JP5029133B2 - Epoxy resin composition for semiconductor encapsulation and semiconductor device - Google Patents

Epoxy resin composition for semiconductor encapsulation and semiconductor device Download PDF

Info

Publication number
JP5029133B2
JP5029133B2 JP2007128658A JP2007128658A JP5029133B2 JP 5029133 B2 JP5029133 B2 JP 5029133B2 JP 2007128658 A JP2007128658 A JP 2007128658A JP 2007128658 A JP2007128658 A JP 2007128658A JP 5029133 B2 JP5029133 B2 JP 5029133B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
groups
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007128658A
Other languages
Japanese (ja)
Other versions
JP2008280492A (en
Inventor
敦准 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007128658A priority Critical patent/JP5029133B2/en
Publication of JP2008280492A publication Critical patent/JP2008280492A/en
Application granted granted Critical
Publication of JP5029133B2 publication Critical patent/JP5029133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.

近年、電子機器の高度化、軽薄短小化が求められる中、半導体素子の高集積化、半導体装置の表面実装化が進んでいる。これに伴い、半導体封止用エポキシ樹脂組成物への要求は益々厳しくなっているのが現状である。特に半導体装置の薄型化に際しては、封止成形時における金型と半導体封止用エポキシ樹脂組成物の硬化物との間の離型不足に伴う応力の発生により、半導体装置内部の半導体素子自体にクラックを生じたり、樹脂硬化物と半導体素子との界面における密着性が低下したりするといった問題が生じている。また、環境問題に端を発した有鉛半田から無鉛半田への移行に伴い、半田処理時の温度が高くなり、半導体装置中に含まれる水分の気化によって発生する爆発的な応力による耐半田性が、従来以上に大きな問題となってきている。また、リードフレームについても脱鉛の観点から、外装有鉛半田メッキの代わりに予めニッケルメッキ、ニッケル/パラジウム合金に金メッキが施されたプレプリーティングフレームを用いた半導体装置が増加している。これらのメッキは半導体封止用エポキシ樹脂組成物の硬化物との密着性が著しく悪いという欠点があり、表面実装時に界面において剥離が発生する等の問題が生じており、耐半田性の向上が求められている。   In recent years, as electronic devices have become more sophisticated and lighter, thinner and smaller, semiconductor elements have been highly integrated and semiconductor devices have been surface-mounted. As a result, the demand for epoxy resin compositions for semiconductor encapsulation is becoming increasingly severe. In particular, when the semiconductor device is thinned, due to the generation of stress due to insufficient release between the mold and the cured product of the epoxy resin composition for semiconductor sealing during sealing molding, the semiconductor element itself in the semiconductor device itself There have been problems such as cracks and reduced adhesion at the interface between the cured resin and the semiconductor element. In addition, with the shift from leaded solder to lead-free solder, which originated from environmental problems, the temperature during the soldering process increased, and the solder resistance due to explosive stress generated by the evaporation of moisture contained in the semiconductor device However, it has become a bigger problem than before. In addition, from the viewpoint of lead removal, the number of semiconductor devices using a pre-plating frame in which nickel plating and nickel / palladium alloy are gold-plated in advance is increasing from the viewpoint of lead removal. These platings have the disadvantage that the adhesion to the cured product of the epoxy resin composition for semiconductor encapsulation is extremely poor, causing problems such as peeling at the interface during surface mounting, and improving solder resistance. It has been demanded.

このため、上記耐半田性を向上させるための種々の提案がされている。例えば、無機質充填材の高充填化が可能な低粘度型エポキシ樹脂であるビフェニル型エポキシ樹脂を含む半導体封止用エポキシ樹脂組成物が提案されているが(特許文献1、2参照。)、更なる無機質充填材の高充填化により、流動性の低下が懸念される。そこで流動性、離型性、連続成形性に優れた特性を有する半導体封止用エポキシ樹脂組成物及びそれを用いた耐半田性に優れた半導体装置の開発が求められている。   For this reason, various proposals for improving the solder resistance have been made. For example, an epoxy resin composition for semiconductor encapsulation containing a biphenyl type epoxy resin, which is a low-viscosity type epoxy resin capable of highly filling an inorganic filler, has been proposed (see Patent Documents 1 and 2). Due to the high filling of the inorganic filler, there is a concern about a decrease in fluidity. Therefore, development of an epoxy resin composition for semiconductor encapsulation having characteristics excellent in fluidity, releasability, and continuous moldability, and a semiconductor device excellent in solder resistance using the same has been demanded.

特開平5−131486号公報JP-A-5-131486 特開平8−253555号公報JP-A-8-253555

本発明は、流動性、離型性、連続成形性に優れ、かつ低吸湿性、低応力性、金属系部材との密着力に優れた特性を有する半導体封止用エポキシ樹脂組成物及びそれを用いた耐半田性に優れた半導体装置を提供するものである。   The present invention provides an epoxy resin composition for semiconductor encapsulation having excellent properties such as fluidity, releasability, and continuous moldability, and low moisture absorption, low stress, and excellent adhesion to metal-based members, and The present invention provides a semiconductor device having excellent solder resistance.

このような目的は、下記[1]〜[5]に記載の本発明により達成される。
[1] (A)エポキシ樹脂、(B)フェノール樹脂系硬化剤、(C)無機充填材、(D)硬化促進剤、及び(E)離型剤を含むエポキシ樹脂組成物において、前記硬化促進剤(D)がカチオン部とシリケートアニオン部とを有する硬化促進剤(d1)を含み、前記離型剤(E)がグリセリントリ脂肪酸エステル(e1)を含むことを特徴とする半導体封止用エポキシ樹脂組成物。
[2] 前記カチオン部とシリケートアニオン部とを有する硬化促進剤(d1)のカチオン部が燐カチオンを含むものである第[1]項に記載の半導体封止用エポキシ樹脂組成物。
Such an object is achieved by the present invention described in the following [1] to [5].
[1] In the epoxy resin composition comprising (A) an epoxy resin, (B) a phenol resin-based curing agent, (C) an inorganic filler, (D) a curing accelerator, and (E) a release agent, the curing acceleration Epoxy for semiconductor encapsulation, wherein the agent (D) contains a curing accelerator (d1) having a cation part and a silicate anion part, and the release agent (E) contains a glycerin trifatty acid ester (e1) Resin composition.
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the cation part of the curing accelerator (d1) having the cation part and the silicate anion part contains a phosphorus cation.

[3] 前記カチオン部とシリケートアニオン部とを有する硬化促進剤(d1)が下記一般式(1)で表される化合物である第[1]項又は第[2]項に記載の半導体封止用エポキシ樹脂組成物。

Figure 0005029133
(ただし、上記一般式(1)において、R1、R2、R3及びR4は、それぞれ、芳香環又は複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。X1は、基Y1及びY2と結合する有機基である。X2は、基Y3及びY4と結合する有機基である。Y1及びY2はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y1、及びY2が珪素原子と結合してキレート構造を形成するものである。Y3及びY4はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y3及びY4が珪素原子と結合してキレート構造を形成するものである。X1、及びX2は互いに同一であっても異なっていてもよく、Y1、Y2、Y3、及びY4は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基、あるいは脂肪族基を表す。)
[4]前記離型剤(E)がグリセリンと炭素数24以上、36以下の飽和脂肪酸からなるグリセリントリ脂肪酸エステルを含むことを特徴とする第[1]項ないし第[3]項のいずれかに記載の半導体封止用エポキシ樹脂組成物。
[5] 第[1]項ないし第[4]項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 [3] The semiconductor encapsulation according to item [1] or [2], wherein the curing accelerator (d1) having the cation part and the silicate anion part is a compound represented by the following general formula (1): Epoxy resin composition.
Figure 0005029133
(In the general formula (1), R1, R2, R3 and R4 each represents an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group, and may be the same or different from each other. X1 is an organic group bonded to the groups Y1 and Y2, X2 is an organic group bonded to the groups Y3 and Y4, and Y1 and Y2 are groups formed by proton-donating substituents releasing protons. The groups Y1 and Y2 in the same molecule are bonded to a silicon atom to form a chelate structure, and Y3 and Y4 are groups formed by proton-donating substituents releasing protons. The groups Y3 and Y4 are bonded to a silicon atom to form a chelate structure, X1 and X2 may be the same as or different from each other, and Y1, Y2, Y3, and Y4 are the same as each other. Even different You can have I .Z1 represents an organic group or an aliphatic group, an aromatic ring or a heterocyclic ring.)
[4] Any of [1] to [3], wherein the release agent (E) contains glycerin and a glycerin trifatty acid ester composed of a saturated fatty acid having 24 to 36 carbon atoms. The epoxy resin composition for semiconductor encapsulation as described in 2.
[5] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to any one of [1] to [4].

本発明に従うと、成形封止する時の流動性、離型性、連続成形性に優れ、かつ低吸湿性、低応力性、リードフレーム等の金属系部材との密着性、特にメッキを施された銅リードフレーム(銀メッキリードフレーム、ニッケルメッキリードフレーム、ニッケル/パラジウム合金に金メッキが施されたプレプリーティングフレーム等)との密着力に優れた特性を有する半導体封止用エポキシ樹脂組成物、並びに耐半田性に優れた半導体装置を得ることができる。   According to the present invention, it has excellent fluidity, releasability, and continuous formability during molding and sealing, and has low moisture absorption, low stress, and adhesion to metal members such as lead frames, in particular, plating. Epoxy resin composition for semiconductor encapsulation having excellent adhesion to copper lead frames (silver-plated lead frames, nickel-plated lead frames, pre-plating frames in which nickel / palladium alloy is plated with gold), In addition, a semiconductor device excellent in solder resistance can be obtained.

本発明は、エポキシ樹脂、フェノール樹脂系硬化剤、無機充填材、カチオン部とシリケートアニオン部とを有する硬化促進剤、及びグリセリントリ脂肪酸エステルを含む離型剤を含むことにより、成形封止する時の流動性、硬化性、離型性、連続成形性に優れ、かつ低吸湿性、低応力性、金属系部材との密着力に優れた特性を有する半導体封止用エポキシ樹脂組成物及びそれを用いた耐半田性に優れた半導体装置が得られるものである。
以下、本発明について詳細に説明する。
The present invention includes an epoxy resin, a phenol resin-based curing agent, an inorganic filler, a curing accelerator having a cation portion and a silicate anion portion, and a mold release agent containing a glycerin trifatty acid ester. Epoxy resin composition for semiconductor encapsulation having excellent fluidity, curability, releasability, continuous moldability, low moisture absorption, low stress, and excellent adhesion to metal-based members, and the like It is possible to obtain a semiconductor device having excellent solder resistance.
Hereinafter, the present invention will be described in detail.

本発明の半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A)を含む。本発明に用いられるエポキシ樹脂(A)は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、硫黄原子含有型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは1種類を単独で用いても2種類以上を併用しても差し支えない。これらの内で特に耐半田性が求められる場合には、常温では結晶性の固体であるが、融点以上では極めて低粘度の液状となり、無機質充填材を高充填化できるビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂が好ましい。また、無機質充填材の高充填化という観点からは、その他のエポキシ樹脂の場合も極力粘度の低いものを使用することが望ましい。また、耐半田性、可撓性、低吸湿化が求められる場合には、エポキシ基が結合した芳香環の間にエポキシ基を有さず、疎水性を示すフェニレン骨格やビフェニレン骨格等を有することで、低吸湿性や実装高温域での低弾性を示すフェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂が好ましい。   The epoxy resin composition for semiconductor encapsulation of the present invention contains an epoxy resin (A). The epoxy resin (A) used in the present invention is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. Epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene Modified phenol type epoxy resin, phenol aralkyl type epoxy resin (having phenylene skeleton, biphenylene skeleton, etc.), sulfur atom containing type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, naphthol Aralkyl type epoxy resin (phenylene skeleton, a biphenylene having a skeleton or the like), and the like. These may be used in combination of two or more be used one kind alone. Among these, when solder resistance is particularly required, it is a crystalline solid at room temperature, but it becomes a liquid with a very low viscosity above the melting point, and can be highly filled with inorganic fillers. Biphenyl type epoxy resin, bisphenol type Crystalline epoxy resins such as epoxy resins and stilbene type epoxy resins are preferred. From the viewpoint of increasing the filling of the inorganic filler, it is desirable to use other epoxy resins having a viscosity as low as possible. In addition, when solder resistance, flexibility, and low moisture absorption are required, there should be no phenylene skeleton or biphenylene skeleton or the like having an epoxy group between the aromatic rings to which the epoxy group is bonded. Thus, aralkyl type epoxy resins such as phenol aralkyl type epoxy resins and naphthol aralkyl type epoxy resins exhibiting low hygroscopicity and low elasticity in a high temperature range for mounting are preferable.

本発明で用いられるエポキシ樹脂(A)全体の配合割合としては、特に限定されないが、全半導体封止用エポキシ樹脂組成物中に、1重量%以上、15重量%以下であることが好ましく、2重量%以上、10重量%以下であることがより好ましい。エポキシ樹脂(A)全体の配合割合が上記範囲内であると、耐半田性の低下、流動性の低下等を引き起こす恐れが少ない。   The blending ratio of the entire epoxy resin (A) used in the present invention is not particularly limited, but is preferably 1% by weight or more and 15% by weight or less in the total epoxy resin composition for semiconductor encapsulation. More preferably, it is at least 10% by weight. When the blending ratio of the entire epoxy resin (A) is within the above range, there is little risk of causing a decrease in solder resistance, a decrease in fluidity, and the like.

本発明の半導体封止用エポキシ樹脂組成物は、フェノール樹脂系硬化剤(B)を含む。本発明に用いられるフェノール樹脂系硬化剤(B)は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、硫黄原子含有型フェノール樹脂、ナフトールノボラック樹脂、ナフトールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは1種類を単独で用いても2種類以上を併用しても差し支えない。これらの内で特に耐半田性が求められる場合には、エポキシ樹脂と同様に、低粘度の樹脂が無機質充填材の高充填化できるという点で望ましく、更に可撓性、低吸湿性が求められる場合には、フェニレン骨格、ビフェニレン骨格を有するフェノールアラルキル樹脂の使用が好ましい。   The epoxy resin composition for semiconductor encapsulation of the present invention contains a phenol resin curing agent (B). The phenol resin-based curing agent (B) used in the present invention is a monomer, oligomer or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolac resin, cresol novolak resin, dicyclopentadiene modified phenol resin, terpene modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having phenylene skeleton, biphenylene skeleton, etc.), sulfur atom containing type phenol resin, naphthol novolak Examples thereof include resins and naphthol aralkyl resins (having a phenylene skeleton, a biphenylene skeleton, etc.), and these may be used alone or in combination of two or more. Of these, when solder resistance is particularly required, it is desirable that a low-viscosity resin can be highly filled with an inorganic filler as in the case of an epoxy resin, and further, flexibility and low moisture absorption are required. In this case, it is preferable to use a phenol aralkyl resin having a phenylene skeleton or a biphenylene skeleton.

本発明で用いられるフェノール樹脂系硬化剤(B)の配合割合は、特に限定されないが、全半導体封止用エポキシ樹脂組成物中に、0.5重量%以上、12重量%以下であることが好ましく、1重量%以上、9重量%以下であることがより好ましい。硬化剤(B)の配合割合が上記範囲内であると、耐半田性の低下、流動性の低下等を引き起こす恐れが少ない。   The blending ratio of the phenol resin-based curing agent (B) used in the present invention is not particularly limited, but is 0.5% by weight or more and 12% by weight or less in the total epoxy resin composition for semiconductor encapsulation. It is preferably 1% by weight or more and 9% by weight or less. When the blending ratio of the curing agent (B) is within the above range, there is little possibility of causing a decrease in solder resistance, a decrease in fluidity, and the like.

本発明に用いるエポキシ樹脂(A)とフェノール樹脂系硬化剤(B)との配合比率としては、全エポキシ樹脂のエポキシ基数(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)の比(EP/OH)が0.7以上、1.3以下であることが好ましい。この範囲内であると、半導体封止用エポキシ樹脂組成物の硬化性の低下、或いは樹脂硬化物のガラス転移温度の低下、耐湿信頼性の低下等を抑えることができる。   As a compounding ratio of the epoxy resin (A) and the phenol resin curing agent (B) used in the present invention, the number of epoxy groups (EP) of all epoxy resins and the number of phenolic hydroxyl groups (OH) of all phenol resin curing agents. The ratio (EP / OH) is preferably 0.7 or more and 1.3 or less. Within this range, it is possible to suppress a decrease in curability of the epoxy resin composition for semiconductor encapsulation, a decrease in the glass transition temperature of the resin cured product, a decrease in moisture resistance reliability, and the like.

本発明の半導体封止用エポキシ樹脂組成物は、無機充填材(C)を含む。本発明に用いられる無機充填材(C)としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、最も好適に使用されるものとしては、球状の溶融シリカである。これらの無機充填材(C)は、1種類を単独で用いても2種類以上を併用しても差し支えない。無機充填材(C)の最大粒径については、特に限定されないが、無機充填材(C)の粗大粒子が狭くなったワイヤー間に挟まることによって生じるワイヤー流れ等の不具合の防止を考慮すると、105μm以下であることが好ましく、75μm以下であることがより好ましい。   The epoxy resin composition for semiconductor encapsulation of the present invention contains an inorganic filler (C). As an inorganic filler (C) used for this invention, what is generally used for the epoxy resin composition for semiconductor sealing can be used. Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like, and the most preferably used is spherical fused silica. These inorganic fillers (C) may be used alone or in combination of two or more. The maximum particle size of the inorganic filler (C) is not particularly limited, but considering the prevention of problems such as wire flow caused by the coarse particles of the inorganic filler (C) being sandwiched between the narrowed wires, 105 μm Or less, and more preferably 75 μm or less.

無機充填材(C)の含有割合は、特に限定されないが、全半導体封止用エポキシ樹脂組成物中80重量%以上、94重量%以下が好ましく、82重量%以上、92重量%以下がより好ましい。この範囲であると、耐半田性の低下、流動性の低下等を抑えることができる。   Although the content rate of an inorganic filler (C) is not specifically limited, 80 to 94 weight% is preferable in the epoxy resin composition for whole semiconductor sealing, 82 to 92 weight% is more preferable. . Within this range, a decrease in solder resistance, a decrease in fluidity, and the like can be suppressed.

本発明の半導体封止用エポキシ樹脂組成物は、硬化促進剤(D)として、エポキシ樹脂の硬化反応を促進し得るカチオン部と前記硬化反応を促進するカチオン部の触媒活性を抑制するシリケートアニオン部とを有する硬化促進剤(d1)を含む。本発明で用いられるカチオン部とシリケートアニオン部とを有する硬化促進剤(d1)としては、カチオン部が燐カチオンを含むものが好ましく、下記一般式(1)で表される化合物がさらに好ましい。

Figure 0005029133
The epoxy resin composition for semiconductor encapsulation according to the present invention includes a cation anion part capable of accelerating the curing reaction of the epoxy resin and a silicate anion part that suppresses the catalytic activity of the cation part promoting the curing reaction as the curing accelerator (D). And a curing accelerator (d1). As a hardening accelerator (d1) which has a cation part and a silicate anion part used by this invention, what a cation part contains a phosphorus cation is preferable, and the compound represented by following General formula (1) is more preferable.
Figure 0005029133

上記一般式(1)において、R1、R2、R3及びR4は、それぞれ、芳香環又は複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。R1、R2、R3及びR4としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n−ブチル基、n−オクチル基及びシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基などの芳香族基がより好ましい。   In the general formula (1), R1, R2, R3 and R4 each represents an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group, and may be the same or different from each other. R1, R2, R3 and R4 are, for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, ethyl group, n-butyl group, n- An octyl group, a cyclohexyl group, etc. are mentioned, Among these, aromatic groups, such as a phenyl group, a methylphenyl group, a methoxyphenyl group, a hydroxyphenyl group, and a hydroxy naphthyl group, are more preferable.

また、上記一般式(1)において、X1は、基Y1及びY2と結合する有機基である。同様にX2は、基Y3及びY4と結合する有機基である。Y1及びY2はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y1、及びY2が珪素原子と結合してキレート構造を形成するものである。同様にY3及びY4はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y3及びY4が珪素原子と結合してキレート構造を形成するものである。X1、及びX2は互いに同一であっても異なっていてもよく、Y1、Y2、Y3、及びY4は互いに同一であっても異なっていてもよい。このような一般式(1)中のY1X1Y2、及びY3X2Y4で示される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、例えば、カテコール、ピロガロール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,2’−ビフェノール、2,2’−ビナフトール、サリチル酸、1−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシ−2−ナフトエ酸、クロラニル酸、タンニン酸、2−ヒドロキシベンジルアルコール、1,2−シクロヘキサンジオール、1,2−プロパンジオール及びグリセリン等が挙げられるが、これらの中でも、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンがより好ましい。   Moreover, in the said General formula (1), X1 is an organic group couple | bonded with group Y1 and Y2. Similarly, X2 is an organic group bonded to the groups Y3 and Y4. Y1 and Y2 are groups formed by proton-donating substituents releasing protons, and groups Y1 and Y2 in the same molecule are combined with a silicon atom to form a chelate structure. Similarly, Y3 and Y4 are groups formed by proton-donating substituents releasing protons, and groups Y3 and Y4 in the same molecule are bonded to silicon atoms to form a chelate structure. X1 and X2 may be the same or different from each other, and Y1, Y2, Y3, and Y4 may be the same or different from each other. Such a group represented by Y1X1Y2 and Y3X2Y4 in the general formula (1) is composed of a group in which a proton donor releases two protons. Examples of the proton donor include: Catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2'-biphenol, 2,2'-binaphthol, salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphtho Acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, glycerin, etc., among these, catechol, 1,2-dihydroxynaphthalene, 2, 3-dihydroxynaphthalene is more preferred.

また、一般式(1)中のZ1は、芳香環または複素環を有する有機基または脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基、アニリノプロピル基およびビニル基等の反応性置換基などが挙げられるが、これらの中でも、メチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面から、より好ましい。   Z1 in the general formula (1) represents an organic group or an aliphatic group having an aromatic ring or a heterocyclic ring, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group. And aliphatic hydrocarbon groups such as octyl group, aromatic hydrocarbon groups such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxypropyl group, mercaptopropyl group, aminopropyl group, anilinopropyl group and Although reactive substituents, such as a vinyl group, etc. are mentioned, Among these, a methyl group, a phenyl group, a naphthyl group, and a biphenyl group are more preferable from the surface of thermal stability.

本発明で用いられるカチオン部とシリケートアニオン部とを有する硬化促進剤(d1)の配合割合は、特に限定されないが、全半導体封止用エポキシ樹脂組成物中0.1重量%以上、1.5重量%以下が好ましく、より好ましくは0.2重量%以上、1重量%以下である。上記範囲内であると、半導体封止用エポキシ樹脂組成物の成形時の低粘度化、高流動化、及び貯蔵時の保存安定性の向上を図ることができる。   The blending ratio of the curing accelerator (d1) having a cation part and a silicate anion part used in the present invention is not particularly limited, but is 0.1% by weight or more, 1.5% in the total epoxy resin composition for semiconductor encapsulation. % By weight or less is preferred, more preferably 0.2% by weight or more and 1% by weight or less. Within the above range, the viscosity of the epoxy resin composition for semiconductor encapsulation can be lowered, the fluidity can be increased, and the storage stability during storage can be improved.

本発明では、カチオン部とシリケートアニオン部とを有する硬化促進剤(d1)を用いることによる効果を損なわない範囲であれば、該硬化促進剤(d1)以外の硬化促進剤も、エポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定なく併用できるが、カチオン部シリケートアニオン部とを有する硬化促進剤(d1)の配合割合は、全硬化促進剤(D)に対して50重量%以上であることが好ましい。併用可能な硬化促進剤としては、例えば、ホスフィン化合物とキノン化合物との付加物;1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体;トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物;2−メチルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラキス(ベンゾイルオキシ)ボレート、テトラフェニルホスホニウム・テトラキス(ナフトイルオキシ)ボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   In the present invention, as long as the effect of using the curing accelerator (d1) having a cation part and a silicate anion part is not impaired, a curing accelerator other than the curing accelerator (d1) may be an epoxy group and a phenol. As long as it promotes the reaction of the reactive hydroxyl group, it can be used in combination without any particular limitation, but the blending ratio of the curing accelerator (d1) having a cation silicate anion moiety is 50% by weight with respect to the total curing accelerator (D). The above is preferable. Examples of curing accelerators that can be used in combination include adducts of phosphine compounds and quinone compounds; diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; tributylamine, benzyl Amine compounds such as dimethylamine; imidazole compounds such as 2-methylimidazole; organic phosphines such as triphenylphosphine and methyldiphenylphosphine; tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetrakis (benzoyloxy) borate, tetra Examples thereof include tetra-substituted phosphonium / tetra-substituted borates such as phenylphosphonium / tetrakis (naphthoyloxy) borate, and these may be used alone or in combination of two or more.

本発明の半導体封止用エポキシ樹脂組成物は、(E)離型剤としてグリセリントリ脂肪酸エステル(e1)を含む。本発明で用いられるグリセリントリ脂肪酸エステル(e1)は、グリセリンと飽和脂肪酸より得られるトリエステルであり、離型性が非常に優れている。モノエステル、ジエステルでは残存する水酸基の影響により半導体封止用エポキシ樹脂組成物の硬化物の耐湿性が低下し、その結果として耐半田性に悪影響を及ぼすので好ましくない。本発明で用いられるグリセリントリ脂肪酸エステル(e1)のうちでは、炭素数24以上、36以下の飽和脂肪酸とのグリセリントリ脂肪酸エステルが、離型性と樹脂硬化物の外観の観点から望ましい。尚、本発明において、飽和脂肪酸の炭素数とは飽和脂肪酸中のアルキル基とカルボキシル基の炭素数を合計したものを指す。   The epoxy resin composition for semiconductor encapsulation of this invention contains glycerol tri fatty acid ester (e1) as (E) mold release agent. The glycerin trifatty acid ester (e1) used in the present invention is a triester obtained from glycerin and a saturated fatty acid, and has excellent release properties. Monoesters and diesters are not preferable because the moisture resistance of the cured product of the epoxy resin composition for semiconductor encapsulation decreases due to the influence of the remaining hydroxyl groups, and as a result, the solder resistance is adversely affected. Among the glycerin trifatty acid esters (e1) used in the present invention, glycerin trifatty acid esters with saturated fatty acids having 24 to 36 carbon atoms are desirable from the viewpoint of releasability and appearance of the cured resin. In the present invention, the carbon number of the saturated fatty acid refers to the sum of the carbon number of the alkyl group and the carboxyl group in the saturated fatty acid.

本発明で用いられるグリセリントリ脂肪酸エステル(e1)の滴点は、70℃以上、120℃以下が好ましく、より好ましくは80℃以上、110℃以下である。滴点は、ASTM D127に準拠した方法により測定することができる。具体的には、金属ニップルを用いて、溶融したワックスが金属ニップルから最初に滴下するときの温度として測定される。以下の例においても、同様の方法により測定することができる。滴点が上記下限値未満だと熱安定性が十分でないため、連続成形時にグリセリントリ脂肪酸エステル(e1)の焼き付きが発生し、離型性が悪化し、連続成形性を損なう恐れがある。滴点が上記上限値を越えると半導体封止用エポキシ樹脂組成物の硬化の際、グリセリントリ脂肪酸エステル(e1)が十分に溶融しないことにより、グリセリントリ脂肪酸エステル(e1)の分散性が低下し、グリセリントリ脂肪酸エステル(e1)の樹脂硬化物表面への偏析による金型汚れや樹脂硬化物外観の悪化を引き起こす恐れがある。   The dropping point of the glycerin trifatty acid ester (e1) used in the present invention is preferably 70 ° C. or higher and 120 ° C. or lower, more preferably 80 ° C. or higher and 110 ° C. or lower. The dropping point can be measured by a method based on ASTM D127. Specifically, using a metal nipple, it is measured as the temperature at which molten wax first drops from the metal nipple. In the following examples, it can be measured by the same method. If the dropping point is less than the above lower limit value, the thermal stability is not sufficient, so that seizure of the glycerin trifatty acid ester (e1) occurs during continuous molding, which may deteriorate mold release properties and impair continuous moldability. If the dropping point exceeds the above upper limit, the dispersibility of the glycerin trifatty acid ester (e1) is reduced due to insufficient melting of the glycerin trifatty acid ester (e1) when the epoxy resin composition for semiconductor encapsulation is cured. In addition, there is a risk of causing mold contamination or deterioration of the appearance of the cured resin due to segregation of the glycerin trifatty acid ester (e1) on the surface of the cured resin.

本発明で用いられるグリセリントリ脂肪酸エステル(e1)の酸価は、10mgKOH/g以上、50mgKOH/g以下が好ましく、より好ましくは15mgKOH/g以上、40mgKOH/g以下である。酸価は、JIS K 3504に準拠した方法により測定することができる。具体的には、ワックス類1g中に含有する遊離脂肪酸を中和するのに要する水酸化カリウムのミリグラム数として測定される。以下の例においても、同様の方法により測定することができる。酸価は樹脂硬化物との相溶性に影響し、酸価が上記下限値未満だとグリセリントリ脂肪酸エステル(e1)はエポキシ樹脂マトリックスと相分離を起こし、金型汚れや樹脂硬化物外観の悪化を引き起こす恐れがある。酸価が上記上限値を越えるとエポキシ樹脂マトリックスとの相溶性がよすぎるため、樹脂硬化物表面に染み出すことが出来ず、十分な離型性を確保することができない恐れがある。   The acid value of the glycerin trifatty acid ester (e1) used in the present invention is preferably 10 mgKOH / g or more and 50 mgKOH / g or less, more preferably 15 mgKOH / g or more and 40 mgKOH / g or less. The acid value can be measured by a method based on JIS K 3504. Specifically, it is measured as the number of milligrams of potassium hydroxide required to neutralize free fatty acids contained in 1 g of waxes. In the following examples, it can be measured by the same method. The acid value affects the compatibility with the cured resin. If the acid value is less than the above lower limit, the glycerin trifatty acid ester (e1) undergoes phase separation from the epoxy resin matrix, resulting in deterioration of mold stains and the cured resin appearance. There is a risk of causing. If the acid value exceeds the above upper limit value, the compatibility with the epoxy resin matrix is too good, so that the resin cannot ooze out on the surface of the cured resin, and sufficient releasability may not be ensured.

本発明で用いられるグリセリントリ脂肪酸エステル(e1)の平均粒径は、20μm以上、70μm以下が好ましく、より好ましくは30μm以上、60μm以下である。平均粒径は、例えば(株)島津製作所製のSALD−7000などのレーザー回折式粒度分布測定装置を用いて、溶媒を水として、重量基準の50%粒子径を平均粒径として測定することができる。以下の例においても、同様の方法により測定することができる。平均粒径が上記下限値未満だとグリセリントリ脂肪酸エステル(e1)がエポキシ樹脂マトリックスとの相溶性がよすぎるため、樹脂硬化物表面に染み出すことが出来ず、十分な離型付与効果が得られない恐れがある。平均粒径が上記上限値を越えるとグリセリントリ脂肪酸エステル(e1)が偏析し、金型汚れや樹脂硬化物外観の悪化を引き起こす恐れがある。また、半導体封止用エポキシ樹脂組成物の硬化の際、グリセリントリ脂肪酸エステル(e1)が十分に溶融しないことにより、流動性を阻害する恐れがある。   The average particle size of the glycerin trifatty acid ester (e1) used in the present invention is preferably 20 μm or more and 70 μm or less, more preferably 30 μm or more and 60 μm or less. The average particle diameter can be measured by using a laser diffraction particle size distribution measuring device such as SALD-7000 manufactured by Shimadzu Corporation as a solvent and water, and a weight-based 50% particle diameter as an average particle diameter. it can. In the following examples, it can be measured by the same method. If the average particle size is less than the above lower limit value, the glycerin trifatty acid ester (e1) is too compatible with the epoxy resin matrix, so that it cannot ooze out on the surface of the cured resin, and a sufficient release imparting effect is obtained. There is a fear that it is not possible. If the average particle diameter exceeds the upper limit, glycerin trifatty acid ester (e1) is segregated, which may cause mold contamination and deterioration of the appearance of the cured resin. In addition, when the epoxy resin composition for semiconductor encapsulation is cured, the glycerin trifatty acid ester (e1) is not sufficiently melted, which may hinder fluidity.

また、本発明で用いられるグリセリントリ脂肪酸エステル(e1)中における粒径106μm以上の粒子の含有比率は0.1重量%以下であることが好ましい。粒径106μm以上の粒子の含有割合は、JIS Z 8801の目開き106μmの標準篩を用いて測定することができる。以下の例においても、同様の方法により測定することができる。粒径106μm以上の粒子の含有比率が上記上限値を越えるとグリセリントリ脂肪酸エステル(e1)が偏析し、金型汚れや樹脂硬化物外観の悪化を引き起こす恐れがある。また、半導体封止用エポキシ樹脂組成物の硬化の際、グリセリントリ脂肪酸エステル(e1)が十分に溶融しないことにより、流動性を阻害する恐れがある。   Moreover, it is preferable that the content rate of the particle | grains with a particle size of 106 micrometers or more in the glycerol tri fatty acid ester (e1) used by this invention is 0.1 weight% or less. The content ratio of particles having a particle diameter of 106 μm or more can be measured using a standard sieve having an opening of 106 μm according to JIS Z8801. In the following examples, it can be measured by the same method. If the content ratio of particles having a particle size of 106 μm or more exceeds the above upper limit, glycerin trifatty acid ester (e1) is segregated, which may cause mold stains and deterioration of the appearance of the cured resin. In addition, when the epoxy resin composition for semiconductor encapsulation is cured, the glycerin trifatty acid ester (e1) is not sufficiently melted, which may hinder fluidity.

本発明で用いられるグリセリントリ脂肪酸エステル(e1)の含有割合は、半導体封止用エポキシ樹脂組成物中に、0.01重量%以上、1重量%以下であり、好ましくは0.03重量%以上、0.5重量%以下である。下限値未満だと離型性不足となり、上限値を越えるとリードフレーム部材との密着性が損なわれ、半田処理時に部材との剥離が発生する恐れがある。また、金型汚れや樹脂硬化物外観の悪化を引き起こす恐れがある。   The content ratio of the glycerin trifatty acid ester (e1) used in the present invention is 0.01% by weight or more and 1% by weight or less, preferably 0.03% by weight or more in the epoxy resin composition for semiconductor encapsulation. , 0.5% by weight or less. If it is less than the lower limit value, the releasability becomes insufficient, and if it exceeds the upper limit value, the adhesion with the lead frame member is impaired, and there is a possibility that peeling from the member occurs during the soldering process. Moreover, there exists a possibility of causing deterioration of a mold | die stain | pollution | contamination and the resin cured material external appearance.

本発明では、グリセリントリ脂肪酸エステル(e1)を用いることによる効果を損なわない範囲で、他の離型剤を併用することもできる。併用することのできる離型剤としては、例えばカルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類等が挙げられる。   In this invention, another mold release agent can also be used together in the range which does not impair the effect by using glycerol tri fatty acid ester (e1). Examples of release agents that can be used in combination include natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate, and metal salts thereof.

本発明は、エポキシ樹脂の硬化反応を促進し得るカチオン部と前記硬化反応を促進するカチオン部の触媒活性を抑制するシリケートアニオン部とを有する硬化促進剤(d1)と、グリセリントリ脂肪酸エステル(e1)を含む離型剤(E)と、を併用することによってその相乗効果を発現するものである。この2種を併用することにより、例えば、無機充填剤を増量しても、樹脂硬化物中における離型剤の分散性を損なうことなく、理想的な離型挙動を示す。   The present invention relates to a curing accelerator (d1) having a cation part that can promote the curing reaction of an epoxy resin and a silicate anion part that suppresses the catalytic activity of the cation part that promotes the curing reaction, and a glycerin trifatty acid ester (e1). ) Containing a mold release agent (E), the synergistic effect is exhibited. By using these two types in combination, for example, even if the amount of the inorganic filler is increased, an ideal release behavior is exhibited without impairing the dispersibility of the release agent in the resin cured product.

本発明の半導体封止用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)フェノール樹脂系硬化剤、(C)無機充填材、(D)カチオン部とシリケートアニオン部とを有する硬化促進剤(d1)を含む硬化促進剤、及び(E)グリセリントリ脂肪酸エステル(e1)を含む離型剤を含むものであるが、更に必要に応じて、アミノシラン、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、アクリルシラン等のカップリング剤;ハイドロタルサイト類やマグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物等のイオントラップ剤;シリコーンオイル、ゴム等の低応力添加剤;チアゾリン、ジアゾール、トリアゾール、トリアジン、ピリミジン等の密着性付与剤;臭素化エポキシ樹脂や三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤等の添加剤を適宜配合しても差し支えない。   The epoxy resin composition for semiconductor encapsulation of the present invention comprises (A) an epoxy resin, (B) a phenol resin-based curing agent, (C) an inorganic filler, (D) a curing accelerator having a cation portion and a silicate anion portion. A curing accelerator containing (d1) and (E) a mold release agent containing glycerin trifatty acid ester (e1), and if necessary, aminosilane, epoxysilane, mercaptosilane, alkylsilane, ureidosilane, Coupling agents such as acrylic silanes; ion trapping agents such as hydrotalcites and hydrous oxides of elements selected from magnesium, aluminum, bismuth, titanium and zirconium; low-stress additives such as silicone oil and rubber; thiazolines and diazoles , Triazole, triazine, pyrimidine, etc. Fat and antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, be suitably blended additives such as flame retardants such as phosphazene no problem.

また、本発明の半導体封止用エポキシ樹脂組成物は、ミキサー等を用いて原料を充分に均一に混合したもの、更にその後、熱ロール又はニーダー等で溶融混練し、冷却後粉砕したものなど、必要に応じて適宜分散度等を調整したものを用いることができる。   In addition, the epoxy resin composition for semiconductor encapsulation of the present invention is a mixture of raw materials sufficiently uniformly using a mixer or the like, and then melt kneaded with a hot roll or a kneader, etc., crushed after cooling, etc. What adjusted the dispersion degree etc. suitably can be used as needed.

本発明の半導体封止用エポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。   Conventional molding such as transfer molding, compression molding, injection molding, etc., is used to manufacture semiconductor devices by sealing various electronic components such as semiconductor elements using the epoxy resin composition for semiconductor sealing of the present invention. It may be cured by the method.

本発明で封止を行う半導体素子としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられる。
本発明の半導体装置の形態としては、特に限定されないが、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等が挙げられる。
上記トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは80℃から200℃程度の温度で、10分から10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
The semiconductor element that performs sealing in the present invention is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
The form of the semiconductor device of the present invention is not particularly limited. For example, the dual in-line package (DIP), the plastic lead chip carrier (PLCC), the quad flat package (QFP), the small outline, and the like. Package (SOP), Small Outline J Lead Package (SOJ), Thin Small Outline Package (TSOP), Thin Quad Flat Package (TQFP), Tape Carrier Package (TCP), Ball Grid Examples include an array (BGA), a chip size package (CSP), and the like.
A semiconductor device sealed by a molding method such as the above transfer mold is completely cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours, and then mounted on an electronic device or the like. Is done.

図1は、本発明に係る半導体封止用エポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間は金線4によって接続されている。半導体素子1は、半導体封止用エポキシ樹脂組成物の硬化体6によって封止されている。   FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using the epoxy resin composition for semiconductor encapsulation according to the present invention. The semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a gold wire 4. The semiconductor element 1 is sealed with a cured body 6 of an epoxy resin composition for semiconductor sealing.

以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
なお、実施例、比較例で用いた硬化促進剤と離型剤の内容について以下に示す。
Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
In addition, it shows below about the content of the hardening accelerator and mold release agent which were used by the Example and the comparative example.

硬化促進剤1:下記化学式(2)で表される化合物

Figure 0005029133
Curing accelerator 1: Compound represented by the following chemical formula (2)
Figure 0005029133

硬化促進剤2:下記化学式(3)で表される化合物

Figure 0005029133
Curing accelerator 2: Compound represented by the following chemical formula (3)
Figure 0005029133

硬化促進剤3:下記化学式(4)で表される化合物

Figure 0005029133
Curing accelerator 3: Compound represented by the following chemical formula (4)
Figure 0005029133

硬化促進剤4:下記化学式(5)で表される化合物

Figure 0005029133
Curing accelerator 4: Compound represented by the following chemical formula (5)
Figure 0005029133

硬化促進剤5:下記化学式(6)で表される化合物

Figure 0005029133
Curing accelerator 5: Compound represented by the following chemical formula (6)
Figure 0005029133

硬化促進剤6:下記化学式(7)で表される化合物

Figure 0005029133
Curing accelerator 6: Compound represented by the following chemical formula (7)
Figure 0005029133

硬化促進剤7:下記化学式(8)で表される化合物

Figure 0005029133
Curing accelerator 7: Compound represented by the following chemical formula (8)
Figure 0005029133

離型剤1:グリセリントリメリシン酸エステル(滴点95℃、酸価30mgKOH/g、平均粒径45μm、粒径106μm以上の粒子0.0重量%)
離型剤2:グリセリントリモンタン酸エステル(クラリアントジャパン(株)製、リコルブWE4、滴点82℃、酸価25mgKOH/g、平均粒径45μm、粒径106μm以上の粒子0.0重量%)
離型剤3:カルナバワックス(日興ファインプロダクツ(株)製、商品名ニッコウカルナバ)
Mold release agent 1: Glycerin trimellisin ester (drop point 95 ° C., acid value 30 mg KOH / g, average particle size 45 μm, particle size 0.0% by weight of 106 μm or more)
Mold release agent 2: Glycerin trimontanic acid ester (manufactured by Clariant Japan Co., Ltd., Recolve WE4, dropping point 82 ° C., acid value 25 mg KOH / g, average particle size 45 μm, particle size 0.06% by weight)
Mold release agent 3: Carnauba wax (Nikko Fine Products Co., Ltd., trade name Nikko Carnauba)

ここで一例として硬化促進剤1の合成方法について示すが、これにより本発明が限定されるものではない。
メタノール1800gを入れたフラスコに、フェニルトリメトキシシラン249.5g、2,3−ジヒドロキシナフタレン384.0gを加えて溶かし、次に室温攪拌下28%ナトリウムメトキシド−メタノール溶液231.5gを滴下した。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド503.0gをメタノール600gに溶かした溶液を室温攪拌下滴下すると結晶が析出した。析出した結晶を濾過、水洗、真空乾燥し、桃白色結晶の硬化促進剤1を得た。
Here, as an example, a method for synthesizing the curing accelerator 1 will be described, but the present invention is not limited thereto.
In a flask containing 1800 g of methanol, 249.5 g of phenyltrimethoxysilane and 384.0 g of 2,3-dihydroxynaphthalene were added and dissolved, and then 231.5 g of 28% sodium methoxide-methanol solution was added dropwise with stirring at room temperature. Furthermore, when a solution prepared by dissolving 503.0 g of tetraphenylphosphonium bromide prepared in advance in 600 g of methanol was added dropwise with stirring at room temperature, crystals were deposited. The precipitated crystals were filtered, washed with water, and vacuum-dried to obtain a pinkish white crystal curing accelerator 1.

実施例1
エポキシ樹脂1:下記式(9)で表されるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、商品名NC3000P、軟化点58℃、エポキシ当量273) 65重量部

Figure 0005029133
Example 1
Epoxy resin 1: phenol aralkyl type epoxy resin having a biphenylene skeleton represented by the following formula (9) (Nippon Kayaku Co., Ltd., trade name NC3000P, softening point 58 ° C., epoxy equivalent 273) 65 parts by weight
Figure 0005029133

フェノール樹脂系硬化剤1:下記式(10)で表されるビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、商品名MEH−7851SS、軟化点107℃、水酸基当量204) 42重量部

Figure 0005029133
Phenol resin curing agent 1: phenol aralkyl resin having a biphenylene skeleton represented by the following formula (10) (Maywa Kasei Co., Ltd., trade name MEH-7851SS, softening point 107 ° C., hydroxyl group equivalent 204) 42 parts by weight
Figure 0005029133

溶融球状シリカ1:(平均粒径20μm、最大粒径75μm、比表面積3.6m/g) 780重量部
溶融球状シリカ2:(平均粒径0.5μm、最大粒径75μm、比表面積5.9m/g) 100重量部
硬化促進剤1 5重量部
離型剤1 2重量部
カップリング剤:γ−グリシドキシプロピルトリメトキシシラン(信越化学(株)製、商品名KBM−403) 3重量部
カーボンブラック:(三菱化学(株)製、商品名MA−600) 3重量部
をミキサーにて混合し、熱ロールを用いて、95℃で8分間溶融混練して冷却後粉砕し、半導体封止用エポキシ樹脂組成物を得た。得られた半導体封止用エポキシ樹脂組成物を、以下の方法で評価した。結果を表1に示す。
Fused spherical silica 1: (average particle size 20 μm, maximum particle size 75 μm, specific surface area 3.6 m 2 / g) 780 parts by weight Fused spherical silica 2: (average particle size 0.5 μm, maximum particle size 75 μm, specific surface area 5. 9 m 2 / g) 100 parts by weight Curing accelerator 1 5 parts by weight Release agent 1 2 parts by weight Coupling agent: γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-403) 3 Part by weight Carbon black: (Mitsubishi Chemical Co., Ltd., trade name MA-600) 3 parts by weight are mixed with a mixer, melted and kneaded at 95 ° C. for 8 minutes using a hot roll, cooled, pulverized, and semiconductor An epoxy resin composition for sealing was obtained. The obtained epoxy resin composition for semiconductor encapsulation was evaluated by the following method. The results are shown in Table 1.

評価方法
スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、半導体封止用エポキシ樹脂組成物を注入し、流動長を測定した。
Evaluation method: Spiral flow: Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66, a mold temperature of 175 ° C. and an injection pressure of 6. The epoxy resin composition for semiconductor encapsulation was injected under the conditions of 9 MPa and curing time of 120 seconds, and the flow length was measured.

金線流れ率:低圧トランスファー自動成形機(第一精工製、GP−ELF)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間70秒の条件で、半導体封止用エポキシ樹脂組成物によりシリコンチップ等を封止成形して、160ピンLQFP(low profile quad flat package:Cu製リードフレーム、パッケージ外寸:24mm×24mm×1.4mm厚、パッドサイズ:8.5mm×8.5mm、チップサイズ7.4mm×7.4mm×350μm厚)を作製した。作製した160ピンLQFPパッケージを軟X線透視装置(ソフテックス(株)製、PRO−TEST100)で観察し、金線の流れ率を(流れ量)/(金線長)の比率で表した。判定基準は5%未満を○、5%以上を×とした。   Metal wire flow rate: epoxy resin for semiconductor encapsulation under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 70 seconds using a low-pressure transfer automatic molding machine (Daiichi Seiko, GP-ELF) A silicon chip or the like is encapsulated with the composition, and a 160-pin LQFP (low profile quad flat package: Cu lead frame, package outer dimensions: 24 mm × 24 mm × 1.4 mm thickness, pad size: 8.5 mm × 8. 5 mm, chip size 7.4 mm × 7.4 mm × 350 μm thickness). The produced 160-pin LQFP package was observed with a soft X-ray fluoroscope (PRO-TEST100, manufactured by Softex Corp.), and the flow rate of the gold wire was expressed as a ratio of (flow rate) / (gold wire length). The criterion was ○ for less than 5% and x for 5% or more.

連続成形性:低圧トランスファー自動成形機(第一精工製、GP−ELF)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間70秒の条件で、半導体封止用エポキシ樹脂組成物によりシリコンチップ等を封止して80ピンQFP(quad flat package:プリプレーティングフレーム、ニッケル/パラジウム合金に金メッキしたもの、パッケージ外寸:14mm×20mm×2mm厚、パッドサイズ:6.5mm×6.5mm、チップサイズ6.0mm×6.0mm×350μm厚)を得る成形を、連続で500ショットまで行なった。判定基準は未充填、離型不良等の問題が全く発生せずに500ショットまで連続成形できたものを○、それ以外を×とした。   Continuous moldability: epoxy resin composition for semiconductor encapsulation using a low pressure transfer automatic molding machine (Daiichi Seiko, GP-ELF) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 70 seconds. 80-pin QFP (quad flat package: pre-plating frame, nickel / palladium alloy gold-plated, package outer dimensions: 14 mm x 20 mm x 2 mm thickness, pad size: 6.5 mm x 6 (5 mm, chip size 6.0 mm × 6.0 mm × 350 μm thickness) was continuously performed up to 500 shots. As the judgment criteria, a case where continuous molding was performed up to 500 shots without causing any problems such as unfilling or mold release failure was indicated as ◯, and other cases were indicated as ×.

パッケージ外観及び金型汚れ性:上記連続成形性の評価において500ショット経過後のパッケージ及び金型について、目視で汚れを評価した。パッケージ外観判断及び金型汚れ基準は、500ショットまで汚れていないものを○、それ以外を×とした。また、上記連続成形性において、500ショットまで問題なく成形できなかったものについては、連続成形を断念した時点でのパッケージ外観及び金型汚れ状況で判断した。   Package appearance and mold stain resistance: In the evaluation of the continuous moldability, the package and mold after 500 shots were visually evaluated for stain. The package appearance judgment and the mold contamination standard were evaluated as ○ when the sample was not stained up to 500 shots, and × when it was not. Further, in the above-mentioned continuous formability, those that could not be formed without any problem up to 500 shots were judged based on the package appearance and mold contamination status when the continuous forming was abandoned.

耐半田性:上記連続成形性の評価において成形したパッケージを175℃、8時間で後硬化し、得られたパッケージを85℃、相対湿度85%で168時間加湿処理後、IRリフロー(260℃、JEDEC・Level1条件に従う)処理を行った。評価したパッケージの数は10個。半導体素子と半導体封止用エポキシ樹脂組成物の硬化物との界面の密着状態を超音波探傷装置(日立建機ファインテック株式会社製、mi−scope hyper II)により観察し、剥離、クラックのいずれか一方でも発生したものを不良パッケージとした。表には10個中の不良パッケージ数を示す。   Solder resistance: The package molded in the evaluation of the above-mentioned continuous formability was post-cured at 175 ° C. for 8 hours, and the resulting package was humidified at 85 ° C. and relative humidity 85% for 168 hours, followed by IR reflow (260 ° C., (According to JEDEC Level 1 conditions). The number of packages evaluated was 10. The adhesion state of the interface between the semiconductor element and the cured product of the epoxy resin composition for semiconductor encapsulation is observed with an ultrasonic flaw detector (manufactured by Hitachi Construction Machinery Finetech Co., Ltd., mi-scope hyper II). On the other hand, the one that occurred was regarded as a defective package. The table shows the number of defective packages in ten.

実施例2〜7、比較例1〜6
表1、表2の配合に従い、実施例1と同様にして半導体封止用エポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1、表2に示す。
実施例1以外で用いた原材料を以下に示す。
エポキシ樹脂2:下記式(11)で表される化合物を主成分とするビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名YX−4000、エポキシ当量190、融点105℃)

Figure 0005029133
Examples 2-7, Comparative Examples 1-6
According to the composition of Tables 1 and 2, an epoxy resin composition for semiconductor encapsulation was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
The raw materials used other than Example 1 are shown below.
Epoxy resin 2: Biphenyl type epoxy resin having a compound represented by the following formula (11) as a main component (manufactured by Japan Epoxy Resin Co., Ltd., trade name YX-4000, epoxy equivalent 190, melting point 105 ° C.)
Figure 0005029133

フェノール樹脂系硬化剤2:下記式(12)で表されるフェノールアラルキル樹脂(三井化学(株)製、商品名XLC−LL、水酸基当量165、軟化点79℃)

Figure 0005029133
Phenol resin curing agent 2: Phenol aralkyl resin represented by the following formula (12) (Mitsui Chemicals, trade name: XLC-LL, hydroxyl group equivalent: 165, softening point: 79 ° C.)
Figure 0005029133

Figure 0005029133
Figure 0005029133

Figure 0005029133
Figure 0005029133

実施例1〜7は、無機充填材の配合量が樹脂組成物全体の88重量%、92重量%と高いにもかかわらず、いずれも良好な流動性(スパイラルフロー)、金線流れ率、連続成形性、パッケージ外観、金型汚れ性が得られ、かつ良好な耐半田性を有する半導体装置が得られる結果となった。
一方、グリセリントリ脂肪酸エステルを用いていない比較例1、2、3、6では、連続成形性が悪化し、パッケージ外観、金型汚れ性、耐半田性も劣る結果となった。また、カチオン部とシリケートアニオン部とを有する硬化促進剤(d1)を用いていない比較例4、5、6では、樹脂組成物の流動性が低下することにより、金線流れ率が悪化し、連続成形性、パッケージ外観、金型汚れ性、耐半田性も劣る結果となった。
以上より、本発明のエポキシ樹脂組成物を使用することにより、無機充填材の配合量が樹脂組成物全体の88重量%、92重量%と高いにもかかわらず、成形時の流動性、連続成形性、パッケージ外観、金型汚れ性が得られ、かつ耐半田性に優れた半導体装置パッケージを提供することができることが判った。
In Examples 1 to 7, although the blending amount of the inorganic filler is as high as 88% by weight and 92% by weight of the whole resin composition, all have good fluidity (spiral flow), gold wire flow rate, continuous As a result, it was possible to obtain a semiconductor device having moldability, package appearance, and mold contamination, and having good solder resistance.
On the other hand, in Comparative Examples 1, 2, 3, and 6 in which glycerin trifatty acid ester was not used, the continuous moldability deteriorated, and the package appearance, mold stain resistance, and solder resistance were inferior. Further, in Comparative Examples 4, 5, and 6 in which the curing accelerator (d1) having a cation portion and a silicate anion portion is not used, the flow rate of the resin composition is lowered, thereby deteriorating the gold wire flow rate. The continuous formability, package appearance, mold stain resistance, and solder resistance were also poor.
From the above, by using the epoxy resin composition of the present invention, fluidity during molding, continuous molding, even though the blending amount of the inorganic filler is as high as 88% by weight and 92% by weight of the whole resin composition. It has been found that it is possible to provide a semiconductor device package that is excellent in solderability, package appearance and mold stain resistance.

本発明に従うと、封止成形時において良好な流動性、硬化性、離型性、連続成形性を有し、かつ無鉛半田に対応する高温の半田処理によっても剥離やクラックが発生しない良好な耐半田性を有する半導体封止用エポキシ樹脂組成物が得られるため、工業的な樹脂封止型半導体装置、特に表面実装用の樹脂封止型半導体装置の製造に好適に用いることができる。   According to the present invention, it has good fluidity, curability, releasability, and continuous formability at the time of sealing molding, and good resistance to peeling and cracking even by high-temperature solder processing corresponding to lead-free solder. Since an epoxy resin composition for semiconductor encapsulation having solderability can be obtained, it can be suitably used for the production of industrial resin-encapsulated semiconductor devices, in particular, resin-encapsulated semiconductor devices for surface mounting.

本発明に係る半導体封止用エポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-section about an example of the semiconductor device using the epoxy resin composition for semiconductor sealing which concerns on this invention.

符号の説明Explanation of symbols

1 半導体素子
2 ダイボンド材硬化体
3 ダイパッド
4 金線
5 リードフレーム
6 半導体封止用エポキシ樹脂組成物の硬化体
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Die pad 4 Gold wire 5 Lead frame 6 Hardening body of epoxy resin composition for semiconductor sealing

Claims (3)

(A)エポキシ樹脂、
(B)フェノール樹脂系硬化剤、
(C)無機充填材、
(D)硬化促進剤、
及び(E)離型剤
を含むエポキシ樹脂組成物において、
前記無機充填材(C)が最大粒径75μmの溶融球状シリカであり、平均粒径の異なる2種以上を併用するものであり、
前記無機充填材(C)の含有割合が、全半導体封止用エポキシ樹脂組成物中88重量%以上、94重量%以下であり、
前記硬化促進剤(D)が下記一般式(1)で表される化合物である燐カチオン部とシリケートアニオン部とを有する硬化促進剤(d1)を含み、
前記離型剤(E)が、グリセリンと炭素数24以上、36以下の飽和脂肪酸からなるグリセリントリ脂肪酸エステル(e1)を含む
ことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0005029133

(ただし、上記一般式(1)において、R1、R2、R3及びR4は、それぞれ、芳香環又は複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。X1は、基Y1及びY2と結合する有機基である。X2は、基Y3及びY4と結合する有機基である。Y1及びY2はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y1、及びY2が珪素原子と結合してキレート構造を形成するものである。Y3及びY4はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y3及びY4が珪素原子と結合してキレート構造を形成するものである。X1、及びX2は互いに同一であっても異なっていてもよく、Y1、Y2、Y3、及びY4は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基、あるいは脂肪族基を表す。)
(A) epoxy resin,
(B) a phenolic resin-based curing agent,
(C) inorganic filler,
(D) a curing accelerator,
And (E) an epoxy resin composition containing a release agent,
The inorganic filler (C) is a fused spherical silica having a maximum particle size of 75 μm, and two or more kinds having different average particle sizes are used in combination.
The content of the inorganic filler (C) is 88% by weight or more and 94% by weight or less in the total epoxy resin composition for semiconductor encapsulation,
The curing accelerator (D) includes a curing accelerator (d1) having a phosphorus cation part and a silicate anion part, which is a compound represented by the following general formula (1):
The said mold release agent (E) contains the glycerol trifatty acid ester (e1) which consists of glycerol and a C24-C36 saturated fatty acid , The epoxy resin composition for semiconductor sealing characterized by the above-mentioned.
Figure 0005029133

(In the general formula (1), R1, R2, R3 and R4 each represents an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group, and may be the same or different from each other. X1 is an organic group bonded to the groups Y1 and Y2, X2 is an organic group bonded to the groups Y3 and Y4, and Y1 and Y2 are groups formed by proton-donating substituents releasing protons. The groups Y1 and Y2 in the same molecule are bonded to a silicon atom to form a chelate structure, and Y3 and Y4 are groups formed by proton-donating substituents releasing protons. The groups Y3 and Y4 are bonded to a silicon atom to form a chelate structure, X1 and X2 may be the same as or different from each other, and Y1, Y2, Y3, and Y4 are the same as each other. Even different You can have I .Z1 represents an organic group or an aliphatic group, an aromatic ring or a heterocyclic ring.)
前記無機充填材(C)の1種の平均粒径が0.5μmであることを特徴とする請求項1の半導体封止用エポキシ樹脂組成物。2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the inorganic filler (C) has an average particle size of 0.5 μm. 請求項1または請求項2のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 Wherein a obtained by encapsulating a semiconductor element using the epoxy resin composition for semiconductor encapsulation according to claim 1 or claim 2.
JP2007128658A 2007-05-14 2007-05-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device Active JP5029133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128658A JP5029133B2 (en) 2007-05-14 2007-05-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128658A JP5029133B2 (en) 2007-05-14 2007-05-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008280492A JP2008280492A (en) 2008-11-20
JP5029133B2 true JP5029133B2 (en) 2012-09-19

Family

ID=40141577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128658A Active JP5029133B2 (en) 2007-05-14 2007-05-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Country Status (1)

Country Link
JP (1) JP5029133B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506873B (en) 2011-10-12 2015-11-01 Molex Inc Connector and connector system
KR101627019B1 (en) * 2013-10-10 2016-06-03 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4163162B2 (en) * 2003-08-29 2008-10-08 住友ベークライト株式会社 Latency catalyst for epoxy resin, epoxy resin composition and semiconductor device
JP4892955B2 (en) * 2004-12-22 2012-03-07 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP4946115B2 (en) * 2005-04-07 2012-06-06 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2006328360A (en) * 2005-04-28 2006-12-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006348283A (en) * 2005-05-18 2006-12-28 Sumitomo Bakelite Co Ltd Curing promoter for epoxy resin, epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2008280492A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP5338028B2 (en) Epoxy resin composition and semiconductor device
JP2006312720A (en) Epoxy resin composition and semiconductor device
JP2008163138A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JP5141132B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5141125B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008031326A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5277609B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5200867B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5029133B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4973146B2 (en) Epoxy resin composition, sealing epoxy resin composition, and electronic component device
JP5157473B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4956982B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5141124B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5526963B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008007692A (en) Epoxy resin composition for sealing and electronic part device
JP5024073B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5125901B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5332097B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP5423402B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008024757A (en) Epoxy resin composition for sealing and electronic part apparatus
JP4930145B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5115405B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4973444B2 (en) Semiconductor sealing resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3