JP5026175B2 - Workpiece manufacturing method - Google Patents

Workpiece manufacturing method Download PDF

Info

Publication number
JP5026175B2
JP5026175B2 JP2007181914A JP2007181914A JP5026175B2 JP 5026175 B2 JP5026175 B2 JP 5026175B2 JP 2007181914 A JP2007181914 A JP 2007181914A JP 2007181914 A JP2007181914 A JP 2007181914A JP 5026175 B2 JP5026175 B2 JP 5026175B2
Authority
JP
Japan
Prior art keywords
workpiece
frequency coil
groove
cooling device
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007181914A
Other languages
Japanese (ja)
Other versions
JP2009019230A (en
Inventor
幸雄 南雲
節 可児
孝行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2007181914A priority Critical patent/JP5026175B2/en
Publication of JP2009019230A publication Critical patent/JP2009019230A/en
Application granted granted Critical
Publication of JP5026175B2 publication Critical patent/JP5026175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、段差又は溝部を有するワークを高周波焼入れする工程を有するワークの製造方法に関する。特に本発明は、段取り時間を低減して生産性を向上させたワークの製造方法に関する。   The present invention relates to a method for manufacturing a workpiece including a step of induction hardening a workpiece having a step or a groove. In particular, the present invention relates to a workpiece manufacturing method in which the setup time is reduced and the productivity is improved.

ピストンロッドなどのワークは、所定の機械的強度を有する必要がある。このようなワークに所定の機械的強度を持たせる方法として、高周波焼入れがある。ワークに高周波焼入れを行う場合、高周波コイルとワークとの相対位置を移動させることにより、ワークの全面を高周波加熱し、その後冷却する(例えば特許文献1参照)。   A workpiece such as a piston rod needs to have a predetermined mechanical strength. There is induction hardening as a method for giving a predetermined mechanical strength to such a workpiece. When induction hardening is performed on a workpiece, the entire surface of the workpiece is heated at a high frequency by moving the relative position between the high frequency coil and the workpiece, and then cooled (see, for example, Patent Document 1).

特開2006−206992号公報(第2〜第4段落)JP 2006-206992 A (second to fourth paragraphs)

例えばワークがピストンロッドなど大径部と小径部を有する部材である場合、大径部と小径部の境界部分に段差が生じる。段差があるワークに一般的な方法で高周波焼入れを行う場合、大径部にあわせた高周波コイルを用いる必要があるため、段差を加熱処理するときに上段部(すなわち大径部の端部)が集中して誘導加熱されてしまい、段差の下段部(すなわち小径部の端部)がAc点以上に加熱される前に上段部がオーバーヒートしてしまい、結晶粒が粗大化してしまう。 For example, when the workpiece is a member having a large diameter portion and a small diameter portion such as a piston rod, a step is generated at a boundary portion between the large diameter portion and the small diameter portion. When induction hardening is applied to workpieces with a level difference using a general method, it is necessary to use a high frequency coil that matches the large diameter part, so the upper part (that is, the end of the large diameter part) is The heat is concentrated and induction heated, and the upper stage is overheated before the lower part of the step (that is, the end of the small diameter part) is heated to Ac 3 or more points, and the crystal grains become coarse.

この場合、段取り時間の増加により、生産性が低下して量産に適さないという問題があった。このような問題は、ワークの表面に溝が形成されている場合も生じていた。   In this case, there is a problem that the productivity is lowered due to an increase in the setup time and is not suitable for mass production. Such a problem also occurs when a groove is formed on the surface of the workpiece.

本発明は上記のような事情を考慮してなされたものであり、その目的は、段差部又は溝部を有するワークを高周波焼入れする工程を有しており、段取り時間を低減して生産性を向上させたワークの製造方法を提供することにある。   The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to have a step of induction-hardening a work having a stepped portion or a groove portion, thereby reducing the setup time and improving the productivity. Another object is to provide a method for manufacturing a workpiece.

