JP5020449B2 - Sealed separator for sealed lead-acid battery - Google Patents

Sealed separator for sealed lead-acid battery Download PDF

Info

Publication number
JP5020449B2
JP5020449B2 JP2001298873A JP2001298873A JP5020449B2 JP 5020449 B2 JP5020449 B2 JP 5020449B2 JP 2001298873 A JP2001298873 A JP 2001298873A JP 2001298873 A JP2001298873 A JP 2001298873A JP 5020449 B2 JP5020449 B2 JP 5020449B2
Authority
JP
Japan
Prior art keywords
separator
acid battery
sealed lead
thickness
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001298873A
Other languages
Japanese (ja)
Other versions
JP2003109567A (en
Inventor
秀夫 遠藤
春二 井本
泰三 松波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2001298873A priority Critical patent/JP5020449B2/en
Publication of JP2003109567A publication Critical patent/JP2003109567A/en
Application granted granted Critical
Publication of JP5020449B2 publication Critical patent/JP5020449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解液の保持性と極板との密着性及び耐短絡性に優れた耐酸性の薄手の密閉型鉛蓄電池用セパレータに関するものである。
【0002】
【従来の技術】
従来、耐短絡性に優れた密閉型鉛蓄電池用セパレータとして、ガラス繊維と無機粉体で構成したものや、ガラス繊維、合成繊維及び無機粉体で構成したものが知られている。
例えば、特開昭58−206046号公報には、二酸化珪素粒子を保持したガラス繊維もしくは合成繊維からなるセパレータが開示されている。
また、特開昭61−269852号公報には、平均直径1.0〜5.0μmの含アルカリ珪酸塩ガラスを主体とする繊維と、比表面積100m2/g以上のシリカを主体とする粉末を、このシリカ粉末量がセパレータ重量の40質量%となるように湿式混抄し、ガラス繊維の間隙に粉末粒子を介在させて孔径を微細化すると共に、繊維同士または繊維と粉末粒子とを、主として抄造の際に生じる水ガラス状物質によって相互に結合するようにした密閉型鉛蓄電池用セパレータが開示されている。
さらに、特開平6−176749号公報には、ポリオレフィン系合成パルプ、ガラス繊維、合成繊維及び無機粉体を配合し、混抄した鉛蓄電池用セパレータが開示されている。
【0003】
【発明が解決しようとする課題】
上記のセパレータは、その厚さを0.5mm以下とした場合において、引張強さに代表される機械的強度が弱いことや無機粉体の脱落等により、電池組立作業で支障を来すため生産数量が少ない特殊な用途以外では使用されていない状況であった。
【0004】
【課題を解決するための手段】
本発明の密閉型鉛蓄電池用セパレータは、上記の問題点を解決するために、開放型鉛蓄電池で近年一般化した押出成形・抽出法に基づくポリエチレンセパレータの製造技術を応用したもので、該セパレータの機械的強度に優れる点と平均細孔径が小さく短絡防止機能に優れる点を継承し、密閉型鉛蓄電池に適するように極板の厚さ変化に対する追従性の向上と電解液保持量確保のために空隙率を高めたものである。即ち、耐酸性の熱可塑性樹脂、無機粉体及び可塑剤より構成され、可塑剤を1〜15質量%含有する密閉型鉛蓄電池用セパレータにおいて、該セパレータの20kPa加圧時に対する49kPa加圧時の厚さ保持率が80〜90%で、空隙率が70〜90%であることを特徴とする。
【0005】
【発明の実施の形態】
本発明は、前記のように耐酸性の熱可塑性樹脂、無機粉体及び可塑剤により構成され、可塑剤を1〜15質量%含有する組成物を押出・成形した後延伸処理を施し、次いで、該可塑剤を有機溶媒を用いて抽出することで得た微多孔質シートであり、該シートの20kPa加圧時に対する49kPa加圧時の厚さ保持率を80〜90%とし、空隙率を70〜90%とすることで密閉型鉛蓄電池に適した本発明のセパレータを得ることができる。また、該セパレータの材料構成条件は、耐酸性の熱可塑性樹脂が10〜40質量%、無機粉体が60〜90質量%及び可塑剤が1〜15質量%の範囲が好ましい。なお、熱可塑性樹脂は10質量%未満、或いは、無機粉体が90質量%を超えると強度が著しく低下するため好ましくない。
【0006】
前記耐酸性の熱可塑性樹脂としては、重量平均分子量として少なくとも30万を有するポリオレフィン系樹脂が好ましく、更に、好ましくは少なくとも100万の重量平均分子量を有する超高分子量ポリエチレンである。
尚、重量平均分子量が30万未満の場合は、機械的強度が不足し、酸化に対する耐性が低下するため好ましくない。
【0007】
前記耐酸性の無機粉体としては、シリカ、アルミナ、チタニア、珪藻土、タルク、マイカ等の耐酸性無機微粉体の中より選択されるが、不純物が少なく、耐酸性に優れる点でシリカ微粉が好ましい。
【0008】
また、前記可塑剤としては、フタル酸ジオクチルに代表されるフタル酸エステルやパラフィン系及びナフテン系のプロセスオイルが適するが、環境負荷が小さい点よりプロセスオイルが好適である。該可塑剤抽出後のセパレータに対する付着量は、1〜15質量%が好ましく、15質量%を超えると電気抵抗が高くなり、好ましくない。
【0009】
なお、前記材料以外に電解液に対する濡れ性を向上させるためにアニオン系の界面活性剤や酸化防止剤、着色剤、滑剤のような添加物を使用することができる。
【0010】
一方、該セパレータは、密閉型鉛蓄電池に適したものとするため、20kPa加圧時に対する49kPa加圧時の厚さ保持率を80〜90%、空隙率を70〜90%とすることを特徴とするが、該特性をセパレータに付与するために、原料配合段階で無機粉体量、可塑剤量が前記材料構成条件の範囲より適宜選択され、更に、押出成形後のシートを延伸処理する際の延伸倍率を調整することにより達成される。
【0011】
該セパレータの厚さは、0.2〜0.5mmであることを特徴とし、0.5mmを超える厚さに対しても適用可能であるが、この領域は、微細ガラス繊維セパレータで対応可能な領域であるため本発明のセパレータを密閉型鉛蓄電池に適用する優位性が失われる。また、0.05mm〜0.2mmの厚さに対しても本発明のセパレータは適用可能であり、電池の今後の薄型化の開発に応じた適用も容易である。
【0012】
【実施例】
次に、本発明の具体的な実施例を比較例及び従来例とともに説明する。
【0013】
(実施例1)
重量平均分子量が100万の超高分子量ポリエチレン樹脂20部(質量部、以下同じ)、BET法による比表面積が200m2/g、二次粒子径が10μmのシリカ微粉80部及びプロセスオイル160部より成る組成物を押出成形法でシート化した後、一軸延伸機を用いて延伸倍率100%の延伸処理を施した。次いで、トリクロロエチレンを用いて該シート中のプロセスオイルを抽出して厚さ0.3mm、プロセスオイル含有量が2質量%の密閉型鉛蓄電池用セパレータを得た。
【0014】
(実施例2)
重量平均分子量が100万の超高分子量ポリエチレン樹脂40部、BET法による比表面積が200m2/g、二次粒子径が10μmのシリカ微粉60部及びプロセスオイル120部より成る組成物を押出成形法でシート化した後、一軸延伸機を用いて延伸倍率100%の延伸処理を施した。次いで、トリクロロエチレンを用いて該シート中のプロセスオイルを抽出して厚さ0.3mm、プロセスオイル含有量が5質量%の密閉型鉛蓄電池用セパレータを得た。
【0015】
(実施例3)
重量平均分子量が50万の超高分子量ポリエチレン樹脂20部、BET法による比表面積が200m2/g、二次粒子径が10μmのシリカ微粉80部及びプロセスオイル160部より成る組成物を押出成形法でシート化した後、一軸延伸機を用いて延伸倍率100%の延伸処理を施した。次いで、トリクロロエチレンを用いて該シート中のプロセスオイルを抽出して厚さ0.3mm、プロセスオイル含有量が13質量%の密閉型鉛蓄電池用セパレータを得た。
【0016】
(比較例1)
重量平均分子量が100万の超高分子量ポリエチレン樹脂20部、BET法による比表面積が200m2/g、二次粒子径が10μmのシリカ微粉80部及びプロセスオイル160部より成る組成物を押出成形法でシート化した後、一軸延伸機を用いて延伸処理を施した。次いで、トリクロロエチレンを用いて該シート中のプロセスオイルを抽出して厚さ0.3mm、プロセスオイル含有量が20質量%の密閉型鉛蓄電池用セパレータを得た。
【0017】
(比較例2)
重量平均分子量が100万の超高分子量ポリエチレン樹脂20部、BET法による比表面積が200m2/g、二次粒子径が10μmのシリカ微粉80部及びプロセスオイル160部より成る組成物を押出成形法でシート化した後、トリクロロエチレンを用いて該シート中のプロセスオイルを抽出して厚さ0.3mm、プロセスオイル含有量が5質量%の密閉型鉛蓄電池用セパレータを得た。
【0018】
(従来例1)
平均繊維径0.7μmの耐酸性ガラス繊維80部と比表面積が200m2/gのシリカ微粉20部を水流型分散機を用いて混合分散させた後、硫黄を添加して水のpHを3とし、次いで、分子量100万のカオチン性アクリルアミド0.2部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い厚さ0.3mmの密閉型鉛蓄電池用セパレータを得た。
【0019】
実施例1〜3、比較例1、2及び従来例1によって得た密閉型鉛蓄電池用セパレータの特性測定結果を表1に示す。実施例1〜3の本発明のセパレータは、耐酸性の重量平均分子量30万以上の超高分子量ポリエチレン樹脂と、シリカ微粉及び1〜15質量%のプロセスオイルより構成した密閉型鉛蓄電池用セパレータであり、該セパレータの20kPa加圧時に対する49kPa加圧時の厚さ保持率を80〜90%に、空隙率を70〜90%としたことにより、引張強さが強く、平均細孔径が前記従来の微細ガラス繊維セパレータに対して1、2割程度と小さく優れた結果を示しており、更に、密閉型鉛蓄電池用セパレータで必要な圧縮時相対厚さと空隙率は、前記従来の微細ガラス繊維セパレータと同レベルの特性となっている。一方、比較例1のセパレータは、プロセスオイルの付着量が20質量%であるため電気抵抗が高く、比較例2のセパレータは、製造時に延伸処理を施していないため空隙率が60%と低いことから電気抵抗が高い結果を示す。なお、押出成形・抽出法によるセパレータは全て電池組立時に無機粉体の脱落は無く、本実施例のセパレータが無機粉体の脱落防止に対して優れていることを示している。
【0020】
【表1】

Figure 0005020449
【0021】
【発明の効果】
以上説明したように、本発明の密閉型鉛蓄電池用セパレータは、押出成形・抽出法に基づくポリエチレンセパレータの製造技術を応用したもので、該セパレータの機械的強度に優れる点と平均細孔径が小さく短絡防止機能に優れる点を継承し、密閉型鉛蓄電池に適するように極板の厚さ変化に対する追従性の向上と電解液保持量確保のために空隙率を高めたものである。即ち、耐酸性の熱可塑性樹脂、無機粉体及び可塑剤より構成され、可塑剤を1〜15質量%含有する密閉型鉛蓄電池用セパレータにおいて、該セパレータの20kPa加圧時に対する49kPa加圧時の厚さ保持率を80〜90%に、空隙率を70〜90%としたことにより、セパレータ厚さを0.2〜0.5mmとしても電池組立作業に必要な機械的強度を確保することができ、しかも、無機粉体の脱落も生じないことから電池組立作業性の向上を図ることができる。
一方、セパレータ特性面では、従来の微細ガラス繊維セパレータに比較して厚さが極端に薄い0.2〜0.5mmであるにも拘わらず平均細孔径が従来のセパレータに対して1、2割程度であるため、短絡防止性が優れており、しかも、20kPa加圧時に対する49kPa加圧時の厚さ保持率が80〜90%で空隙率も70〜90%と前記従来のセパレータと同レベルまで高めたことにより密閉型鉛蓄電池に適用可能となったものである。しかも、前記従来の微細ガラス繊維から成るセパレータではこれまで強度が弱いために対応が困難であった厚さ0.5mm以下の領域に対して適用できるだけでなく、平均細孔径が小さいため短絡防止機能に優れることから電池寿命延長の効果を有するため産業上の利用価値は高い。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an acid-resistant thin sealed lead-acid battery separator excellent in electrolytic solution retention, adhesion to an electrode plate, and short-circuit resistance.
[0002]
[Prior art]
Conventionally, as a separator for a sealed lead-acid battery excellent in short-circuit resistance, those composed of glass fiber and inorganic powder, and those composed of glass fiber, synthetic fiber and inorganic powder are known.
For example, JP-A-58-206046 discloses a separator made of glass fiber or synthetic fiber holding silicon dioxide particles.
JP-A 61-269852 discloses a fiber mainly composed of an alkali silicate glass having an average diameter of 1.0 to 5.0 μm and a powder mainly composed of silica having a specific surface area of 100 m 2 / g or more. In addition, wet mixing is performed so that the amount of the silica powder is 40% by mass of the separator weight, and the pore diameter is refined by interposing the powder particles in the gaps between the glass fibers, and the fibers or the fibers and the powder particles are mainly made by papermaking. There is disclosed a sealed lead-acid battery separator that is bonded to each other by a water-glass-like substance generated during the process.
Furthermore, Japanese Patent Laid-Open No. 6-176749 discloses a lead-acid battery separator in which polyolefin synthetic pulp, glass fiber, synthetic fiber and inorganic powder are blended and mixed.
[0003]
[Problems to be solved by the invention]
The above separator is produced when the thickness is 0.5 mm or less, because the mechanical strength represented by tensile strength is weak and the inorganic powder falls off, causing problems in battery assembly operations. It was in a situation where it was not used for anything other than a special purpose with a small quantity.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, a separator for a sealed lead-acid battery according to the present invention is an application of a polyethylene separator manufacturing technique based on an extrusion / extraction method that has been generalized in recent years for an open-type lead-acid battery. In order to improve the followability to the thickness change of the electrode plate and secure the amount of electrolyte retained so that it is suitable for sealed lead-acid batteries, inheriting the excellent mechanical strength and the small average pore diameter and excellent short-circuit prevention function The porosity is increased. That is, in a sealed lead-acid battery separator composed of an acid-resistant thermoplastic resin, an inorganic powder, and a plasticizer and containing 1 to 15% by mass of the plasticizer, when the separator is pressed at 49 kPa against 20 kPa. The thickness retention is 80 to 90%, and the porosity is 70 to 90%.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is composed of an acid-resistant thermoplastic resin, an inorganic powder and a plasticizer as described above, and after extruding and molding a composition containing 1 to 15% by mass of the plasticizer, it is subjected to a stretching treatment, It is a microporous sheet obtained by extracting the plasticizer using an organic solvent. The sheet has a thickness retention of 80 to 90% at 49 kPa with respect to 20 kPa and a porosity of 70. By setting it to ˜90%, the separator of the present invention suitable for a sealed lead-acid battery can be obtained. Moreover, the material constituent conditions of the separator are preferably in the range of 10 to 40% by mass of the acid-resistant thermoplastic resin, 60 to 90% by mass of the inorganic powder, and 1 to 15% by mass of the plasticizer. If the thermoplastic resin is less than 10% by mass or the inorganic powder exceeds 90% by mass, the strength is remarkably lowered, which is not preferable.
[0006]
The acid-resistant thermoplastic resin is preferably a polyolefin resin having a weight average molecular weight of at least 300,000, and more preferably an ultra high molecular weight polyethylene having a weight average molecular weight of at least 1 million.
A weight average molecular weight of less than 300,000 is not preferable because the mechanical strength is insufficient and the resistance to oxidation is reduced.
[0007]
The acid-resistant inorganic powder is selected from acid-resistant inorganic fine powders such as silica, alumina, titania, diatomaceous earth, talc, mica, etc., but silica fine powder is preferable in that it has few impurities and is excellent in acid resistance. .
[0008]
Further, as the plasticizer, phthalate esters typified by dioctyl phthalate and paraffinic and naphthenic process oils are suitable, but process oils are preferred from the viewpoint of low environmental load. The amount of adhesion to the separator after extraction of the plasticizer is preferably 1 to 15% by mass, and if it exceeds 15% by mass, the electrical resistance increases, which is not preferable.
[0009]
In addition to the above materials, additives such as an anionic surfactant, an antioxidant, a colorant, and a lubricant can be used in order to improve the wettability to the electrolytic solution.
[0010]
On the other hand, in order to make the separator suitable for a sealed lead-acid battery, the thickness retention rate at the time of 49 kPa pressurization with respect to 20 kPa pressurization is 80 to 90%, and the porosity is 70 to 90%. However, in order to impart the properties to the separator, the amount of inorganic powder and the amount of plasticizer are appropriately selected from the range of the material constituent conditions in the raw material blending stage, and further, when the sheet after extrusion molding is stretched This is achieved by adjusting the draw ratio.
[0011]
The separator has a thickness of 0.2 to 0.5 mm, and can be applied to a thickness exceeding 0.5 mm, but this region can be handled by a fine glass fiber separator. Since it is a region, the advantage of applying the separator of the present invention to a sealed lead-acid battery is lost. Further, the separator of the present invention can be applied to a thickness of 0.05 mm to 0.2 mm, and can be easily applied according to the development of future thinning of the battery.
[0012]
【Example】
Next, specific examples of the present invention will be described together with comparative examples and conventional examples.
[0013]
Example 1
From 20 parts of ultra high molecular weight polyethylene resin having a weight average molecular weight of 1,000,000 (parts by mass, the same applies hereinafter), 80 parts of silica fine powder having a specific surface area of 200 m 2 / g by BET method and a secondary particle diameter of 10 μm, and 160 parts of process oil The resulting composition was formed into a sheet by an extrusion molding method, and then subjected to a stretching treatment with a stretching ratio of 100% using a uniaxial stretching machine. Next, the process oil in the sheet was extracted using trichlorethylene to obtain a separator for a sealed lead-acid battery having a thickness of 0.3 mm and a process oil content of 2% by mass.
[0014]
(Example 2)
Extrusion molding composition comprising 40 parts of ultra high molecular weight polyethylene resin having a weight average molecular weight of 1,000,000, 60 parts of silica fine powder having a specific surface area of 200 m 2 / g by BET method and a secondary particle diameter of 10 μm, and 120 parts of process oil After forming into a sheet, the film was stretched at a stretching ratio of 100% using a uniaxial stretching machine. Next, the process oil in the sheet was extracted using trichlorethylene to obtain a separator for a sealed lead-acid battery having a thickness of 0.3 mm and a process oil content of 5% by mass.
[0015]
(Example 3)
Extrusion molding composition comprising 20 parts of ultra high molecular weight polyethylene resin having a weight average molecular weight of 500,000, 80 parts of silica fine powder having a specific surface area of 200 m 2 / g by BET method and a secondary particle diameter of 10 μm, and 160 parts of process oil After forming into a sheet, the film was stretched at a stretching ratio of 100% using a uniaxial stretching machine. Next, the process oil in the sheet was extracted using trichlorethylene to obtain a separator for a sealed lead-acid battery having a thickness of 0.3 mm and a process oil content of 13% by mass.
[0016]
(Comparative Example 1)
A composition comprising 20 parts of ultra high molecular weight polyethylene resin having a weight average molecular weight of 1,000,000, 80 parts of silica fine powder having a specific surface area of 200 m 2 / g by BET method and a secondary particle diameter of 10 μm, and 160 parts of process oil is extruded. After forming into a sheet, the film was stretched using a uniaxial stretching machine. Next, the process oil in the sheet was extracted using trichlorethylene to obtain a sealed lead-acid battery separator having a thickness of 0.3 mm and a process oil content of 20% by mass.
[0017]
(Comparative Example 2)
A composition comprising 20 parts of ultra high molecular weight polyethylene resin having a weight average molecular weight of 1,000,000, 80 parts of silica fine powder having a specific surface area of 200 m 2 / g by BET method and a secondary particle diameter of 10 μm, and 160 parts of process oil is extruded. Then, the process oil in the sheet was extracted using trichlorethylene to obtain a sealed lead-acid battery separator having a thickness of 0.3 mm and a process oil content of 5% by mass.
[0018]
(Conventional example 1)
After 80 parts of acid-resistant glass fibers having an average fiber diameter of 0.7 μm and 20 parts of silica fine powder having a specific surface area of 200 m 2 / g were mixed and dispersed using a water flow type disperser, sulfur was added to adjust the pH of the water to 3 Then, an aqueous solution containing 0.2 part of chaotic acrylamide having a molecular weight of 1,000,000 was added and mixed for 10 minutes to obtain a papermaking slurry. Next, papermaking and drying were performed using the slurry to obtain a sealed lead-acid battery separator having a thickness of 0.3 mm.
[0019]
Table 1 shows the characteristic measurement results of the sealed lead-acid battery separators obtained in Examples 1 to 3, Comparative Examples 1 and 2, and Conventional Example 1. The separators of the present invention in Examples 1 to 3 are sealed lead-acid battery separators composed of acid-resistant ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 300,000 or more, silica fine powder, and 1 to 15% by mass of process oil. Yes, the separator has a thickness retention ratio of 80-90% and a porosity of 70-90% with respect to a pressure of 20 kPa, and a porosity of 70-90%. In comparison with the above-mentioned conventional fine glass fiber separator, the relative thickness and void ratio required for the sealed lead-acid battery separator are as small as about 20%. And has the same level of characteristics. On the other hand, the separator of Comparative Example 1 has a high electric resistance because the amount of process oil deposited is 20% by mass, and the separator of Comparative Example 2 has a low porosity of 60% because it has not been subjected to stretching treatment during production. The results show that the electrical resistance is high. It should be noted that all the separators formed by the extrusion molding / extraction method did not drop off the inorganic powder when assembling the battery, indicating that the separator of this example is excellent in preventing the inorganic powder from dropping off.
[0020]
[Table 1]
Figure 0005020449
[0021]
【Effect of the invention】
As described above, the sealed lead-acid battery separator of the present invention is a polyethylene separator manufacturing technology based on an extrusion molding / extraction method, and has excellent mechanical strength and a small average pore diameter. Inheriting the excellent short-circuit prevention function, the porosity is increased in order to improve the followability with respect to the thickness change of the electrode plate and to secure the amount of electrolyte retained so as to be suitable for a sealed lead-acid battery. That is, in a sealed lead-acid battery separator composed of an acid-resistant thermoplastic resin, an inorganic powder, and a plasticizer and containing 1 to 15% by mass of the plasticizer, when the separator is pressed at 49 kPa against 20 kPa. By setting the thickness retention to 80 to 90% and the porosity to 70 to 90%, the mechanical strength necessary for battery assembly work can be ensured even if the separator thickness is 0.2 to 0.5 mm. Moreover, since the inorganic powder does not fall off, the battery assembly workability can be improved.
On the other hand, in terms of separator characteristics, the average pore diameter is 20% to 20% that of the conventional separator despite the extremely small thickness of 0.2 to 0.5 mm compared to the conventional fine glass fiber separator. Therefore, the short-circuit prevention property is excellent, and the thickness retention rate at 49 kPa pressurization with respect to 20 kPa pressurization is 80 to 90%, and the porosity is 70 to 90%, which is the same level as the conventional separator. It can be applied to sealed lead-acid batteries. In addition, the conventional separator made of fine glass fibers can be applied not only to a region of thickness of 0.5 mm or less, which has been difficult to cope with because of its low strength so far, and the function of preventing short circuit due to the small average pore diameter. Therefore, it has an effect of extending the battery life and thus has high industrial utility value.

Claims (5)

耐酸性の熱可塑性樹脂、無機粉体及び可塑剤より構成され、前記可塑剤を1〜15質量%含有する密閉型鉛蓄電池用セパレータにおいて、該セパレータの20kPa加圧時に対する49kPa加圧時の厚さ保持率が80〜90%で、空隙率が70〜90%であることを特徴とする密閉型鉛蓄電池用セパレータ。In a sealed lead-acid battery separator composed of an acid-resistant thermoplastic resin, an inorganic powder, and a plasticizer and containing 1 to 15% by mass of the plasticizer, the thickness of the separator at a pressure of 49 kPa relative to a pressure of 20 kPa A sealed lead-acid battery separator having a thickness retention of 80 to 90% and a porosity of 70 to 90%. セパレータ厚さが0.2〜0.5mmであることを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。The separator for a sealed lead-acid battery according to claim 1, wherein the separator has a thickness of 0.2 to 0.5 mm. 前記熱可塑性樹脂がポリオレフィン系樹脂で無機粉体はシリカ微粉が主体であることを特徴とする請求項1記載の密閉型鉛蓄電池用セパレータ。2. The sealed lead-acid battery separator according to claim 1, wherein the thermoplastic resin is a polyolefin resin and the inorganic powder is mainly composed of silica fine powder. 可塑剤がプロセスオイルであることを特徴とする請求項1乃至3に記載の密閉型鉛蓄電池用セパレータ。4. The sealed lead-acid battery separator according to claim 1, wherein the plasticizer is a process oil. 前記ポリオレフィン系樹脂の重量平均分子量は、少なくとも30万であることを特徴とする請求項3または4に記載の密閉型鉛蓄電池用セパレータ。5. The sealed lead-acid battery separator according to claim 3, wherein the polyolefin-based resin has a weight average molecular weight of at least 300,000.
JP2001298873A 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery Expired - Fee Related JP5020449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298873A JP5020449B2 (en) 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298873A JP5020449B2 (en) 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2003109567A JP2003109567A (en) 2003-04-11
JP5020449B2 true JP5020449B2 (en) 2012-09-05

Family

ID=19119707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298873A Expired - Fee Related JP5020449B2 (en) 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP5020449B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789419B2 (en) * 2004-02-27 2011-10-12 日本板硝子株式会社 Lead-acid battery separator
CN1985385B (en) * 2004-02-27 2010-10-13 日本板硝子株式会社 Separator for lead-acid battery and method for manufacturing lead-acid battery
JP4904686B2 (en) * 2004-11-25 2012-03-28 パナソニック株式会社 Lead acid battery
TWI251365B (en) * 2004-04-02 2006-03-11 Matsushita Electric Ind Co Ltd Lead-acid battery
CN100435386C (en) * 2004-07-23 2008-11-19 株式会社杰士汤浅 Separator for controlling valve type lead battery and control valve lead battery
WO2016204049A1 (en) * 2015-06-18 2016-12-22 日立化成株式会社 Lead storage cell
WO2017170977A1 (en) * 2016-03-31 2017-10-05 日本板硝子株式会社 Separator for liquid-type lead storage battery
CN106067527A (en) * 2016-07-20 2016-11-02 镇江奥美机电设备有限公司 The production system of lead-acid accumulator PE division board
CN106129304A (en) * 2016-07-20 2016-11-16 镇江奥美机电设备有限公司 The production technology of lead-acid accumulator PE division board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760084A (en) * 1993-08-30 1995-03-07 Asahi Chem Ind Co Ltd Polyolefin microporous membrane and production thereof
JP3597289B2 (en) * 1995-12-28 2004-12-02 花王株式会社 Stretchable material, method for producing the same, and product using the same
JPH10154501A (en) * 1996-11-21 1998-06-09 Nitto Denko Corp Manufacture of battery separator and nonaqueous secondary battery using the same
JPH1149882A (en) * 1997-08-05 1999-02-23 Nitto Denko Corp Porous membrane and battery separator using the same
JPH11181134A (en) * 1997-12-18 1999-07-06 Nitto Denko Corp Polyethylene porous film and its preparation
JPH11297298A (en) * 1998-04-14 1999-10-29 Nitto Denko Corp Battery separator and battery using it
AU8727898A (en) * 1998-06-23 2000-01-10 Daramic, Inc. Separator for sealed lead storage batteries

Also Published As

Publication number Publication date
JP2003109567A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP5841478B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
KR101057844B1 (en) Separators for polyolefin microporous membranes and nonaqueous electrolyte batteries
DE2627229C3 (en) Microporous film and process for its manufacture
EP1698656B1 (en) Microporous membrane made from polyolefin
JP6030194B2 (en) Liquid lead-acid battery separator and liquid lead-acid battery
JP5856616B2 (en) Composite microporous membrane with high heat resistance / inorganic coating layer
JP2014234472A (en) Method for manufacturing cellulose nanofiber-filled polyolefin microporous stretched film, cellulose nanofiber microporous composite film, and separator for non-aqueous secondary battery
JP5020449B2 (en) Sealed separator for sealed lead-acid battery
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
KR102053259B1 (en) Multilayer porous film and method for manufacturing same, and separator for non-aqueous electrolyte cell
CN106797007B (en) Separator for lead-acid battery and lead-acid battery
JP4964565B2 (en) Polyethylene microporous membrane
CN105990035A (en) Ultrathin low-impedance supercapacitor-used separator material
JP2005302341A (en) Separator for electronic component and its manufacturing method
CN115863753A (en) Gel electrolyte diaphragm and preparation method and application thereof
JP5060034B2 (en) Electric storage device separator and electric storage device
JP2001338631A (en) Separator with ribs for lead acid storage battery and its manufacturing method
JP2006287176A (en) Separator for electricity storage device, and electricity storage device
JP6122941B2 (en) Method for producing extruded product for use in production of polyolefin microporous stretched film containing cellulose nanofiber
JP2013070006A (en) Heat resistance separator for power storage device, and method of manufacturing the same
JP2006287175A (en) Separator for electricity storage device, its production process and electricity storage device
JP4691314B2 (en) Manufacturing method of separator for electronic parts
JP2013144442A (en) Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
JP4737936B2 (en) Capacitor separator
JP7444920B2 (en) Separator for liquid lead-acid batteries

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees