have completed the present invention.

すなわち本発明は、主に鉄とナトリウムとを含有する複合酸化物であって、六方晶の結晶構造を有し、かつ該複合酸化物のX線回折分析において、面間隔2.20Åのピークの強度を面間隔5.36Åのピークの強度で除した値が2以下である複合酸化物からなることを特徴とする非水電解質二次電池用正極活物質を提供する。また本発明は、ナトリウム化合物と鉄化合物とを含有する金属化合物混合物を、400℃以上900℃以下の温度範囲で加熱するにあたり、温度上昇中の100℃未満の温度範囲においては雰囲気を不活性雰囲気として加熱することを特徴とする非水電解質二次電池用正極活物質の製造方法を提供する。さらに本発明は、前記記載の非水電解質二次電池用正極活物質を含んでなることを特徴とする非水電解質ナトリウム二次電池を提供する。   That is, the present invention is a composite oxide mainly containing iron and sodium, has a hexagonal crystal structure, and has a peak with an interplanar spacing of 2.20 mm in X-ray diffraction analysis of the composite oxide. Provided is a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that it comprises a composite oxide having a value obtained by dividing the strength by the peak strength with an interplanar spacing of 5.36 Å. Further, in the present invention, when a metal compound mixture containing a sodium compound and an iron compound is heated in a temperature range of 400 ° C. or more and 900 ° C. or less, the atmosphere is inert in the temperature range of less than 100 ° C. during the temperature increase. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery is provided. Furthermore, the present invention provides a nonaqueous electrolyte sodium secondary battery comprising the positive electrode active material for a nonaqueous electrolyte secondary battery described above.

本発明の正極活物質を用いれば、放電電圧が放電とともに急速に低下することがなく、さらに放電平坦部の放電電圧が3V以上と高く、二次電池としての特性が優れた非水電解質二次電池を製造することができ、そして、本発明の製造方法によれば、本発明の正極活物質を製造することができるので、本発明は工業的に極めて有用である。   When the positive electrode active material of the present invention is used, the discharge voltage does not rapidly decrease with discharge, the discharge voltage of the flat discharge portion is as high as 3 V or more, and the nonaqueous electrolyte secondary battery has excellent characteristics as a secondary battery. Since the battery can be manufactured and the positive electrode active material of the present invention can be manufactured according to the manufacturing method of the present invention, the present invention is extremely useful industrially.

本発明の非水電解質二次電池用正極活物質は、主にナトリウムと鉄とを含有する複合酸化物からなる。
この複合酸化物としては、具体的には、式(1)
NaFe1-xx2 (1)
(ただし、Mは1種以上の3価金属である。)で示される化合物が挙げられる。
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is composed of a composite oxide mainly containing sodium and iron.
As this complex oxide, specifically, the formula (1)
NaFe 1-x M x O 2 (1)
(Wherein M is one or more trivalent metals).

ここで、Mとしては、Al、Ga、In、Sc、Ti、V、Cr、Mn、Co、Ni、Y、Nb、Mo、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群より選ばれる1種以上が挙げられ、これらのうち、放電電圧が高くなる傾向があるので、Al、Ga、V、Mn、Co、Ni、YおよびLaからなる群より選ばれる1種以上が好ましく、資源的に埋蔵量が豊富であるAl、MnおよびNiからなる群より選ばれる1種以上が特に好ましい。xの値は六方晶の結晶構造が維持される0≦x<0.5の範囲で選ぶことができるが、放電容量が大きくなる傾向があるので、0≦x≦0.1の範囲が好ましく、Mが含まれていないx=0の場合が特に好ましい。なお、Feの係数の1−xが0.5より大きいので、式(1)で示される化合物は、主に鉄とナトリウムとを含有する複合酸化物である。   Here, as M, Al, Ga, In, Sc, Ti, V, Cr, Mn, Co, Ni, Y, Nb, Mo, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb, and Lu. Among these, since the discharge voltage tends to increase, Al, Ga, V, Mn, Co, Ni, Y And at least one selected from the group consisting of La and La, and at least one selected from the group consisting of Al, Mn and Ni, which are rich in resources, are particularly preferable. The value of x can be selected in the range of 0 ≦ x <0.5 where the hexagonal crystal structure is maintained. However, since the discharge capacity tends to increase, the range of 0 ≦ x ≦ 0.1 is preferable. , M in which x = 0 is particularly preferable. In addition, since 1-x of the coefficient of Fe is larger than 0.5, the compound represented by the formula (1) is a complex oxide mainly containing iron and sodium.

そして、本発明において、この複合酸化物は、六方晶の結晶構造を有し、かつ該複合酸化物のX線回折分析において、面間隔2.20Åのピークの強度を面間隔5.36Åのピークの強度で除した値が2以下である。従来の複合酸化物NaFeO2は、面間隔2.20Åのピークの強度を面間隔5.36Åのピークの強度で除した値は2より大きく、例えば、特許文献1に記載されたNaFeO2は、特許文献1のX線回折チャートから読み取れるように、面間隔2.20Åのピークの強度を面間隔5.36Åのピークの強度で除した値は2.3であった。 In the present invention, the composite oxide has a hexagonal crystal structure, and in the X-ray diffraction analysis of the composite oxide, the intensity of the peak with a plane spacing of 2.20 mm is the peak with a plane spacing of 5.36 mm. The value divided by the intensity is 2 or less. In the conventional composite oxide NaFeO 2 , the value obtained by dividing the intensity of the peak with an interplanar spacing of 2.20 で by the intensity of the peak with an interplanar spacing of 5.36 大 き く is greater than 2, for example, NaFeO 2 described in Patent Document 1 is As can be read from the X-ray diffraction chart of Patent Document 1, the value obtained by dividing the intensity of the peak with a plane spacing of 2.20 で by the intensity of the peak with a spacing of 5.36 Å was 2.3.