上記課題を解決するため、本発明に係るワークの製造方法は、ワークを加熱する高周波コイル及び前記ワークを冷却する冷却装置それぞれを、前記ワークの表面に対して相対的に移動させることにより、前記ワークの表層に高周波焼入れする工程を具備し、
前記ワークは表面に、高部、該高部より低い低部、及び前記高部及び前記低部の境界である段差を有し、
前記段差を加熱するときに、前記高周波コイルを前記段差に対向させて前記高周波コイルへの入力をパルス状にして、かつ前記段差を形成する前記高部の端部を前記冷却装置で冷却することを特徴とする。
In order to solve the above-described problem, a method for manufacturing a workpiece according to the present invention includes moving a high-frequency coil that heats a workpiece and a cooling device that cools the workpiece relative to the surface of the workpiece. It has a process of induction hardening on the surface of the workpiece,
The workpiece has, on the surface, a high part, a low part lower than the high part, and a step which is a boundary between the high part and the low part,
When heating the step, the high-frequency coil is opposed to the step, the input to the high-frequency coil is pulsed, and the end of the high part forming the step is cooled by the cooling device It is characterized by.

前記段差を焼入れするときに、前記ワークに対する前記高周波コイル及び前記冷却装置の相対位置を変化させないのが好ましい。前記ワークに高周波焼入れする工程において、前記高周波コイル及び前記冷却装置を、前記高部から前記低部に向かう方向に移動させるのが好ましい。   When quenching the step, it is preferable that the relative positions of the high-frequency coil and the cooling device with respect to the workpiece are not changed. In the step of induction-quenching the workpiece, the high-frequency coil and the cooling device are preferably moved in a direction from the high portion toward the low portion.

前記段差に溝を有していてもよい。また、前記段差を加熱するときに、前記段差に接する前記高部の温度がAc点より50℃以上150℃未満である所定の温度を越えないように、前記高周波コイルへの入力を制御するのが好ましい。 The step may have a groove. Further, when heating the step, the input to the high-frequency coil is controlled so that the temperature of the high part in contact with the step does not exceed a predetermined temperature that is 50 ° C. or more and less than 150 ° C. from the Ac 3 point. Is preferred.

本発明に係るワークの製造方法は、ワークを加熱する高周波コイル及び前記ワークを冷却する冷却装置それぞれを、前記ワークの表面に対して相対的に移動させることにより、前記ワークの表層に高周波焼入れする工程を具備し、
前記ワークは表面に溝部を有し、
前記溝部を焼入れするときに、前記高周波コイルを前記溝部の上方に配置して前記高周波コイルへの入力をパルス状にして、かつ前記溝部の周囲を前記冷却装置で冷却することを特徴とする。
In the method for manufacturing a workpiece according to the present invention, the high-frequency coil for heating the workpiece and the cooling device for cooling the workpiece are moved relative to the surface of the workpiece, thereby induction-quenching the surface layer of the workpiece. Comprising steps,
The workpiece has a groove on the surface,
When quenching the groove, the high-frequency coil is disposed above the groove so that the input to the high-frequency coil is pulsed, and the periphery of the groove is cooled by the cooling device.

以下、図面を参照して本発明の実施形態について説明する。本実施形態は、高周波焼入れ工程を有するワーク10の製造方法である。図1は、本発明の実施形態に用いられる高周波焼入れ装置の構成を説明するための概略図である。この高周波焼入れ装置は、筒状又は棒状のワーク10を高周波焼入れ処理することにより、ワーク10の表層に硬化層を形成する装置である。ワーク10は例えばピストンロッドであり、大径部11、小径部12、及び大径部11と小径部12の境界すなわち段差に設けられた溝部13を有する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment is a manufacturing method of the workpiece | work 10 which has an induction hardening process. FIG. 1 is a schematic diagram for explaining the configuration of an induction hardening apparatus used in an embodiment of the present invention. This induction hardening device is a device that forms a hardened layer on the surface layer of the workpiece 10 by subjecting the cylindrical or rod-like workpiece 10 to induction hardening. The workpiece 10 is, for example, a piston rod, and includes a large diameter portion 11, a small diameter portion 12, and a groove portion 13 provided at a boundary, that is, a step between the large diameter portion 11 and the small diameter portion 12.

この高周波焼入れ装置は、ワーク10を加熱する高周波コイル21、ワーク10を冷却する冷却装置22、高周波コイル21に高周波を印加する電源23、高周波コイル21及び冷却装置22を移動させる移動機構24、並びに制御部26を有する。高周波コイル21の内側にはワーク10が挿通する。冷却装置22は、ワーク10の表面に冷却液又はエアーを吹きつけることにより、ワーク10を冷却する。冷却装置22は、例えば円筒部材を有しており、この円筒部材の内側にワーク10が挿通した状態で、ワーク10の表面に冷却液又はエアーを吹きつける。なお、冷却装置22及び電源23は、制御部26によって制御される。   This induction hardening apparatus includes a high frequency coil 21 that heats the workpiece 10, a cooling device 22 that cools the workpiece 10, a power source 23 that applies a high frequency to the high frequency coil 21, a moving mechanism 24 that moves the high frequency coil 21 and the cooling device 22, and A control unit 26 is included. The workpiece 10 is inserted inside the high frequency coil 21. The cooling device 22 cools the workpiece 10 by spraying a coolant or air on the surface of the workpiece 10. The cooling device 22 has, for example, a cylindrical member, and sprays coolant or air onto the surface of the workpiece 10 in a state where the workpiece 10 is inserted inside the cylindrical member. The cooling device 22 and the power source 23 are controlled by the control unit 26.

移動機構24は、高周波コイル21及び冷却装置22をワーク10の表面に沿って移動させることにより、高周波コイル21及び冷却装置22とワーク10の相対位置を移動させる。なお移動機構24は、ワーク10を移動させることにより、高周波コイル21及び冷却装置22とワーク10の相対位置を移動させてもよい。移動機構24は、制御部26によって制御される。   The moving mechanism 24 moves the high frequency coil 21 and the cooling device 22 along the surface of the workpiece 10 to move the relative positions of the high frequency coil 21 and the cooling device 22 and the workpiece 10. The moving mechanism 24 may move the relative positions of the high-frequency coil 21 and the cooling device 22 and the work 10 by moving the work 10. The moving mechanism 24 is controlled by the control unit 26.

図2は、図1に示した高周波焼入れ装置を用いてワーク10に焼入れする方法を説明するためのチャートである。このチャートにおいて、横軸は高周波コイル21及び冷却装置22の位置を、縦軸は処理開始からの時間を、それぞれ示している。本図に示す例において、制御部26は、高周波コイル21及び冷却装置22を、大径部11側の端部11bから小径部12側の端部12bまでこの方向に移動させることにより、大径部11、溝部13、及び小径部12の順に焼入れを行う。   FIG. 2 is a chart for explaining a method of quenching the workpiece 10 using the induction hardening apparatus shown in FIG. In this chart, the horizontal axis indicates the positions of the high-frequency coil 21 and the cooling device 22, and the vertical axis indicates the time from the start of processing. In the example shown in the figure, the control unit 26 moves the high-frequency coil 21 and the cooling device 22 in this direction from the end portion 11b on the large-diameter portion 11 side to the end portion 12b on the small-diameter portion 12 side. The part 11, the groove part 13, and the small diameter part 12 are quenched in this order.

大径部11及び小径部12を焼入れ処理する場合、制御部26は高周波コイル21及び冷却装置22を、この順に、一定速度でワーク10の表面に沿って移動させる。このとき、高周波コイル21と冷却装置22の間隔を一定にするのが好ましい。   When quenching the large-diameter portion 11 and the small-diameter portion 12, the control unit 26 moves the high-frequency coil 21 and the cooling device 22 along the surface of the workpiece 10 at a constant speed in this order. At this time, it is preferable to make the interval between the high-frequency coil 21 and the cooling device 22 constant.

そして溝部13を焼入れ処理する場合、制御部26は、高周波コイル21が溝部13の上方に位置し、かつ冷却装置22が大径部11のうち段差を形成している端部11aの上方又はその近傍に位置するように、これらを停止させる。そして制御部26は、電源23を制御して高周波コイル21への入力をパルス状にして、かつ冷却装置22を動作させ、冷却液又はエアーを端部11aに吹きつけさせる。冷却液又はエアーは、溝部13の底部にはほとんどかからないが、小径部12と溝部13の境界12aには少しかかる。このときの高周波コイル21への入力電圧の変化と、端部11a及び溝部13の底部それぞれの温度変化の例を、図3に示す。   When quenching the groove 13, the control unit 26 determines that the high-frequency coil 21 is located above the groove 13 and the cooling device 22 is above the end 11 a forming a step in the large-diameter portion 11 or its These are stopped so that they are located in the vicinity. And the control part 26 controls the power supply 23, makes the input to the high frequency coil 21 into a pulse form, operates the cooling device 22, and sprays a coolant or air on the edge part 11a. The coolant or air hardly takes the bottom part of the groove part 13, but takes a little on the boundary 12 a between the small diameter part 12 and the groove part 13. FIG. 3 shows an example of changes in the input voltage to the high-frequency coil 21 at this time and changes in temperature at the ends of the end portions 11a and the grooves 13.

図3に示すように、高周波コイル21への入力を開始すると、端部11aは溝部13の底部より先行して温度が上昇する。そして端部11aの温度がAc点より50℃以上150℃未満ほど高い所定の温度(図3の例では950℃)に達したときに、高周波コイル21への入力を中断する。中断後、端部11aの温度は冷却液又はエアーにより下がるが、溝部13の底部の温度は伝熱により上昇しつづける。 As shown in FIG. 3, when the input to the high frequency coil 21 is started, the temperature of the end portion 11 a rises ahead of the bottom portion of the groove portion 13. When the temperature of the end portion 11a reaches a predetermined temperature (950 ° C. in the example of FIG. 3) that is higher by 50 ° C. or more and lower than 150 ° C. from the Ac 3 point, the input to the high frequency coil 21 is interrupted. After the interruption, the temperature of the end portion 11a is lowered by the coolant or air, but the temperature of the bottom portion of the groove portion 13 continues to rise due to heat transfer.

その後、高周波コイル21への入力を再び行う。そして端部11aの温度が上記した所定の温度に達した場合に、高周波コイル21への入力を中断する。このように、冷却装置によって端部11aを冷却しつつ、高周波コイル21への入力を制御してパルス状にすることにより、端部11aのオーバーヒートを防ぎつつ、溝部13の底部の温度をAc点以上にすることができる。 Thereafter, the input to the high frequency coil 21 is performed again. When the temperature of the end portion 11a reaches the above-described predetermined temperature, the input to the high-frequency coil 21 is interrupted. In this way, by cooling the end portion 11a with the cooling device and controlling the input to the high-frequency coil 21 to form a pulse, the temperature of the bottom portion of the groove portion 13 is reduced to Ac 3 while preventing overheating of the end portion 11a. Can be more than a point.

また図3に示す例では、最初に予熱の為のパルス入力を行い、その後、本加熱のためのパルス入力を行っている。本加熱のためのパルス入力は、予熱の為のパルス入力より入力電圧が高く、かつ時間が短い。また予熱のためのパルス入力も、加熱が進むにつれて時間が短くなっている。   In the example shown in FIG. 3, pulse input for preheating is first performed, and then pulse input for main heating is performed. The pulse input for the main heating has a higher input voltage and a shorter time than the pulse input for preheating. The pulse input for preheating is also shortened as the heating proceeds.

なお、小径部12と溝部13の境界12aも高周波コイル21によって加熱され、溝部13の底部より温度が上昇するが、端部11aと同様の理由により、境界12aのオーバーヒートが防止される。   The boundary 12a between the small-diameter portion 12 and the groove portion 13 is also heated by the high-frequency coil 21, and the temperature rises from the bottom portion of the groove portion 13. However, overheating of the boundary 12a is prevented for the same reason as the end portion 11a.

そして端部11a及び溝部13の底部の温度がAc点以上になった後、制御部26は、高周波コイル21及び冷却装置22を小径部12側の端部12bに向かって移動させる。これにより端部11a及び溝部13は冷却装置22によって冷却され、焼入れされる。 Then, after the temperature of the bottom end 11a and the grooves 13 is equal to or greater than 3 points Ac, the control unit 26 moves the high-frequency coil 21 and the cooling device 22 toward the end 12b of the small diameter portion 12 side. Thereby, the end part 11a and the groove part 13 are cooled by the cooling device 22 and quenched.

そして大径部11、溝部13、及び小径部12の表層をこの順に高周波焼入れした後、大径部11、溝部13、及び小径部12の表層を、高周波コイル21を用いて焼戻しする。この焼戻しは、例えば小径部12、溝部13、及び大径部11の順に行う。   The surface layers of the large diameter portion 11, the groove portion 13, and the small diameter portion 12 are induction hardened in this order, and then the surface layer of the large diameter portion 11, the groove portion 13, and the small diameter portion 12 is tempered using the high frequency coil 21. This tempering is performed in the order of, for example, the small diameter portion 12, the groove portion 13, and the large diameter portion 11.

以上、本実施形態によれば、大径部11、小径部12、及び大径部11と小径部12の境界すなわち段差部に設けられた溝部13を有するワーク10を、一つの高周波コイル21を用いた一回の処理で、焼入れすることができる。   As described above, according to this embodiment, the workpiece 10 having the large-diameter portion 11, the small-diameter portion 12, and the groove portion 13 provided in the boundary between the large-diameter portion 11 and the small-diameter portion 12, that is, the step portion, is replaced with one high-frequency coil 21. Quenching can be achieved with a single treatment.

なお、ワーク10は、大径部11及び小径部12を有しているものに限定されず、管状又は棒状の部材の表面に周方向の溝が形成されたものであってもよい。この場合、高周波コイル21及び冷却装置22は溝に直交する方向に移動することになる。また、大径部11及び小径部12の境界に溝が形成されていなくてもよい。この場合、境界部分には段差のみが形成される。   In addition, the workpiece | work 10 is not limited to what has the large diameter part 11 and the small diameter part 12, The circumferential groove | channel may be formed in the surface of a tubular or rod-shaped member. In this case, the high frequency coil 21 and the cooling device 22 move in a direction orthogonal to the groove. Moreover, the groove | channel does not need to be formed in the boundary of the large diameter part 11 and the small diameter part 12. FIG. In this case, only a step is formed at the boundary portion.

また、上記した実施形態では、溝部13を焼入れするときに高周波コイル21及び冷却装置22を停止させていたが、これらを極低速で動かしても良い。   In the above-described embodiment, the high-frequency coil 21 and the cooling device 22 are stopped when the groove 13 is quenched, but these may be moved at an extremely low speed.

実施形態で示した方法を用いて、ワーク10を焼入れ処理した。実施例において、ワーク10は炭素鋼で形成されており、その成分は、質量%で、C:0.37%、Si:0.24%、Mn:1.74%、P:0.021%、S:0.015%、CU:0.01%、Ni:0.02%、Cr:0.47%、残部がFe及び不可避的不純物である。
溝部13を焼入れ処理するときには、端部11aの温度が950℃を超えないように、高周波コイル21へのパルス入力を行った。具体的には、6回のパルス入力を行った。パルス幅を、最初のパルスから順に、10秒、6秒、5秒、5秒、1.5秒、1.5秒とした。これらパルスの相互間隔(すなわち高周波入力を行わない時間)を3秒とした。各パルスにおける入力電圧を、予熱である最初の4パルスを250Vとして、本加熱である残りの2パルスを400Vとした。
The workpiece 10 was quenched using the method described in the embodiment. In an Example, the workpiece | work 10 is formed with the carbon steel, The component is the mass%, C: 0.37%, Si: 0.24%, Mn: 1.74%, P: 0.021% , S: 0.015%, CU: 0.01%, Ni: 0.02%, Cr: 0.47%, the balance being Fe and inevitable impurities.
When quenching the groove 13, a pulse was input to the high-frequency coil 21 so that the temperature of the end 11 a did not exceed 950 ° C. Specifically, 6 pulse inputs were performed. The pulse width was set to 10 seconds, 6 seconds, 5 seconds, 5 seconds, 1.5 seconds, and 1.5 seconds in order from the first pulse. The mutual interval between these pulses (that is, the time during which high frequency input is not performed) was 3 seconds. The input voltage in each pulse was set to 250V for the first 4 pulses that were preheating and 400V for the remaining 2 pulses that were main heating.

図4の各図は、ワーク10の組織写真である。図4(A)は大径部11の本体の組織写真であり、図4(B)は大径部11の端部11aの組織写真であり、図4(C)は大径部11と小径部12が形成する段差の垂直部分の組織写真であり、図4(D)は溝部13の組織写真であり、図4(E)は小径部12と溝部13の境界12aの組織写真である。図4(A),(D)に示すように、大径部11の本体及び溝部13の底部の結晶粒は微細であり、10視野の平均結晶粒度はそれぞれ8.9、9.8であった。また図4(B),(C),(E)に示すように、端部11a、段差の垂直部分、及び小径部12と溝部13の境界12aでは、溝部13の底部と比較して結晶粒はやや大きかったが、10視野の平均結晶粒度はそれぞれ7.2、7.8、7.5と十分小さかった。なお、溝部13を他の部分と同様に処理した場合(すなわち高周波コイル21及び冷却装置22を移動させながら処理した場合)、端部11a、及び小径部12と溝部13の境界における結晶粒度は、4程度になる。   Each diagram in FIG. 4 is a structure photograph of the workpiece 10. 4A is a structural photograph of the main body of the large diameter portion 11, FIG. 4B is a structural photograph of the end portion 11a of the large diameter portion 11, and FIG. 4C is a large diameter portion 11 and a small diameter. 4D is a structure photograph of the vertical portion of the step formed by the portion 12, FIG. 4D is a structure photograph of the groove portion 13, and FIG. 4E is a structure photograph of the boundary 12a between the small diameter portion 12 and the groove portion 13. As shown in FIGS. 4A and 4D, the main body of the large-diameter portion 11 and the crystal grains at the bottom of the groove portion 13 are fine, and the average crystal grain sizes in 10 fields of view are 8.9 and 9.8, respectively. It was. Further, as shown in FIGS. 4B, 4C, and 4E, the crystal grains are compared with the end portion 11a, the vertical portion of the step, and the boundary 12a between the small diameter portion 12 and the groove portion 13 as compared with the bottom portion of the groove portion 13. Although it was slightly large, the average grain sizes in the 10 fields of view were sufficiently small at 7.2, 7.8, and 7.5, respectively. When the groove 13 is processed in the same manner as other portions (that is, when the high frequency coil 21 and the cooling device 22 are moved), the crystal grain size at the end 11a and the boundary between the small diameter portion 12 and the groove portion 13 is 4 or so.

図5(A)は、大径部11の本体(グラフ1)、端部11a(グラフ2)、及び溝部13の底部(グラフ3,4)それぞれにおける深さ方向のビッカース硬度分布を示している。詳細には、図5(B)に示すように、グラフ1は、大径部11の表面から垂直な方向の硬度分布を示しており、グラフ2は、端部11aから、ワーク10の表面に対して45°を成す方向の硬度分布を示しており、グラフ3は、溝部13の底部から斜め45°方向の硬度分布を示しており、グラフ4は、溝部13の底部から、小径部12側に15°ほど垂直方向から傾いた方向の硬度分布を示している。   FIG. 5A shows the Vickers hardness distribution in the depth direction at the main body (graph 1) of the large diameter portion 11, the end portion 11a (graph 2), and the bottom portion (graphs 3 and 4) of the groove portion 13, respectively. . Specifically, as shown in FIG. 5 (B), the graph 1 shows the hardness distribution in the direction perpendicular to the surface of the large diameter portion 11, and the graph 2 shows the surface of the workpiece 10 from the end portion 11a. The graph 3 shows the hardness distribution in the direction of 45 °, and the graph 3 shows the hardness distribution in the direction of 45 ° obliquely from the bottom of the groove 13, and the graph 4 shows the small diameter 12 side from the bottom of the groove 13. Shows the hardness distribution in a direction inclined from the vertical direction by about 15 °.

これらのグラフに示すように、大径部11の本体では、深さ4mmまでHV600前後の硬化層が形成されていた。そして溝部13の底部では、大径部11側に45°ほど傾いた方向には深さ6.3mmまでHV600前後の硬化層が形成されており、小径部12側に15°ほど傾いた方向には深さ2.7mmまでHV600前後の硬化層が形成されていた。また、端部11aでは深さ2mmまでHB600前後の硬化層が形成されていた。   As shown in these graphs, in the main body of the large diameter portion 11, a hardened layer of about HV600 was formed up to a depth of 4 mm. At the bottom of the groove 13, a hardened layer of about HV600 is formed to a depth of 6.3 mm in a direction inclined by 45 ° toward the large diameter portion 11, and in a direction inclined by about 15 ° toward the small diameter portion 12. A hardened layer of around HV600 was formed up to a depth of 2.7 mm. Further, a hardened layer of around HB600 was formed up to a depth of 2 mm at the end 11a.

以上より、上記した実施形態でワーク10を処理することにより、溝部13及び端部11aのいずれにも十分な深さの硬化層を形成できることが示された。   From the above, it has been shown that by processing the workpiece 10 in the above-described embodiment, a hardened layer having a sufficient depth can be formed in both the groove portion 13 and the end portion 11a.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

高周波焼入れ装置の構成を説明するための概略図。Schematic for demonstrating the structure of an induction hardening apparatus. ワーク10に焼入れする方法を説明するためのチャート。The chart for demonstrating the method of quenching to the workpiece | work 10. FIG. 高周波コイル21への入力電圧の変化と、端部11a及び溝部13の底部それぞれの温度変化の例を説明するための図。The figure for demonstrating the example of the change of the input voltage to the high frequency coil 21, and the temperature change of the bottom part of the edge part 11a and the groove part 13, respectively. 各図はワーク10の組織写真。Each figure is a photograph of the organization of work 10. (A)は、大径部11の本体(グラフ1)、端部11a(グラフ2)、及び溝部13の底部(グラフ3,4)それぞれにおける深さ方向のビッカース硬度分布を示すグラフ、(B)は硬度分布の方向を説明するための図。(A) is a graph showing the Vickers hardness distribution in the depth direction at the main body (graph 1) of the large-diameter portion 11, the end portion 11a (graph 2), and the bottom portion (graphs 3 and 4) of the groove portion 13; ) Is a diagram for explaining the direction of hardness distribution.

符号の説明Explanation of symbols

10…ワーク、11…大径部(高部)、11a,11b,12b…端部、12…小径部(低部)、12a…境界、13…溝部、21…高周波コイル、22…冷却装置、23…電源、24…移動機構、26…制御部 DESCRIPTION OF SYMBOLS 10 ... Work, 11 ... Large diameter part (high part), 11a, 11b, 12b ... End part, 12 ... Small diameter part (low part), 12a ... Boundary, 13 ... Groove part, 21 ... High frequency coil, 22 ... Cooling device, 23 ... Power supply, 24 ... Movement mechanism, 26 ... Control unit

Claims (5)

ワークを加熱する高周波コイル及び前記ワークを冷却する冷却装置それぞれを、前記ワークの表面に対して相対的に移動させることにより、前記ワークの表層に高周波焼入れする工程を具備し、
前記ワークは表面に、高部、該高部より低い低部、及び前記高部及び前記低部の境界である段差を有し、
前記段差を加熱するときに、前記高周波コイルを前記段差に対向させて前記高周波コイルへの入力をパルス状にして、かつ前記段差を形成する前記高部の端部を前記冷却装置で冷却することを特徴とするワークの製造方法。
A step of induction-quenching the surface layer of the workpiece by moving each of the high-frequency coil for heating the workpiece and the cooling device for cooling the workpiece relative to the surface of the workpiece;
The workpiece has, on the surface, a high part, a low part lower than the high part, and a step which is a boundary between the high part and the low part,
When heating the step, the high-frequency coil is opposed to the step, the input to the high-frequency coil is pulsed, and the end of the high part forming the step is cooled by the cooling device A method for manufacturing a workpiece characterized by the above.
前記段差を焼入れするときに、前記ワークの表面に対する前記高周波コイル及び前記冷却装置の相対位置を変化させないことを特徴とする請求項1に記載のワークの製造方法。   The method for manufacturing a workpiece according to claim 1, wherein when the step is quenched, a relative position of the high-frequency coil and the cooling device with respect to a surface of the workpiece is not changed. 前記ワークに高周波焼入れする工程において、前記高周波コイル及び前記冷却装置を、前記高部から前記低部に向かう方向に移動させることを特徴とする請求項1又は2に記載のワークの製造方法。   The method of manufacturing a workpiece according to claim 1, wherein in the step of induction hardening to the workpiece, the high frequency coil and the cooling device are moved in a direction from the high portion toward the low portion. 前記段差に溝を有することを特徴とする請求項1〜3のいずれか一項に記載のワークの製造方法。   The method for manufacturing a workpiece according to claim 1, wherein the step has a groove. ワークを加熱する高周波コイル及び前記ワークを冷却する冷却装置それぞれを、前記ワークの表面に対して相対的に移動させることにより、前記ワークの表層に高周波焼入れする工程を具備し、
前記ワークは表面に溝部を有し、
前記溝部を焼入れするときに、前記高周波コイルを前記溝部の上方に配置して前記高周波コイルへの入力をパルス状にして、かつ前記溝部の周囲を前記冷却装置で冷却することを特徴とするワークの製造方法。
A step of induction-quenching the surface layer of the workpiece by moving each of the high-frequency coil for heating the workpiece and the cooling device for cooling the workpiece relative to the surface of the workpiece;
The workpiece has a groove on the surface,
When quenching the groove, the high-frequency coil is disposed above the groove, the input to the high-frequency coil is pulsed, and the periphery of the groove is cooled by the cooling device. Manufacturing method.
JP2007181914A 2007-07-11 2007-07-11 Workpiece manufacturing method Expired - Fee Related JP5026175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181914A JP5026175B2 (en) 2007-07-11 2007-07-11 Workpiece manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181914A JP5026175B2 (en) 2007-07-11 2007-07-11 Workpiece manufacturing method

Publications (2)

Publication Number Publication Date
JP2009019230A JP2009019230A (en) 2009-01-29
JP5026175B2 true JP5026175B2 (en) 2012-09-12

Family

ID=40359131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181914A Expired - Fee Related JP5026175B2 (en) 2007-07-11 2007-07-11 Workpiece manufacturing method

Country Status (1)

Country Link
JP (1) JP5026175B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722025B2 (en) * 2010-12-27 2015-05-20 高周波熱錬株式会社 Induction quenching apparatus and induction quenching method
CN105274305A (en) * 2014-07-20 2016-01-27 安庆市亿豪工贸发展有限公司 Heat treatment method for piston rod
JP6438734B2 (en) * 2014-10-29 2018-12-19 高周波熱錬株式会社 Work heating and quenching methods
JP6427391B2 (en) * 2014-11-11 2018-11-21 高周波熱錬株式会社 Hardening device and hardening method
CN114350926A (en) * 2022-01-13 2022-04-15 湖南南方宇航高精传动有限公司 Shaft induction quenching induction coil and processing method
WO2024057406A1 (en) * 2022-09-13 2024-03-21 日本製鉄株式会社 Mobile hardening method and mobile hardening device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164539B2 (en) * 1997-08-22 2001-05-08 富士電子工業株式会社 Induction hardening equipment
JP2000303119A (en) * 1999-04-16 2000-10-31 Fuji Electronics Industry Co Ltd Induction hardening apparatus and induction hardening method
JP2002371317A (en) * 2001-06-19 2002-12-26 Fuji Electronics Industry Co Ltd Device and method for induction hardening of axial workpiece

Also Published As

Publication number Publication date
JP2009019230A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP5026175B2 (en) Workpiece manufacturing method
JP6194526B2 (en) Method and apparatus for heating plate workpiece and hot press molding method
JP6211364B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
JP6211366B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
US10590502B2 (en) Method for induction surface hardening of a ring surface
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
JP6211365B2 (en) Heat treatment method for ring-shaped member
US3596037A (en) Apparatus for inductively heat-treating steel workpieces
JP5534492B2 (en) Carbon tool steel strip manufacturing method
JP2003183735A5 (en)
JP2015010238A (en) Heat treatment method
JP5489325B2 (en) High frequency induction heating method and high frequency induction heating apparatus
JP5274762B2 (en) Heat treatment method
JP6630577B2 (en) Quenching method
JP2006028589A (en) Hardening and tempering method with direct electric-conduction hardening apparatus
JP6438734B2 (en) Work heating and quenching methods
JP2008105099A (en) Heat treatment method, manufacturing method, and manufacturing equipment for steel material
JP2020204081A (en) Quenching apparatus
JP2007231367A (en) Heat treatment method and device
JP2007262461A (en) Method and apparatus for induction-heating using stepwise heating
JP2006083411A (en) Induction heat treatment device, induction heat treatment method, and wrought product manufactured with the method
JP6276941B2 (en) Heat treatment method and induction heating coil
RU2025538C1 (en) Strengthening method for surfaces of steel articles of small weight
JPH07138647A (en) Method for refining crystal grain size of carburizing hardened parts
JPH11140536A (en) High frequency hardening method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees