JP5028657B2 - High-strength copper alloy sheet with little anisotropy and method for producing the same - Google Patents

High-strength copper alloy sheet with little anisotropy and method for producing the same Download PDF

Info

Publication number
JP5028657B2
JP5028657B2 JP2006188836A JP2006188836A JP5028657B2 JP 5028657 B2 JP5028657 B2 JP 5028657B2 JP 2006188836 A JP2006188836 A JP 2006188836A JP 2006188836 A JP2006188836 A JP 2006188836A JP 5028657 B2 JP5028657 B2 JP 5028657B2
Authority
JP
Japan
Prior art keywords
copper alloy
less
cold rolling
crystal plane
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006188836A
Other languages
Japanese (ja)
Other versions
JP2008013836A (en
Inventor
維林 高
章 菅原
義統 山岸
久 須田
久寿 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2006188836A priority Critical patent/JP5028657B2/en
Publication of JP2008013836A publication Critical patent/JP2008013836A/en
Application granted granted Critical
Publication of JP5028657B2 publication Critical patent/JP5028657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、コネクター、リードフレーム、リレー、スイッチなどの電気・電子部品に適した銅合金材料であって、特に高強度および優れた曲げ加工性を維持しながら、それらの特性についての「異方性」を改善した銅合金板材に関する。   The present invention is a copper alloy material suitable for electrical and electronic parts such as connectors, lead frames, relays, switches, etc., and particularly with respect to their properties while maintaining high strength and excellent bending workability. The present invention relates to a copper alloy sheet having improved properties.

電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチなどの通電部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な「導電性」が要求されるとともに、電気・電子機器の組立時や作動時に付与される応力に耐え得る高い「強度」が要求される。また、電気・電子部品は一般に曲げ加工により成形されることから優れた「曲げ加工性」も要求される。しかし、「強度」と「導電性」、あるいは特に「強度」と「曲げ加工性」の間にはトレードオフの関係がある。従来、このような通電部品には、用途に応じて「導電性」、「強度」あるいは「曲げ加工性」の良好な材料が適宜選択されて使用されている。   The materials used for current-carrying parts such as connectors, lead frames, relays, and switches that make up electrical and electronic parts are required to have good "conductivity" to suppress the generation of Joule heat due to current flow. High “strength” is required to withstand the stress applied during assembly and operation of electrical and electronic equipment. In addition, since electric / electronic parts are generally formed by bending, excellent “bending workability” is also required. However, there is a trade-off relationship between “strength” and “conductivity” or particularly “strength” and “bending workability”. Conventionally, materials having good “conductivity”, “strength” or “bending workability” are appropriately selected and used for such energized parts depending on the application.

近年、電気・電子部品は高集積化、小型化および軽量化が進む傾向にあり、それに伴って素材である銅および銅合金には薄肉化の要求が高まっている。そのため、素材に要求される強度レベルは一層厳しいものとなっている。また、電気・電子部品の小型化(省スペース化、部品形状の複雑化)に対応するには部品の設計自由度を拡大することが重要であり、そのためには材料の「曲げ加工性」の向上が不可欠である。   In recent years, electrical and electronic parts have been increasingly integrated, miniaturized and lightened, and accordingly, copper and copper alloys as materials have been required to be thin. For this reason, the strength level required for the material is more severe. Also, in order to cope with the miniaturization of electrical and electronic parts (space saving, complexity of part shape), it is important to expand the degree of design freedom of parts. Improvement is essential.

銅合金の一般的な強化機構として、固溶強化、析出強化、加工硬化が挙げられる。このうち固溶強化は導電性の低下を招きやすい。銅合金の導電性を高レベルに維持しながら高強度化を達成するには析出強化を利用することが有利である。一方、加工硬化は伝統的な強化手法であり、圧延によって顕著な強化効果が得られ導電性の低下も小さいことから、生産性が高くコスト面でも有利な方法であると言える。したがって、析出強化型銅合金でも顕著な高強度化を狙う場合は、仕上げ冷間圧延(調質処理)による加工硬化を併用することが有効かつ一般的な方法である。   Common strengthening mechanisms for copper alloys include solid solution strengthening, precipitation strengthening, and work hardening. Among these, solid solution strengthening tends to cause a decrease in conductivity. In order to achieve high strength while maintaining the conductivity of the copper alloy at a high level, it is advantageous to use precipitation strengthening. On the other hand, work hardening is a traditional strengthening method, and a remarkable strengthening effect is obtained by rolling, and the decrease in conductivity is small. Therefore, it can be said that it is a highly productive and cost-effective method. Therefore, when aiming at a remarkable increase in strength even for precipitation strengthened copper alloys, it is an effective and general method to use work hardening by finish cold rolling (tempering treatment) in combination.

しかしながら、冷間圧延を行うと、圧延方向に対して平行方向(LD)と直角方向(TD)とで機械的性質に差(異方性)が生じることが通常、避けられない。例えば、引張強さは一般にTDの方がLDより高くなり、曲げ加工性はTDにおいて(すなわち曲げ軸がLDとなる場合に)低下しやすい。部品の設計自由度拡大を図るにはこの異方性の低減が重要である。板材の異方性が大きくなると、強度レベルと導電性レベルが高くても電気・電子部品に使用できなくなる場合がある。   However, when cold rolling is performed, it is usually unavoidable that a difference (anisotropy) occurs in mechanical properties between the direction parallel to the rolling direction (LD) and the direction perpendicular to the direction (TD). For example, the tensile strength is generally higher in TD than in LD, and the bending workability tends to decrease in TD (that is, when the bending axis is LD). It is important to reduce this anisotropy in order to increase the degree of design freedom of parts. If the anisotropy of the plate material is increased, it may be impossible to use it for electric / electronic parts even if the strength level and the conductivity level are high.

強度と導電性のバランスに優れた銅合金としてCu−Ni−Si系合金(いわゆるコルソン合金)が近年注目されている。この系の銅合金は、溶体化処理、冷間圧延、時効処理、仕上げ冷間圧延、低温焼鈍を基本とする工程により、強度を顕著に向上させることができる。しかし、これに伴って異方性が生じ、しばしば問題となる。   In recent years, a Cu—Ni—Si based alloy (so-called Corson alloy) has attracted attention as a copper alloy having an excellent balance between strength and conductivity. This type of copper alloy can remarkably improve the strength by processes based on solution treatment, cold rolling, aging treatment, finish cold rolling, and low temperature annealing. However, this causes anisotropy, which is often a problem.

そこで、Cu−Ni−Si系合金において、組織状態を制御する手法が種々提案されている(特許文献1〜4)。なかでも特許文献2、4には、Cu−Ni−Si系合金の圧延集合組織をX線回折強度比によって規定することが記載されている。   Thus, various techniques for controlling the structure state of Cu—Ni—Si based alloys have been proposed (Patent Documents 1 to 4). In particular, Patent Documents 2 and 4 describe that the rolling texture of a Cu—Ni—Si alloy is defined by the X-ray diffraction intensity ratio.

特開2002−38228号公報JP 2002-38228 A 特開2006−9108号公報JP 2006-9108 A 特開平5−279825号公報JP-A-5-279825 特開2000−80428号公報JP 2000-80428 A

圧延材の異方性は、主に圧延集合組織(冷間圧延することにより成長する集合組織)に起因するものである。fcc構造の銅合金の場合、圧延集合組織は、添加元素の種類および添加量並びに圧延率によって多少相違するが、基本的に{110}<112>を主方位成分とするものである。すなわち冷間圧延すると、圧延板は{110}結晶面が圧延面に平行になり、<112>結晶方向が圧延方向に平行になるような結晶配向をとろうとする。   The anisotropy of the rolled material is mainly caused by a rolling texture (a texture that grows by cold rolling). In the case of a copper alloy having an fcc structure, the rolling texture is somewhat different depending on the type and amount of additive elements and the rolling rate, but basically has {110} <112> as the main orientation component. That is, when cold rolling is performed, the rolled plate tends to take a crystal orientation such that the {110} crystal plane is parallel to the rolled surface and the <112> crystal direction is parallel to the rolling direction.

特許文献2では、この圧延集合組織を抑制することを異方性低減の手段の1つとしている。しかし、昨今の厳しい部品設計に対応するには、曲げ加工性レベルの更なる向上が望まれる。特許文献4では、{200}面、{311}面および{220}面のX線回折強度が特定範囲になる結晶配向を異方性低減の手段としている。しかし、この場合も昨今のニーズを考慮すると、より安定的に優れた曲げ加工性が得られ、かつ、更に高い強度レベルが得られることが望まれる。また特許文献2、4いずれの場合も、引張強さの異方性を低減させることに関し、十分な配慮がなされていない。   In Patent Document 2, suppressing the rolling texture is one of the means for reducing the anisotropy. However, further improvement in the level of bending workability is desired in order to cope with the recent severe part design. In Patent Document 4, the crystal orientation in which the X-ray diffraction intensities of the {200} plane, {311} plane, and {220} plane are in a specific range is used as a means for reducing anisotropy. However, in this case as well, considering recent needs, it is desired that a superior bending workability can be obtained more stably and a higher strength level can be obtained. In both cases of Patent Documents 2 and 4, sufficient consideration is not given to reducing the anisotropy of tensile strength.

このように、諸特性のバランスに比較的優れるCu−Ni−Si系銅合金において、更なる高強度化を図りながら異方性を顕著に改善する技術は未だ確立されていない。
本発明は、この合金系において、特に引張強さと曲げ加工性を高レベルに維持しながら、それらの特性についての異方性を顕著に改善した銅合金板材を提供することを目的とする。
As described above, a technique for remarkably improving anisotropy while further increasing the strength of a Cu—Ni—Si based copper alloy having a relatively excellent balance of various properties has not yet been established.
An object of the present invention is to provide a copper alloy sheet material in which the anisotropy of these characteristics is remarkably improved while maintaining the tensile strength and bending workability at a high level in this alloy system.

前述のように、銅合金板材を圧延した際に発達する圧延集合組織は基本的に{110}<112>を主方位成分とするものである。このような集合組織が発達するに伴い、TDの引張強さがLDよりも大きくなるとともにTDの曲げ加工性が低下する。一方、{100}<001>を主方位成分とする純銅型再結晶集合組織を持つ銅合金板材では、上記と反対の異方性を呈する。つまり、このとき引張強さはLDの方が高くなり、曲げ加工性はLDの方が低下する。発明者らは詳細な検討の結果、これら2種類の集合組織の中間的な結晶配向を持つ組織状態にコントロールしたとき、互いの集合組織で優勢な異方性が相殺され、引張強さ、曲げ加工性ともLDとTDの差を顕著に低減させることが可能になることを見出した。   As described above, the rolling texture developed when a copper alloy sheet is rolled basically has {110} <112> as the main orientation component. As such a texture develops, the tensile strength of TD becomes larger than that of LD, and the bending workability of TD decreases. On the other hand, a copper alloy sheet having a pure copper-type recrystallized texture with {100} <001> as the main orientation component exhibits the anisotropy opposite to the above. That is, at this time, the tensile strength is higher in the LD, and the bending workability is lower in the LD. As a result of detailed studies, the inventors have controlled the texture state having an intermediate crystal orientation of these two types of textures to cancel the dominant anisotropy in each other's textures, and to improve the tensile strength and bending. It has been found that the difference between LD and TD can be remarkably reduced in terms of workability.

{100}<001>を主方位成分とする再結晶集合組織は、Cu−Ni−Si系銅合金の場合、特定範囲に組成調整した上で、60%以上、望ましくは85以上という大きな圧延率で冷間圧延を行った材料に対して溶体化処理を施すことにより実現できることがわかった。この「再結晶集合組織」をもつ材料に仕上げ冷間圧延を施すと、次第に{110}<112>を主方位成分とする「圧延集合組織」が発達していき、上記2種類の集合組織の中間的な結晶配向となったときにLDとTDの特性差が非常に小さい状態が実現できる。また、この仕上げ冷間圧延により強度レベルも向上する。このため、引張強さ700MPa以上の高強度化と異方性低減が一挙に達成される。本発明はこのような知見に基づいて完成したものである。   In the case of a Cu—Ni—Si based copper alloy, the recrystallization texture whose main orientation component is {100} <001> is a large rolling ratio of 60% or more, preferably 85 or more after adjusting the composition within a specific range. It was found that this can be realized by subjecting the material subjected to cold rolling to solution treatment. When finish cold rolling is performed on a material having this “recrystallized texture”, a “rolled texture” having {110} <112> as a main orientation component gradually develops, and the two types of textures described above are developed. A state in which the difference in characteristics between LD and TD is very small when an intermediate crystal orientation is obtained can be realized. The strength level is also improved by this finish cold rolling. For this reason, an increase in tensile strength of 700 MPa or more and a reduction in anisotropy are achieved at once. The present invention has been completed based on such findings.

すなわち本発明では、質量%で、Ni:0.7〜2.5%、Si:0.2〜0.7%を含有し、さらに必要に応じてSn:1.0%以下、Mg:0.3%以下の範囲で含有し、残部実質的にCuの組成を有し、下記(1)式および(2)式を満たす結晶配向を有する銅合金板材が提供される。上記組成において、さらにZn、Co、Cr、B、Fe、Zr、Ti、Mnの1種以上を合計3%以下の範囲で含有することができる。
3.0≦I{220}/I0{220}≦6.0 ……(1)
1.5≦I{200}/I0{200}≦2.5 ……(2)
ここで、I{220}およびI{200}はそれぞれ当該板材の板面における{220}結晶面および{200}結晶面のX線回折強度であり、I0{220}およびI0{200}はそれぞれ純銅標準粉末の{220}結晶面および{200}結晶面のX線回折強度である。「板面」は板の厚さ方向に垂直な表面(圧延面)である。
That is, in the present invention, by mass%, Ni: 0.7 to 2.5%, Si: 0.2 to 0.7% are contained, and Sn: 1.0% or less, Mg: 0 if necessary. There is provided a copper alloy sheet material that is contained in the range of .3% or less, the balance is substantially Cu, and has a crystal orientation that satisfies the following formulas (1) and (2). In the above composition, one or more of Zn, Co, Cr, B, Fe, Zr, Ti, and Mn can be further contained within a total range of 3% or less.
3.0 ≦ I {220} / I 0 {220} ≦ 6.0 (1)
1.5 ≦ I {200} / I 0 {200} ≦ 2.5 (2)
Here, I {220} and I {200} are the X-ray diffraction intensities of the {220} crystal plane and {200} crystal plane on the plate surface of the plate, respectively, and I 0 {220} and I 0 {200}. Are the X-ray diffraction intensities of the {220} crystal plane and {200} crystal plane of pure copper standard powder, respectively. The “plate surface” is a surface (rolled surface) perpendicular to the thickness direction of the plate.

「残部実質的にCu」とは、本発明の効果を阻害しない範囲で上記以外の元素の混入が許容されることを意味し、「残部がCuおよび不可避的不純物」である場合が含まれる。   “Remainder substantially Cu” means that mixing of elements other than the above is allowed within a range that does not impair the effects of the present invention, and includes the case where “remainder is Cu and inevitable impurities”.

この銅合金板材は、板面において圧延方向に対し平行方向をLD、直角方向をTDと呼ぶとき、引張強さについてLDとTDの差の絶対値が30MPa以下、90°W曲げ試験での最小曲げ半径R(mm)と板厚t(mm)の比R/tについてLDとTDの差の絶対値が0.5以下である特性を有する。   In this copper alloy sheet, when the parallel direction to the rolling direction is called LD and the perpendicular direction is called TD on the plate surface, the absolute value of the difference between LD and TD is 30 MPa or less in terms of tensile strength, and the minimum in a 90 ° W bending test. The ratio R / t of the bending radius R (mm) and the plate thickness t (mm) has a characteristic that the absolute value of the difference between LD and TD is 0.5 or less.

90°W曲げ試験はJIS H3110に準拠した試験法が採用される。LDのR/t値は試験片長手方向がLD、曲げ軸がTDとなる場合の値を意味し、TDのR/t値は試験片長手方向がTD、曲げ軸がLDとなる場合の値を意味する。   For the 90 ° W bending test, a test method based on JIS H3110 is adopted. The R / t value of LD means the value when the test piece longitudinal direction is LD and the bending axis is TD, and the TD R / t value is the value when the test piece longitudinal direction is TD and the bending axis is LD. Means.

上記銅合金板材の製造法として、上記のように組成調整された銅合金の熱間圧延材または焼鈍材に対し、60%以上望ましくは85以上の冷間圧延、溶体化処理、400〜500℃の時効処理、10〜65%望ましくは25〜60%の仕上げ冷間圧延を前記の順で施す工程を有する製造法が提供される。その仕上げ冷間圧延後に、250〜500℃の加熱処理を施すことができる。   As a method for producing the copper alloy sheet, 60% or more, preferably 85 or more cold rolling, solution treatment, 400 to 500 ° C. with respect to the hot-rolled or annealed material of the copper alloy whose composition is adjusted as described above. A aging treatment of 10 to 65%, preferably 25 to 60% of finish cold rolling is provided in the order described above. After the finish cold rolling, heat treatment at 250 to 500 ° C. can be performed.

本発明によれば、コネクター、リードフレーム、リレー、スイッチなどの電気・電子部品に必要な基本特性を具備するCu−Ni−Si系銅合金の板材において、引張強さ700MPa以上あるいはさらに720MPa以上の高強度と、90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが1以下の優れた曲げ加工性を呈し、かつこれらの特性についての異方性が顕著に低減された。このような高強度レベルにおいて引張強さと曲げ加工性の異方性の安定して顕著に低減することは、従来のCu−Ni−Si系銅合金製造技術では困難であった。本発明は、今後ますます進展が予想される電気・電子部品の小型化、薄肉化のニーズに対応し得るものである。   According to the present invention, a Cu—Ni—Si based copper alloy plate material having basic characteristics required for electrical / electronic components such as connectors, lead frames, relays, switches, etc., has a tensile strength of 700 MPa or more, or even 720 MPa or more. High strength, excellent bending workability with a ratio R / t of the minimum bending radius R to the sheet thickness t in the 90 ° W bending test of 1 or less, and anisotropy with respect to these properties were significantly reduced. . It has been difficult for the conventional Cu—Ni—Si copper alloy manufacturing technology to stably and significantly reduce the anisotropy of tensile strength and bending workability at such a high strength level. The present invention can meet the needs for downsizing and thinning of electric and electronic parts, which are expected to make further progress in the future.

〔合金組成〕
本発明ではCu−Ni−Si系銅合金を採用する。Cu−Ni−Siの3元系基本成分にSn、Znその他の合金元素を添加した銅合金も、本明細書では包括的にCu−Ni−Si系銅合金と称している。
[Alloy composition]
In the present invention, a Cu—Ni—Si based copper alloy is employed. A copper alloy obtained by adding Sn, Zn or other alloy elements to a Cu—Ni—Si ternary basic component is also referred to as a Cu—Ni—Si copper alloy in this specification.

NiおよびSiは、析出物を形成し、強度上昇および導電性・熱伝導度向上に寄与する。Ni含有量が0.7質量%未満またはSi含有量が0.2質量%未満では、上記効果を有効に引き出すことが難しい。一方、Ni含有量が2.5質量%を超える場合やSi含有量が0.8質量%を超える場合は粗大な析出物が生成しやすいので、板材の曲げ加工性がLDとTDともに低下しやすい。また、溶体化処理において後述する{100}<001>を主方位成分とする再結晶集合組織を発達させることが難しくなり、最終的に異方性が十分低された板材を得ることが困難になる。このためNi含有量は0.7〜2.5質量%、Si含有量は0.2〜0.8質量%とする。より好ましいNi含有量範囲は1.2〜2.2質量%、より好ましいSi含有量範囲は0.3〜0.6質量%である。   Ni and Si form precipitates and contribute to an increase in strength and an improvement in conductivity and thermal conductivity. When the Ni content is less than 0.7% by mass or the Si content is less than 0.2% by mass, it is difficult to effectively bring out the above effects. On the other hand, when the Ni content exceeds 2.5% by mass or the Si content exceeds 0.8% by mass, coarse precipitates are likely to be formed, so that the bending workability of the plate material decreases for both LD and TD. Cheap. Further, it becomes difficult to develop a recrystallized texture having {100} <001> as a main orientation component, which will be described later, in the solution treatment, and finally it is difficult to obtain a plate material with sufficiently low anisotropy. Become. Therefore, the Ni content is set to 0.7 to 2.5% by mass, and the Si content is set to 0.2 to 0.8% by mass. A more preferable Ni content range is 1.2 to 2.2% by mass, and a more preferable Si content range is 0.3 to 0.6% by mass.

NiとSiによって形成されるNi−Si系析出物はNi2Siを主体とする金属間化合物であると考えられる。ただし、合金中のNiおよびSiは時効処理によってすべてが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNiおよびSiは、若干の強度上昇をもたらすものの析出状態と比べてその効果は小さく、また導電率を低下させる要因になる。このためNiとSiの含有量の比はできるだけ析出物Ni2Siの組成比に近づけることが望ましい。したがって本発明では質量%で表したNi/Si比を3.5〜6.0の範囲に調整することが望ましく、3.5〜5.0とすることが一層好ましい。 The Ni—Si based precipitate formed by Ni and Si is considered to be an intermetallic compound mainly composed of Ni 2 Si. However, Ni and Si in the alloy are not necessarily all precipitated by the aging treatment, and to some extent, exist in a solid solution state in the Cu matrix. Although Ni and Si in a solid solution state cause a slight increase in strength, the effect thereof is small as compared with a precipitated state, and it causes a decrease in conductivity. For this reason, it is desirable that the ratio of the Ni and Si contents be as close as possible to the composition ratio of the precipitate Ni 2 Si. Therefore, in the present invention, it is desirable to adjust the Ni / Si ratio expressed in mass% to the range of 3.5 to 6.0, and more preferably 3.5 to 5.0.

Snは、固溶強化作用を有し、析出強化および加工硬化を組み合わせると効果的である。その作用を十分に発揮させるには、0.1質量%以上のSn含有量を確保することが望ましい。ただし、Sn含有量が1.0質量%を超えると導電率が著しく低下してしまう。このため、Snを添加する場合は1.0質量%以下の範囲で行う。   Sn has a solid solution strengthening action, and is effective when combined with precipitation strengthening and work hardening. In order to fully exhibit the action, it is desirable to secure an Sn content of 0.1% by mass or more. However, when Sn content exceeds 1.0 mass%, electrical conductivity will fall remarkably. For this reason, when adding Sn, it carries out in the range of 1.0 mass% or less.

Mgは、Ni−Si系析出物の粗大化を防止する作用を有する。また、耐応力緩和性を向上させる作用も有する。これらの作用を十分に発揮させるには0.01質量%以上のMg含有量を確保することが望ましい。ただし、Mg含有量が0.3質量%を超えると鋳造性、熱間加工性が著しく低下し、問題となりやすい。このため、Mgを添加する場合は0.3質量%以下の範囲で行う。   Mg has an effect of preventing the coarsening of Ni—Si based precipitates. It also has an effect of improving stress relaxation resistance. In order to fully exhibit these actions, it is desirable to secure an Mg content of 0.01% by mass or more. However, if the Mg content exceeds 0.3% by mass, the castability and hot workability are remarkably lowered, which tends to cause a problem. For this reason, when adding Mg, it carries out in the range of 0.3 mass% or less.

その他の元素として、必要に応じてZn、Co、Cr、B、Fe、Zr、Ti、Mn等を含有させることができる。例えば、Zn、Co、Cr、B、Fe、Zr、Ti、Mnは合金強度をさらに高め、かつ応力緩和を小さくする作用を有する。Co、Cr、Zr、Ti、Mnは不可避的不純物として存在するS、Pbなどと高融点化合物を形成しやすく、また、B、Zr、Tiは鋳造組織の微細化効果を有し、熱間加工性の改善に寄与しうる。   As other elements, Zn, Co, Cr, B, Fe, Zr, Ti, Mn and the like can be contained as necessary. For example, Zn, Co, Cr, B, Fe, Zr, Ti, and Mn have the effect of further increasing the alloy strength and reducing the stress relaxation. Co, Cr, Zr, Ti, and Mn are easy to form a high melting point compound with S, Pb, etc. present as inevitable impurities, and B, Zr, and Ti have the effect of refining the cast structure, It can contribute to improvement of sex.

Zn、Co、Cr、B、Fe、Zr、Ti、Mnの1種または2種以上を含有させる場合は、各元素の作用を十分に得るためにこれらの総量が0.01質量%以上となるように含有させることが望ましい。ただし、総量が3質量%を超えると熱間または冷間加工性が低下する場合がある。また、経済的にも不利になる。したがって、その総量は3質量%以下の範囲とすることが望ましく、2質量%以下の範囲がより好ましく、1質量%以下の範囲がより一層好ましく、0.5質量%以下の範囲がさらに一層好ましい。   When one or more of Zn, Co, Cr, B, Fe, Zr, Ti, and Mn are contained, the total amount of these elements becomes 0.01% by mass or more in order to sufficiently obtain the action of each element. It is desirable to contain. However, when the total amount exceeds 3% by mass, hot workability or cold workability may be deteriorated. It is also economically disadvantageous. Accordingly, the total amount is preferably in the range of 3% by mass or less, more preferably in the range of 2% by mass or less, still more preferably in the range of 1% by mass or less, and still more preferably in the range of 0.5% by mass or less. .

〔結晶方位〕
本発明のCu−Ni−Si系銅合金は、LDの方がTDより引張強さが高く曲げ加工性が低い{100}<001>を主方位成分とする再結晶集合組織から、TDの方がLDより引張強さが高く曲げ加工性が低い{110}<112>を主方位成分とする圧延晶集合組織を発達させていくことにより、両者の中間的な組織状態を実現し、それによってLDとTDの「引張強さの差」および「曲げ加工性の差」を小さくする。発明者らは種々検討の結果、その中間的な組織状態は、仕上げ冷間圧延を伴う銅合金板材の製造工程を採用する場合、下記(1)式および(2)式によって表すことができることを見出した。
(Crystal orientation)
In the Cu—Ni—Si based copper alloy of the present invention, the LD has a higher tensile strength than the TD and a lower bending workability. From the recrystallized texture having {100} <001> as the main orientation component, the TD Has developed a rolled crystal texture whose main orientation component is {110} <112>, which has higher tensile strength and lower bending workability than LD, thereby realizing an intermediate structure state between the two. Decrease “difference in tensile strength” and “difference in bending workability” between LD and TD. As a result of various studies, the inventors have shown that the intermediate structure state can be expressed by the following formulas (1) and (2) when adopting a manufacturing process of a copper alloy sheet with finish cold rolling. I found it.

3.0≦I{220}/I0{220}≦6.0 ……(1)
1.5≦I{200}/I0{200}≦2.5 ……(2)
ここで、
I{220}:当該銅合金板材の板面における{220}結晶面のX線回折強度、
I{200}:当該銅合金板材の板面における{200}結晶面のX線回折強度、
0{220}:純銅標準粉末の{220}結晶面のX線回折強度、
0{200}:純銅標準粉末の{200}結晶面のX線回折強度、
である。ただし、X線回折試験の条件は、当該銅合金板材と純銅標準粉末とで同一とする。
3.0 ≦ I {220} / I 0 {220} ≦ 6.0 (1)
1.5 ≦ I {200} / I 0 {200} ≦ 2.5 (2)
here,
I {220}: X-ray diffraction intensity of {220} crystal plane in the plate surface of the copper alloy sheet,
I {200}: X-ray diffraction intensity of {200} crystal plane in the plate surface of the copper alloy sheet,
I 0 {220}: X-ray diffraction intensity of {220} crystal plane of pure copper standard powder,
I 0 {200}: X-ray diffraction intensity of {200} crystal plane of pure copper standard powder,
It is. However, the conditions of the X-ray diffraction test are the same for the copper alloy sheet and the pure copper standard powder.

I{220}/I0{220}が小さすぎる場合は加工硬化不足によりLD、TDともに十分な強度が得られにくい。I{220}/I0{220}が大きすぎる場合やI{200}/I0{200}が小さすぎる場合は{110}<112>を主方位成分とする圧延晶集合組織の持つ性質が相対的に優勢であり、従来材のようにTDの強度が高く曲げ加工性が悪いという異方性が生じる。I{200}/I0{200}が大きすぎると{100}<001>を主方位成分とする再結晶集合組織の持つ性質が相対的に優勢であり、LDの強度が高く曲げ加工性が悪いという異方性が生じる。 When I {220} / I 0 {220} is too small, it is difficult to obtain sufficient strength for both LD and TD due to insufficient work hardening. When I {220} / I 0 {220} is too large or I {200} / I 0 {200} is too small, the properties of the rolled crystal texture having {110} <112> as the main orientation component are present. It is relatively dominant, and anisotropy occurs in which the strength of TD is high and bending workability is poor as in the case of conventional materials. If I {200} / I 0 {200} is too large, the properties of the recrystallized texture having {100} <001> as the main orientation component are relatively dominant, the strength of the LD is high, and the bending workability is high. Anisotropy of bad occurs.

上記(1)式に替えて下記(1)’式を満たすことがより好ましく、下記(1)’’式を満たすことが一層好ましい。
3.0<I{220}/I0{220}≦6.0 ……(1)’
3.5≦I{220}/I0{220}≦5.5 ……(1)’’
また、上記(2)式に替えて下記(2)’式を満たすことがより好ましい。
1.6≦I{200}/I0{200}≦2.3 ……(2)’
It is more preferable to satisfy the following expression (1) ′ instead of the above expression (1), and it is even more preferable to satisfy the following expression (1) ″.
3.0 <I {220} / I 0 {220} ≦ 6.0 (1) ′
3.5 ≦ I {220} / I 0 {220} ≦ 5.5 (1) ″
It is more preferable to satisfy the following expression (2) ′ instead of the above expression (2).
1.6 ≦ I {200} / I 0 {200} ≦ 2.3 (2) ′

〔特性〕
電気・電子部品の更なる小型化、薄肉化に対応するには、素材である銅合金板材の引張強さはLD、TDいずれにおいても700MPa以上であることが好ましく、720MPa以上であることが一層好ましい。曲げ加工性はLD、TDいずれにおいても90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが1.0以下であることが好ましく、0.8以下であることが一層好ましい。
〔Characteristic〕
In order to cope with further downsizing and thinning of electric / electronic parts, the tensile strength of the copper alloy sheet material is preferably 700 MPa or more in both LD and TD, and more preferably 720 MPa or more. preferable. For both LD and TD, the ratio R / t of the minimum bending radius R to the sheet thickness t in the 90 ° W bending test is preferably 1.0 or less, and more preferably 0.8 or less. .

さらに、異方性に関しては、部品に加工する際の設計自由度の拡大等を考慮すると、引張強さのLDとTDの差の絶対値が30MPa以下であることが好ましく、20MPa以下であることがより好ましく、15MPa以下であることが一層好ましい。また、90°W曲げ試験での最小曲げ半径Rと板厚tの比R/tのLDとTDの差の絶対値が0.5以下であることが好ましく、0.3以下であることが一層好ましい。   Furthermore, regarding the anisotropy, in consideration of the expansion of design freedom when processing into a part, the absolute value of the difference between the tensile strength LD and TD is preferably 30 MPa or less, and 20 MPa or less. Is more preferable, and it is still more preferable that it is 15 MPa or less. Further, the absolute value of the difference between LD and TD in the ratio R / t of the minimum bending radius R to the sheet thickness t in the 90 ° W bending test is preferably 0.5 or less, and is 0.3 or less. Even more preferred.

〔製造工程〕
以上のような本発明の銅合金板材は、例えば以下のような製造工程により作ることができる。
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→時効処理→仕上げ冷間圧延→加熱処理」
ただし、製造条件のコントロールが必要である。上記工程中には記載していないが、熱間圧延後には必要に応じて面削が行われ、熱処理後には必要に応じて酸洗、研磨、あるいはさらに脱脂が行われる。以下、各工程について説明する。
〔Manufacturing process〕
The copper alloy sheet material of the present invention as described above can be produced, for example, by the following manufacturing process.
“Melting / Casting → Hot Rolling → Cold Rolling → Solution Treatment → Aging Treatment → Finish Cold Rolling → Heat Treatment”
However, it is necessary to control the manufacturing conditions. Although not described in the above steps, chamfering is performed as necessary after hot rolling, and pickling, polishing, or further degreasing is performed as necessary after heat treatment. Hereinafter, each step will be described.

〔溶解・鋳造〕
一般的な銅合金の溶製方法に従うことができる。連続鋳造、半連続鋳造等により鋳片を製造すればよい。
[Melting / Casting]
A general copper alloy melting method can be followed. The slab may be manufactured by continuous casting, semi-continuous casting, or the like.

〔熱間圧延〕
鋳片を熱間加工することで鋳造過程で生じる晶出相を消失させると同時に、再結晶によって鋳造組織を破壊し再結晶粒組織の均一化を図る。この熱間圧延は析出物の固溶温度域で行うことが望ましい。熱間圧延終了後は直ちに水冷等により急冷することが望ましい。650℃未満の温度域ではNiとSiの粗大な化合物の生成により熱間割れが生じやすくなるので950〜650℃の範囲で熱間圧延を行い、最終パス終了後に水冷することが好ましい。熱間圧延率は概ね65〜90%とすればよい。熱間加工後は必要に応じて面削や酸洗を行うことができる。
(Hot rolling)
By hot working the slab, the crystallization phase generated in the casting process disappears, and at the same time, the cast structure is destroyed by recrystallization to make the recrystallized grain structure uniform. This hot rolling is desirably performed in the solid solution temperature range of the precipitate. It is desirable to quench immediately after the hot rolling by water cooling or the like. In the temperature range below 650 ° C., hot cracking is likely to occur due to the formation of a coarse compound of Ni and Si. Therefore, it is preferable to perform hot rolling in the range of 950 to 650 ° C. and water-cool after the final pass. The hot rolling rate may be approximately 65 to 90%. After hot working, chamfering or pickling can be performed as necessary.

〔冷間圧延〕
溶体化処理前に行う冷間圧延では圧延率を60%以上確保する。このような高い圧延率で加工された材料に対し、次工程で溶体化処理を施すことにより、{100}<001>を主方位成分とする再結晶集合組織を得ることができる。この冷間圧延率が低すぎると上記再結晶集合組織の形成が不十分となり、本発明の目的を達成することが難しくなる。すなわち、再結晶集合組織は再結晶前の冷間圧延率に依存する。具体的には、{100}<001>の方位関係を持つ溶体化処理後の結晶配向は、冷間圧延率が60%未満の場合には十分生成しない。冷間圧延率が60%以上になると冷間圧延率の増加に伴って溶体化処理後の上記結晶配向は増大し、冷間圧延率が約80%を超えると急激な増加に転じる。上記方位関係が十分に優勢な結晶配向を得るには冷間圧延率を60%以上とする必要があり、85%以上とすることがより効果的である。90%以上とすることが一層好ましい。なお、冷間圧延率の上限はミルパワー等により必然的に制約を受けるので、特に規定する必要はないが、概ね98%以下で良好な結果を得やすい。
熱間圧延後、溶体化処理前に、中間焼鈍を挟んで複数回の冷間圧延を実施する場合は、溶体化処理の直前に行われる冷間圧延での冷間圧延率を上記のように調整する。
(Cold rolling)
In the cold rolling performed before the solution treatment, a rolling rate of 60% or more is secured. A recrystallized texture having {100} <001> as the main orientation component can be obtained by subjecting the material processed at such a high rolling ratio to a solution treatment in the next step. If this cold rolling rate is too low, the formation of the recrystallized texture becomes insufficient, making it difficult to achieve the object of the present invention. That is, the recrystallization texture depends on the cold rolling rate before recrystallization. Specifically, the crystal orientation after the solution treatment having an orientation relationship of {100} <001> is not sufficiently generated when the cold rolling rate is less than 60%. When the cold rolling rate reaches 60% or more, the crystal orientation after the solution treatment increases with an increase in the cold rolling rate, and when the cold rolling rate exceeds about 80%, it starts to increase rapidly. In order to obtain a crystal orientation in which the orientation relationship is sufficiently dominant, it is necessary to set the cold rolling rate to 60% or more, and it is more effective to set it to 85% or more. More preferably, it is 90% or more. The upper limit of the cold rolling rate is inevitably restricted by the mill power or the like, so it is not necessary to define it in particular, but good results are likely to be obtained at approximately 98% or less.
After hot rolling and before solution treatment, when performing cold rolling multiple times with intermediate annealing, the cold rolling rate in cold rolling performed immediately before solution treatment is as described above. adjust.

〔溶体化処理〕
ここでの溶体化処理は、「溶質元素のマトリックス中への再固溶」および「再結晶化」という2つの目的を兼ねる熱処理である。上記のように高い圧延率で加工された材料を対象としていることから、溶体化処理後には{100}<001>を優先方位とする再結晶集合組織が得られる。この溶体化処理は、再結晶粒径が15〜60μmとなるように温度・時間を調整して行うことが望ましく、20超え〜40μm、あるいはさらに25超え〜40μmとなるように調整することが一層好ましい。再結晶粒径が微細になりすぎると再結晶集合組織が弱くなりことにより、仕上げ圧延時時に圧延集合組織が優勢となりやすく、異方性の改善が難しくなる。具体的には、700〜800℃×10sec〜10minの加熱条件が採用できる。温度が低すぎると再結晶は不完全で溶質元素の固溶も不十分となり、温度が高すぎると結晶粒が粗大化してしまう。このような場合、最終的に異方性の少ない高強度材を得ることは困難である。
[Solution treatment]
The solution treatment here is a heat treatment that serves the two purposes of “re-solution of solute elements in the matrix” and “recrystallization”. Since the target is a material processed at a high rolling rate as described above, a recrystallized texture having {100} <001> as the preferred orientation is obtained after the solution treatment. This solution treatment is desirably performed by adjusting the temperature and time so that the recrystallized grain size is 15 to 60 μm, and further adjusting to be 20 to 40 μm, or further 25 to 40 μm. preferable. If the recrystallized grain size becomes too fine, the recrystallized texture becomes weak, so that the rolled texture tends to become dominant during finish rolling, and it becomes difficult to improve anisotropy. Specifically, heating conditions of 700 to 800 ° C. × 10 sec to 10 min can be employed. If the temperature is too low, the recrystallization is incomplete and the solute elements are not sufficiently dissolved, and if the temperature is too high, the crystal grains become coarse. In such a case, it is difficult to finally obtain a high strength material with little anisotropy.

〔時効処理〕
溶体化処理に引き続き、時効処理を施す。Cu−Ni−Si系合金の一般的な製造法では、溶体化処理後に中間での冷間圧延を施し、その後、時効処理を施す工程がしばしば採用される。この場合、その中間での冷間圧延によって圧延集合組織が発達していくので、時効処理後の引張強さはLDとTDで同等になるか、あるいはTDの方が大きくなる。ところが、時効処理前に行う冷間圧延は、時効処理後に行う冷間圧延より強度の向上効果が小さい。このため、例えば引張強さが700MPa以上といった高強度材を得るには、時効処理前に冷間圧延を行ったとしても、更に時効処理後に仕上げ冷間圧延を施す必要が生じる。そうすると、結局その仕上げ冷間圧延によって異方性が生じてしまう。したがって、本発明の銅合金板材を得るためには、溶体化処理後に中間の冷間圧延を行わず、直接時効処理に供する。この時効処理前の冷間圧延を省略することは生産性の向上の点でも有利である。
[Aging treatment]
An aging treatment is performed following the solution treatment. In a general manufacturing method of a Cu—Ni—Si based alloy, a step of performing an intermediate cold rolling after a solution treatment and then an aging treatment is often employed. In this case, since the rolling texture is developed by cold rolling in the middle, the tensile strength after the aging treatment is equal between LD and TD, or TD is larger. However, the cold rolling performed before the aging treatment is less effective in improving the strength than the cold rolling performed after the aging treatment. For this reason, for example, in order to obtain a high strength material having a tensile strength of 700 MPa or more, even if cold rolling is performed before the aging treatment, it is necessary to perform finish cold rolling after the aging treatment. If it does so, anisotropy will arise by the finish cold rolling after all. Therefore, in order to obtain the copper alloy sheet material of the present invention, it is directly subjected to an aging treatment without performing intermediate cold rolling after the solution treatment. Omitting the cold rolling before the aging treatment is also advantageous in terms of improving productivity.

時効処理では、当該合金の導電性と強度の向上に有効な条件の中で、あまり温度を上げすぎないようにする。時効処理温度が高温になると溶体化処理によって発達させた{100}<001>を優先方位とする結晶配向が弱められ、結果的に十分な異方性改善効果が得られない場合がある。具体的には400〜500℃で行うことが望ましく、420〜480℃とすることがより好ましい。時効処理時間は概ね1〜10h程度で良好な結果が得られる。   In the aging treatment, the temperature is not excessively raised under conditions effective for improving the conductivity and strength of the alloy. When the aging treatment temperature becomes high, the crystal orientation with {100} <001> developed by solution treatment as the preferred orientation is weakened, and as a result, a sufficient anisotropy improving effect may not be obtained. Specifically, it is desirable to carry out at 400-500 degreeC, and it is more preferable to set it as 420-480 degreeC. An aging treatment time is about 1 to 10 hours, and good results are obtained.

〔仕上げ冷間圧延〕
以上の工程により、板材の集合組織は{100}<001>を主方位成分とするものになっており、引張強さはLDの方が大きい状態になっている。この仕上げ冷間圧延では、強度レベルの向上を図るとともに、{110}<112>方位の圧延集合組織を発達させていく。仕上げ冷間圧延の圧延率が低すぎると強度上昇効果が十分に得られず、逆に圧延率が高すぎると{110}<112>方位の圧延集合組織が優勢となって、異方性の相殺された中間的な結晶配向が実現できない。種々検討の結果、仕上げ圧延率は10〜65%の範囲とする必要があるが、25〜60%の範囲がより好ましい。通常、30〜50%程度で良好な結果が得られやすい。
最終的な板厚としては概ね0.1〜1.0mmが適用され、0.1〜0.5mmとすることが一層好ましい。
(Finish cold rolling)
Through the above steps, the texture of the plate material has {100} <001> as the main orientation component, and the tensile strength of LD is larger. In this finish cold rolling, the strength level is improved and a rolling texture of {110} <112> orientation is developed. If the rolling rate of the finish cold rolling is too low, the effect of increasing the strength cannot be sufficiently obtained. Conversely, if the rolling rate is too high, the rolling texture of the {110} <112> orientation becomes dominant and the anisotropic An offset intermediate crystal orientation cannot be realized. As a result of various studies, the finish rolling ratio needs to be in the range of 10 to 65%, but more preferably in the range of 25 to 60%. Usually, good results are easily obtained at about 30 to 50%.
The final plate thickness is generally about 0.1 to 1.0 mm, and more preferably 0.1 to 0.5 mm.

〔加熱処理(低温焼鈍)〕
仕上げ冷間圧延後には、板条材の残留応力の低減、ばね限界値と耐応力緩和特性向上を目的として、低温焼鈍を施すことができる。加熱温度は250〜500℃とすることが望ましい。これにより板材内部の残留応力が低減され、強度低下をほとんど伴わずに曲げ加工性と破断伸びを上昇させることができる。また、導電率を上昇させることもできる。この加熱温度が高すぎると短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じやすくなる。逆に加熱温度が低すぎると上記特性の改善効果が十分に得られない。加熱時間は5sec以上確保することが望ましく、通常1h以内の範囲で良好な結果が得られる。
[Heat treatment (low temperature annealing)]
After the finish cold rolling, low-temperature annealing can be performed for the purpose of reducing the residual stress of the strip material and improving the spring limit value and stress relaxation resistance. The heating temperature is preferably 250 to 500 ° C. As a result, the residual stress inside the plate material is reduced, and bending workability and elongation at break can be increased with almost no decrease in strength. In addition, the conductivity can be increased. If this heating temperature is too high, it softens in a short time, and variations in characteristics are likely to occur in both batch and continuous systems. Conversely, if the heating temperature is too low, the effect of improving the above characteristics cannot be obtained sufficiently. It is desirable to secure a heating time of 5 sec or more, and good results are usually obtained within a range of 1 h.

表1に示す銅合金を溶製し、縦型連続鋳造機を用いて鋳造した。得られた鋳片を950℃に加熱し、950〜650℃の温度範囲で熱間圧延を行うことにより厚さ10mmの板にし、その後急冷(水冷)した。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。次いで、種々の圧延率で冷間圧延を行った後、溶体化処理を施した。溶体化処理では圧延板表面を研磨・エッチングした面における平均結晶粒径(JIS H0501の線分法)が25μm超え〜40μmとなるように保持温度を合金組成に応じて700〜800℃の範囲内で調整した。保持時間は10sec〜10minの範囲とした。続いて、上記溶体化処理後の板材に対して時効処理を施した。時効処理温度は450℃とし、時効時間は合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。このような合金組成に応じて最適な溶体化処理条件や時効処理時間は予備実験により把握してある。次いで、種々の圧延率で仕上げ冷間圧延を行い、その後、400℃×5minの加熱処理(低温焼鈍)を行うことによって供試材を得た。なお、必要に応じて途中で面削を行い、供試材の板厚は0.2mmに揃えた。   The copper alloys shown in Table 1 were melted and cast using a vertical continuous casting machine. The obtained slab was heated to 950 ° C., and hot-rolled in a temperature range of 950 to 650 ° C. to obtain a plate having a thickness of 10 mm, and then rapidly cooled (water cooled). After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing. Next, after cold rolling at various rolling rates, solution treatment was performed. In the solution treatment, the holding temperature is in the range of 700 to 800 ° C. depending on the alloy composition so that the average crystal grain size (line segment method of JIS H0501) on the polished and etched surface of the rolled plate exceeds 25 μm to 40 μm. Adjusted. The holding time was in the range of 10 sec to 10 min. Subsequently, an aging treatment was performed on the plate material after the solution treatment. The aging treatment temperature was 450 ° C., and the aging time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition. The optimum solution treatment conditions and aging treatment time according to such an alloy composition have been grasped by preliminary experiments. Next, finish cold rolling was performed at various rolling rates, and then heat treatment (low temperature annealing) at 400 ° C. × 5 min was performed to obtain a test material. If necessary, chamfering was performed in the middle, and the thickness of the specimen was adjusted to 0.2 mm.

Figure 0005028657
Figure 0005028657

各供試材から試料を採取し、X線回折強度、導電率、引張強さ、破断伸び、曲げ加工性を以下の方法で調べた。   Samples were collected from each test material, and X-ray diffraction strength, electrical conductivity, tensile strength, elongation at break, and bending workability were examined by the following methods.

〔X線回折強度〕
X線回折装置(XRD)を用いて、Mo−Kα線、管電圧20kV、管電流2mAの条件で、供試材の板面(圧延面)および無方向性試料(純銅標準粉末)について{220}面および{200}面の反射回折面強度を測定し、前記(1)式中および(2)式中に示されるX線回折強度比を求めた。
[X-ray diffraction intensity]
Using an X-ray diffractometer (XRD), the plate surface (rolled surface) and non-directional sample (pure copper standard powder) of the test material under the conditions of Mo-Kα ray, tube voltage 20 kV, tube current 2 mA {220 } And {200} plane reflection diffraction surface intensities were measured, and X-ray diffraction intensity ratios shown in the above formulas (1) and (2) were determined.

〔導電率〕
JIS H0505に従って各供試材の導電率を測定した。
〔引張強さ、破断伸び〕
各供試材からLDおよびTDの引張試験片(JIS 5号)を採取し、各方向n=3でJIS Z2241に準拠した引張試験行い、n=3の平均値によってLDの引張強さσLD、TDの引張強さσTD、LDの破断伸びεLD、TDの破断伸びεTDを求めた。また、LDとTDの引張強さの差の絶対値|σLD−σTD|を算出した。
〔conductivity〕
The electrical conductivity of each test material was measured according to JIS H0505.
[Tensile strength, elongation at break]
LD and TD tensile test specimens (JIS No. 5) were taken from each sample material, subjected to a tensile test according to JIS Z2241 in each direction n = 3, and the tensile strength σ LD of LD according to the average value of n = 3 , TD tensile strength σ TD , LD breaking elongation ε LD , and TD breaking elongation ε TD were determined. Further, the absolute value | σ LD −σ TD | of the difference in tensile strength between LD and TD was calculated.

〔曲げ加工性〕
各供試材から長手方向がLDおよびTDの曲げ試験片(幅10mm)を採取し、JIS H3110に準拠した90°W曲げ試験を行った。試験後の試験片について曲げ加工部の表面および断面を光学顕微鏡にて100倍の倍率で観察することにより、割れが発生しない最小曲げ半径Rを求め、これを供試材の板厚tで除することによりLD、TDそれぞれのR/t値(それぞれR/tLD、R/tTDと表記)を求めた。また、LDとTDのR/t値の差の絶対値|R/tLD−R/tTD|を算出した。
これらの結果を表2に示す。
[Bending workability]
Bending test pieces (width 10 mm) having a longitudinal direction of LD and TD were sampled from each test material, and a 90 ° W bending test based on JIS H3110 was performed. By observing the surface and cross section of the bent portion of the test piece after the test with an optical microscope at a magnification of 100 times, the minimum bending radius R at which no crack is generated is obtained, and this is divided by the thickness t of the specimen. Thus, R / t values of LD and TD (represented as R / t LD and R / t TD , respectively) were obtained. Also, the absolute value | R / t LD −R / t TD | of the difference between the R / t values of LD and TD was calculated.
These results are shown in Table 2.

Figure 0005028657
Figure 0005028657

表2から判るように、本発明例のものはいずれもX線回折強度比が(1)式および(2)式を満たす結晶配向を有し、引張強さがLD、TDとも700MPa以上という高強度を呈するとともに、R/t値がLD、TDとも1.0以下という優れた曲げ加工性を有する。さらに、|σLD−σTD|が15MPa以下、かつ|R/tLD−R/tTD|が0.5以下であり、引張強さと曲げ加工性についての異方性が極めて小さい。 As can be seen from Table 2, all of the examples of the present invention have a crystal orientation in which the X-ray diffraction intensity ratio satisfies the expressions (1) and (2), and the tensile strength is as high as 700 MPa or more for both LD and TD. In addition to exhibiting strength, the R / t value has excellent bending workability of both LD and TD of 1.0 or less. Furthermore, | σ LD −σ TD | is 15 MPa or less, and | R / t LD −R / t TD | is 0.5 or less, and the anisotropy of tensile strength and bending workability is extremely small.

これに対し、比較例No.21は冷間圧延率と仕上げ圧延率ともに低すぎたことにより強度レベルが低かった。No.22、23は溶体化処理前の冷間圧延率が低すぎたことにより溶体化処理で{100}<001>を主方位成分とする再結晶集合組織が十分に発達せず、最終的に(2)式を満たす結晶配向が得られなかった。その結果、特に曲げ加工性についての異方性が大きかった。   On the other hand, Comparative Example No. 21 had a low strength level because both the cold rolling rate and the finish rolling rate were too low. In Nos. 22 and 23, since the cold rolling ratio before the solution treatment was too low, the recrystallization texture having {100} <001> as the main orientation component was not sufficiently developed in the solution treatment, and the final No crystal orientation satisfying the formula (2) was obtained. As a result, the anisotropy was particularly great with respect to bending workability.

No.24はNiとSi含有量が低すぎ析出物の量が少なかったことにより、強度レベルが低かった。No.25はNiとSi含有量が高すぎたことにより、溶体化処理後の冷間圧延率が適正であっても(1)式と(2)式を満たす結晶配向が得られず、引張強さは高いものの異方性が大きく、またTDの曲げ加工性が非常に悪かった。No.26はNiおよびSi含有量がさらに高すぎたものである。溶体化処理前の冷間圧延率と仕上げ冷間圧延率を適正とすることにより(1)式と(2)式を満たす結晶配向は得られたものの、曲げ加工性がLD、TDとも非常に悪かった。   No. 24 had a low strength level because the contents of Ni and Si were too low and the amount of precipitates was small. In No. 25, since the Ni and Si contents were too high, even if the cold rolling rate after the solution treatment was appropriate, the crystal orientation satisfying the formulas (1) and (2) was not obtained, Although the strength was high, the anisotropy was large, and the bending workability of TD was very poor. No. 26 has a Ni and Si content that is too high. Although the crystal orientation satisfying the formulas (1) and (2) was obtained by making the cold rolling rate and the finish cold rolling rate before solution treatment appropriate, the bending workability was very good for both LD and TD. It was bad.

No.27は仕上げ圧延率が低すぎたことにより(1)式と(2)式を満たす結晶配向が得られず、引張強さが非常に低く、その異方性にも劣った。No.28は仕上げ圧延率が高すぎたことにより(1)式と(2)式を満たす結晶配向が得られず、TDの曲げ加工性が非常に悪いとともに、引張強さおよび曲げ加工性の異方性にも劣った。   In No. 27, the finish rolling rate was too low, so that the crystal orientation satisfying the formulas (1) and (2) was not obtained, the tensile strength was very low, and the anisotropy was also inferior. In No. 28, since the finish rolling ratio was too high, crystal orientation satisfying the formulas (1) and (2) was not obtained, the bending workability of TD was very poor, and the tensile strength and bending workability were low. Also inferior in anisotropy.

Claims (7)

質量%で、Ni:0.7〜2.5%、Si:0.2〜0.7%、残部がCuおよび不可避的不純物の組成を有し、引張強さが700MPa以上であって、板面において圧延方向に対し平行方向をLD、直角方向をTDと呼ぶとき、引張強さについてLDとTDの差の絶対値が30MPa以下、90°W曲げ試験での最小曲げ半径Rと板厚tの比R/tについてLDとTDの差の絶対値が0.5以下であり、下記(1)式および(2)式を満たす結晶配向を有する銅合金板材。
3.0≦I{220}/I0{220}≦6.0 …… (1)
1.5≦I{200}/I0{200}≦2.5 …… (2)
ここで、I{220}およびI{200}はそれぞれ当該板材の板面における{220}結晶面および{200}結晶面のX線回折強度であり、I0{220}およびI0{200}はそれぞれ純銅標準粉末の{220}結晶面および{200}結晶面のX線回折強度である。
In mass%, Ni: 0.7-2.5%, Si: 0.2-0.7%, the balance has the composition of Cu and inevitable impurities , the tensile strength is 700 MPa or more, In the plane, when the parallel direction to the rolling direction is called LD and the perpendicular direction is called TD, the absolute value of the difference between LD and TD in terms of tensile strength is 30 MPa or less, and the minimum bending radius R and thickness t in the 90 ° W bending test A copper alloy sheet having a crystal orientation in which the absolute value of the difference between LD and TD is 0.5 or less and the following formulas (1) and (2) are satisfied.
3.0 ≦ I {220} / I 0 {220} ≦ 6.0 (1)
1.5 ≦ I {200} / I 0 {200} ≦ 2.5 (2)
Here, I {220} and I {200} are the X-ray diffraction intensities of the {220} crystal plane and {200} crystal plane on the plate surface of the plate, respectively, and I 0 {220} and I 0 {200}. Are the X-ray diffraction intensities of the {220} crystal plane and {200} crystal plane of pure copper standard powder, respectively.
質量%で、Ni:0.7〜2.5%、Si:0.2〜0.7%、残部がCuおよび不可避的不純物の組成を有し、引張強さが700MPa以上、90°W曲げ試験での最小曲げ半径Rと板厚tの比R/tが1以下であって、板面において圧延方向に対し平行方向をLD、直角方向をTDと呼ぶとき、引張強さについてLDとTDの差の絶対値が30MPa以下、前記R/tについてLDとTDの差の絶対値が0.5以下であり、下記(1)式および(2)式を満たす結晶配向を有する銅合金板材。
3.0≦I{220}/I0{220}≦6.0 …… (1)
1.5≦I{200}/I0{200}≦2.5 …… (2)
ここで、I{220}およびI{200}はそれぞれ当該板材の板面における{220}結晶面および{200}結晶面のX線回折強度であり、I0{220}およびI0{200}はそれぞれ純銅標準粉末の{220}結晶面および{200}結晶面のX線回折強度である。
In mass%, Ni: 0.7-2.5%, Si: 0.2-0.7%, the balance is Cu and inevitable impurities , tensile strength is 700 MPa or more, 90 ° W bending When the ratio R / t of the minimum bending radius R to the sheet thickness t in the test is 1 or less, the parallel direction to the rolling direction on the plate surface is called LD, and the perpendicular direction is called TD, the tensile strength is expressed as LD and TD. A copper alloy sheet material having an absolute value of difference of 30 MPa or less, an absolute value of difference of LD and TD of R / t of 0.5 or less, and a crystal orientation satisfying the following formulas (1) and (2).
3.0 ≦ I {220} / I 0 {220} ≦ 6.0 (1)
1.5 ≦ I {200} / I 0 {200} ≦ 2.5 (2)
Here, I {220} and I {200} are the X-ray diffraction intensities of the {220} crystal plane and {200} crystal plane on the plate surface of the plate, respectively, and I 0 {220} and I 0 {200}. Are the X-ray diffraction intensities of the {220} crystal plane and {200} crystal plane of pure copper standard powder, respectively.
さらにSn:1.0%以下を含む組成を有する請求項1または2に記載の銅合金板材。   Furthermore, the copper alloy sheet | seat material of Claim 1 or 2 which has a composition containing Sn: 1.0% or less. さらにMg:0.3%以下を含む組成を有する請求項1〜3のいずれかに記載の銅合金板材。   Furthermore, Mg: The copper alloy board | plate material in any one of Claims 1-3 which has a composition containing 0.3% or less. さらにZn、Co、Cr、B、Fe、Zr、Ti、Mnの1種以上を合計3%以下の範囲で含む組成を有する請求項1〜4のいずれかに記載の銅合金板材。   Furthermore, the copper alloy board | plate material in any one of Claims 1-4 which has a composition which contains 1 or more types of Zn, Co, Cr, B, Fe, Zr, Ti, and Mn in the range of 3% or less in total. 組成調整された銅合金材料に対し、60%以上の冷間圧延、再結晶粒径25超え〜40μmとする溶体化処理、400〜500℃の時効処理、25〜60%の仕上げ冷間圧延、250〜500℃の加熱処理を順次施す工程を有する請求項1〜5のいずれかに記載の銅合金板材の製造法。 60% or more of cold-rolled composition-adjusted copper alloy material, solution treatment with recrystallized grain size exceeding 25 to 40 μm , aging treatment at 400 to 500 ° C., finish cold rolling at 25 to 60% , The method for producing a copper alloy sheet according to any one of claims 1 to 5, further comprising a step of sequentially performing a heat treatment at 250 to 500 ° C. 組成調整された銅合金材料に対し、60%以上の冷間圧延、再結晶粒径25超え〜40μmとする溶体化処理、400〜500℃の時効処理、25〜60%で結晶配向を調整する仕上げ冷間圧延、250〜500℃の加熱処理を順次施す工程を有する請求項1〜5のいずれかに記載の銅合金板材の製造法。 60% or more cold rolling, recrystallization grain size 25 to 40 μm solution treatment, aging treatment at 400 to 500 ° C. , crystal orientation adjusted at 25 to 60% for the copper alloy material whose composition is adjusted The manufacturing method of the copper alloy sheet | seat material in any one of Claims 1-5 which has the process of performing a finish cold rolling and heat processing of 250-500 degreeC sequentially.
JP2006188836A 2006-07-10 2006-07-10 High-strength copper alloy sheet with little anisotropy and method for producing the same Active JP5028657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188836A JP5028657B2 (en) 2006-07-10 2006-07-10 High-strength copper alloy sheet with little anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188836A JP5028657B2 (en) 2006-07-10 2006-07-10 High-strength copper alloy sheet with little anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008013836A JP2008013836A (en) 2008-01-24
JP5028657B2 true JP5028657B2 (en) 2012-09-19

Family

ID=39071137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188836A Active JP5028657B2 (en) 2006-07-10 2006-07-10 High-strength copper alloy sheet with little anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP5028657B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260992B2 (en) * 2008-03-19 2013-08-14 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
CN102105610B (en) 2008-06-03 2013-05-29 古河电气工业株式会社 Copper alloy sheet material and manufacturing method thereof
WO2010047373A1 (en) 2008-10-22 2010-04-29 古河電気工業株式会社 Copper alloy material, electric and electronic parts, and copper alloy material manufacturing method
JP4930527B2 (en) 2009-03-05 2012-05-16 日立電線株式会社 Copper alloy material and method for producing copper alloy material
JP4563495B1 (en) * 2009-04-27 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP5643503B2 (en) * 2009-11-19 2014-12-17 株式会社Shカッパープロダクツ Cu-Si-Ni copper alloy material
JP4885332B2 (en) 2009-12-02 2012-02-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
CN102666889A (en) 2009-12-02 2012-09-12 古河电气工业株式会社 Copper alloy sheet and process for producing same
EP2508631A1 (en) 2009-12-02 2012-10-10 Furukawa Electric Co., Ltd. Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP5476149B2 (en) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability
JP5319590B2 (en) * 2010-03-30 2013-10-16 Jx日鉱日石金属株式会社 Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
JP4677505B1 (en) 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
CN103080347A (en) 2010-08-27 2013-05-01 古河电气工业株式会社 Copper alloy sheet and method for producing same
CN105671358B (en) 2010-08-31 2018-01-02 古河电气工业株式会社 Copper alloy plate, copper alloy part and connector
US9845521B2 (en) 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
JP5441876B2 (en) * 2010-12-13 2014-03-12 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5451674B2 (en) 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP5684022B2 (en) * 2011-03-28 2015-03-11 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in stress relaxation resistance, fatigue resistance after bending and spring characteristics, and method for producing the same
JP4799701B1 (en) 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
CN103443309B (en) 2011-05-02 2017-01-18 古河电气工业株式会社 Copper alloy sheet material and process for producing same
CN103703154B (en) 2011-08-04 2015-11-25 株式会社神户制钢所 Copper alloy
JP2016084542A (en) * 2012-03-26 2016-05-19 Jx金属株式会社 Corson alloy and manufacturing method therefor
JP6111028B2 (en) * 2012-03-26 2017-04-05 Jx金属株式会社 Corson alloy and manufacturing method thereof
JP6581755B2 (en) * 2013-08-09 2019-09-25 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP6223057B2 (en) * 2013-08-13 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
CN105829555B (en) 2013-12-27 2018-04-20 古河电气工业株式会社 The manufacture method of copper alloy plate, connector and copper alloy plate
WO2015182776A1 (en) * 2014-05-30 2015-12-03 古河電気工業株式会社 Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet
JP6355671B2 (en) * 2016-03-31 2018-07-11 Jx金属株式会社 Cu-Ni-Si-based copper alloy strip and method for producing the same
JP6306632B2 (en) * 2016-03-31 2018-04-04 Jx金属株式会社 Copper alloy for electronic materials
JP6472477B2 (en) * 2017-03-30 2019-02-20 Jx金属株式会社 Cu-Ni-Si copper alloy strip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511648B2 (en) * 1993-09-27 2004-03-29 三菱伸銅株式会社 Method for producing high-strength Cu alloy sheet strip
JP4423054B2 (en) * 2004-01-30 2010-03-03 日鉱金属株式会社 Material for electronic parts with excellent press punchability
JP3977376B2 (en) * 2004-02-27 2007-09-19 古河電気工業株式会社 Copper alloy
JP2007039789A (en) * 2005-03-29 2007-02-15 Nikko Kinzoku Kk Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF

Also Published As

Publication number Publication date
JP2008013836A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP5028657B2 (en) High-strength copper alloy sheet with little anisotropy and method for producing the same
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP4189435B2 (en) Cu-Ni-Si-based copper alloy sheet and method for producing the same
JP4563495B1 (en) Copper alloy sheet and manufacturing method thereof
JP5961335B2 (en) Copper alloy sheet and electrical / electronic components
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5261122B2 (en) Copper alloy sheet and manufacturing method thereof
US11655524B2 (en) Copper alloy with excellent comprehensive performance and application thereof
JP5578827B2 (en) High-strength copper alloy sheet and manufacturing method thereof
JP6385383B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP5075438B2 (en) Cu-Ni-Sn-P copper alloy sheet and method for producing the same
JP2006152392A (en) High-strength copper alloy sheet superior in bendability and manufacturing method therefor
WO2009123140A1 (en) Cu-ni-si alloy to be used in electrically conductive spring material
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
KR20170113410A (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP4779100B2 (en) Manufacturing method of copper alloy material
JP6045635B2 (en) Method for producing copper alloy sheet
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120605

R150 Certificate of patent or registration of utility model

Ref document number: 5028657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250