これらの面間隔2.20Åと面間隔5.36Åの回折ピークは、それぞれα−NaFeO2型構造の(104)面および(003)面のからの回折ピークに相当する。そして、この結晶格子の面間隔には、複合酸化物に含まれるNaとFe以外の金属元素により、および製造方法等により、若干の変動があり、2.20Åのピークは±0.02Åの幅で変動があるので面間隔は2.20±0.02Åであり、面間隔5.36Åのピークは±0.04Åの幅で変動があるので、面間隔は5.36±0.04Åである。この、2.20±0.02Åのピークの強度を面間隔5.36±0.04Åのピークの強度で除した値rが2以下となる場合に、理由は明らかではないが、この主に鉄とナトリウムとを含有する複合酸化物は、放電電圧が放電とともに急速に低下することのない非水電解質二次電池を与える非水電解質二次電池用正極活物質となる。rは1.7以下が好ましく1.5以下がさらに好ましい。 These diffraction peaks with a plane spacing of 2.20 mm and a plane spacing of 5.36 mm correspond to diffraction peaks from the (104) plane and (003) plane of the α-NaFeO 2 type structure, respectively. The interplanar spacing of this crystal lattice varies slightly depending on the metal elements other than Na and Fe contained in the composite oxide and the manufacturing method, and the 2.20Å peak has a width of ± 0.02Å. Since there is a fluctuation, the plane spacing is 2.20 ± 0.02 mm, and since the peak of the plane spacing 5.36 mm varies with a width of ± 0.04 mm, the plane spacing is 5.36 ± 0.04 mm. . When the value r obtained by dividing the intensity of the peak of 2.20 ± 0.02Å by the intensity of the peak having an interplanar spacing of 5.36 ± 0.04Å is 2 or less, the reason is not clear. The composite oxide containing iron and sodium becomes a positive electrode active material for a non-aqueous electrolyte secondary battery that gives a non-aqueous electrolyte secondary battery in which the discharge voltage does not rapidly decrease with discharge. r is preferably 1.7 or less, and more preferably 1.5 or less.

次に、本発明の正極活物質の製造方法について説明する。
本発明の正極活物質は、主にナトリウム化合物と鉄化合物とを含有する金属化合物混合物を、400℃以上900℃以下の温度範囲で加熱するにあたり、温度上昇中の100℃未満の温度範囲においては雰囲気を不活性雰囲気として加熱することにより製造することができる。
Next, the manufacturing method of the positive electrode active material of this invention is demonstrated.
When the positive electrode active material of the present invention heats a metal compound mixture mainly containing a sodium compound and an iron compound in a temperature range of 400 ° C. or more and 900 ° C. or less, in a temperature range of less than 100 ° C. during temperature rise. It can be manufactured by heating the atmosphere as an inert atmosphere.

ナトリウム化合物、鉄化合物、式(1)のMの化合物としては、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩、ハロゲン化物等を用いることができ、ナトリウム化合物としてはNa22が特に好ましく、鉄化合物としてはFe34が特に好ましい。 Sodium compounds, iron compounds, M compounds of formula (1) can be used oxides, hydroxides, carbonates, nitrates, sulfates, acetates, oxalates, halides, etc., sodium compounds Is particularly preferably Na 2 O 2 and the iron compound is particularly preferably Fe 3 O 4 .

主にナトリウム化合物と鉄化合物とを含有する金属化合物混合物は、金属化合物を所定のモル比となるように秤量し、乾式または湿式混合により混合して得ることができる。乾式混合が簡便であり好ましく、工業的に通常用いられる乳鉢、回転撹拌機、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等の装置により混合を行うことができる。   The metal compound mixture mainly containing a sodium compound and an iron compound can be obtained by weighing the metal compounds so as to have a predetermined molar ratio and mixing them by dry or wet mixing. Dry mixing is simple and preferable, and the mixing can be performed by an apparatus such as a mortar, a rotary stirrer, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, or a ball mill, which are usually used industrially.

得られた金属化合物混合物を加熱することにより、本発明の正極活物質を得ることができるが、この加熱において、温度上昇中の100℃未満の温度では不活性雰囲気中で加熱する。不活性雰囲気としては、具体的には、アルゴン、ヘリウム、ネオン、窒素、二酸化炭素等が挙げられ、アルゴンと窒素が好ましい。この不活性雰囲気中には、1体積%程度までの酸素や水素は含有されてもよいが、水蒸気が多く混入すると、得られる正極活物質が、放電電圧が放電とともに急速に低下することのない非水電解質二次電池を与える正極活物質とはならないことがあり、本発明の製造方法における不活性雰囲気の露点は0℃以下が好ましい。なお、加熱温度に達した後、温度下降中の100℃未満においては、不活性雰囲気を用いなくてもよい。   By heating the obtained metal compound mixture, the positive electrode active material of the present invention can be obtained. In this heating, heating is performed in an inert atmosphere at a temperature of less than 100 ° C. during the temperature increase. Specific examples of the inert atmosphere include argon, helium, neon, nitrogen, carbon dioxide and the like, and argon and nitrogen are preferable. In this inert atmosphere, oxygen and hydrogen up to about 1% by volume may be contained, but when a large amount of water vapor is mixed, the obtained positive electrode active material does not rapidly decrease with discharge. It may not be a positive electrode active material that gives a nonaqueous electrolyte secondary battery, and the dew point of the inert atmosphere in the production method of the present invention is preferably 0 ° C. or less. After reaching the heating temperature, the inert atmosphere may not be used at a temperature lower than 100 ° C. during the temperature decrease.

100℃以上の温度においては、雰囲気は特に限定されず、上記不活性雰囲気;酸素を1体積%以上含有した不活性雰囲気や酸素等の酸化性雰囲気;水素および/または一酸化炭素を含有した不活性雰囲気、水素、一酸化炭素等の還元雰囲気のいずれでもよく、また、ハロゲンが含有されてもよい。好ましくは酸化性雰囲気であり、空気および酸素がより好ましい。   At a temperature of 100 ° C. or higher, the atmosphere is not particularly limited, and the above inert atmosphere; an inert atmosphere containing 1% by volume of oxygen or an oxidizing atmosphere such as oxygen; an inert atmosphere containing hydrogen and / or carbon monoxide. The atmosphere may be any of an active atmosphere, a reducing atmosphere such as hydrogen and carbon monoxide, and may contain a halogen. An oxidizing atmosphere is preferable, and air and oxygen are more preferable.

加熱温度は400℃以上900℃以下の温度範囲が好ましく、より好ましくは600℃以上760℃以下の温度範囲であり、その温度範囲における保持時間は、通常は2時間から30時間である。なお、混合物は、加熱の前にペレット状に圧縮成形してもよい。また、加熱温度に達するまでの温度上昇速度は、特に限定されるものではないが、通常、600℃/時間以下である。また加熱後、室温に達するまでの温度下降速度は特に限定されるものではないが、通常、600℃/時間以下である。温度下降速度が小さいと、放電容量が大きくなることもある。   The heating temperature is preferably in the temperature range of 400 ° C. or more and 900 ° C. or less, more preferably in the temperature range of 600 ° C. or more and 760 ° C. or less. The holding time in the temperature range is usually 2 hours to 30 hours. The mixture may be compression molded into a pellet before heating. Further, the rate of temperature rise until reaching the heating temperature is not particularly limited, but is usually 600 ° C./hour or less. Further, the rate of temperature decrease until it reaches room temperature after heating is not particularly limited, but is usually 600 ° C./hour or less. If the rate of temperature decrease is low, the discharge capacity may increase.

加熱に用いる炉は、雰囲気置換が可能であることが必要である。真空置換(炉内の雰囲気を真空ポンプを用いて排気した後、所定のガスを炉内に入れる操作のこと。)ができるものが好ましいが、例えば管状炉のように、雰囲気ガスを効率的に流通させられる形式のものであってもよい。   The furnace used for heating needs to be able to replace the atmosphere. It is preferable to be able to perform vacuum substitution (the operation of putting a predetermined gas into the furnace after exhausting the atmosphere in the furnace using a vacuum pump). It may be in a form that can be distributed.

また、加熱することにより得られる正極活物質を、振動ミル、ジェットミル、乾式ボールミル等の工業的に通常行われる公知の方法によって、所定の粒度に調整することができる。 Moreover, the positive electrode active material obtained by heating can be adjusted to a predetermined particle size by a publicly known method such as a vibration mill, a jet mill, or a dry ball mill.

次に、本発明の正極活物質を有してなる非水電解質ナトリウム二次電池について説明する。   Next, a nonaqueous electrolyte sodium secondary battery having the positive electrode active material of the present invention will be described.

ここで、従来のNaFeO2からなる正極活物質を正極に用い、ナトリウムイオンを主な電荷担体とした非水電解質二次電池は、二次電池としての特性が十分ではないことが知られている。そのため、従来のNaFeO2からなる正極活物質を正極に用いた非水電解質二次電池としては、過塩素酸リチウムを含有する非水電解質を用い、金属リチウムからなる負極を用いてなり、電荷担体がナトリウムイオンではなく主にリチウムイオンである非水電解質二次電池が提案されている(例えば、非特許文献1参照)。しかし、本発明者らは、本発明者が見出した本発明の正極活物質を用いて非水電解質ナトリウム二次電池を製造すると、驚くべきことに、その非水電解質ナトリウム二次電池は、放電電圧が放電とともに急速に低下することがなく、放電平坦部の放電電圧が3V以上と高く、高い特性を示す非水電解質二次電池となるのである。 Here, it is known that a non-aqueous electrolyte secondary battery using a conventional positive electrode active material made of NaFeO 2 as a positive electrode and using sodium ions as a main charge carrier does not have sufficient characteristics as a secondary battery. . Therefore, as a non-aqueous electrolyte secondary battery using a positive electrode active material made of conventional NaFeO 2 as a positive electrode, a non-aqueous electrolyte containing lithium perchlorate is used, and a negative electrode made of metallic lithium is used. A non-aqueous electrolyte secondary battery in which is not sodium ions but mainly lithium ions has been proposed (for example, see Non-Patent Document 1). However, when the present inventors manufactured a non-aqueous electrolyte sodium secondary battery using the positive electrode active material of the present invention found by the present inventors, surprisingly, the non-aqueous electrolyte sodium secondary battery was discharged. The voltage does not drop rapidly with the discharge, and the discharge voltage of the flat discharge portion is as high as 3 V or higher, resulting in a nonaqueous electrolyte secondary battery exhibiting high characteristics.

まず、本発明の正極活物質を有してなる本発明の非水電解質ナトリウム二次電池の正極は、本発明の正極活物質の他に、さらに導電材としての炭素質材料、バインダーなどを含む正極合剤を正極集電体に担持させて製造することができる。該炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどが挙げられる。導電材として、それぞれ単独で用いてもよいし、例えば人造黒鉛とカーボンブラックとを混合して用いてもよい。   First, the positive electrode of the nonaqueous electrolyte sodium secondary battery of the present invention having the positive electrode active material of the present invention further includes a carbonaceous material, a binder, etc. as a conductive material in addition to the positive electrode active material of the present invention. It can be produced by supporting the positive electrode mixture on the positive electrode current collector. Examples of the carbonaceous material include natural graphite, artificial graphite, cokes, and carbon black. As the conductive material, each may be used alone, for example, artificial graphite and carbon black may be mixed and used.

ここで、バインダーとしては通常は熱可塑性樹脂が用いられ、具体的には、ポリフッ化ビニリデン(以下、PVDFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などが挙げられる。これらをそれぞれ単独で用いてもよいし、二種以上を混合して用いてもよい。   Here, a thermoplastic resin is usually used as the binder, and specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVDF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), and four. Examples thereof include a fluorinated ethylene / hexafluoropropylene / vinylidene fluoride copolymer, a hexafluoropropylene / vinylidene fluoride copolymer, and a tetrafluoroethylene / perfluorovinyl ether copolymer. These may be used alone or in combination of two or more.

また、正極集電体としては、Al、Ni、ステンレスなどを用いることができるが、薄膜に加工しやすく、安価であるという点でAlが好ましい。正極集電体に正極合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し、正極集電体上に塗布し乾燥した後プレスするなどして固着する方法が挙げられる。また、必要に応じ、本発明の非水二次電池用活物質以外の活物質を正極に混合してもよい。   As the positive electrode current collector, Al, Ni, stainless steel, or the like can be used, but Al is preferable in that it is easily processed into a thin film and is inexpensive. As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of pressure molding, or a method of fixing by pasting into a paste using a solvent, etc., applying to the positive electrode current collector, drying, and pressing. Can be mentioned. Moreover, you may mix active materials other than the active material for non-aqueous secondary batteries of this invention with a positive electrode as needed.

次に、本発明の非水電解質ナトリウム二次電池の負極としては、例えばナトリウム金属、ナトリウム合金またはナトリウムイオンをドープ・脱ドープ可能な材料などを用いることができる。ナトリウムイオンをドープ・脱ドープ可能な材料としては、炭素質材料、正極よりも低い電位でナトリウムイオンのドープ・脱ドープが行える酸化物、硫化物等のカルコゲン化合物、ホウ酸塩等が挙げられる。   Next, as the negative electrode of the non-aqueous electrolyte sodium secondary battery of the present invention, for example, sodium metal, a sodium alloy, or a material that can be doped / undoped with sodium ions can be used. Examples of materials that can be doped / undoped with sodium ions include carbonaceous materials, oxides that can be doped / undoped with sodium ions at a potential lower than that of the positive electrode, chalcogen compounds such as sulfides, borates, and the like.

ここで、必要に応じてバインダーとして熱可塑性樹脂を負極に加えることができる。熱可塑性樹脂としては、PVDF、ポリエチレン、ポリプロピレンなどが挙げられる。   Here, if necessary, a thermoplastic resin can be added to the negative electrode as a binder. Examples of the thermoplastic resin include PVDF, polyethylene, and polypropylene.

また、負極集電体としては、Cu、Ni、ステンレスなどを用いることができるが、特にナトリウムと合金を作り難く、かつ薄膜に加工しやすいという点でCuが好ましい。該負極集電体に負極活物質を含む合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し、負極集電体上に塗布し、乾燥した後プレスするなどして固着させる方法が挙げられる。   As the negative electrode current collector, Cu, Ni, stainless steel or the like can be used, and Cu is particularly preferable because it is difficult to make an alloy with sodium and it is easy to process into a thin film. As a method of supporting the mixture containing the negative electrode active material on the negative electrode current collector, a method of pressure molding, or pasting using a solvent or the like, coating on the negative electrode current collector, drying and pressing, etc. And fixing it.

次に、本発明の非水電解質ナトリウム二次電池で用いるセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、ナイロン、芳香族アラミドなどの材質からなり多孔質膜、不織布、織布などの形態を有する材料を用いることができる。該セパレータの厚みは、通常は10〜200μm程度である。   Next, the separator used in the nonaqueous electrolyte sodium secondary battery of the present invention is made of a material such as polyolefin resin such as polyethylene or polypropylene, fluororesin, nylon, aromatic aramid, etc. A material having such a form can be used. The thickness of the separator is usually about 10 to 200 μm.

次に、本発明の非水電解質ナトリウム二次電池で用いる非水電解質に用いる溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトン、エチレンサルファイト、プロピレンサルファイト、ジメチルサルファイト、ジエチルサルファイトなどの含硫黄化合物、または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができるが、通常はこれらのうちの二種以上を混合して用いる。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合溶媒がさらに好ましい。   Next, as a solvent used for the nonaqueous electrolyte used in the nonaqueous electrolyte sodium secondary battery of the present invention, for example, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl- Carbonates such as 1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2, Ethers such as 3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate, γ-butyrolactone; acetonitrile, butyronitrile, etc. Toryls; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfolane, dimethyl sulfoxide, 1,3-propane sultone, ethylene sulfite, Sulfur-containing compounds such as propylene sulfite, dimethyl sulfite and diethyl sulfite, or those obtained by further introducing a fluorine substituent into the above organic solvent can be used, but usually two or more of these are mixed. Use. Among these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate or cyclic carbonate and ether is more preferable.

ここで、環状カーボネートと非環状カーボネートの混合溶媒としては、動作温度範囲が広く、負荷特性に優れるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。   Here, the mixed solvent of cyclic carbonate and acyclic carbonate is preferably a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate in that the operating temperature range is wide and the load characteristics are excellent.

なお、非水電解質として固体電解質を用いてもよく、固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などからなる電解質を用いることができる。また、高分子に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。また、無機化合物からなる電解質を用いると、安全性を高めることができることがある。   A solid electrolyte may be used as the non-aqueous electrolyte. Examples of the solid electrolyte include an electrolyte made of a polyethylene oxide polymer compound, a polymer compound containing at least one polyorganosiloxane chain or polyoxyalkylene chain, and the like. Can be used. Moreover, what is called a gel type which hold | maintained the nonaqueous electrolyte solution in the polymer | macromolecule can also be used. In addition, when an electrolyte made of an inorganic compound is used, safety may be improved.

次に、本発明の非水二次電池の形状は特に限定されず、ペーパー型、コイン型、円筒型、角型などのいずれであってもよい。
また、外装として負極または正極端子を兼ねる金属製ハードケースを用いずに、アルミニウムを含む積層シート等からなる袋状パッケージを用いてもよい。
Next, the shape of the non-aqueous secondary battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, and a square type.
Moreover, you may use the bag-shaped package which consists of a laminated sheet etc. which contain aluminum, without using the metal hard case which serves as a negative electrode or a positive electrode terminal as an exterior.

このようにして、本発明の正極活物質を用いて製造された非水電解質ナトリウム二次電池は、従来の二次電池としての特性の良くない非水電解質ナトリウム二次電池とは異なり、放電電圧が放電とともに急速に低下することのない非水電解質二次電池となる。   In this way, the non-aqueous electrolyte sodium secondary battery manufactured using the positive electrode active material of the present invention is different from the non-aqueous electrolyte sodium secondary battery having poor characteristics as a conventional secondary battery. Becomes a non-aqueous electrolyte secondary battery that does not rapidly decrease with discharge.

また、本発明の正極活物質を用いて製造された非水電解質ナトリウム二次電池は、放電平坦部の放電電圧も高い。放電平坦部は、放電曲線において、放電開始後に放電初期の電圧低下を過ぎ、電圧が放電の進行とともに大きくは変化しない部分である。ここで、放電平坦部の放電電圧は、正極の面積を基準として0.1mA/cm2以下の電流密度で放電した際の電圧(電流密度が大き過ぎると低く測定されることがある。)であり、例えば、次のような条件で測定することができる。
電解液:プロピレンカーボネート(以下、PCということがある。)にNaClO4を1モル/リットルとなるように溶かしたもの(以下、1M NaClO4/PCと表すことがある。)
負極:金属ナトリウム
放電電流密度:0.1mA/cm2
この放電平坦部の放電電圧が、本発明の正極活物質を用いて製造された非水電解質ナトリウム二次電池においては、3.0V以上となる。
Moreover, the nonaqueous electrolyte sodium secondary battery manufactured using the positive electrode active material of the present invention also has a high discharge voltage at the discharge flat portion. The discharge flat portion is a portion in the discharge curve that has passed a voltage drop in the initial stage of discharge after the start of discharge and the voltage does not change greatly as the discharge progresses. Here, the discharge voltage of the flat discharge portion is a voltage when discharged at a current density of 0.1 mA / cm 2 or less with respect to the area of the positive electrode (may be measured as low if the current density is too high). Yes, for example, it can be measured under the following conditions.
Electrolytic solution: a solution obtained by dissolving NaClO 4 in propylene carbonate (hereinafter sometimes referred to as PC) so as to be 1 mol / liter (hereinafter sometimes referred to as 1M NaClO 4 / PC).
Negative electrode: Sodium metal Discharge current density: 0.1 mA / cm 2
In the non-aqueous electrolyte sodium secondary battery manufactured using the positive electrode active material of the present invention, the discharge voltage at the flat discharge portion is 3.0 V or higher.

さらに、本発明の正極活物質を用いて製造された非水電解質ナトリウム二次電池は、高い放電容量と優れたサイクル特性(充放電を繰り返しても放電電圧の低下が少ないこと。)を示す。   Furthermore, the nonaqueous electrolyte sodium secondary battery manufactured using the positive electrode active material of the present invention exhibits a high discharge capacity and excellent cycle characteristics (a decrease in discharge voltage is small even after repeated charge and discharge).

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、特に断らない限り、充放電試験用の電極と試験電池の作製、粉末X線回折測定は下記の方法により実施した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these. In addition, unless otherwise indicated, the production of electrodes for charge / discharge tests and test batteries, and powder X-ray diffraction measurement were performed by the following methods.

(1)充放電試験用の試験電池の作製
正極活物質と導電材のアセチレンブラック(電気化学工業株式会社製、50%プレス品)、バインダーのPTFE(ダイキン工業株式会社製、Polyflon TFE F−201L(商品名))を、活物質:導電材:バインダー=70:25:5(重量比)の組成となるように秤量し、まず活物質と導電材をメノウ乳鉢で十分に混合した後、バインダーを加えて引き続き均一になるように混合したものを均一な厚みの正方形になるように成形し、直径1.5cmのコルクボーラーでくり抜いて円形ペレットとした。該ペレットを正極集電体となるチタンエクスパンドメタルに乗せ、メノウ乳棒で軽く押さえた後、ハンドプレスにて十分に圧着し、正極ペレットを得た。
(1) Preparation of test battery for charge / discharge test Positive electrode active material and conductive material acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., 50% press product), binder PTFE (Daikin Kogyo Co., Ltd., Polyflon TFE F-201L) (Trade name)) was weighed so that the composition of active material: conductive material: binder = 70: 25: 5 (weight ratio) was obtained, and the active material and conductive material were first thoroughly mixed in an agate mortar, Then, the mixture was mixed so as to be uniform, and formed into a square having a uniform thickness, which was cut out with a cork borer having a diameter of 1.5 cm to obtain a circular pellet. The pellet was placed on a titanium expanded metal serving as a positive electrode current collector, lightly pressed with an agate pestle, and then sufficiently pressed by a hand press to obtain a positive electrode pellet.

HSセル(宝泉株式会社製)の下側パーツの窪みに、チタンメッシュを下に向けて正極ペレットを置き、電解液として1M NaClO4/PC(富山薬品工業株式会社製、導電率5.42mS/cm)、2枚のポリプロピレン多孔質膜(セルガード株式会社製、セルガード3501(商品名))の間にグラスフィルター(東洋濾紙株式会社製、GA−100(商品名))をはさんだものをセパレータとし、また金属ナトリウム(和光純薬工業株式会社製)を負極とし、それらを組み合わせて試験電池を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。 In the lower part of the HS cell (manufactured by Hosen Co., Ltd.), a positive electrode pellet is placed with the titanium mesh facing down, and 1M NaClO 4 / PC (manufactured by Toyama Pharmaceutical Co., Ltd., conductivity: 5.42 mS) is used as the electrolyte. / Cm) A separator in which a glass filter (manufactured by Toyo Roshi Kaisha, Ltd., GA-100 (trade name)) is sandwiched between two polypropylene porous membranes (manufactured by Celgard, Celgard 3501 (trade name)) In addition, metallic sodium (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the negative electrode, and these were combined to produce a test battery. The test battery was assembled in a glove box in an argon atmosphere.

(2)粉末X線回折測定
測定は、株式会社リガク製RINT2100HLR/PC型を使用し、以下の条件で行った。
X線 :CuKα
電圧−電流 :50kV−300mA
測定角度範囲:2θ=10〜80°
ステップ :0.01°
スキャンスピード:2°/分
(2) Powder X-ray diffraction measurement The measurement was performed using the RINT2100HLR / PC type manufactured by Rigaku Corporation under the following conditions.
X-ray: CuKα
Voltage-current: 50 kV-300 mA
Measurement angle range: 2θ = 10-80 °
Step: 0.01 °
Scanning speed: 2 ° / min

実施例1
(1)正極活物質の合成
アルゴン雰囲気のグローブボッックス内で、Na22(Fluka Chemie AG製)とFe34(Aldrich Chemical Company,Inc.製)をNaとFeがNaFeO2の化学量論比となるように秤取した後、メノウ乳鉢でよく混合した。得られた混合物をアルミナ製ルツボにいれ、あらかじめ真空ポンプで雰囲気を排気した後にアルゴンを導入して置換したグローブボックスに連結された電気炉に入れて、炉内の雰囲気をアルゴンにして昇温を開始した。100℃に達する直前に電気炉内を空気中に開放し、その後は空気雰囲気で加熱を行い、650℃で12時間保持し、取り出すことで、非水電解質ナトリウム二次電池用正極活物質E1を得た。E1の粉末X線回折測定結果を図1に示した。E1は六方晶の結晶構造を有しており、2.20Åのピーク強度を面間隔5.36Åのピーク強度で除した値は1.5であった。
Example 1
(1) Synthesis of positive electrode active material In a glove box in an argon atmosphere, Na 2 O 2 (manufactured by Fluka Chemie AG) and Fe 3 O 4 (manufactured by Aldrich Chemical Company, Inc.) were mixed with NaFeFe of NaFeO 2 . After weighing to a stoichiometric ratio, the mixture was mixed well in an agate mortar. The obtained mixture is put in an alumina crucible, and after evacuating the atmosphere with a vacuum pump in advance, it is put into an electric furnace connected to a glove box replaced with argon, and the atmosphere in the furnace is increased to argon. Started. Immediately before reaching 100 ° C., the inside of the electric furnace is opened to the air, and thereafter heated in an air atmosphere, held at 650 ° C. for 12 hours, and taken out to obtain the positive electrode active material E1 for a non-aqueous electrolyte sodium secondary battery. Obtained. The powder X-ray diffraction measurement result of E1 is shown in FIG. E1 has a hexagonal crystal structure, and the value obtained by dividing the peak intensity of 2.20Å by the peak intensity of 5.36Å between the planes was 1.5.

(2)ナトリウム二次電池の正極活物質とした場合の充放電性能評価
E1を用いて試験電池を作製し、以下の条件で定電流充放電試験を実施した。
電流密度:0.1mA/cm2
走査電位範囲:1.5V−3.5V
得られた充放電曲線を図2に示した。約0.36Naの充電後、約0.3Naの放電に対応する、3.3V(vs.Na/Na+)の放電平坦部が確認された。
(2) Evaluation of charge / discharge performance when used as positive electrode active material of sodium secondary battery A test battery was prepared using E1, and a constant current charge / discharge test was performed under the following conditions.
Current density: 0.1 mA / cm 2
Scanning potential range: 1.5V-3.5V
The obtained charge / discharge curve is shown in FIG. After charging of about 0.36 Na, a discharge flat portion of 3.3 V (vs. Na / Na + ) corresponding to about 0.3 Na discharge was confirmed.

実施例2
(1)正極活物質の合成
アルゴン雰囲気のグローブボッックス内で、Na22(Fluka Chemie AG製)とFe34(Aldrich Chemical Company,Inc.製)をNaとFeがNaFeO2の化学量論比となるように秤取した後、メノウ乳鉢でよく混合した。得られた混合物をアルミナ製ルツボにいれ、あらかじめ真空ポンプで雰囲気を排気した後にアルゴンを導入して置換したグローブボックスに連結された電気炉に入れて、炉内の雰囲気をアルゴンにして昇温を開始した。100℃に達する直前に電気炉内を空気中に開放し、その後は空気雰囲気で加熱を行い、650℃で12時間保持後、室温まで温度下降速度30℃/時間で降温し、電気炉から取り出すことで、非水電解質ナトリウム二次電池用正極活物質E2を得た。E2は六方晶の結晶構造を有しており、2.20Åのピーク強度を面間隔5.36Åのピーク強度で除した値は1.3であった。
Example 2
(1) Synthesis of positive electrode active material In a glove box in an argon atmosphere, Na 2 O 2 (manufactured by Fluka Chemie AG) and Fe 3 O 4 (manufactured by Aldrich Chemical Company, Inc.) were mixed with NaFeFe of NaFeO 2 . After weighing to a stoichiometric ratio, the mixture was mixed well in an agate mortar. The obtained mixture is put in an alumina crucible, and after evacuating the atmosphere with a vacuum pump in advance, it is put into an electric furnace connected to a glove box replaced with argon, and the atmosphere in the furnace is increased to argon. Started. Just before reaching 100 ° C, the inside of the electric furnace is opened to the air, and then heated in an air atmosphere. After holding at 650 ° C for 12 hours, the temperature is lowered to room temperature at a rate of temperature drop of 30 ° C / hour and taken out from the electric furnace. Thus, a positive electrode active material E2 for a non-aqueous electrolyte sodium secondary battery was obtained. E2 has a hexagonal crystal structure, and the value obtained by dividing the peak intensity of 2.20% by the peak intensity of the interplanar spacing of 5.36% was 1.3.

(2)ナトリウム二次電池の正極活物質とした場合の充放電性能評価
E2を用いて試験電池を作製し、以下の条件で定電流充放電試験を実施した。
電流密度:0.2mA/cm2
走査電位範囲:1.5V−3.6V
約0.44Naの充電後、約0.34Naの放電に対応する、3.2V(vs.Na/Na+)の放電平坦部が確認された。
(2) Evaluation of charge / discharge performance when used as positive electrode active material of sodium secondary battery A test battery was prepared using E2, and a constant current charge / discharge test was performed under the following conditions.
Current density: 0.2 mA / cm 2
Scanning potential range: 1.5V-3.6V
After charging of about 0.44 Na, a discharge flat portion of 3.2 V (vs. Na / Na + ) corresponding to about 0.34 Na discharge was confirmed.

実施例1における粉末X線回折測定結果を示す図。FIG. 3 shows the results of powder X-ray diffraction measurement in Example 1. 実施例1における充放電曲線を示す図。The figure which shows the charging / discharging curve in Example 1. FIG.

Claims (1)

主に酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩およびハロゲン化物からなる群より選ばれる1種以上のナトリウム化合物と酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩およびハロゲン化物からなる群より選ばれる1種以上の鉄化合物とを含有する金属化合物混合物を、400℃以上900℃以下の温度範囲で加熱するにあたり、温度上昇中の100℃未満の温度範囲においては雰囲気を不活性雰囲気として加熱することを特徴とする式NaFe1-xx2(ただし、MはAl、Ga、In、Sc、Ti、V、Cr、Mn、Co、Ni、Y、Nb、Mo、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群より選ばれる1種以上の元素であり、0≦x<0.5である。)で示される複合酸化物からなる非水電解質ナトリウム二次電池用正極活物質の製造方法。 One or more sodium compounds and oxides, hydroxides, carbonates, nitrates selected from the group consisting mainly of oxides, hydroxides, carbonates, nitrates, sulfates, acetates, oxalates and halides When heating a metal compound mixture containing at least one iron compound selected from the group consisting of sulphates, acetates, oxalates and halides in a temperature range of 400 ° C. to 900 ° C. In the temperature range below 100 ° C., the atmosphere is heated as an inert atmosphere, and the formula is NaFe 1-x M x O 2 (where M is Al, Ga, In, Sc, Ti, V, Cr One or more selected from the group consisting of Mn, Co, Ni, Y, Nb, Mo, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu Elemental , 0 ≦ x <0.5.) A cathode active method for producing a material for a non-aqueous electrolyte sodium secondary battery comprising a composite oxide represented by.
JP2005058537A 2004-03-31 2005-03-03 Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery Active JP5031192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058537A JP5031192B2 (en) 2004-03-31 2005-03-03 Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004104338 2004-03-31
JP2004104338 2004-03-31
JP2005058537A JP5031192B2 (en) 2004-03-31 2005-03-03 Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery

Publications (2)

Publication Number Publication Date
JP2005317511A JP2005317511A (en) 2005-11-10
JP5031192B2 true JP5031192B2 (en) 2012-09-19

Family

ID=35444674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058537A Active JP5031192B2 (en) 2004-03-31 2005-03-03 Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery

Country Status (1)

Country Link
JP (1) JP5031192B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085032B2 (en) * 2004-11-26 2012-11-28 国立大学法人九州大学 Cathode active material for non-aqueous electrolyte secondary battery
EP1826845A4 (en) 2004-11-26 2010-12-15 Sumitomo Chemical Co Positive electrode active material for nonaqueous electrolyte secondary battery
JP5100069B2 (en) * 2006-09-15 2012-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2009135092A (en) 2007-11-09 2009-06-18 Sumitomo Chemical Co Ltd Compound metal oxide and sodium secondary battery
JP2009259601A (en) * 2008-04-16 2009-11-05 Sumitomo Chemical Co Ltd Electrode active material for sodium ion secondary battery and its method for manufacturing
JP5493301B2 (en) * 2008-06-30 2014-05-14 住友化学株式会社 Sodium secondary battery
WO2010002012A1 (en) * 2008-06-30 2010-01-07 住友化学株式会社 Sodium secondary battery
JP2010080424A (en) 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd Electrode active material and method for manufacturing the same
JP5375580B2 (en) * 2008-12-18 2013-12-25 株式会社エクォス・リサーチ Electrolyte for sodium ion battery
JP5625390B2 (en) 2009-03-13 2014-11-19 住友化学株式会社 Composite metal oxide, electrode and sodium secondary battery
WO2011129419A1 (en) * 2010-04-16 2011-10-20 住友化学株式会社 Composite metal oxide, positive electrode active material, positive electrode, and sodium secondary battery
WO2012032956A1 (en) * 2010-09-07 2012-03-15 住友化学株式会社 Battery assembly
JP2013203565A (en) * 2012-03-27 2013-10-07 Tokyo Univ Of Science Complex metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JP6083556B2 (en) * 2012-10-24 2017-02-22 国立研究開発法人産業技術総合研究所 Cathode active material for sodium ion secondary battery
JP6427921B2 (en) 2013-06-28 2018-11-28 日亜化学工業株式会社 Cathode active material for non-aqueous secondary battery and method for producing the same
US20170187039A1 (en) 2014-02-12 2017-06-29 Industry-University Cooperation Foundation Hanyang University Positive electrode active material for sodium secondary battery, and method for preparing same
JP6466074B2 (en) * 2014-03-13 2019-02-06 国立研究開発法人産業技術総合研究所 Cathode active material for sodium ion secondary battery
JP6383188B2 (en) * 2014-06-16 2018-08-29 国立大学法人埼玉大学 Method for producing α-sodium ferrites

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307510B2 (en) * 1994-03-07 2002-07-24 ティーディーケイ株式会社 Layered structure oxide and secondary battery
JP3439082B2 (en) * 1997-07-16 2003-08-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP4765137B2 (en) * 2000-04-03 2011-09-07 株式会社Gsユアサ Cathode active material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005317511A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP5031192B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery
JP5085032B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
US8709655B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
US7794879B2 (en) Positive electrode active material for non-aqueous electrolyte secondary cell
JP6726102B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6836369B2 (en) Method for manufacturing positive electrode active material precursor for lithium secondary battery and positive electrode active material for lithium secondary battery
JP6256956B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5035834B2 (en) Lithium manganese composite oxide
JP6337360B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP3811974B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2017078136A1 (en) Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US8486159B2 (en) Method for producing positive electrode active material and positive electrode active material
WO2018043653A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2018181158A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2018021453A1 (en) Method for producing lithium nickel composite oxide
JP2018063853A (en) Method for manufacturing positive electrode active material for lithium secondary battery
JP6843732B2 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2006128135A (en) Active material for positive electrode and production method for positive electrode
JP2018081937A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4994725B2 (en) Method for producing lithium composite metal oxide

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250