JP5024659B2 - Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles - Google Patents

Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles Download PDF

Info

Publication number
JP5024659B2
JP5024659B2 JP2007078223A JP2007078223A JP5024659B2 JP 5024659 B2 JP5024659 B2 JP 5024659B2 JP 2007078223 A JP2007078223 A JP 2007078223A JP 2007078223 A JP2007078223 A JP 2007078223A JP 5024659 B2 JP5024659 B2 JP 5024659B2
Authority
JP
Japan
Prior art keywords
powder
oxide
mol
magnetic recording
recording film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007078223A
Other languages
Japanese (ja)
Other versions
JP2008088546A (en
Inventor
荘平 野中
孝典 白井
幸也 杉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007078223A priority Critical patent/JP5024659B2/en
Priority to US12/294,691 priority patent/US20100270146A1/en
Priority to TW096111554A priority patent/TW200808980A/en
Priority to PCT/JP2007/057223 priority patent/WO2007116834A1/en
Publication of JP2008088546A publication Critical patent/JP2008088546A/en
Application granted granted Critical
Publication of JP5024659B2 publication Critical patent/JP5024659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するためのスパッタリングターゲットの製造方法に関するものである。   The present invention relates to a method of manufacturing a sputtering target for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium.

ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、すでに実用化されている。この垂直磁気記録方式のハードディスク媒体の磁気記録層に適用する材料の有力な候補としてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、この磁気記録膜は高性能な磁気記録膜であることが必要である。これに適用可能な磁気記録膜の一つとしてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、このCoCrPt−SiOグラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するCo基焼結合金スパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている。
このCo基焼結合金スパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、ホットプレスまたは熱間静水圧プレスなどの方法で加圧焼結することにより作製されることが知られており、前記二酸化珪素粉末として高温火炎加水分解法で製造された二酸化珪素粉末を使用し、ターゲットの素地中に分散する二酸化珪素相を10μm以下の極めて細かい組織とすることによってパーティクルの発生を少なくしている(特許文献1、特許文献2などを参照)。
さらに、前記SiOのほかにTiO、Cr、TiO、Ta、Al、BeO、MgO、ThO、ZrO、CeO、Yなどの非磁性酸化物が使用できることが知られている(特許文献3、4参照)。
特開2001‐236643号公報 特開2004‐339586号公報 特開2003‐36525号公報 特開2006‐24346号公報
Hard disk devices are generally used as external recording devices such as computers and digital home appliances, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system that can realize ultra-high-density recording has attracted attention. Unlike the conventional in-plane recording system, this perpendicular magnetic recording system is said to have a stable recording magnetization as the density increases in principle, and has already been put into practical use. A CoCrPt—SiO 2 granular magnetic recording film has been proposed as a promising candidate for a material to be applied to the magnetic recording layer of this perpendicular magnetic recording type hard disk medium, and this magnetic recording film is a high-performance magnetic recording film. is necessary. As one of the magnetic recording films applicable to this, a CoCrPt—SiO 2 granular magnetic recording film has been proposed. This CoCrPt—SiO 2 granular magnetic recording film has a Co-based sintered alloy phase containing Cr and Pt and silicon dioxide. It is known to produce by a magnetron sputtering method using a Co-based sintered alloy sputtering target having a mixed phase.
This Co-based sintered alloy sputtering target usually comprises silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%. It is known that the remainder is prepared by mixing and mixing so as to be a composition consisting of Co, and then pressure sintering by a method such as hot pressing or hot isostatic pressing, Generation of particles is reduced by using silicon dioxide powder produced by a high-temperature flame hydrolysis method as silicon dioxide powder, and making the silicon dioxide phase dispersed in the target substrate a very fine structure of 10 μm or less ( (See Patent Document 1, Patent Document 2, etc.).
Further, in addition to the SiO 2 , nonmagnetic materials such as TiO, Cr 2 O 3 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , BeO 2 , MgO, ThO 2 , ZrO 2 , CeO 2 , and Y 2 O 3. It is known that oxides can be used (see Patent Documents 3 and 4).
Japanese Patent Laid-Open No. 2001-236643 JP 2004-339586 A JP 2003-36525 A JP 2006-24346 A

しかし、前記従来の方法で作製したCo基焼結合金スパッタリングターゲットは、パーティクルの発生が避けられず、一層パーティクル発生の少ないCo基焼結合金からなるスパッタリングターゲットが求められていた。   However, the Co-based sintered alloy sputtering target produced by the conventional method inevitably generates particles, and a sputtering target made of a Co-based sintered alloy with less generation of particles has been demanded.

そこで、本発明者は、一層パーティクル発生の少ないCo基焼結合金スパッタリングターゲットを得るべく研究を行なったところ、
(イ)ターゲットの素地中に絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)が10μmを越える粗大なCrとOを主成分とする凝集体または析出物(以下、クロム酸化物凝集体という)が分散していることがパーティクル発生の一因となっていること、
(ロ)この粗大なクロム酸化物凝集体が素地中に存在しないようにするには、原料粉末として、Cr粉末の代わりに、Pt:10〜90原子%を含有し、残部がCrからなる成分組成を有するPtとCrの二元合金粉末(以下、Cr−Pt二元系合金粉末という)を使用することが好ましいこと、
(ハ)この粗大なクロム酸化物凝集体が素地中に存在しないようにするには、原料粉末として、Cr粉末の代わりに、Cr−Pt二元系合金粉末およびCr:50〜70原子%を含有し、残部がCoからなるCrとCoの二元系合金粉末(以下、Co−Cr二元系合金粉末という)を使用することが好ましいこと、などの知見を得たのである。
Therefore, the present inventor conducted research to obtain a Co-based sintered alloy sputtering target with less particle generation,
(A) Aggregates or precipitates (hereinafter referred to as chromium) whose main components are coarse Cr and O whose absolute maximum length (maximum value of the distance between any two points on the particle outline) exceeds 10 μm in the target substrate. That the dispersion of oxide aggregates) contributes to particle generation,
(B) In order to prevent the coarse chromium oxide aggregates from being present in the substrate, the raw material powder contains Pt: 10 to 90 atomic% instead of Cr powder, with the balance being Cr. It is preferable to use a binary alloy powder of Pt and Cr having a composition (hereinafter referred to as a Cr-Pt binary alloy powder),
(C) In order to prevent the coarse chromium oxide aggregates from being present in the substrate, instead of Cr powder, Cr—Pt binary alloy powder and Cr: 50 to 70 atomic% are used as raw material powder. It has been found that it is preferable to use Cr and Co binary alloy powder (hereinafter referred to as Co—Cr binary alloy powder) containing Co and the balance being Co.

この発明は、かかる知見に基づいてなされたものであって、
(1)原料粉末として、Pt:10〜90原子%を含有し、残部がCrからなる成分組成のCr−Pt二元系合金粉末、Pt粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結するパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、
(2)原料粉末としてPt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr二元系合金粉末、Pt粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結するパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、
(3)原料粉末としてPt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr二元系合金粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結するパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) As a raw material powder, a Cr—Pt binary alloy powder, a Pt powder, a nonmagnetic oxide powder, and a Co powder having a component composition containing Pt: 10 to 90 atomic% and the balance being Cr are prepared. After mixing and mixing these raw material powders so as to contain a non-magnetic oxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%, and the balance: a component composition consisting of Co , A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation under pressure sintering,
(2) Cr—Pt binary alloy powder containing Pt: 10 to 90 atomic% as a raw material powder and the balance being made of Cr, Co—Cr containing 50% to 70 atomic% of Cr and the balance being made of Co Binary alloy powder, Pt powder, nonmagnetic oxide powder and Co powder are prepared. These raw material powders are nonmagnetic oxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol. %, And the balance: a method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film for forming a magnetic recording film with less generation of particles after being mixed and mixed so as to have a component composition consisting of Co,
(3) Cr—Pt binary alloy powder containing Pt: 10 to 90 atomic% as a raw material powder and the balance being made of Cr, Co—Cr containing 50 to 70 atomic% of Cr and the balance being made of Co Binary alloy powder, nonmagnetic oxide powder and Co powder are prepared, and these raw material powders contain nonmagnetic oxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol% The remainder is characterized by a method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation that is pressure-sintered after being mixed and mixed so as to have a component composition consisting of Co. is there.

前記(1)、(2)および(3)記載の加圧焼結は、ホットプレスまたは熱間静水圧プレスである。したがって、この発明は、
(4)前記加圧焼結は、ホットプレスまたは熱間静水圧プレスである前記(1)、(2)または(3)記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
The pressure sintering described in the above (1), (2) and (3) is a hot press or a hot isostatic press. Therefore, the present invention
(4) The Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles according to (1), (2) or (3), wherein the pressure sintering is hot pressing or hot isostatic pressing. The manufacturing method is characterized.

この発明のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用するCr−Pt二元系合金粉末の成分組成を前記のごとく限定した理由は、Ptが10原子%未満あるいはPtが90原子%を越えて含有すると粉末中に金属間化合物の他にPtとCrとの結合が弱い固溶体Crが存在する割合が多くなり、混合時や焼結時にCrが酸素や非磁性酸化物と反応しやすく、Cr酸化凝集体を形成しやすくなるため好ましくないからである。Cr−Pt二元系合金粉末におけるPt含有量の一層好ましい範囲はPt:15〜25原子%である。この原料粉末として使用するCr−Pt二元系合金粉末の粒径は、150μmより大きいと粉砕が十分進みにくいため、150μm以下が好ましく、分級などにより75μm以下、さらには45μm以下とするのが好ましい。 The reason why the component composition of the Cr—Pt binary alloy powder used in the manufacturing method of the Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation of the present invention is limited as described above is that Pt is 10 atomic%. If the content of Pt is less than 90% by atom or less than 90 atomic%, the proportion of solid solution Cr having a weak bond between Pt and Cr in addition to the intermetallic compound increases in the powder. This is because it is not preferable because it easily reacts with the magnetic oxide and easily forms Cr oxide aggregates. A more preferable range of the Pt content in the Cr—Pt binary alloy powder is Pt: 15 to 25 atomic%. The particle diameter of the Cr—Pt binary alloy powder used as the raw material powder is preferably 150 μm or less, and is preferably 75 μm or less, more preferably 45 μm or less by classification etc. .

また、この発明のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用するCo−Cr二元系合金粉末の成分組成を前記のごとく限定した理由は、Crが50原子%未満または70原子%を越えて含有すると、粉末中に金属間化合物の他にCoとCrの結合が弱い固溶体Coまたは固溶体Crが存在する割合が多くなり、混合時や焼結時にCrが酸素や非磁性酸化物と反応して粗大なクロム酸化物凝集体を形成しやすくなるので好ましくないからである。Co−Cr二元系合金粉末に含まれるCrの一層好ましい範囲は54〜67原子%である。この原料粉末として使用するCo−Cr二元系合金粉末の粒径は、150μmより大きいと粉砕が十分進みにくいため、150μm以下が好ましく、分級などにより75μm以下、さらには45μm以下とするのが好ましい。 Moreover, the reason why the component composition of the Co—Cr binary alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation of the present invention is limited as described above is that Cr is 50 If the content is less than 70% or more than 70% by atom, the ratio of the solid solution Co or the solid solution Cr, in which the bond between Co and Cr is weak in addition to the intermetallic compound, increases in the powder. This is because it tends to react with oxygen and nonmagnetic oxides to form coarse chromium oxide aggregates, which is not preferable. A more preferable range of Cr contained in the Co—Cr binary alloy powder is 54 to 67 atomic%. The particle diameter of the Co—Cr binary alloy powder used as the raw material powder is preferably 150 μm or less, preferably 75 μm or less, and more preferably 45 μm or less by classification or the like, since pulverization is difficult to proceed sufficiently if it is larger than 150 μm. .

クロム酸化物凝集体がパーティクル発生の原因となる理由は、クロム酸化物凝集体は非常にもろく、スパッタ中に脱落したり異常放電を生じたりし、またクロム酸化物凝集体のサイズが大きい場合にはターゲットの加工中にターゲット表面から脱落し、脱落した部分に欠陥が形成されるからである。Crを合金化したCr−Pt二元系合金粉末またはCr−Pt二元系合金粉末とCo−Cr二元系合金粉末とを原料粉末として使用することにより、酸素や非磁性酸化物との反応による酸化が生じがたくなるためクロム酸化物凝集体の生成が抑制されパーティクルの発生は少なくなると考えられる。 The reason why chromium oxide aggregates cause particle generation is that chromium oxide aggregates are very fragile, fall off during spattering, cause abnormal discharge, and when the size of chromium oxide aggregates is large. This is because it falls off from the target surface during processing of the target, and a defect is formed in the dropped part. Reaction with oxygen and nonmagnetic oxide by using Cr-Pt binary alloy powder alloyed with Cr or Cr-Pt binary alloy powder and Co-Cr binary alloy powder as raw material powder It is considered that the generation of chromium oxide aggregates is suppressed and the generation of particles is reduced because the oxidation due to is difficult to occur.

つぎに、この発明のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用するCo粉末、Pt粉末はいずれも50%粒径が50μm以下(一層好ましくは50%粒径が40μm以下)、さらに非磁性酸化物粉末は50%粒径が20μm以下(一層好ましくは50%粒径が10μm以下)とすることが好ましい。その理由はCo粉末、Pt粉末がこれ以上大きいと混合後に均一な組織が得られにくいためである。また、非磁性酸化物粉末の粒径がこれ以上大きくなると混合粉砕工程を経てもターゲット中に10μm以上の大きな非磁性酸化物が存在しやすくなり、これがスパッタ中の異常放電やパーティクル発生の原因となるからである。前記原料粉末の混合は不活性ガス雰囲気中で行なうことが好ましい。これは混合中にCrが酸素と結合してクロム酸化物凝集体が形成されるのをより一層防止するからである。   Next, the Co powder and the Pt powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to the present invention have a 50% particle size of 50 μm or less (more preferably 50% particle size). Further, the nonmagnetic oxide powder preferably has a 50% particle size of 20 μm or less (more preferably a 50% particle size of 10 μm or less). The reason is that if the Co powder and the Pt powder are larger than this, it is difficult to obtain a uniform structure after mixing. Further, when the particle size of the nonmagnetic oxide powder is larger than this, a large nonmagnetic oxide of 10 μm or more is likely to be present in the target even after the mixing and pulverization process, which causes abnormal discharge and particle generation during sputtering. Because it becomes. The raw material powder is preferably mixed in an inert gas atmosphere. This is because it further prevents Cr from being combined with oxygen to form chromium oxide aggregates during mixing.

この発明は、一層パーティクル発生の少ない優れた磁気記録膜を形成することができるスパッタリングターゲットを提供することができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得るものである。   The present invention can provide a sputtering target capable of forming an excellent magnetic recording film with less generation of particles, and can greatly contribute to the development of industries such as computers and digital home appliances.

原料粉末として、表1に示される成分組成を有するCr−Pt二元系合金粉末A〜Sをガスアトマイズ法により作製した。これらガスアトマイズ法により得られたCr−Pt二元系合金粉末A〜Sは50%粒径が95μmであったので、これらCr−Pt二元系合金粉末A〜Sを45μmの目開きを持つ篩により分級し、レーザー回折法により測定される50%粒径がいずれも35μmとなるように分級した。
さらに原料粉末として、表2に示される成分組成を有するCo−Cr二元系合金粉末a〜jをガスアトマイズ法により作製した。これらガスアトマイズ法により得られたCo−Cr二元系合金粉末a〜jは50%粒径が95μmであったので、これらCo−Cr二元系合金粉末a〜jを45μmの目開きを持つ篩により分級し、レーザー回折法により測定される50%粒径がいずれも35μmとなるように分級した。さらに市販の50%粒径:10μmのCo粉末、50%粒径:15μmのPt粉末、50%粒径:3μmのSiO粉末、50%粒径:3μmのTiO粉末、50%粒径:3μmのTa粉末、および50%粒径:10μmのCr粉末を用意した。
As raw material powders, Cr—Pt binary alloy powders A to S having the component compositions shown in Table 1 were prepared by a gas atomization method. Since the Cr—Pt binary alloy powders A to S obtained by the gas atomization method had a 50% particle size of 95 μm, the Cr—Pt binary alloy powders A to S were sieved with a 45 μm mesh. And 50% particle size measured by the laser diffraction method was 35 μm.
Furthermore, as raw material powders, Co—Cr binary alloy powders a to j having the component compositions shown in Table 2 were produced by a gas atomization method. Since the Co-Cr binary alloy powders a to j obtained by the gas atomizing method had a 50% particle size of 95 μm, the Co—Cr binary alloy powders a to j were sieved with a 45 μm opening. And 50% particle size measured by the laser diffraction method was 35 μm. Further, commercially available 50% particle size: 10 μm Co powder, 50% particle size: 15 μm Pt powder, 50% particle size: 3 μm SiO 2 powder, 50% particle size: 3 μm TiO 2 powder, 50% particle size: 3 μm Ta 2 O 5 powder and 50% particle size: 10 μm Cr powder were prepared.

Figure 0005024659
Figure 0005024659

Figure 0005024659
Figure 0005024659

実施例1
これら原料粉末を表3に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることによりホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有し、かつCr:10.1モル%、Pt:15.6モル%、SiO:8.0モル%を含有し、残部Coからなる成分組成を有するターゲットを作製することにより本発明法1〜11、比較法1および従来法1を実施した。
Example 1
These raw material powders were blended so as to have the blending composition shown in Table 3, and the obtained blended powder was put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container was placed in an Ar gas atmosphere. After replacement, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder is filled in a vacuum hot press apparatus, and a hot press body is produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1200 ° C., pressure: 15 MPa, and 3 hours. And has a size of diameter: 152.4 mm, thickness: 3 mm, and contains Cr: 10.1 mol%, Pt: 15.6 mol%, SiO 2 : 8.0 mol%, The present invention methods 1 to 11, the comparative method 1, and the conventional method 1 were carried out by producing a target having a component composition composed of the balance Co.

前記本発明法1〜11、比較法1および従来法1で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表3に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、次のようにして行なった。前記本発明法1〜11、比較法1および従来法1で作製したホットプレス体から試料を切り出して断面を樹脂に埋め、鏡面研磨した。この断面組織についてフィールドエミッションEPMA(日本電子社製JXA−8500F)により、加速電圧:15kV、照射電流:5×10−8Aの条件で1000倍の倍率にて面分析を実施し、Crの元素マッピング像を得た。このCrの元素マッピング像は出来るだけCrが富化した領域(すなわちクロム酸化物凝集体)を明確に判別できるよう、コントラストおよび色調をつけた画像とした。得られたCrの元素マッピング像を画質を落とさずにビットマップ形式の画像ファイルとして保存し、この画像を別途パソコンの画像処理ソフト(三谷商事社製、Win Roof)に読み込ませて二値化し、マトリックスよりCrが富化している領域の絶対最大長を画像処理により計測した。二値化の際にはCr富化領域の大きさが元の画像と変化しないようにしきい値を選んだ。計測時の長さのキャリブレーションについては元のEPMAによるCrの元素マッピング像に表示されたスケールバーを用いた。
The absolute maximum length of the chromium oxide aggregates dispersed in the substrate of the target prepared by the above-mentioned inventive methods 1 to 11, comparative method 1 and conventional method 1 (maximum value of the distance between any two points on the particle outline) Table 3 shows the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm.
The absolute maximum length of the chromium oxide aggregates by EPMA was measured as follows. A sample was cut out from the hot press body produced by the above-mentioned inventive methods 1 to 11, comparative method 1 and conventional method 1, the cross section was filled in resin, and mirror-polished. This cross-sectional structure was subjected to surface analysis at 1000 times magnification under the conditions of acceleration voltage: 15 kV, irradiation current: 5 × 10 −8 A by field emission EPMA (JXA-8500F manufactured by JEOL Ltd.), and Cr element A mapping image was obtained. The element mapping image of Cr was an image with contrast and color tone so that the Cr-enriched region (that is, the chromium oxide aggregate) could be clearly discriminated. The obtained Cr element mapping image is saved as an image file in bitmap format without degrading the image quality, and this image is separately read into a personal computer image processing software (Mitani Corp., Win Roof) and binarized, The absolute maximum length of the region enriched with Cr from the matrix was measured by image processing. In binarization, a threshold value was selected so that the size of the Cr-enriched area did not change from the original image. For the calibration of the length at the time of measurement, a scale bar displayed on the element mapping image of Cr by the original EPMA was used.

さらに、前記本発明法1〜11、比較法1および従来法1で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、
到達真空度:5×10−5Pa、
電力:直流800W、
Arガス圧:6.0Pa、
ターゲット基板間距離:60mm、
基板加熱:なし、
の条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表3に示した。
Furthermore, after degreasing the targets obtained in the above-mentioned inventive methods 1 to 11, comparative method 1 and conventional method 1 with an organic solvent, and then vacuum-drying at 150 ° C. for 8 hours in a vacuum, a copper backing plate was used. Join and attach to a commercially available sputtering device,
Ultimate vacuum: 5 × 10 −5 Pa,
Power: DC 800W,
Ar gas pressure: 6.0 Pa,
Target substrate distance: 60mm,
Substrate heating: None,
Pre-sputtering was performed under the conditions described above, and after the target surface processed layer was removed, the chamber was once opened to the atmosphere, and chamber members such as a deposition prevention plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the results are shown in Table 3.

Figure 0005024659
Figure 0005024659

表3に示される結果から、Pt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末A〜Kを原料粉末として配合して作製する本発明法1〜11で作製したターゲットは、Cr−Pt二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのSiO粉末を配合し混合して作製する従来法1により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有するCr−Pt二元系合金粉末Rを使用する比較法1で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 3, the present invention methods 1 to 11 are prepared by blending Cr—Pt binary alloy powders A to K containing Pt: 10 to 90 atomic% and the balance being Cr as raw material powders. The targets prepared in the above are 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% without adding Cr—Pt binary alloy powder. % Particle size: It can be seen that the generation of particles is less than that of the target prepared by the conventional method 1 prepared by mixing and mixing SiO 2 powder of 3 μm. However, the target produced by Comparative Method 1 using the Cr—Pt binary alloy powder R having a component composition deviating from the scope of the present invention is preferable because the generation of particles increases. I understand that there is no.

実施例2
表1に示されるCr−Pt二元系合金粉末A〜G、Co粉末、Pt粉末およびSiO粉末を表4に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。このようにして得られた混合粉末をSUS製の容器に充填し、550℃、12時間保持の真空脱ガス処理を行なったのち、SUS容器を密封して混合粉末を真空封入した。この混合粉末を充填したSUS容器について、温度:1200℃、圧力:100MPa、3時間保持の条件で熱間静水圧プレスを施し、その後、SUS容器を開封してCr:17.1モル%、Pt:15.3モル%、SiO:10.0モル%を含有し、残部がCoからなる成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法12〜18、比較法2および従来法2を実施した。前記本発明法12〜18、比較法2および従来法2で作製したターゲットについて実施例1と同じ測定を行い、その結果を表4に示した。
Example 2
The Cr—Pt binary alloy powders A to G, Co powder, Pt powder and SiO 2 powder shown in Table 1 are blended so as to have the blending composition shown in Table 4, and the resulting blended powder is used as a grinding medium. The zirconia balls were put into a 10-liter container, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The mixed powder thus obtained was filled in a SUS container and subjected to vacuum degassing treatment at 550 ° C. for 12 hours, and then the SUS container was sealed and the mixed powder was vacuum sealed. The SUS container filled with this mixed powder was subjected to hot isostatic pressing under the conditions of temperature: 1200 ° C., pressure: 100 MPa, 3 hours, and then the SUS container was opened, Cr: 17.1 mol%, Pt : A hot isostatic press body containing 15.3 mol%, SiO 2 : 10.0 mol%, and the balance being composed of Co was prepared, and the hot isostatic press body was cut The present invention methods 12-18, comparative method 2 and conventional method 2 were carried out by producing targets having dimensions of diameter: 152.4 mm and thickness: 3 mm. The same measurements as in Example 1 were performed on the targets prepared by the above-described inventive methods 12 to 18, comparative method 2 and conventional method 2, and the results are shown in Table 4.

Figure 0005024659
Figure 0005024659

表4に示される結果から、Pt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末A〜Gを原料粉末として配合して作製する本発明法12〜18で作製したターゲットは、Cr−Pt二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのSiO粉末を配合し混合して作製する従来法2により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有するCr−Pt合金粉末Rを使用する比較法2で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 4, the present invention methods 12 to 18 are prepared by blending Cr—Pt binary alloy powders A to G containing Pt: 10 to 90 atomic% and the balance being Cr, as raw material powders. The targets prepared in the above are 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% without adding Cr—Pt binary alloy powder. % Particle size: It can be seen that the generation of particles is less than that of the target prepared by the conventional method 2 prepared by mixing and mixing SiO 2 powder of 3 μm. However, a target produced by Comparative Method 2 using a Cr—Pt alloy powder R having a component composition that deviates from the scope of the present invention is not preferable because the generation of particles increases. I understand.

実施例3
表1に示されるCr−Pt二元系合金粉末A〜J、表2に示されるCo−Cr二元系合金粉末a〜h、Co粉末、Pt粉末およびSiO粉末を表5に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末を得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることによりCr:11.3モル%、Pt:12.2モル%、SiO:6.0モル%を含有し、残部がCoからなる成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法19〜28、比較法3および従来法3を実施した。
Example 3
The composition shown in Table 5 includes the Cr—Pt binary alloy powders A to J shown in Table 1, the Co—Cr binary alloy powders a to h shown in Table 2, Co powder, Pt powder, and SiO 2 powder. The resulting blended powder was put into a 10-liter container together with zirconia balls serving as a grinding medium, the atmosphere in the container was replaced with an Ar gas atmosphere, and the container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder was filled in a vacuum hot press apparatus, and was subjected to vacuum hot pressing in a vacuum atmosphere under the conditions of temperature: 1200 ° C., pressure: 15 MPa, 3 hours, Cr: 11.3. A hot press body having a component composition containing mol%, Pt: 12.2 mol%, SiO 2 : 6.0 mol%, and the balance consisting of Co is prepared, and the hot press body is cut to obtain a diameter: The present invention methods 19 to 28, comparative method 3 and conventional method 3 were carried out by producing a target having dimensions of 152.4 mm and thickness: 3 mm.

前記本発明法19〜28および比較法3および従来法3で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表5に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、前記本発明法19〜28および比較法3および従来法3で作製したターゲットから試料を切り出して断面を樹脂に埋め、鏡面研磨し、以下、実施例1と同じ方法で行なった。
Absolute maximum length of chromium oxide aggregates dispersed in the substrate of the target produced by the above-described methods 19 to 28 of the present invention, comparative method 3 and conventional method 3 (maximum value of the distance between any two points on the particle contour) Table 5 shows the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm.
The absolute maximum length of chromium oxide aggregates by EPMA is measured by cutting out a sample from the targets prepared in the above-mentioned methods 19 to 28 of the present invention, comparative method 3 and conventional method 3, filling the cross section with resin, mirror polishing, The same method as in Example 1 was performed.

さらに、前記本発明法19〜28および比較法3および従来法3で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表5に示した。   Further, the targets obtained in the above-mentioned methods 19 to 28, comparative method 3 and conventional method 3 were degreased with an organic solvent, and then vacuum-dried at 150 ° C. for 8 hours in a vacuum, and then applied to a copper backing plate. After joining and mounting on a commercially available sputtering apparatus, pre-sputtering is performed under the same conditions as in Example 1 and the target surface processed layer is removed, the chamber is once opened to the atmosphere, and chamber members such as a deposition plate are cleaned. went. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the results are shown in Table 5.

Figure 0005024659
Figure 0005024659

表5に示される結果から、表1のCr−Pt二元系合金粉末および表2のCo−Cr二元系合金粉末を原料粉末として配合して作製した本発明法19〜28で作製したターゲットは、表5のCr−Pt二元系合金粉末およびCo−Cr二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのSiO粉末を配合し混合する従来法3により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Co−Cr合金粉末がこの発明の範囲から外れた成分組成を有する表2のCo−Cr合金粉末iを使用する比較法3で作製したターゲットは1.0μm以上のパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 5, the targets prepared by the present invention methods 19 to 28 were prepared by blending the Cr—Pt binary alloy powder of Table 1 and the Co—Cr binary alloy powder of Table 2 as raw material powders. Without adding the Cr—Pt binary alloy powder and the Co—Cr binary alloy powder of Table 5, 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle It can be seen that the generation of particles is less than that of the target produced by the conventional method 3 in which a Pt powder having a diameter of 15 μm and a SiO 2 powder having a 50% particle diameter of 3 μm are mixed and mixed. However, the target produced by the comparative method 3 using the Co—Cr alloy powder i in Table 2 having a component composition outside the scope of the present invention of the Co—Cr alloy powder generates more particles of 1.0 μm or more. It turns out that it is not preferable.

実施例4
Pt粉末を使用せず、必要なPt成分はすべて表1のCr−Pt二元系合金粉末K〜Qの添加により含有させること、および加圧焼結を実施例2と同様の熱間静水圧プレスにより実施する以外は実施例3と全く同じ条件で本発明法29〜35、比較法4および従来法4を実施し、Cr:11.8モル%、Pt:15.5モル%、SiO:9.0モル%を含有し、残部がCoからなる成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製した。前記本発明法29〜35、比較法4および従来法4で作製したターゲットについて実施例1と同じ測定を行い、その結果を表6に示した。
Example 4
No Pt powder is used, and all necessary Pt components are contained by adding the Cr—Pt binary alloy powders K to Q shown in Table 1, and hot isostatic pressure is the same as in Example 2 under pressure sintering. the present invention method in exactly the same conditions as in example 3 except that performed by pressing 29 to 35, and comparison made method 4 and the conventional method 4, Cr: 11.8 mol%, Pt: 15.5 mol%, SiO 2 : A hot isostatic pressing body containing 9.0 mol% and the balance comprising Co was prepared, and the hot isostatic pressing body was cut to obtain a diameter: 152.4 mm, thickness: A target having a dimension of 3 mm was produced. The same measurements as in Example 1 were performed on the targets prepared by the above-described inventive methods 29 to 35, comparative method 4, and conventional method 4, and the results are shown in Table 6.

Figure 0005024659
Figure 0005024659

表6に示される結果から、本発明法29〜35で作製したターゲットは、Cr−Pt二元系合金粉末およびCo−Cr二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのSiO粉末を配合し混合して作製する従来法4により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有する表1のCr−Pt合金粉末SおよびCo−Cr二元系合金粉末がこの発明の範囲から外れた成分組成を有する表2のCo−Cr二元系jを使用する比較法4で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。
From the results shown in Table 6, the targets prepared by the inventive methods 29-35 were found to have a 50% particle size: 10 μm Co without adding Cr—Pt binary alloy powder and Co—Cr binary alloy powder. Compared with the target produced by the conventional method 4 prepared by mixing and mixing powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% particle size: 3 μm SiO 2 powder It can be seen that the generation of particles is small. However, the Cr—Pt alloy powder S and the Co—Cr binary alloy powder of Table 1 in which the Cr—Pt binary alloy powder has a component composition deviating from the scope of the present invention are included in the composition of the present invention. It can be seen that the target produced by the comparative method 4 using the Co—Cr binary system j in Table 2 having Table 2 is not preferable because the generation of particles increases.

実施例5

原料粉末を表7に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることによりホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有し、かつCr:14.7モル%、Pt:16.6モル%、TiO:8.0モル%を含有し、残部Coからなる成分組成を有するターゲットを作製することにより本発明法36〜44、比較法5および従来法5を実施した。

前記本発明法36〜44、比較法5および従来法5で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)を実施例1と同様にしてEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表7に示した。
さらに、前記本発明法36〜44、比較法5および従来法5で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じの条件でプレスパッタを行い、ついで実施例1と同様にしてウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表7に示した。
Example 5

The raw material powder is blended so as to have the blending composition shown in Table 7, and the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Then, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled in a vacuum hot press apparatus, and a hot press body is produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1200 ° C., pressure: 15 MPa, and 3 hours. And has a size of diameter: 152.4 mm, thickness: 3 mm, and contains Cr: 14.7 mol%, Pt: 16.6 mol%, TiO 2 : 8.0 mol%, The present invention methods 36 to 44, the comparative method 5 and the conventional method 5 were carried out by producing a target having a component composition consisting of the balance Co.

Absolute maximum length of chromium oxide aggregates dispersed in the target substrate prepared by the above-described inventive methods 36 to 44, comparative method 5 and conventional method 5 (maximum value of the distance between any two points on the particle contour) Was measured by EPMA in the same manner as in Example 1, and the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm was shown in Table 7.
Further, the targets obtained in the above-mentioned inventive methods 36 to 44, comparative method 5 and conventional method 5 were degreased with an organic solvent, and then vacuum-dried at 150 ° C. for 8 hours in a vacuum, and then applied to a copper backing plate. Bonded and mounted on a commercially available sputtering apparatus, pre-sputtering was performed under the same conditions as in Example 1, and then the number of particles of 1.0 μm or more adhering to the wafer surface was measured in the same manner as in Example 1 to obtain 25 sheets. The average value was calculated and the results are shown in Table 7.

Figure 0005024659
Figure 0005024659

表7に示される結果から、Pt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末A〜Kを原料粉末として配合して作製する本発明法36〜44で作製したターゲットは、Cr−Pt二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTiO粉末を配合し混合して作製する従来法5により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有するCr−Pt二元系合金粉末Rを使用する比較法5で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。
From the results shown in Table 7, the present invention methods 36 to 44 are prepared by blending Cr—Pt binary alloy powders A to K containing Pt: 10 to 90 atomic% and the balance being Cr as raw material powders. The targets prepared in the above are 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% without adding Cr—Pt binary alloy powder. % Particle size: It can be seen that the generation of particles is less than that of the target prepared by the conventional method 5 prepared by mixing and mixing TiO 2 powder of 3 μm. However, a target produced by Comparative Method 5 using a Cr—Pt binary alloy powder R having a component composition that deviates from the scope of the present invention is preferable because the generation of particles increases. I understand that there is no.

実施例6
表1に示されるCr−Pt二元系合金粉末A〜G、Co粉末、Pt粉末およびTiO粉末を表8に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。このようにして得られた混合粉末をSUS製の容器に充填し、550℃、12時間保持の真空脱ガス処理を行なったのち、SUS容器を密封して混合粉末を真空封入した。この混合粉末を充填したSUS容器について、温度:1200℃、圧力:100MPa、3時間保持の条件で熱間静水圧プレスを施し、その後、SUS容器を開封してCr:13.5モル%、Pt:14.4モル%、TiO:10.0モル%を含有し、残部がCoからなる成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法45〜53、比較法6および従来法6を実施した。前記本発明法45〜53、比較法6および従来法6で作製したターゲットについて実施例1と同じ測定を行い、その結果を表8に示した。
Example 6
The Cr—Pt binary alloy powders A to G, Co powder, Pt powder and TiO 2 powder shown in Table 1 are blended so as to have the blending composition shown in Table 8, and the obtained blended powder is used as a grinding medium. The zirconia balls were put into a 10-liter container, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The mixed powder thus obtained was filled in a SUS container and subjected to vacuum degassing treatment at 550 ° C. for 12 hours, and then the SUS container was sealed and the mixed powder was vacuum sealed. The SUS container filled with this mixed powder was subjected to hot isostatic pressing under the conditions of temperature: 1200 ° C., pressure: 100 MPa, 3 hours, and then the SUS container was opened, Cr: 13.5 mol%, Pt : 14.4 mol%, TiO 2 : 10.0 mol%, the hot isostatic press body which has the component composition which the remainder consists of Co is produced, and this hot isostatic press body is cut and processed. Inventive methods 45-53, comparative method 6 and conventional method 6 were carried out by producing a target having dimensions of diameter: 152.4 mm and thickness: 3 mm. The same measurements as in Example 1 were performed on the targets prepared in the above-described inventive methods 45 to 53, comparative method 6 and conventional method 6, and the results are shown in Table 8.

Figure 0005024659
Figure 0005024659

表8に示される結果から、Pt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末A〜Gを原料粉末として配合して作製する本発明法45〜53で作製したターゲットは、Cr−Pt二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTiO粉末を配合し混合して作製する従来法6により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有するCr−Pt合金粉末Rを使用する比較法6で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。
From the results shown in Table 8, the present invention method 45 to 53 is prepared by blending Cr—Pt binary alloy powders A to G containing Pt: 10 to 90 atomic% and the balance being Cr as raw material powders. The targets prepared in the above are 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% without adding Cr—Pt binary alloy powder. % Particle size: It can be seen that the generation of particles is less than that of the target produced by the conventional method 6 produced by mixing and mixing TiO 2 powder of 3 μm. However, a target produced by Comparative Method 6 using a Cr—Pt alloy powder R having a component composition that deviates from the scope of the present invention is not preferable because the generation of particles increases. I understand.


実施例7
表1に示されるCr−Pt二元系合金粉末A〜J、表2に示されるCo−Cr二元系合金粉末a〜h、Co粉末、Pt粉末およびTiO粉末を表9に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末を得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることによりCr:13.2モル%、Pt:12.2モル%、TiO:6.0モル%を含有し、残部がCoからなる成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法54〜63、比較法7および従来法7を実施した。

Example 7
Table 9 shows Cr-Pt binary alloy powders A to J shown in Table 1, Co-Cr binary alloy powders a to h shown in Table 2, Co powder, Pt powder, and TiO 2 powder. The resulting blended powder was put into a 10-liter container together with zirconia balls serving as a grinding medium, the atmosphere in the container was replaced with an Ar gas atmosphere, and the container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder was filled in a vacuum hot press apparatus, and was subjected to vacuum hot pressing in a vacuum atmosphere at a temperature of 1200 ° C., a pressure of 15 MPa, and a holding time of 3 hours, Cr: 13.2. A hot press body having a component composition containing mol%, Pt: 12.2 mol%, TiO 2 : 6.0 mol%, and the balance consisting of Co is prepared, and the hot press body is cut to obtain a diameter: The present invention methods 54 to 63, comparative method 7 and conventional method 7 were carried out by producing a target having dimensions of 152.4 mm and thickness: 3 mm.

前記本発明法54〜63および比較法7および従来法7で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表9に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、前記本発明法54〜63および比較法7および従来法7で作製したターゲットから試料を切り出して断面を樹脂に埋め、鏡面研磨し、以下、実施例1と同じ方法で行なった。
Absolute maximum length of chromium oxide aggregates dispersed in the substrate of the target produced by the above-mentioned methods 54 to 63 of the present invention, comparative method 7 and conventional method 7 (maximum value of the distance between any two points on the particle contour) Table 9 shows the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm.
The absolute maximum length of chromium oxide aggregates by EPMA is measured by cutting out a sample from the targets prepared in the above-mentioned method 54 to 63 of the present invention and comparative method 7 and conventional method 7, filling the cross section with resin, mirror polishing, The same method as in Example 1 was performed.

さらに、前記本発明法54〜63および比較法7および従来法7で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表9に示した。   Further, the targets obtained in the above-mentioned methods 54 to 63 of the present invention, the comparative method 7 and the conventional method 7 were degreased with an organic solvent, then vacuum-dried at 150 ° C. for 8 hours in a vacuum, and then applied to a copper backing plate. After joining and mounting on a commercially available sputtering apparatus, pre-sputtering is performed under the same conditions as in Example 1 and the target surface processed layer is removed, the chamber is once opened to the atmosphere, and chamber members such as a deposition plate are cleaned. went. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 9.

Figure 0005024659
Figure 0005024659

表9に示される結果から、表1のCr−Pt二元系合金粉末および表2のCo−Cr二元系合金粉末を原料粉末として配合して作製した本発明法54〜63で作製したターゲットは、表9のCr−Pt二元系合金粉末およびCo−Cr二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTiO粉末を配合し混合する従来法7により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Co−Cr合金粉末がこの発明の範囲から外れた成分組成を有する表2のCo−Cr合金粉末iを使用する比較法7で作製したターゲットは1.0μm以上のパーティクルの発生が多くなるので好ましくないことが分かる。
From the results shown in Table 9, targets prepared by the present invention methods 54 to 63 prepared by blending the Cr—Pt binary alloy powder of Table 1 and the Co—Cr binary alloy powder of Table 2 as raw material powders Without adding the Cr—Pt binary alloy powder and the Co—Cr binary alloy powder of Table 9 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle It can be seen that the generation of particles is less than that of the target prepared by the conventional method 7 in which a Pt powder having a diameter of 15 μm and a TiO 2 powder having a 50% particle diameter: 3 μm are mixed and mixed. However, the target produced by the comparative method 7 using the Co—Cr alloy powder i of Table 2 having a component composition outside the scope of the present invention of the Co—Cr alloy powder generates more particles of 1.0 μm or more. It turns out that it is not preferable.

実施例8
Pt粉末を使用せず、必要なPt成分はすべて表1のCr−Pt二元系合金粉末K〜Qの添加により含有させること、非磁性酸化物粉末としてTiO粉末を使用すること、および加圧焼結を実施例2と同様の熱間静水圧プレスにより実施する以外は実施例3と全く同じ条件で本発明法64〜70、比較法8および従来法8を実施し、Cr:9.1モル%、Pt:10.9モル%、TiO:9.0モル%を含有し、残部がCoからなる成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製した。前記本発明法64〜70、比較法8および従来法8で作製したターゲットについて実施例1と同じ測定を行い、その結果を表10に示した。
Example 8
Pt powder is not used, and all necessary Pt components are contained by adding the Cr—Pt binary alloy powders K to Q in Table 1, using TiO 2 powder as the nonmagnetic oxide powder, and adding Except that the pressure sintering is performed by the same hot isostatic pressing as in Example 2, the present invention methods 64 to 70, the comparative method 8 and the conventional method 8 are performed under exactly the same conditions as in Example 3, and Cr: 9. A hot isostatic press body containing 1 mol%, Pt: 10.9 mol%, TiO 2 : 9.0 mol%, and having a component composition consisting of Co as the balance was produced. Was cut to produce a target having a diameter of 152.4 mm and a thickness of 3 mm. The same measurements as in Example 1 were performed on the targets prepared by the above-described inventive methods 64-70, comparative method 8, and conventional method 8, and the results are shown in Table 10.

Figure 0005024659
Figure 0005024659

表10に示される結果から、本発明法64〜70で作製したターゲットは、Cr−Pt二元系合金粉末およびCo−Cr二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTiO粉末を配合し混合して作製する従来法8により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有する表1のCr−Pt合金粉末SおよびCo−Cr二元系合金粉末がこの発明の範囲から外れた成分組成を有する表2のCo−Cr二元系jを使用する比較法8で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。
From the results shown in Table 10, the target prepared by the present invention method 64-70 is 50% particle size: 10 μm Co without adding Cr—Pt binary alloy powder and Co—Cr binary alloy powder. Compared to the target prepared by the conventional method 8 prepared by mixing and mixing powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% particle size: 3 μm TiO 2 powder It can be seen that the generation of particles is small. However, the Cr—Pt alloy powder S and the Co—Cr binary alloy powder of Table 1 in which the Cr—Pt binary alloy powder has a component composition deviating from the scope of the present invention are included in the composition of the present invention. It can be seen that the target produced by the comparative method 8 using the Co—Cr binary system j in Table 2 having Table 2 is not preferable because the generation of particles increases.

実施例9
原料粉末を表11に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることによりホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有し、かつCr:10.1モル%、Pt:15.6モル%、Ta:8.0モル%を含有し、残部Coからなる成分組成を有するターゲットを作製することにより本発明法71〜79、比較法9および従来法9を実施した。
前記本発明法71〜79、比較法9および従来法9で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)を実施例1と同様にしてEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表11に示した。
さらに、前記本発明法71〜79、比較法9および従来法9で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じの条件でプレスパッタを行い、ついで実施例1と同様にしてウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表11に示した。
Example 9
The raw material powder is blended so as to have the blending composition shown in Table 11, and the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Then, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled in a vacuum hot press apparatus, and a hot press body is produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1200 ° C., pressure: 15 MPa, and 3 hours. Has a diameter of 152.4 mm, a thickness of 3 mm, and contains Cr: 10.1 mol%, Pt: 15.6 mol%, Ta 2 O 5 : 8.0 mol% Then, the present invention methods 71 to 79, the comparative method 9 and the conventional method 9 were carried out by producing a target having a component composition consisting of the remainder Co.
Absolute maximum length of chromium oxide aggregates dispersed in the substrate of the target prepared by the above-mentioned methods 71 to 79 of the present invention, comparative method 9 and conventional method 9 (maximum value of the distance between any two points on the particle contour) Was measured by EPMA in the same manner as in Example 1, and the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm was shown in Table 11.
Further, after degreasing the targets obtained in the present invention methods 71 to 79, comparative method 9 and conventional method 9 with an organic solvent, followed by vacuum drying at 150 ° C. for 8 hours in a vacuum, a copper backing plate was used. Bonded and mounted on a commercially available sputtering apparatus, pre-sputtering was performed under the same conditions as in Example 1, and then the number of particles of 1.0 μm or more adhering to the wafer surface was measured in the same manner as in Example 1 to obtain 25 sheets. The average value was calculated, and the results are shown in Table 11.

Figure 0005024659
Figure 0005024659

表11に示される結果から、Pt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末A〜Kを原料粉末として配合して作製する本発明法71〜79で作製したターゲットは、Cr−Pt二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTa粉末を配合し混合して作製する従来法9により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有するCr−Pt二元系合金粉末Rを使用する比較法9で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 11, the present invention methods 71 to 79 are prepared by blending Cr—Pt binary alloy powders A to K containing Pt: 10 to 90 atomic% and the balance being Cr as raw material powders. The targets prepared in the above are 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% without adding Cr—Pt binary alloy powder. % Particle size: It can be seen that the generation of particles is less than that of the target prepared by the conventional method 9 prepared by mixing and mixing Ta 2 O 5 powder of 3 μm. However, a target produced by Comparative Method 9 using a Cr—Pt binary alloy powder R having a component composition outside the scope of the present invention is preferable because the generation of particles increases. I understand that there is no.

実施例10
表1に示されるCr−Pt二元系合金粉末A〜G、Co粉末、Pt粉末およびTa粉末を表12に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。このようにして得られた混合粉末をSUS製の容器に充填し、550℃、12時間保持の真空脱ガス処理を行なったのち、SUS容器を密封して混合粉末を真空封入した。この混合粉末を充填したSUS容器について、温度:1200℃、圧力:100MPa、3時間保持の条件で熱間静水圧プレスを施し、その後、SUS容器を開封してCr:13.6モル%、Pt:14.6モル%、Ta:3.0モル%を含有し、残部がCoからなる成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法80〜88、比較法10および従来法10を実施した。前記本発明法80〜88、比較法10および従来法10で作製したターゲットについて実施例1と同じ測定を行い、その結果を表12に示した。
Example 10
The Cr—Pt binary alloy powders A to G, Co powder, Pt powder and Ta 2 O 5 powder shown in Table 1 were blended so as to have the blend composition shown in Table 12, and the resulting blended powder was pulverized. A 10-liter container was put together with zirconia balls as a medium, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The mixed powder thus obtained was filled in a SUS container and subjected to vacuum degassing treatment at 550 ° C. for 12 hours, and then the SUS container was sealed and the mixed powder was vacuum sealed. The SUS container filled with this mixed powder was subjected to hot isostatic pressing under conditions of temperature: 1200 ° C., pressure: 100 MPa, and 3 hours, and then the SUS container was opened and Cr: 13.6 mol%, Pt : 14.6 mol%, Ta 2 O 5 : 3.0 mol%, a hot isostatic press body having a component composition consisting of Co is produced, and the hot isostatic press body is cut. Then, the present invention methods 80 to 88, comparative method 10 and conventional method 10 were carried out by producing targets having dimensions of diameter: 152.4 mm and thickness: 3 mm. The same measurements as in Example 1 were performed on the targets prepared by the above-described inventive methods 80 to 88, comparative method 10, and conventional method 10, and the results are shown in Table 12.

Figure 0005024659
Figure 0005024659

表12に示される結果から、Pt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末A〜Gを原料粉末として配合して作製する本発明法80〜88で作製したターゲットは、Cr−Pt二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTa粉末を配合し混合して作製する従来法10により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有するCr−Pt合金粉末Rを使用する比較法10で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 12, the present invention method 80 to 88 prepared by blending Cr—Pt binary alloy powders A to G containing Pt: 10 to 90 atomic% and the balance of Cr as raw material powders. The targets prepared in the above are 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% without adding Cr—Pt binary alloy powder. % Particle size: It can be seen that the generation of particles is less than that of the target prepared by the conventional method 10 prepared by mixing and mixing Ta 2 O 5 powder of 3 μm. However, the target produced by the comparative method 10 using the Cr—Pt alloy powder R having a component composition in which the Cr—Pt binary alloy powder deviates from the scope of the present invention is not preferable because the generation of particles increases. I understand.

実施例11
表1に示されるCr−Pt二元系合金粉末A〜J、表2に示されるCo−Cr二元系合金粉末a〜h、Co粉末、Pt粉末およびTiO粉末を表13に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末を得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることによりCr:14.7モル%、Pt:16.7モル%、Ta:2.0モル%を含有し、残部がCoからなる成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法89〜98、比較法11および従来法11を実施した。
Example 11
Table 13 shows Cr-Pt binary alloy powders A to J shown in Table 1, Co-Cr binary alloy powders a to h shown in Table 2, Co powder, Pt powder and TiO 2 powder. The resulting blended powder was put into a 10-liter container together with zirconia balls serving as a grinding medium, the atmosphere in the container was replaced with an Ar gas atmosphere, and the container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder was filled in a vacuum hot press apparatus and subjected to vacuum hot pressing in a vacuum atmosphere at a temperature of 1200 ° C., a pressure of 15 MPa, and a holding time of 3 hours, Cr: 14.7. A hot press body having a component composition containing mol%, Pt: 16.7 mol%, Ta 2 O 5 : 2.0 mol%, and the balance consisting of Co is prepared, and the hot press body is cut. The present method 89-98, the comparative method 11, and the conventional method 11 were implemented by producing the target which has a diameter: 152.4mm and thickness: 3mm.

前記本発明法89〜98および比較法11および従来法11で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表13に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、前記本発明法89〜98および比較法11および従来法11で作製したターゲットから試料を切り出して断面を樹脂に埋め、鏡面研磨し、以下、実施例1と同じ方法で行なった。
Absolute maximum length of chromium oxide aggregates dispersed in the substrate of the target prepared by the present invention method 89-98 and comparative method 11 and conventional method 11 (maximum value of the distance between any two points on the particle contour) Table 13 shows the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm.
The absolute maximum length of the chromium oxide aggregates by EPMA is measured by cutting out a sample from the targets prepared in the above-mentioned method 89 to 98 of the present invention, the comparative method 11 and the conventional method 11, filling the cross section with resin, mirror polishing, The same method as in Example 1 was performed.

さらに、前記本発明法89〜98および比較法11および従来法11で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表13に示した。   Further, the targets obtained in the present invention methods 89 to 98, the comparative method 11 and the conventional method 11 were degreased with an organic solvent, then vacuum-dried at 150 ° C. for 8 hours in a vacuum, and then applied to a copper backing plate. After joining and mounting on a commercially available sputtering apparatus, pre-sputtering is performed under the same conditions as in Example 1 and the target surface processed layer is removed, the chamber is once opened to the atmosphere, and chamber members such as a deposition plate are cleaned. went. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 13.

Figure 0005024659
Figure 0005024659

表13に示される結果から、表1のCr−Pt二元系合金粉末および表2のCo−Cr二元系合金粉末を原料粉末として配合して作製した本発明法89〜98で作製したターゲットは、表13のCr−Pt二元系合金粉末およびCo−Cr二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTiO粉末を配合し混合する従来法11により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Co−Cr合金粉末がこの発明の範囲から外れた成分組成を有する表2のCo−Cr合金粉末iを使用する比較法11で作製したターゲットは1.0μm以上のパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 13, targets prepared by the present invention methods 89 to 98 prepared by blending the Cr—Pt binary alloy powder of Table 1 and the Co—Cr binary alloy powder of Table 2 as raw material powders Are 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle without adding the Cr—Pt binary alloy powder and Co—Cr binary alloy powder of Table 13 It can be seen that the generation of particles is less than that of the target produced by the conventional method 11 in which a Pt powder having a diameter of 15 μm and a TiO 2 powder having a 50% particle diameter of 3 μm are mixed and mixed. However, the target produced by the comparative method 11 using the Co—Cr alloy powder i in Table 2 having a component composition outside the scope of the present invention of the Co—Cr alloy powder generates more particles of 1.0 μm or more. It turns out that it is not preferable.

実施例12
Pt粉末を使用せず、必要なPt成分はすべて表1のCr−Pt二元系合金粉末K〜Qの添加により含有させること、非磁性酸化物粉末としてTa粉末を使用すること、および加圧焼結を実施例2と同様の熱間静水圧プレスにより実施する以外は実施例3と全く同じ条件で本発明法64〜70、比較法8および従来法8を実施し、Cr:17.5モル%、Pt:19.4モル%、Ta:3.0モル%を含有し、残部がCoからなる成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製した。前記本発明法99〜105、比較法12および従来法12で作製したターゲットについて実施例1と同じ測定を行い、その結果を表14に示した。
Example 12
Pt powder is not used, all necessary Pt components are contained by adding Cr-Pt binary alloy powders K to Q in Table 1, and Ta 2 O 5 powder is used as a nonmagnetic oxide powder. In addition, the present invention methods 64 to 70, comparative method 8 and conventional method 8 were carried out under exactly the same conditions as in Example 3 except that the hot sintering was performed by the same hot isostatic pressing as in Example 2. Cr: 17.5 mol%, Pt: 19.4 mol%, Ta 2 O 5: 3.0 contained mol%, to prepare a hot isostatic pressing having a component composition and the balance being Co, between the heat A hydrostatic press was cut to produce a target having dimensions of 152.4 mm in diameter and 3 mm in thickness. The same measurements as in Example 1 were performed on the targets prepared by the present invention methods 99 to 105, comparative method 12 and conventional method 12, and the results are shown in Table 14.

Figure 0005024659
Figure 0005024659

表14に示される結果から、本発明法99〜105で作製したターゲットは、Cr−Pt二元系合金粉末およびCo−Cr二元系合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTa粉末を配合し混合して作製する従来法12により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Cr−Pt二元系合金粉末がこの発明の範囲から外れた成分組成を有する表1のCr−Pt合金粉末SおよびCo−Cr二元系合金粉末がこの発明の範囲から外れた成分組成を有する表2のCo−Cr二元系jを使用する比較法12で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 14, the targets prepared by the present invention methods 99 to 105 are 50% particle size: 10 μm Co without adding Cr—Pt binary alloy powder and Co—Cr binary alloy powder. A target prepared by the conventional method 12 prepared by mixing and mixing powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder, and 50% particle size: 3 μm Ta 2 O 5 powder In comparison, it can be seen that the generation of particles is small. However, the Cr—Pt alloy powder S and the Co—Cr binary alloy powder of Table 1 in which the Cr—Pt binary alloy powder has a component composition deviating from the scope of the present invention are included in the composition of the present invention. It can be seen that the target produced by the comparative method 12 using the Co—Cr binary system j in Table 2 having Table 2 is not preferable because the generation of particles increases.

Claims (7)

原料粉末としてPt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末、Pt粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結することを特徴とするパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 Prepare Cr-Pt binary alloy powder, Pt powder, non-magnetic oxide powder and Co powder containing Pt: 10-90 atomic% as the raw material powder, the balance being Cr. Material: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%, balance: component composition composed of Co, mixed and mixed, then pressure sintered A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation. 原料粉末としてPt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr二元系合金粉末、Pt粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結することを特徴とするパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 Cr—Pt binary alloy powder containing Pt: 10 to 90 atomic% as a raw material powder and the balance being made of Cr, Co—Cr binary system containing Cr: 50 to 70 atomic% and the balance being made of Co Alloy powder, Pt powder, non-magnetic oxide powder and Co powder are prepared, and these raw material powders contain non-magnetic oxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol% And a balance: a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation, characterized by mixing and mixing so as to have a component composition of Co, followed by pressure sintering. 原料粉末としてPt:10〜90原子%を含有し、残部がCrからなるCr−Pt二元系合金粉末、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr二元系合金粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結することを特徴とするパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 Cr—Pt binary alloy powder containing Pt: 10 to 90 atomic% as a raw material powder and the balance being made of Cr, Co—Cr binary system containing Cr: 50 to 70 atomic% and the balance being made of Co Alloy powder, nonmagnetic oxide powder and Co powder are prepared, and these raw material powders contain nonmagnetic oxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%, and the balance A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles, comprising mixing and mixing so as to have a component composition of Co, followed by pressure sintering. 前記非磁性酸化物は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであることを特徴とする請求項1、2または3記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 The nonmagnetic oxide is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. 3. A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles according to 3. 前記加圧焼結は、ホットプレスまたは熱間静水圧プレスであることを特徴とする請求項1、2または3記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 4. The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to claim 1, wherein the pressure sintering is a hot press or a hot isostatic press. . 非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成有する磁気記録膜形成用Co基焼結合金スパッタリングターゲットであって、素地中に分散するCr酸化物凝集体の絶対最大長さが10μm以下であることを特徴とする請求項1、2、3、4または5記載の方法で製造したパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲット。 Co-based sintered alloy sputtering target for forming a magnetic recording film having a non-magnetic oxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%, and the balance: a component composition consisting of Co The absolute maximum length of the Cr oxide aggregate dispersed in the substrate is 10 μm or less, and the generation of particles produced by the method according to claim 1, 2, 3, 4 or 5 is low. Co-based sintered alloy sputtering target for magnetic recording film formation. 前記非磁性酸化物は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであることを特徴とする請求項6記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲット。 7. The nonmagnetic oxide is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles.
JP2007078223A 2006-03-31 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles Expired - Fee Related JP5024659B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007078223A JP5024659B2 (en) 2006-09-08 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
US12/294,691 US20100270146A1 (en) 2006-03-31 2007-03-30 Method for manufacturing co-base sintered alloy sputtering target for formation of magnetic recording film which is less likely to generate partricles, and co-base sintered alloy sputtering target for formation of magnetic recording film
TW096111554A TW200808980A (en) 2006-03-31 2007-03-30 Method for producing Co-based sintered alloy sputtering target used for forming magnetic recording film with reduced generation of particles, and Co-based sintered alloy sputtering target used for forming magnetic recording film
PCT/JP2007/057223 WO2007116834A1 (en) 2006-03-31 2007-03-30 METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLES, AND Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006243688 2006-09-08
JP2006243688 2006-09-08
JP2007078223A JP5024659B2 (en) 2006-09-08 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles

Publications (2)

Publication Number Publication Date
JP2008088546A JP2008088546A (en) 2008-04-17
JP5024659B2 true JP5024659B2 (en) 2012-09-12

Family

ID=39372994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078223A Expired - Fee Related JP5024659B2 (en) 2006-03-31 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles

Country Status (1)

Country Link
JP (1) JP5024659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748639B2 (en) * 2011-11-17 2015-07-15 田中貴金属工業株式会社 Magnetron sputtering target and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494302B2 (en) * 1991-03-26 2004-02-09 日立金属株式会社 Co-Cr-Pt magnetic recording medium target
JPH0598433A (en) * 1991-08-30 1993-04-20 Mitsubishi Materials Corp Manufacture of target for sputtering
JP2001236643A (en) * 2000-02-23 2001-08-31 Fuji Electric Co Ltd Sputtering target for manufacturing magnetic recording medium, method of manufacturing magnetic recording medium by using the same, and magnetic recording medium
JP2004339586A (en) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp Sputtering target for forming magnetic recording film, and its production method
JP2005097657A (en) * 2003-09-24 2005-04-14 Mitsubishi Materials Corp Sputtering target for forming magnetic layer having reduced production of particle

Also Published As

Publication number Publication date
JP2008088546A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
TWI496905B (en) A sputtering target having an oxide phase dispersed in a Co or Co alloy phase, a magnetic thin film composed of a Co or Co alloy phase and an oxide phase, and a magnetic recording medium using the magnetic thin film
WO2007116834A1 (en) METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLES, AND Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM
JP5024661B2 (en) Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles
JP6285043B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
US20120118734A1 (en) Ferromagnetic Material Sputtering Target
WO2012011204A1 (en) Ferromagnetic material sputtering target with little particle generation
JP2009001860A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP6359622B2 (en) Sputtering target containing Co or Fe
JP2009132975A (en) Sputtering target for forming film of perpendicular magnetic recording medium having low relative permeability
JP6084711B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
JP5375707B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
TW201333236A (en) Co-Cr-Pt-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
JP4553136B2 (en) Sputtering target for forming magnetic recording film with less generation of particles
JP2009001861A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP5428995B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
JP2010222639A (en) METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY
CN101405429A (en) Method for manufacturing Co-base sintered alloy sputtering target for formation of magnetic recording film which is less likely to generate particles, and Co-base sintered alloy sputtering target ther
JP2009001862A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP6713489B2 (en) Sputtering target and magnetic thin film for magnetic recording medium
JP5024660B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP2006176808A (en) METHOD FOR PRODUCING CoCrPt-SIO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP5024659B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP6553755B2 (en) Sputtering target for magnetic recording media and magnetic thin film
JP4968445B2 (en) Sputtering target for forming high-density magnetic recording medium film with less generation of particles
JP2009293102A (en) Sputtering target for depositing vertical magnetic recording medium film with low relative permeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees