JP5027173B2 - Argon production method and apparatus thereof - Google Patents

Argon production method and apparatus thereof Download PDF

Info

Publication number
JP5027173B2
JP5027173B2 JP2009053637A JP2009053637A JP5027173B2 JP 5027173 B2 JP5027173 B2 JP 5027173B2 JP 2009053637 A JP2009053637 A JP 2009053637A JP 2009053637 A JP2009053637 A JP 2009053637A JP 5027173 B2 JP5027173 B2 JP 5027173B2
Authority
JP
Japan
Prior art keywords
argon
column
pressure
low
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009053637A
Other languages
Japanese (ja)
Other versions
JP2010210104A (en
Inventor
信明 江越
博志 橘
一俊 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009053637A priority Critical patent/JP5027173B2/en
Publication of JP2010210104A publication Critical patent/JP2010210104A/en
Application granted granted Critical
Publication of JP5027173B2 publication Critical patent/JP5027173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • F25J3/0463Simultaneously between rectifying and stripping sections, i.e. double dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

この発明は、空気の深冷分離によってアルゴンを分離回収するアルゴン製造方法およびその装置に関し、アルゴンの回収率を高めるようにしたものである。   The present invention relates to an argon production method and apparatus for separating and recovering argon by cryogenic separation of air, and improves the argon recovery rate.

高圧蒸留塔、低圧蒸留塔および粗アルゴン塔から構成される深冷空気分離装置を用いてアルゴンを製造する際、アルゴンの回収率を高めるために粗アルゴン塔への原料ガスとして低圧蒸留塔から、粗アルゴン塔に供給するアルゴン含有ガス(以下、フィードアルゴンと言う。)の流量を増加すればよいことが知られている。   When producing argon using a cryogenic air separation apparatus composed of a high-pressure distillation column, a low-pressure distillation column and a crude argon column, from the low-pressure distillation column as a raw material gas to the crude argon column in order to increase the recovery rate of argon, It is known that the flow rate of an argon-containing gas (hereinafter referred to as feed argon) supplied to the crude argon tower may be increased.

しかし、単にフィードアルゴン量を増加すると、低圧蒸留塔では、フィードアルゴン抜き出し位置(高さ)より上の蒸留段における上昇ガスが減少するため、十分な蒸留が行われず、低沸点成分である窒素が多くなってしまう問題がある。すなわち、フィードアルゴン量を増加すると粗アルゴン塔上部に濃縮される窒素分が増加し、アルゴンの収率が逆に悪化することになって、フィードアルゴン量を増加することが制限される。
一方、フィードアルゴン量を増加しても、酸素、窒素の収率に影響を与えずにフィードアルゴン中の窒素分を減らす方法が提案されている。
However, if the amount of feed argon is simply increased, in the low-pressure distillation column, the rising gas in the distillation stage above the feed argon extraction position (height) decreases, so that sufficient distillation is not performed, and nitrogen, which is a low boiling point component, is not obtained. There is a problem that increases. That is, when the amount of feed argon is increased, the nitrogen content concentrated in the upper portion of the crude argon column is increased, and the yield of argon is adversely deteriorated, so that the increase of the amount of feed argon is restricted.
On the other hand, there has been proposed a method for reducing the nitrogen content in feed argon without affecting the yield of oxygen and nitrogen even if the amount of feed argon is increased.

特開平4−332376号公報には、低圧蒸留塔における高圧蒸留塔底部からの酸素富化液化空気の供給位置とフィードアルゴン抜き出し位置との間に、ボイラー・凝縮器を設け、低圧蒸留塔の流下液と粗アルゴン塔の塔頂ガスとの間接熱交換を行わせることにより、低圧蒸留塔の流下液の一部を気化させるとともに粗アルゴン塔の塔頂ガスを凝縮させて粗アルゴン塔の還流液を生成することが記載されている。   In JP-A-4-332376, a boiler / condenser is provided between the supply position of oxygen-enriched liquefied air from the bottom of the high-pressure distillation column and the feed argon extraction position in the low-pressure distillation column. Indirect heat exchange between the liquid and the top gas of the crude argon tower vaporizes a part of the flow down of the low-pressure distillation tower and condenses the top gas of the crude argon tower to recirculate the crude argon tower. Is described.

しかしながら、この先行発明では、ボイラー・凝縮器を配した位置よりも上方の流下液で窒素分の低減が急速に進み、酸素分が多くなり、フィードアルゴン中の窒素分低減には有利であるが、ボイラー・凝縮器において流下液を蒸発させるとともに粗アルゴン塔の塔頂部ガスを凝縮するためには流下液の沸点を粗アルゴン塔の塔頂部ガスの沸点よりも低くする必要があるので、ボイラー・凝縮器の設置位置をある程度低圧蒸留塔の上方とせざるを得ない。そのために、フィードアルゴン抜き出し量には制限があった。   However, in this prior invention, the nitrogen content is rapidly reduced in the flowing liquid above the position where the boiler / condenser is arranged, and the oxygen content increases, which is advantageous for reducing the nitrogen content in the feed argon. In order to evaporate the falling liquid and condense the top gas of the crude argon tower in the boiler / condenser, the boiling point of the falling liquid needs to be lower than the boiling point of the top gas of the crude argon tower. The installation position of the condenser must be located above the low-pressure distillation column to some extent. Therefore, the feed argon extraction amount is limited.

このように、フィードアルゴン抜き出し位置での窒素分を少なくするためには、高圧蒸留塔底部からの酸素富化液化空気の供給位置とフィードアルゴン抜き出し位置との間のできるだけ下方で、低圧蒸留塔内の流下液を蒸発させて窒素分を除去した方がよいことが判明したが、ボイラー・凝縮器の加熱流体である粗アルゴン塔頂部の被凝縮ガスとの温度差を確保しようとすると、その位置は限られており、アルゴン収率の向上には限界があった。   Thus, in order to reduce the nitrogen content at the feed argon extraction position, in the low pressure distillation column as low as possible between the supply position of the oxygen-enriched liquefied air from the bottom of the high pressure distillation column and the feed argon extraction position. It has been found that it is better to remove the nitrogen component by evaporating the falling liquid, but if the temperature difference from the condensed gas at the top of the crude argon column, which is the heating fluid of the boiler / condenser, is secured, However, there was a limit to improving the argon yield.

特表昭62−502701号公報には、粗アルゴン塔頂部の冷却媒体として使用されてガス化し低圧蒸留塔に供給される低温空気の導入位置よりも下方位置に潜熱交換器を配置して、粗アルゴン塔の中間位置と低圧蒸留塔の前記下方位置との間で潜熱交換をさせることが開示されている。   In JP-A-62-502701, a latent heat exchanger is arranged at a position below the introduction position of low-temperature air that is used as a cooling medium at the top of the crude argon column and is gasified and supplied to the low-pressure distillation column. It is disclosed that latent heat exchange is performed between an intermediate position of the argon column and the lower position of the low-pressure distillation column.

この先行発明では、低圧蒸留塔内の流下液を蒸発させて窒素分を除去してフィードアルゴン量を増すことができるが、粗アルゴン塔の中間位置で上昇ガスの一部が潜熱交換器で液化され、粗アルゴン塔中間位置より上方においては上昇ガスが減少するので、先の先行発明に比較してアルゴン収率が悪いとされている。   In this prior invention, the flowing-down liquid in the low-pressure distillation column can be evaporated to remove nitrogen, and the amount of feed argon can be increased. However, a part of the rising gas is liquefied by the latent heat exchanger at the intermediate position of the crude argon column. Since the rising gas decreases above the middle position of the crude argon column, it is said that the argon yield is poor compared to the previous prior invention.

特開平4−332376号公報JP-A-4-332376 特表昭62−502701号公報JP 62-502701 A

よって、本発明における課題は、深冷空気分離法によってアルゴンを製造する際に、アルゴンの回収率を高めることができ、しかも酸素および窒素の収率がこれによって影響を受けないようにすることにある。   Therefore, it is an object of the present invention to increase the argon recovery rate when producing argon by a cryogenic air separation method, and to prevent the yield of oxygen and nitrogen from being affected by this. is there.

かかる課題を解決するため、
請求項1にかかる発明は、高圧蒸留塔、低圧蒸留塔および粗アルゴン塔を備えた空気分離装置を用いてアルゴンを製造する方法であって、
原料空気を圧縮、精製、冷却して高圧蒸留塔の底部に供給する工程と、高圧蒸留塔において前記原料空気を頂部の中圧窒素ガスと底部の第1酸素富化液化空気とに分離する工程と、前記第1酸素富化液化空気を低圧蒸留塔に供給する工程と、前記低圧蒸留塔において前記第1酸素富化液化空気を頂部の低圧窒素ガスと底部の液体酸素に分離する工程と、前記中圧窒素ガスを主凝縮器において前記液体酸素と熱交換して凝縮するとともに前記液体酸素を蒸発させる工程と、前記低圧蒸留塔の下部中間位置からアルゴンを含むガス流を抜き出し前記粗アルゴン塔底部に供給する工程と、前記粗アルゴン塔において前記アルゴンを含むガス流を頂部のアルゴン富化ガスと底部の粗液体酸素とに分離する工程と、前記粗液体酸素を前記低圧蒸留塔に戻す工程を有し、
前記低圧蒸留塔を上部低圧塔、中間低圧塔および下部低圧塔に機能的に三分割し、その中間低圧塔として空気蒸留通路とアルゴン蒸留通路を備えた熱交換型蒸留器を用い、前記空気蒸留通路内において上部低圧塔から流下する第2酸素富化液化空気と下部低圧塔から上昇する第1酸素富化ガスを前記アルゴン蒸留通路から与えられた熱を利用して蒸留し、空気蒸留通路頂部に分離した第2酸素富化ガスを上部低圧塔に供給するとともに空気蒸留通路底部に分離した第3酸素富化液化空気を前記下部低圧塔に流下液として供給する工程と、前記アルゴン蒸留通路内において前記粗アルゴン塔頂部から導入された前記アルゴン富化ガスを前記空気蒸留通路に奪われる熱で凝縮することにより蒸留する工程と、前記アルゴン蒸留通路頂部に分離されて濃縮されたアルゴンガスを採取する工程と、前記アルゴン蒸留通路底部から粗液体アルゴンを抜き出し粗アルゴン塔頂部に戻して還流液とする工程を含むことを特徴とするアルゴンの製造方法である。
To solve this problem,
The invention according to claim 1 is a method for producing argon using an air separation device including a high-pressure distillation column, a low-pressure distillation column, and a crude argon column,
A step of compressing, purifying and cooling the raw material air and supplying it to the bottom of the high pressure distillation column; and a step of separating the raw material air into a medium pressure nitrogen gas at the top and a first oxygen-enriched liquefied air at the bottom in the high pressure distillation column Supplying the first oxygen-enriched liquefied air to a low-pressure distillation column; separating the first oxygen-enriched liquefied air into a low-pressure nitrogen gas at the top and liquid oxygen at the bottom in the low-pressure distillation column; The intermediate pressure nitrogen gas is condensed by exchanging heat with the liquid oxygen in the main condenser and the liquid oxygen is evaporated, and a gas stream containing argon is extracted from a lower intermediate position of the low pressure distillation column. Supplying to the bottom, separating the argon-containing gas stream into a top argon-enriched gas and bottom crude liquid oxygen in the crude argon column, and returning the crude liquid oxygen to the low pressure distillation column. And a step,
The low-pressure distillation column is functionally divided into an upper low-pressure column, an intermediate low-pressure column, and a lower low-pressure column, and a heat exchange type distiller having an air distillation passage and an argon distillation passage is used as the intermediate low-pressure column. In the passage, the second oxygen-enriched liquefied air flowing down from the upper low-pressure column and the first oxygen-enriched gas rising from the lower low-pressure column are distilled using the heat supplied from the argon distillation passage, and the top of the air distillation passage Supplying the second oxygen-enriched gas separated into the upper low-pressure column and supplying the third oxygen-enriched liquefied air separated to the bottom of the air distillation passage to the lower low-pressure column as a falling liquid; In which the argon-enriched gas introduced from the top of the crude argon column is distilled by condensing with the heat deprived of the air distillation passage, and separated into the top of the argon distillation passage. A step of collecting the concentrated argon gas, a method for producing argon which comprises a step of the reflux liquid is returned to the argon distillation passage from the bottom withdrawn crude liquid argon crude argon column top.

請求項2にかかる発明は、前記第1酸素富化液化空気を前記上部低圧塔に供給する工程をさらに含むことを特徴とする請求項1記載のアルゴンの製造方法である。
請求項3にかかる発明は、前記下部低圧塔の上部から抜き出された第1酸素富化ガスの一部を直接上部低圧塔の下部に導入し、上部低圧塔の下部から抜き出された第2酸素富化液化流体の一部を直接下部低圧塔の頂部に導入する工程をさらに含むことを特徴とする請求項1記載のアルゴンの製造方法である。
The invention according to claim 2 is the method for producing argon according to claim 1, further comprising a step of supplying the first oxygen-enriched liquefied air to the upper low-pressure column.
According to a third aspect of the present invention, a part of the first oxygen-enriched gas extracted from the upper part of the lower low-pressure column is directly introduced into the lower part of the upper low-pressure column, and is extracted from the lower part of the upper low-pressure column. The method for producing argon according to claim 1, further comprising the step of introducing a part of the two oxygen-enriched liquefied fluid directly into the top of the lower low-pressure column.

請求項4にかかる発明は、高圧蒸留塔、低圧蒸留塔および粗アルゴン塔を備えた空気分離装置を用いてアルゴンを製造する装置であって、
前記高圧蒸留塔は、圧縮、精製、冷却された原料空気を導入し、その頂部の中圧窒素ガスと底部の第1酸素富化液化空気とに分離しこの第1酸素富化液化空気を低圧蒸留塔に供給するものであり、
前記低圧蒸留塔は、前記第1酸素富化液化空気をその頂部の低圧窒素ガスと底部の液体酸素に分離し、その底部に置かれた主凝縮器において前記中圧窒素ガスを前記液体酸素と熱交換して凝縮するとともに前記液体酸素を蒸発させるものであり、
前記粗アルゴン塔は、前記低圧蒸留塔の下部中間位置から抜き出しされたアルゴンを含むガス流を導入してその頂部のアルゴン富化ガスと底部の粗液体酸素とに分離し、この粗液体酸素を前記低圧蒸留塔に戻すものであり、
前記低圧蒸留塔は、上部低圧塔、中間低圧塔および下部低圧塔に機能的に三分割され、その中間低圧塔として空気蒸留通路とアルゴン蒸留通路を備えた熱交換型蒸留器が用いられ、
前記空気蒸留通路内では前記上部低圧塔から流下する第2酸素富化液化空気と下部低圧塔から上昇する第1酸素富化ガスを前記アルゴン蒸留通路から与えられた熱を利用して蒸留し、空気蒸留通路頂部に分離した第2酸素富化ガスを上部低圧塔に供給するとともに空気蒸留通路底部に分離した第3酸素富化液化空気を前記下部低圧塔に流下液として供給し、
前記アルゴン蒸留通路内では前記粗アルゴン塔頂部から導入された前記アルゴン富化ガスを前記空気蒸留通路に奪われる熱で凝縮することにより蒸留し、前記アルゴン蒸留通路頂部に分離されて濃縮されたアルゴンガスを採取し、前記アルゴン蒸留通路底部から粗液体アルゴンを抜き出し粗アルゴン塔頂部に戻して還流液とするものであることを特徴とするアルゴンの製造装置である。
The invention according to claim 4 is an apparatus for producing argon using an air separation device including a high-pressure distillation column, a low-pressure distillation column, and a crude argon column,
The high-pressure distillation column introduces compressed, refined and cooled raw material air, separates it into medium-pressure nitrogen gas at the top and first oxygen-enriched liquefied air at the bottom, and lowers this first oxygen-enriched liquefied air at low pressure To supply the distillation tower,
The low-pressure distillation column separates the first oxygen-enriched liquefied air into low-pressure nitrogen gas at the top and liquid oxygen at the bottom, and the medium-pressure nitrogen gas and the liquid oxygen in a main condenser placed at the bottom. The liquid oxygen is condensed by heat exchange and the liquid oxygen is evaporated.
The crude argon column introduces a gas stream containing argon withdrawn from the lower middle position of the low pressure distillation column and separates the crude liquid oxygen into an argon-enriched gas at the top and crude liquid oxygen at the bottom. Returning to the low pressure distillation column,
The low-pressure distillation column is functionally divided into an upper low-pressure column, an intermediate low-pressure column and a lower low-pressure column, and a heat-exchange distiller having an air distillation passage and an argon distillation passage is used as the intermediate low-pressure column,
In the air distillation passage, the second oxygen-enriched liquefied air flowing down from the upper low-pressure column and the first oxygen-enriched gas rising from the lower low-pressure column are distilled using heat supplied from the argon distillation passage, Supplying the second oxygen-enriched gas separated to the top of the air distillation passage to the upper low-pressure column and the third oxygen-enriched liquefied air separated to the bottom of the air distillation passage to the lower low-pressure column as a falling liquid;
In the argon distillation passage, the argon-enriched gas introduced from the top of the crude argon column is distilled by condensing with the heat taken by the air distillation passage, and separated and concentrated at the top of the argon distillation passage. The apparatus for producing argon is characterized in that gas is collected, crude liquid argon is extracted from the bottom of the argon distillation passage, and returned to the top of the crude argon column to be a reflux liquid.

請求項5にかかる発明は、前記上部低圧塔は、前記第1酸素富化液化空気が供給されるものであることを特徴とする請求項4記載のアルゴンの製造装置である。
請求項6にかかる発明は、前記下部低圧塔の上部から抜き出された第1酸素富化ガスの一部を直接上部低圧塔の下部に導入する管路と、上部低圧塔の下部から抜き出された第2酸素富化液化流体の一部を直接下部低圧塔の頂部に導入する管路をさらに備えたことを特徴とする請求項4記載のアルゴンの製造装置である。
The invention according to claim 5 is the argon production apparatus according to claim 4, wherein the upper low pressure column is supplied with the first oxygen-enriched liquefied air.
According to a sixth aspect of the present invention, there is provided a conduit for introducing a part of the first oxygen-enriched gas extracted from the upper portion of the lower low pressure column directly into the lower portion of the upper low pressure column, and extracting from the lower portion of the upper low pressure column. The apparatus for producing argon according to claim 4, further comprising a pipe for introducing a part of the second oxygen-enriched liquefied fluid directly into the top of the lower low-pressure column.

本発明によれば、低圧蒸留塔の中間に位置する部分を熱交換型蒸留器に置き換え、その空気蒸留通路において上部低圧塔から流下する第2酸素富化液化空気と下部低圧塔から上昇する第1酸素富化ガスを前記アルゴン蒸留通路から与えられた熱を利用して蒸留し、空気蒸留通路頂部に分離した第2酸素富化ガスを上部低圧塔に供給するとともに空気蒸留通路底部に分離した第3酸素富化液化空気を前記下部低圧塔に流下液として供給するようにし、そのアルゴン蒸留通路において前記粗アルゴン塔頂部から導入された前記アルゴン富化ガスを前記空気蒸留通路に奪われる熱で凝縮することにより蒸留し、前記アルゴン蒸留通路頂部に分離されて濃縮されたアルゴンガスを採取し、前記アルゴン蒸留通路底部から粗液体アルゴンを抜き出し粗アルゴン塔頂部に戻して還流液とするようにしたので、熱交換型蒸留器の空気蒸留通路において、上部低圧塔から流下する第2酸素富化液化空気が下方に向かって連続的に蒸発しながら蒸留することにより、熱交換型蒸留器下端での流下液の沸点が前記アルゴン富化ガスの沸点とほぼ同じ温度の位置まで蒸発が可能であり、これはフィードアルゴン抜き出し位置に比較的近く、第3酸素富化液化空気中の窒素分を従来と比較して大幅に減らすことができるので、アルゴン含有ガスの抜き出し量を増加できてアルゴン回収率が向上し、しかも酸素、窒素の収率に影響を与えることがない。   According to the present invention, the portion located in the middle of the low-pressure distillation column is replaced with a heat exchange-type distiller, and the second oxygen-enriched liquefied air flowing down from the upper low-pressure column and the second low-pressure column rising from the lower low-pressure column in its air distillation passage. 1 The oxygen-enriched gas was distilled using the heat supplied from the argon distillation passage, and the second oxygen-enriched gas separated at the top of the air distillation passage was supplied to the upper low pressure column and separated at the bottom of the air distillation passage. The third oxygen-enriched liquefied air is supplied to the lower low pressure column as a falling liquid, and the argon-enriched gas introduced from the top of the crude argon column in the argon distillation passage is removed by the heat taken by the air distillation passage. Distilled by condensing, collected argon gas separated and concentrated at the top of the argon distillation passage, and withdrawing crude liquid argon from the bottom of the argon distillation passage, Since the reflux liquid is returned to the top of the Gon tower, the second oxygen-enriched liquefied air flowing down from the upper low-pressure tower continuously evaporates downward in the air distillation passage of the heat exchange type distiller. By distilling, the boiling point of the falling liquid at the lower end of the heat exchange still can be evaporated to a position where the boiling point of the argon-enriched gas is almost the same as that of the argon-enriched gas, which is relatively close to the feed argon extraction position. 3. Since the nitrogen content in oxygen-enriched liquefied air can be greatly reduced compared to the conventional method, the amount of argon-containing gas extracted can be increased, improving the argon recovery rate and affecting the yield of oxygen and nitrogen. Never give.

本発明のアルゴン製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the argon manufacturing apparatus of this invention. 本発明のアルゴン製造装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the argon manufacturing apparatus of this invention.

図1は、この発明のアルゴン製造装置の一例を示すものである。
この例のアルゴン製造装置は、低圧蒸留塔が機能的に三分割され、上部低圧塔と、中間低圧塔と、下部低圧塔とから構成され、その中間低圧塔として熱交換型蒸留器の空気蒸留通路を用い、熱交換型蒸留器のアルゴン蒸留通路を粗アルゴン塔の凝縮器として機能させるようにしたものである。ここで、「機能的に三分割され」とは、構造的に三分割されたもの以外にその機能が三分割されたものも含む意味である。
熱交換型蒸留器は、プレートフィン型熱交換器から構成される公知のものが使われる。
FIG. 1 shows an example of an argon production apparatus according to the present invention.
In this example, the low pressure distillation column is functionally divided into three parts, and is composed of an upper low pressure column, an intermediate low pressure column, and a lower low pressure column, and the intermediate low pressure column is an air distillation of a heat exchange type still. The passage is used so that the argon distillation passage of the heat exchange type distiller functions as a condenser of the crude argon column. Here, “functionally divided into three” means that the function is divided into three parts in addition to the structurally divided part.
As the heat exchange type distiller, a known one constituted by a plate fin type heat exchanger is used.

原料空気は、圧縮機1で圧縮され、空気予冷却器2で常温付近まで冷却され、精製器3で水分、炭酸ガスなどが吸着除去されたのち、その一部が主熱交換器4に導入され、その露点近くまで冷却され、管5を経て高圧蒸留塔6に導入される。   The raw material air is compressed by the compressor 1, cooled to near room temperature by the air precooler 2, and after moisture and carbon dioxide gas are adsorbed and removed by the purifier 3, a part thereof is introduced into the main heat exchanger 4. Then, it is cooled to near its dew point and introduced into the high-pressure distillation column 6 via the pipe 5.

高圧蒸留塔6に導入された原料空気は、後述する中圧液化窒素との気液向流接触により蒸留され、塔頂部に向かって窒素成分が濃縮し、塔底部に向かって酸素成分が濃縮し塔底部に第1酸素富化液化流体が溜まる。
高圧蒸留塔6の塔頂部から導出された中圧窒素ガスの一部は管7に分岐され、主熱交換器4で熱回収された後に製品中圧窒素ガスMPGANとして回収される。
中圧窒素ガスの残部は、管8を経て主凝縮器9に導入され後述する下部低圧塔10の高純液化酸素との間接熱交換により高純液化酸素を蒸発させ、自らは全量凝縮して中圧液化窒素となり、その一部は高圧蒸留塔6の還流液として管11を経て高圧蒸留塔6の塔頂部に導入される。
The raw air introduced into the high-pressure distillation column 6 is distilled by gas-liquid countercurrent contact with medium pressure liquefied nitrogen, which will be described later, and the nitrogen component is concentrated toward the top of the column and the oxygen component is concentrated toward the bottom of the column. A first oxygen-enriched liquefied fluid accumulates at the bottom of the column.
A part of the medium-pressure nitrogen gas led out from the top of the high-pressure distillation column 6 is branched into a pipe 7, recovered by the main heat exchanger 4 and then recovered as a product medium-pressure nitrogen gas MPGAN.
The remainder of the medium-pressure nitrogen gas is introduced into the main condenser 9 via the pipe 8 to evaporate the high purity liquefied oxygen by indirect heat exchange with the high purity liquefied oxygen in the lower low pressure column 10 described later, Medium pressure liquefied nitrogen is formed, and a part thereof is introduced into the top of the high pressure distillation column 6 via the pipe 11 as a reflux liquid of the high pressure distillation column 6.

中圧液化窒素の残部は管12を経て過冷器13により冷却され、第1減圧弁14で減圧されたのち、上部低圧塔15の塔頂部に供給される。
また、高圧蒸留塔6の塔底部から導出された前記第1酸素富化液化流体は、過冷器16、13により冷却された後、第2減圧弁17により減圧されて上部低圧塔15の下部に導入される。
The remainder of the medium-pressure liquefied nitrogen is cooled by the supercooler 13 through the pipe 12, depressurized by the first pressure reducing valve 14, and then supplied to the top of the upper low pressure column 15.
The first oxygen-enriched liquefied fluid led out from the bottom of the high-pressure distillation column 6 is cooled by the subcoolers 16 and 13 and then depressurized by the second pressure-reducing valve 17 so as to lower the lower portion of the upper low-pressure column 15. To be introduced.

上部低圧塔15では、第1減圧弁14で減圧された中圧液化窒素および第2減圧弁17で減圧された第1酸素富化液化流体と後述する第2酸素富化ガス流体とが気液接触して蒸留され、上部低圧塔15の上部に窒素成分が、下部に酸素成分が濃縮する。
上部低圧塔15の塔頂部から第1低圧窒素ガスが導出され、管18、過冷器13、16、主熱交換器4を経て熱回収された後に製品低圧窒素ガスGANとして採取される。
In the upper low pressure column 15, medium-pressure liquefied nitrogen decompressed by the first decompression valve 14, a first oxygen-enriched liquefied fluid decompressed by the second decompression valve 17, and a second oxygen-enriched gas fluid described later are gas-liquid. It is distilled by contact, and the nitrogen component concentrates in the upper part of the upper low-pressure column 15 and the oxygen component concentrates in the lower part.
The first low-pressure nitrogen gas is led out from the top of the upper low-pressure column 15, recovered through the pipe 18, the supercoolers 13 and 16, and the main heat exchanger 4, and then collected as the product low-pressure nitrogen gas GAN.

上部低圧塔15の底部に溜まった第2酸素富化液化流体は、熱交換型蒸留器19の空気蒸留通路20に導入される。熱交換型蒸留器19の空気蒸留通路20では、上部低圧塔15から導入された第2酸素富化液化流体が空気蒸留通路20を流下する過程でアルゴン蒸留通路21内の流体と熱交換して加熱され、その一部が蒸発しながら蒸留され、空気蒸留通路20の上部に窒素成分が濃縮し第2酸素富化ガスが分離され、下部に酸素成分が濃縮し第3酸素富化液化空気が分離される。   The second oxygen-enriched liquefied fluid accumulated at the bottom of the upper low-pressure column 15 is introduced into the air distillation passage 20 of the heat exchange type distiller 19. In the air distillation passage 20 of the heat exchange type distiller 19, the second oxygen-enriched liquefied fluid introduced from the upper low pressure column 15 exchanges heat with the fluid in the argon distillation passage 21 in the process of flowing down the air distillation passage 20. It is heated and partly distilled while evaporating, the nitrogen component is concentrated in the upper part of the air distillation passage 20 and the second oxygen-enriched gas is separated, the oxygen component is concentrated in the lower part and the third oxygen-enriched liquefied air is To be separated.

熱交換型蒸留器19の空気蒸留通路20の上部から導出された第2酸素富化ガスは上部低圧塔15に下部に導入され、空気蒸留通路20の下部から導出された第3酸素富化液化空気は下部低圧塔10の頂部に導入される。   The second oxygen-enriched gas led out from the upper part of the air distillation passage 20 of the heat exchange type distiller 19 is introduced into the lower part of the upper low pressure column 15 and the third oxygen-enriched liquefaction led out from the lower part of the air distillation passage 20. Air is introduced into the top of the lower low pressure column 10.

下部低圧塔10では、空気蒸留通路20からの第3酸素富化液化空気および後述する粗液体酸素と主凝縮器9で気化した前記高純酸素ガスの一部とが気液接触して蒸留され、その上部に窒素成分が濃縮され、その下部に酸素成分が濃縮される。
下部低圧塔10の上部のガス流体は、熱交換型蒸留器19の空気蒸留通路20の下部に導入され、下部低圧塔10の下部に溜まった高純酸素ガスの一部は抜き出され、管21を経て主熱交換器4で熱回収されて製品酸素ガスGOXとして採取される。
In the lower low pressure column 10, the third oxygen-enriched liquefied air from the air distillation passage 20, crude liquid oxygen, which will be described later, and a part of the high-purity oxygen gas vaporized in the main condenser 9 are brought into gas-liquid contact and distilled. The nitrogen component is concentrated in the upper part, and the oxygen component is concentrated in the lower part.
The gas fluid in the upper part of the lower low-pressure column 10 is introduced into the lower part of the air distillation passage 20 of the heat exchange type distiller 19, and a part of the high-purity oxygen gas accumulated in the lower part of the lower low-pressure column 10 is extracted, Through 21, heat is recovered by the main heat exchanger 4 and collected as product oxygen gas GOX.

下部低圧塔10の中間位置から、アルゴンを含むガス流であるフィードアルゴンが抜き出され、管22を介して粗アルゴン塔23の下部に導入される。フィードアルゴンの抜き出し位置は、これに含まれるアルゴン濃度がほぼ最大となる位置とされる。
粗アルゴン塔23では、後述する粗液体アルゴンとフィードアルゴンとが気液向流接触して蒸留され、その上部にはアルゴン富化ガスとしてアルゴンが濃縮され、このアルゴン富化ガスは前記熱交換型蒸留器19のアルゴン蒸留通路21の下部に導入される。
Feed argon, which is a gas flow containing argon, is extracted from an intermediate position of the lower low-pressure column 10 and introduced into the lower portion of the crude argon column 23 through the pipe 22. The feed argon extraction position is a position at which the concentration of argon contained in the feed argon becomes almost maximum.
In the crude argon column 23, crude liquid argon, which will be described later, and feed argon are distilled in contact with a gas-liquid countercurrent, and argon is concentrated as an argon-enriched gas at the upper part thereof. It is introduced into the lower part of the argon distillation passage 21 of the distiller 19.

粗アルゴン塔23底部には、粗液体酸素がたまり、この粗液体酸素はポンプ24を経て下部低圧塔10の中間位置に戻されて、下部低圧塔10での蒸留に供される。なお、下部低圧塔10と粗アルゴン塔23の設置高さを調整することにより必ずしもポンプ24を設ける必要はない。   Crude liquid oxygen accumulates at the bottom of the crude argon column 23, and this crude liquid oxygen is returned to an intermediate position of the lower low-pressure column 10 via the pump 24 and used for distillation in the lower low-pressure column 10. The pump 24 is not necessarily provided by adjusting the installation height of the lower low pressure column 10 and the crude argon column 23.

熱交換型蒸留器19のアルゴン蒸留通路21の下部に導入されたアルゴン富化ガスは、熱交換型蒸留器19の空気蒸留通路20を流れる流体と間接的に熱交換して冷却され、その一部が液化して蒸留されることにより、アルゴン蒸留通路21の上部に精製されたアルゴンガスが溜まり、下部に粗液体アルゴンが溜まる。
アルゴン蒸留通路21の頂部からは精製されたアルゴンガスが管25に導出され、主熱交換器4を経て冷熱が回収されて、アルゴンガスGArとして採取される。
アルゴン蒸留通路21の底部からの粗液体アルゴンは粗アルゴン塔23の頂部に導入され、還流液として粗アルゴン塔23内を流下する。
The argon-enriched gas introduced into the lower part of the argon distillation passage 21 of the heat exchange type distiller 19 is cooled by indirectly exchanging heat with the fluid flowing through the air distillation passage 20 of the heat exchange type distiller 19. As the part is liquefied and distilled, the purified argon gas is stored in the upper part of the argon distillation passage 21, and the crude liquid argon is stored in the lower part.
Purified argon gas is led out from the top of the argon distillation passage 21 to the pipe 25, and the cold heat is recovered through the main heat exchanger 4 and collected as argon gas GAr.
Crude liquid argon from the bottom of the argon distillation passage 21 is introduced into the top of the crude argon column 23 and flows down in the crude argon column 23 as a reflux liquid.

上部低圧塔15の中間位置からは窒素と少量の酸素を含むガスが抜き出され、管25、過冷器13、16、主熱交換器4にて冷熱を回収されて廃棄ガスWASTとして排出される。この廃棄ガスの一部または全量は精製器3の再生用に用いることができる。
前記精製器3を出た原料空気の残部は、管26に分岐され、再度圧縮機27で昇圧されたのち、空気予冷却器28で冷却され、主熱交換器4に送られてさらに冷却され、膨張タービン29に送られ、ここで断熱膨張して装置の運転に必要な寒冷を発生させ、上部低圧塔15の中間位置に導入され、蒸留に供される。
A gas containing nitrogen and a small amount of oxygen is extracted from an intermediate position of the upper low-pressure column 15, and the cold heat is recovered by the pipe 25, the subcoolers 13 and 16, and the main heat exchanger 4 and is discharged as waste gas WAST. The A part or all of the waste gas can be used for regenerating the purifier 3.
The remainder of the raw material air leaving the purifier 3 is branched into a pipe 26 and is again pressurized by a compressor 27, then cooled by an air precooler 28, sent to the main heat exchanger 4 and further cooled. Then, it is sent to an expansion turbine 29, where it adiabatically expands to generate cold necessary for the operation of the apparatus, is introduced into an intermediate position of the upper low pressure column 15, and is subjected to distillation.

図2は、この発明のアルゴン製造装置の他の例を示すもので、図1に示したアルゴン製造装置と同一構成部分には同一符号を付してその説明を省略する。
この例の装置では、下部低圧塔10の上部から抜き出された第1酸素富化ガスの一部が管31を通り、直接上部低圧塔15の下部に導入されるようになっており、また上部低圧塔15の下部から抜き出された第2酸素富化液化空気の一部が管32を介して直接下部低圧塔10の頂部に導入されるようになっている。
FIG. 2 shows another example of the argon production apparatus of the present invention. The same components as those in the argon production apparatus shown in FIG.
In the apparatus of this example, a part of the first oxygen-enriched gas extracted from the upper part of the lower low-pressure column 10 passes through the pipe 31 and is directly introduced into the lower part of the upper low-pressure column 15. A part of the second oxygen-enriched liquefied air extracted from the lower part of the upper low-pressure column 15 is directly introduced into the top of the lower low-pressure column 10 via the pipe 32.

このような構成とすることで、前記第1酸素富化ガスおよび第2酸素富化液化空気の一部が熱交換型蒸留器19の空気蒸留通路20を通らずにバイパスすることになって、熱交換型蒸留器19として小形のものを採用することができ、設備費用を抑えることができる。但し、上部低圧塔15および下部低圧塔10の棚段を若干増やす必要がある。   By having such a configuration, a part of the first oxygen-enriched gas and the second oxygen-enriched liquefied air is bypassed without passing through the air distillation passage 20 of the heat exchange distiller 19, A small heat exchange-type distiller 19 can be adopted, and the equipment cost can be reduced. However, it is necessary to slightly increase the shelves of the upper low pressure column 15 and the lower low pressure column 10.

本発明では、シミュレーションの結果、現行のアルゴン回収率約83%に比べてアルゴン回収率が約90%に向上することがわかった。また、特開平4−332376号公報(特許文献1)に開示の方法に比較しても約3%の回収率の改善が可能であることもわかり、酸素、窒素の収率に悪影響を与えないことも判明した。   In the present invention, as a result of simulation, it has been found that the argon recovery rate is improved to about 90% compared to the current argon recovery rate of about 83%. Further, it can be seen that the recovery rate can be improved by about 3% even when compared with the method disclosed in JP-A-4-332376 (Patent Document 1), and the yield of oxygen and nitrogen is not adversely affected. It was also found out.

6・・高圧蒸留塔、9・・主凝縮器、10・・下部低圧塔、15・・上部低圧塔、19・・熱交換型蒸留器、20・・空気蒸留通路、21・・アルゴン蒸留通路、23・・粗アルゴン塔 6 .... High pressure distillation column, 9 .... Main condenser, 10 .... Lower low pressure column, 15 .... Upper low pressure column, 19 .... Heat exchange type distiller, 20 .... Air distillation passage, 21 ... Argon distillation passage , 23 ... Rough argon tower

Claims (6)

高圧蒸留塔、低圧蒸留塔および粗アルゴン塔を備えた空気分離装置を用いてアルゴンを製造する方法であって、
原料空気を圧縮、精製、冷却して高圧蒸留塔の底部に供給する工程と、高圧蒸留塔において前記原料空気を頂部の中圧窒素ガスと底部の第1酸素富化液化空気とに分離する工程と、前記第1酸素富化液化空気を低圧蒸留塔に供給する工程と、前記低圧蒸留塔において前記第1酸素富化液化空気を頂部の低圧窒素ガスと底部の液体酸素に分離する工程と、前記中圧窒素ガスを主凝縮器において前記液体酸素と熱交換して凝縮するとともに前記液体酸素を蒸発させる工程と、前記低圧蒸留塔の下部中間位置からアルゴンを含むガス流を抜き出し前記粗アルゴン塔底部に供給する工程と、前記粗アルゴン塔において前記アルゴンを含むガス流を頂部のアルゴン富化ガスと底部の粗液体酸素とに分離する工程と、前記粗液体酸素を前記低圧蒸留塔に戻す工程を有し、
前記低圧蒸留塔を上部低圧塔、中間低圧塔および下部低圧塔に機能的に三分割し、その中間低圧塔として空気蒸留通路とアルゴン蒸留通路を備えた熱交換型蒸留器を用い、前記空気蒸留通路内において上部低圧塔から流下する第2酸素富化液化空気と下部低圧塔から上昇する第1酸素富化ガスを前記アルゴン蒸留通路から与えられた熱を利用して蒸留し、空気蒸留通路頂部に分離した第2酸素富化ガスを上部低圧塔に供給するとともに空気蒸留通路底部に分離した第3酸素富化液化空気を前記下部低圧塔に流下液として供給する工程と、前記アルゴン蒸留通路内において前記粗アルゴン塔頂部から導入された前記アルゴン富化ガスを前記空気蒸留通路に奪われる熱で凝縮することにより蒸留する工程と、前記アルゴン蒸留通路頂部に分離されて濃縮されたアルゴンガスを採取する工程と、前記アルゴン蒸留通路底部から粗液体アルゴンを抜き出し粗アルゴン塔頂部に戻して還流液とする工程を含むことを特徴とするアルゴンの製造方法。
A method for producing argon using an air separation device comprising a high pressure distillation column, a low pressure distillation column and a crude argon column,
A step of compressing, purifying and cooling the raw material air and supplying it to the bottom of the high pressure distillation column; and a step of separating the raw material air into a medium pressure nitrogen gas at the top and a first oxygen-enriched liquefied air at the bottom in the high pressure distillation column Supplying the first oxygen-enriched liquefied air to a low-pressure distillation column; separating the first oxygen-enriched liquefied air into a low-pressure nitrogen gas at the top and liquid oxygen at the bottom in the low-pressure distillation column; The intermediate pressure nitrogen gas is condensed by exchanging heat with the liquid oxygen in the main condenser and the liquid oxygen is evaporated, and a gas stream containing argon is extracted from a lower intermediate position of the low pressure distillation column. Supplying to the bottom, separating the argon-containing gas stream into a top argon-enriched gas and bottom crude liquid oxygen in the crude argon column, and returning the crude liquid oxygen to the low pressure distillation column. And a step,
The low-pressure distillation column is functionally divided into an upper low-pressure column, an intermediate low-pressure column, and a lower low-pressure column, and a heat exchange type distiller having an air distillation passage and an argon distillation passage is used as the intermediate low-pressure column. In the passage, the second oxygen-enriched liquefied air flowing down from the upper low-pressure column and the first oxygen-enriched gas rising from the lower low-pressure column are distilled using the heat supplied from the argon distillation passage, and the top of the air distillation passage Supplying the second oxygen-enriched gas separated into the upper low-pressure column and supplying the third oxygen-enriched liquefied air separated to the bottom of the air distillation passage to the lower low-pressure column as a falling liquid; In which the argon-enriched gas introduced from the top of the crude argon column is distilled by condensing with the heat deprived of the air distillation passage, and separated into the top of the argon distillation passage. A step of collecting the concentrated argon gas, a manufacturing method of argon, which comprises a step of said argon distillation passage bottom from extracts of the crude liquid argon crude argon column top to back reflux.
前記第1酸素富化液化空気を前記上部低圧塔に供給する工程をさらに含むことを特徴とする請求項1記載のアルゴンの製造方法。   The method for producing argon according to claim 1, further comprising a step of supplying the first oxygen-enriched liquefied air to the upper low-pressure column. 前記下部低圧塔の上部から抜き出された第1酸素富化ガスの一部を直接上部低圧塔の下部に導入し、上部低圧塔の下部から抜き出された第2酸素富化液化流体の一部を直接下部低圧塔の頂部に導入する工程をさらに含むことを特徴とする請求項1記載のアルゴンの製造方法。   A part of the first oxygen-enriched gas extracted from the upper part of the lower low-pressure column is directly introduced into the lower part of the upper low-pressure column, and one of the second oxygen-enriched liquefied fluids extracted from the lower part of the upper low-pressure column. The method for producing argon according to claim 1, further comprising a step of directly introducing the portion into the top of the lower low-pressure column. 高圧蒸留塔、低圧蒸留塔および粗アルゴン塔を備えた空気分離装置を用いてアルゴンを製造する装置であって、
前記高圧蒸留塔は、圧縮、精製、冷却された原料空気を導入し、その頂部の中圧窒素ガスと底部の第1酸素富化液化空気とに分離しこの第1酸素富化液化空気を低圧蒸留塔に供給するものであり、
前記低圧蒸留塔は、前記第1酸素富化液化空気をその頂部の低圧窒素ガスと底部の液体酸素に分離し、その底部に置かれた主凝縮器において前記中圧窒素ガスを前記液体酸素と熱交換して凝縮するとともに前記液体酸素を蒸発させるものであり、
前記粗アルゴン塔は、前記低圧蒸留塔の下部中間位置から抜き出しされたアルゴンを含むガス流を導入してその頂部のアルゴン富化ガスと底部の粗液体酸素とに分離し、この粗液体酸素を前記低圧蒸留塔に戻すものであり、
前記低圧蒸留塔は、上部低圧塔、中間低圧塔および下部低圧塔に機能的に三分割され、その中間低圧塔として空気蒸留通路とアルゴン蒸留通路を備えた熱交換型蒸留器が用いられ、
前記空気蒸留通路内では前記上部低圧塔から流下する第2酸素富化液化空気と下部低圧塔から上昇する第1酸素富化ガスを前記アルゴン蒸留通路から与えられた熱を利用して蒸留し、空気蒸留通路頂部に分離した第2酸素富化ガスを上部低圧塔に供給するとともに空気蒸留通路底部に分離した第3酸素富化液化空気を前記下部低圧塔に流下液として供給し、
前記アルゴン蒸留通路内では前記粗アルゴン塔頂部から導入された前記アルゴン富化ガスを前記空気蒸留通路に奪われる熱で凝縮することにより蒸留し、前記アルゴン蒸留通路頂部に分離されて濃縮されたアルゴンガスを採取し、前記アルゴン蒸留通路底部から粗液体アルゴンを抜き出し粗アルゴン塔頂部に戻して還流液とするものであることを特徴とするアルゴンの製造装置。
An apparatus for producing argon using an air separation apparatus equipped with a high-pressure distillation column, a low-pressure distillation column and a crude argon column,
The high-pressure distillation column introduces compressed, refined and cooled raw material air, separates it into medium-pressure nitrogen gas at the top and first oxygen-enriched liquefied air at the bottom, and lowers this first oxygen-enriched liquefied air at low pressure To supply the distillation tower,
The low-pressure distillation column separates the first oxygen-enriched liquefied air into low-pressure nitrogen gas at the top and liquid oxygen at the bottom, and the medium-pressure nitrogen gas and the liquid oxygen in a main condenser placed at the bottom. The liquid oxygen is condensed by heat exchange and the liquid oxygen is evaporated.
The crude argon column introduces a gas stream containing argon withdrawn from the lower middle position of the low pressure distillation column and separates the crude liquid oxygen into an argon-enriched gas at the top and crude liquid oxygen at the bottom. Returning to the low pressure distillation column,
The low-pressure distillation column is functionally divided into an upper low-pressure column, an intermediate low-pressure column and a lower low-pressure column, and a heat-exchange distiller having an air distillation passage and an argon distillation passage is used as the intermediate low-pressure column,
In the air distillation passage, the second oxygen-enriched liquefied air flowing down from the upper low-pressure column and the first oxygen-enriched gas rising from the lower low-pressure column are distilled using heat supplied from the argon distillation passage, Supplying the second oxygen-enriched gas separated to the top of the air distillation passage to the upper low-pressure column and the third oxygen-enriched liquefied air separated to the bottom of the air distillation passage to the lower low-pressure column as a falling liquid;
In the argon distillation passage, the argon-enriched gas introduced from the top of the crude argon column is distilled by condensing with the heat taken by the air distillation passage, and separated and concentrated at the top of the argon distillation passage. An apparatus for producing argon, wherein gas is collected, crude liquid argon is extracted from the bottom of the argon distillation passage, and returned to the top of the crude argon tower to be a reflux liquid.
前記上部低圧塔は、前記第1酸素富化液化空気が供給されるものであることを特徴とする請求項4記載のアルゴンの製造装置。   The apparatus for producing argon according to claim 4, wherein the upper low-pressure column is supplied with the first oxygen-enriched liquefied air. 前記下部低圧塔の上部から抜き出された第1酸素富化ガスの一部を直接上部低圧塔の下部に導入する管路と、上部低圧塔の下部から抜き出された第2酸素富化液化流体の一部を直接下部低圧塔の頂部に導入する管路をさらに備えたことを特徴とする請求項4記載のアルゴンの製造装置。   A pipe for introducing a part of the first oxygen-enriched gas extracted from the upper portion of the lower low-pressure column directly into the lower portion of the upper low-pressure column, and a second oxygen-enriched liquefaction extracted from the lower portion of the upper low-pressure column. The apparatus for producing argon according to claim 4, further comprising a conduit for introducing a part of the fluid directly into the top of the lower low-pressure column.
JP2009053637A 2009-03-06 2009-03-06 Argon production method and apparatus thereof Active JP5027173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053637A JP5027173B2 (en) 2009-03-06 2009-03-06 Argon production method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053637A JP5027173B2 (en) 2009-03-06 2009-03-06 Argon production method and apparatus thereof

Publications (2)

Publication Number Publication Date
JP2010210104A JP2010210104A (en) 2010-09-24
JP5027173B2 true JP5027173B2 (en) 2012-09-19

Family

ID=42970477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053637A Active JP5027173B2 (en) 2009-03-06 2009-03-06 Argon production method and apparatus thereof

Country Status (1)

Country Link
JP (1) JP5027173B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807288B (en) * 2015-05-20 2017-03-15 西南石油大学 The lime set recovery method of high-pressure natural gas
CN113739515B (en) * 2021-09-06 2022-10-21 乔治洛德方法研究和开发液化空气有限公司 Method and device for extracting high-purity liquid argon through rich argon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245831A (en) * 1992-02-13 1993-09-21 Air Products And Chemicals, Inc. Single heat pump cycle for increased argon recovery
US5339648A (en) * 1993-08-05 1994-08-23 Praxair Technology, Inc. Distillation system with partitioned column
US6240744B1 (en) * 1999-12-13 2001-06-05 Air Products And Chemicals, Inc. Process for distillation of multicomponent fluid and production of an argon-enriched stream from a cryogenic air separation process
JP4577977B2 (en) * 2000-11-14 2010-11-10 大陽日酸株式会社 Air liquefaction separation method and apparatus
JP4279540B2 (en) * 2002-11-13 2009-06-17 大陽日酸株式会社 Control method of air separation device

Also Published As

Publication number Publication date
JP2010210104A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5425100B2 (en) Cryogenic air separation method and apparatus
JP5878310B2 (en) Air separation method and apparatus
JPH07109348B2 (en) Method and apparatus for high pressure low temperature distillation of air
JP5655104B2 (en) Air separation method and air separation device
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
JP5307055B2 (en) Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JPH06257939A (en) Distilling method at low temperature of air
JP5417054B2 (en) Air separation method and apparatus
KR950006408A (en) Liquid oxygen pumping method and apparatus
JP4401999B2 (en) Air separation method and air separation device
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JP4206083B2 (en) Argon production method using cryogenic air separator
JP5032407B2 (en) Nitrogen production method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP4519010B2 (en) Air separation device
JP4230213B2 (en) Air liquefaction separation apparatus and method
EP2513580A2 (en) Process and apparatus for the separation of air by cryogenic distillation
RU2717666C2 (en) Obtaining helium from stream of natural gas
JP5005708B2 (en) Air separation method and apparatus
JP4230094B2 (en) Nitrogen production method and apparatus
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4577977B2 (en) Air liquefaction separation method and apparatus
JP5647853B2 (en) Air liquefaction separation method and apparatus
JP7355980B1 (en) Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment
JP6591830B2 (en) Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5027173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250