JP5019267B2 - Health condition measuring device and health condition measuring method - Google Patents

Health condition measuring device and health condition measuring method Download PDF

Info

Publication number
JP5019267B2
JP5019267B2 JP2008099510A JP2008099510A JP5019267B2 JP 5019267 B2 JP5019267 B2 JP 5019267B2 JP 2008099510 A JP2008099510 A JP 2008099510A JP 2008099510 A JP2008099510 A JP 2008099510A JP 5019267 B2 JP5019267 B2 JP 5019267B2
Authority
JP
Japan
Prior art keywords
gas
sensor
concentration
health condition
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008099510A
Other languages
Japanese (ja)
Other versions
JP2009250799A (en
Inventor
昌生 ▲ルイ▼
朱美 竹下
義則 竹崎
博 橋本
聡子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008099510A priority Critical patent/JP5019267B2/en
Publication of JP2009250799A publication Critical patent/JP2009250799A/en
Application granted granted Critical
Publication of JP5019267B2 publication Critical patent/JP5019267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a health condition measuring instrument and its method for accurately measuring gas in excretion gas, by using an inexpensive solid electrolyte sensor to calculate the intestinal state, based on the gas. <P>SOLUTION: This health condition measuring instrument is equipped with a gas sensor for measuring the gas concentration of the gas concurrently generated at the time of defecation, and a control part for calculating the intestinal condition from the gas concentration obtained from the gas sensor. The gas sensor is the solid electrolyte sensor and is equipped with an operation part for operating a gas concentration corresponding to a changing speed of an output obtained from the electrolyte sensor. Furthermore, according to this health condition measuring method, gas concentration is measured of the gas concurrently generated at the time of defecation, the changing speed is calculated of the output obtained by measurement, the gas concentration is operated corresponding to the calculated changing speed, and an intestinal condition is estimated from the gas concentration obtained. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、健康状態を判断するための腸内状態を非接触で推定することのできる健康状態測定装置および健康状態測定方法に関する。   The present invention relates to a health condition measuring apparatus and a health condition measuring method capable of estimating an intestinal condition for judging a health condition in a non-contact manner.

腸内状態は人の健康状態を反映することが広く知られている。腸内状態を知るための指標の例として腸内のpH値や腸内細菌叢(菌バランス)を計測することが行われている。具体的には、***された便を採取し、水等で希釈するなどの前処理行ってからpHまたは細菌数を計測する。また、pHの場合、便そのままの状態でpH電極を接触させて計測することも行われている。この便中のpH値または細菌数から腸内のpH値または菌バランスを推測している。しかし、排便時のサンプリングはおよびその後の処理が煩雑である。さらに、採取してから計測までの間、便を安定して保存しておく必要があり、そうでないと、便に含まれている細菌等の活動により測定値が排便直後の便の値からずれて腸内状態を正確に計測できなくなる等の不具合もあった。   It is well known that intestinal conditions reflect human health. As an example of an index for knowing the state of the intestine, measurement of the pH value in the intestine and the intestinal bacterial flora (bacteria balance) is performed. Specifically, excreted feces are collected and subjected to pretreatment such as dilution with water, and then pH or the number of bacteria is measured. In the case of pH, measurement is also performed by bringing a pH electrode into contact with the stool as it is. From the pH value or the number of bacteria in the stool, the pH value or bacterial balance in the intestine is estimated. However, sampling at the time of defecation and subsequent processing are complicated. In addition, it is necessary to stably store the stool between collection and measurement, otherwise the measured value will deviate from the value of the stool immediately after defecation due to the activity of bacteria contained in the stool. As a result, there were problems such as inability to accurately measure the intestinal state.

排便時に併発するガス(以下***ガスと呼ぶ)成分を利用して、非接触で腸内状態を知る技術としては特許文献1〜4がある。 Patent Documents 1 to 4 include techniques for knowing the intestinal state in a non-contact manner using a gas component (hereinafter referred to as excretion gas) that is generated during defecation.

特許文献1は、腸内状態報知装置およびその方法に関する本出願人の発明である。この装置では、***ガス中の水素ガスをガスセンサで測定し、ガスセンサから出力された信号値に対応した腸内状態情報を腸内健康度判定用付属情報から抽出してユーザに報知するものである。腸内状態情報としては、腸内に存在する種々の菌の総数、ビフィズス菌の数、悪玉菌の数、腸内菌の総数のうちのビフィズス菌数の割合、又は、腸内菌の総数のうちの悪玉菌数の割合等を採用している。 Patent Document 1 is the applicant's invention relating to an intestinal state notification device and method. In this apparatus, hydrogen gas in excreted gas is measured by a gas sensor, and intestinal state information corresponding to the signal value output from the gas sensor is extracted from the additional information for determining intestinal health and notified to the user. . The intestinal state information includes the total number of various bacteria present in the intestine, the number of bifidobacteria, the number of bad bacteria, the ratio of the number of bifidobacteria in the total number of enteric bacteria, or the total number of enteric bacteria. The ratio of the number of bad bacteria is used.

また、特許文献2の***ガス測定装置及び方法も本出願人の発明であり、***ガス中の水素ガスあるいはメタンガスをガスセンサで検出し、ビフィズス菌数を推定して腸内健康度を判定するものである。   Moreover, the excretion gas measuring apparatus and method of patent document 2 are also applicant's invention, and the hydrogen gas or methane gas in excretion gas is detected with a gas sensor, the number of bifidobacteria is estimated, and an intestinal health degree is determined. It is.

また、特許文献3の健康測定装置は、***時に発生した臭気を酸化触媒で脱臭し、そのときに要した酸化電流から臭気成分濃度を検出するものである。 Moreover, the health measuring device of patent document 3 deodorizes the odor which generate | occur | produced at the time of excretion with an oxidation catalyst, and detects an odor component density | concentration from the oxidation current required at that time.

さらに、特許文献4の生体モニタ装置は、布製のT字帯にガスセンサを装着し、肛門から放出されたガスをガスセンサで検知してデータ化し、メモリに蓄えられたデータと過去のデータとを比較し、差が大きい場合など異常が認められる場合に表示装置に警告を表示するものである。 Furthermore, the living body monitor device of Patent Document 4 is equipped with a gas sensor on a T-band made of cloth, detects the gas released from the anus with the gas sensor, converts it into data, and compares the data stored in the memory with past data. However, a warning is displayed on the display device when an abnormality is recognized, such as when the difference is large.

また、特許文献5のトイレ脱臭装置は、吸着剤の後ろにアンモニアガスを検知する臭気センサを取り付け、アンモニアガスの濃度が高くなったときに送風機の回転数を下げて、吸着剤による臭気の吸着が多くなるようにしている。 Moreover, the toilet deodorization apparatus of patent document 5 attaches the odor sensor which detects ammonia gas behind an adsorbent, and when the density | concentration of ammonia gas becomes high, the rotation speed of a fan is lowered | hung, and adsorption | suction of the odor by adsorbent Is going to increase.

特開2005−315836号公報。Japanese Patent Laying-Open No. 2005-315836. 特開2005−292049号公報。Japanese Patent Laying-Open No. 2005-292049. 特開平8−211048号公報。JP-A-8-211048. 特開平9−43182号公報。JP-A-9-43182. 特開2000−328629号公報。JP 2000-328629 A.

ところで、脱臭装置付き便器にガスセンサを取付ける場合、特許文献2にも記載されているように、脱臭ファン用排気通路内に取付けるのが便利である。また、脱臭ファン用排気通路内には、脱臭ファンによって一定量の風が流れているため、***物とともに排出されるガス成分を定量的に感知するのに好都合である。 By the way, when attaching a gas sensor to a toilet bowl with a deodorizing device, as described in Patent Document 2, it is convenient to install it in an exhaust passage for a deodorizing fan. Further, since a certain amount of wind flows through the deodorizing fan exhaust passage, it is convenient for quantitatively sensing the gas component discharged together with the excrement.

脱臭効果を維持するために、一定以上の風量でガスを吸引することが必要である。この場合、***ガスが瞬時に排気通路を通り過ぎてしまうので、短期間で対象とするガス成分を測定することが求められている。例えば、***ガス中の二酸化炭素を測定することによって、簡単に排便時の便のpH値を計測することができることが本発明者らによって明らかになった。   In order to maintain the deodorizing effect, it is necessary to suck the gas with a certain amount of airflow. In this case, since the excreted gas instantaneously passes through the exhaust passage, it is required to measure the target gas component in a short period of time. For example, the present inventors have revealed that the pH value of stool during defecation can be easily measured by measuring carbon dioxide in excreted gas.

二酸化炭素を測定するためのセンサとして固体電解質型センサと光学式センサを用いることができる。固体電解質型二酸化炭素センサは安価でコストメリットが高いが、応答速度が遅いという問題があった。   As a sensor for measuring carbon dioxide, a solid electrolyte sensor and an optical sensor can be used. The solid electrolyte carbon dioxide sensor is inexpensive and has high cost merit, but has a problem that the response speed is slow.

本発明は、安価な固定電解質型センサを使用して、***ガス中のガスを精度良く測定し、そのガスを元に腸内状態を算出できる健康状態測定装置およびその方法を提供することを目的とする。   An object of the present invention is to provide a health condition measuring apparatus and method for accurately measuring a gas in excreted gas using an inexpensive fixed electrolyte sensor and calculating an intestinal condition based on the gas. And

上記課題を解決するために本発明の健康状態測定装置は、排便時に併発するガスのガス濃度を測定するガスセンサと、前記ガスセンサから得られるガス濃度より腸内状態を算出する制御部と、を備える腸内状態測定装置であって、前記ガスセンサは固体電解質型センサであり、前記固体電解質型センサから得られる出力の変化速度に対応するガス濃度を演算する演算部とを備える。 In order to solve the above-described problems, a health condition measuring apparatus according to the present invention includes a gas sensor that measures the gas concentration of a gas that accompanies defecation, and a control unit that calculates an intestinal condition from the gas concentration obtained from the gas sensor. In the intestinal state measurement apparatus, the gas sensor is a solid electrolyte sensor, and includes a calculation unit that calculates a gas concentration corresponding to a change rate of an output obtained from the solid electrolyte sensor.

また、本発明に係る健康状態測定方法は、排便時に併発するガスのガス濃度をガスセンサで測定し、測定により得られた出力の変化速度を算出し、算出された変化速度に対応するガス濃度を演算し、得られたガス濃度から腸内状態を推定する。 In the health condition measuring method according to the present invention, the gas concentration of the gas that is generated during defecation is measured with a gas sensor, the change rate of the output obtained by the measurement is calculated, and the gas concentration corresponding to the calculated change rate is calculated. The intestinal state is estimated from the calculated gas concentration.

本発明の健康状態測定装置および健康状態測定方法によれば、固定電解質型センサを使用して、***ガス中のガスを精度良く測定し、簡単にかつ安価に腸内状態を計測することができる。 According to the health condition measuring apparatus and the health condition measuring method of the present invention, it is possible to measure the gas in the excreted gas with high accuracy using the fixed electrolyte type sensor, and to easily and inexpensively measure the intestinal condition. .

本発明を実施するための最良の形態を説明するのに先立って、本発明の作用効果について説明する。   Prior to describing the best mode for carrying out the present invention, the function and effect of the present invention will be described.

本発明の健康状態測定装置は、排便時に併発する***ガス中の二酸化炭素濃度を測定し、その結果を後述の手順を経て腸内状態指標、例えば便pHに変換される。便のpH値は腸内環境を示す指標であり、腸内環境を支配する腸内細菌のバランスが良いときは善玉菌であるビフィズス菌が優勢で、腸内のpHは弱酸性に保たれる。また腸内のpHは摂取する食品にも影響を受け、肉類等を偏って摂取するとアルカリ側に傾きpH7以上となると大腸ガン等のリスクが高まり、一方、オリゴ糖や野菜類をバランスよく摂取すると弱酸性を保つことができる。   The health condition measuring apparatus of the present invention measures the concentration of carbon dioxide in excretion gas that occurs at the time of defecation, and the result is converted into an intestinal condition index, such as fecal pH, through the procedure described below. The pH value of the stool is an indicator of the intestinal environment. When the intestinal bacteria that control the intestinal environment are well balanced, Bifidobacterium, which is a good bacterium, is dominant, and the pH in the intestine is kept weakly acidic. . The pH in the intestine is also affected by the food that is consumed, and if you ingest meat and so on, if you incline to the alkali side and become pH 7 or higher, the risk of colorectal cancer increases, while if you take oligosaccharides and vegetables in a well-balanced manner. Can maintain weak acidity.

本発明の健康状態測定装置は、排便時に併発するガスのガス濃度を測定するガスセンサと、前記ガスセンサから得られるガス濃度より腸内状態を算出する制御部と、を備える腸内状態測定装置であって、前記ガスセンサは固体電解質型センサであり、前記固体電解質型センサから得られる出力の変化速度に対応するガス濃度を演算する演算部とを備える。 A health condition measuring apparatus according to the present invention is an intestinal condition measuring apparatus comprising a gas sensor that measures the gas concentration of gas that coexists during defecation, and a control unit that calculates the intestinal condition from the gas concentration obtained from the gas sensor. The gas sensor is a solid electrolyte sensor, and includes a calculation unit that calculates a gas concentration corresponding to a change rate of an output obtained from the solid electrolyte sensor.

本発明によれば、ガスセンサの出力の変化速度からガスの濃度を演算するので、***ガスのセンサに接する時間が短かくても、精度良く***ガス中の所定ガス濃度を測定する健康状態測定装置を提供することができる。 According to the present invention, since the gas concentration is calculated from the change rate of the output of the gas sensor, the health condition measuring device that accurately measures the predetermined gas concentration in the excretion gas even if the time of contact with the excretion gas sensor is short. Can be provided.

また、本発明の健康状態測定方法は、排便時に併発するガスのガス濃度をガスセンサで測定し、測定により得られた出力の変化速度を算出し、算出された変化速度に対応するガス濃度を演算し、得られたガス濃度から腸内状態を推定することを特徴とする。   Further, the health condition measuring method of the present invention measures the gas concentration of the gas coexisting during defecation with a gas sensor, calculates the change rate of the output obtained by the measurement, and calculates the gas concentration corresponding to the calculated change rate. The intestinal state is estimated from the obtained gas concentration.

本発明によれば、ガスセンサの出力の変化速度からガスの濃度を演算するので、***ガスのセンサに接する時間が短かくても、精度良く***ガス中の所定ガス濃度を測定する健康状態測定方法を提供することができる。   According to the present invention, since the gas concentration is calculated from the rate of change of the output of the gas sensor, the health condition measuring method for accurately measuring the predetermined gas concentration in the excretion gas even if the time of contact with the excretion gas sensor is short. Can be provided.

以下に添付図面に基づいて本発明の実施例を具体的に説明する。まず、本発明の健康状態測定装置の構成について説明する。 Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. First, the configuration of the health condition measuring apparatus of the present invention will be described.

図1は、本発明の健康状態測定装置を搭載した人体洗浄装置組込タイプ洋式便器の一例を示す(部分透視)外観図である。 FIG. 1 is an external view (partial perspective view) showing an example of a Western-style toilet with a built-in human body cleaning device equipped with the health condition measuring device of the present invention.

便器1の便座2と便鉢3周縁の頂部との間に設けたスペースを利用して脱臭ファン用排気通路4が設置されている。脱臭ファン用排気通路4内には、脱臭ファン5、脱臭部としての脱臭カートリッジ6および固体電解質型ガスセンサ7(以下ガスセンサ7と略す)が取り付けられている。 The exhaust passage 4 for a deodorizing fan is installed using the space provided between the toilet seat 2 of the toilet bowl 1 and the top of the toilet bowl 3 periphery. A deodorizing fan 5, a deodorizing cartridge 6 as a deodorizing unit, and a solid electrolyte gas sensor 7 (hereinafter abbreviated as a gas sensor 7) are attached in the exhaust passage 4 for the deodorizing fan.

また、制御部8および演算部9は一体化して便座2の後部内に組み込まれ、さらに、制御部8により算出された結果である腸内状態指標データの表示部10が、人体洗浄装置の操作パネル11に組み込まれている。ガスセンサ7と演算部9とのデータ交換は結線により、また制御部8と表示部10とのデータ交換は赤外線により行っている。なお、演算部9はガス濃度を演算する演算機能の外に、データ記憶機能およびガスセンサ7を制御するガスセンサ制御機能を備えている。 In addition, the control unit 8 and the calculation unit 9 are integrated and incorporated in the rear part of the toilet seat 2, and the display unit 10 of intestinal state index data, which is a result calculated by the control unit 8, operates the human body washing apparatus. It is incorporated in the panel 11. Data exchange between the gas sensor 7 and the calculation unit 9 is performed by connection, and data exchange between the control unit 8 and the display unit 10 is performed by infrared rays. The calculation unit 9 includes a data storage function and a gas sensor control function for controlling the gas sensor 7 in addition to the calculation function for calculating the gas concentration.

図2は本発明の健康状態測定装置の一例を示す概念図である。脱臭ファン用排気通路4内に、風上側から順に脱臭ファン5、脱臭カートリッジ6およびガスセンサ7が配置されている。脱臭カートリッジ6とガスセンサ7との間には、ガスセンサ7への風の直撃を避けるための邪魔板12が置かれている。 FIG. 2 is a conceptual diagram showing an example of the health condition measuring apparatus of the present invention. A deodorizing fan 5, a deodorizing cartridge 6, and a gas sensor 7 are arranged in this order from the windward side in the exhaust passage 4 for the deodorizing fan. Between the deodorizing cartridge 6 and the gas sensor 7, a baffle plate 12 for avoiding direct blow of the wind to the gas sensor 7 is placed.

演算部9が測定開始信号をガスセンサ7に送信しガスセンサ7が作動し始めると、二酸化炭素ガスの濃度に応じた出力信号が得られる。ガスセンサ7で得られたセンサ出力信号が演算部9に送られ、時系列的に記憶される。また、演算部9の測定終了信号によってガスセンサ7の作動が終了し、センサ出力の信号の記録が終了する。続いて、演算部9では後述の方法にしたがって記憶されたセンサの出力信号からガス濃度を求め、その結果を制御部8に送る。制御部8では演算部9から送られてきたガス濃度から腸内状態指標を推算する。得られた腸内状態指標が演算部9に記憶され、同時に表示部10で表示される。 When the calculation unit 9 transmits a measurement start signal to the gas sensor 7 and the gas sensor 7 starts to operate, an output signal corresponding to the concentration of carbon dioxide gas is obtained. The sensor output signal obtained by the gas sensor 7 is sent to the calculation unit 9 and stored in time series. Further, the operation of the gas sensor 7 is ended by the measurement end signal of the arithmetic unit 9, and the recording of the sensor output signal is ended. Subsequently, the calculation unit 9 obtains the gas concentration from the sensor output signal stored in accordance with a method described later, and sends the result to the control unit 8. The control unit 8 estimates the intestinal state index from the gas concentration sent from the calculation unit 9. The obtained intestinal state index is stored in the calculation unit 9 and simultaneously displayed on the display unit 10.

続いて、本発明の健康状態測定装置によって***ガスの二酸化炭素ガス濃度を測定し、さらに得られた二酸化炭素ガス濃度から腸内状態指標を推定する方法の例について詳しく説明する。 Subsequently, an example of a method for measuring the carbon dioxide gas concentration of excreted gas using the health condition measuring apparatus of the present invention and estimating the intestinal state index from the obtained carbon dioxide gas concentration will be described in detail.

まず固体電解質型二酸化炭素センサの出力から二酸化炭素ガスの濃度を求める方法について説明する。その説明に先立って、固体電解質型二酸化炭素センサの測定原理について述べる。 First, a method for obtaining the concentration of carbon dioxide gas from the output of the solid electrolyte carbon dioxide sensor will be described. Prior to the description, the measurement principle of the solid oxide carbon dioxide sensor will be described.

図3はガスセンサ7の詳細構造の一例を概念的に示す図である。セラミック基板24の上に対電極23、固体電解質22、及び作用電極21が順序積層されている。また、セラミック基板24の反対側に加熱用電源27に接続したヒーター25が接合されている。セラミック基板24と固体電解質22の間に位置する対電極23の周辺には接着剤26が充填されている。また、対電極23と作用極21とはリード線によって電気的に接続され、接続回路上に電圧計28が取り付かれている。固体電解質の材料としてNASICON(Na1+AZr2SiAP3−AO12、但し0≦A≦3)、Li−β−Al2O3等のナトリウムイオン伝導性物質やリチウムイオン伝導性物質などが、作用電極および対電極の例としてとしては、金や白金などの貴金属材料が、さらに作用電極に含まれる補助電極物質として炭酸塩リチウムなどの金属炭酸塩が例として挙げられる。 FIG. 3 is a diagram conceptually showing an example of the detailed structure of the gas sensor 7. On the ceramic substrate 24, the counter electrode 23, the solid electrolyte 22, and the working electrode 21 are laminated in order. A heater 25 connected to a heating power source 27 is joined to the opposite side of the ceramic substrate 24. An adhesive 26 is filled around the counter electrode 23 located between the ceramic substrate 24 and the solid electrolyte 22. The counter electrode 23 and the working electrode 21 are electrically connected by a lead wire, and a voltmeter 28 is attached on the connection circuit. Examples of the working electrode and counter electrode include sodium ion conductive materials such as NASICON (Na1 + AZr2SiAP3-AO12, where 0 ≦ A ≦ 3), Li-β-Al2O3, and lithium ion conductive materials as solid electrolyte materials. Examples include noble metal materials such as gold and platinum, and metal carbonates such as lithium carbonate as auxiliary electrode materials further included in the working electrode.

加熱用電源27によってヒーター25に電圧が印加されると、セラミック基板24を通して電極系(対電極23、固体電解質22、作用電極21)が一定温度(例えば400℃)に加熱されて作動状態になる。センサが作動状態で二酸化炭素ガスを含むガスに曝されると、電極系では以下の電気化学反応が起こる(固体電解質の材料ははNASICON):
作用電極:2Li+CO+1/2O+2e = LiCO
対電極:NaO = 2Na+1/2O2+2e
When a voltage is applied to the heater 25 by the heating power supply 27, the electrode system (counter electrode 23, solid electrolyte 22, working electrode 21) is heated to a constant temperature (for example, 400 ° C.) through the ceramic substrate 24 to be in an operating state. . When the sensor is activated and exposed to a gas containing carbon dioxide gas, the electrode system undergoes the following electrochemical reaction (the solid electrolyte material is NASICON):
Working electrode: 2Li + + CO 2 + 1 / 2O 2 + 2e = LiCO 3
Counter electrode: Na 2 O = 2Na + + 1 / 2O2 + 2e

上記電気化学反応によって両電極間に起電力(EMF)が発生する。この起電力が固定電解質電極系に拡散侵入している二酸化炭素の濃度に依存しているので、その変化量を測定することにより二酸化炭素ガスの濃度を測定することができる。 An electromotive force (EMF) is generated between both electrodes by the electrochemical reaction. Since this electromotive force depends on the concentration of carbon dioxide diffusing and penetrating into the fixed electrolyte electrode system, the concentration of carbon dioxide gas can be measured by measuring the amount of change.

以上述べたように、固体電解質型二酸化炭素センサの測定対象ガスに含まれる二酸化炭素ガスに対する応答出力は、二酸化炭素ガスの電極系への拡散侵入に起因する起電力変化として取り出されるので、その特性上、安定した出力を得るには一定の時間がかかる。 As described above, the response output to the carbon dioxide gas contained in the measurement target gas of the solid oxide carbon dioxide sensor is taken out as a change in electromotive force caused by diffusion and penetration of carbon dioxide gas into the electrode system. In addition, it takes a certain time to obtain a stable output.

図4は、固体電解質センサの出力特性を説明するためのグラフである。この内、図4(a)は特定濃度(3000ppm)の二酸化炭素ガスを使用し、ガス発生時間を5秒間から2分間まで変化させて得られた出力の時間変化をグラフ化したものである(わかりやすくするため、出力が電圧から濃度に換算されている)。固体電解質センサは応答速度が遅いため、このグラフから分かるように、所定濃度に対応する濃度を得るためには120秒以上の時間が必要である。言い換えれば、120秒間以上所定濃度のガス雰囲気にセンサが接していなければ、起電力の変化量から二酸化炭素濃度を正確に測定することができない。 FIG. 4 is a graph for explaining the output characteristics of the solid electrolyte sensor. Among these, FIG. 4 (a) is a graph showing the time change of the output obtained by using carbon dioxide gas having a specific concentration (3000 ppm) and changing the gas generation time from 5 seconds to 2 minutes ( For clarity, the output is converted from voltage to concentration). Since the response speed of the solid electrolyte sensor is slow, as can be seen from this graph, it takes 120 seconds or more to obtain a concentration corresponding to the predetermined concentration. In other words, the carbon dioxide concentration cannot be accurately measured from the amount of change in electromotive force unless the sensor is in contact with a gas atmosphere having a predetermined concentration for 120 seconds or more.

***ガスは人体から***されると、拡散等によって短時間で消失するので、その場で測定するには短時間で測定を完了することが求められる。したがって、起電力の変化量から二酸化炭素ガス濃度を測定する従来の方法では、***ガス中の二酸化炭素ガスを正確に測定することができない。その一方で、図4(a)は、ガス発生時間の長短に関連なく、ガス濃度が一定であれば立上時の勾配dが同じであることも示している。 When excreted gas is excreted from the human body, it disappears in a short time due to diffusion or the like. Therefore, in order to measure on the spot, it is required to complete the measurement in a short time. Therefore, the conventional method of measuring the carbon dioxide gas concentration from the amount of change in electromotive force cannot accurately measure the carbon dioxide gas in the excreted gas. On the other hand, FIG. 4 (a) also shows that the rising gradient d is the same if the gas concentration is constant, regardless of the length of the gas generation time.

本発明者らは、固体電解質型二酸化炭素の応答特性をさらに検討した結果、センサ出力の変化速度が、センサのガスに接する時間に関係なく、ガス濃度に比例しているいることを見出した。図4(b)に示すように、二酸化炭素ガス濃度が高くなるほど変化速度(立上時の勾配d)が大きくなること、すなわち、ガス濃度と変化速度との間には相関があることが判った。そして、図4(c)に示すように、二酸化炭素ガス濃度とセンサ出力の変化速度(勾配d)との相関は直線的であることを見出した。この相関関係からセンサ出力の変化速度と二酸化炭素ガス濃度との対応表を用いることで、センサ出力の変化速度から二酸化炭素ガスの濃度を求めることができる。 As a result of further examination of the response characteristics of solid electrolyte type carbon dioxide, the present inventors have found that the rate of change in sensor output is proportional to the gas concentration regardless of the time of contact with the sensor gas. As shown in FIG. 4 (b), it can be seen that as the carbon dioxide gas concentration increases, the rate of change (slope d at startup) increases, that is, there is a correlation between the gas concentration and the rate of change. It was. And as shown in FIG.4 (c), it discovered that the correlation with a carbon dioxide gas concentration and the change speed (gradient d) of a sensor output was linear. By using a correspondence table between the sensor output change rate and the carbon dioxide gas concentration from this correlation, the carbon dioxide gas concentration can be obtained from the sensor output change rate.

したがって、固体電解質型二酸化炭素センサの出力の変化速度を利用することで、時々刻々変化する***ガスの濃度を正確に測定し、腸内状態を推測することができる。 Therefore, by utilizing the change rate of the output of the solid oxide carbon dioxide sensor, it is possible to accurately measure the concentration of excretion gas that changes from moment to moment and to estimate the intestinal state.

以下、ガスセンサ7の出力から***ガス中の二酸化炭素ガス濃度の測定について具体的に説明する。   Hereinafter, the measurement of the carbon dioxide gas concentration in the excreted gas from the output of the gas sensor 7 will be specifically described.

図5は排便時に発生したガス中の二酸化炭素ガス濃度をガスセンサ7で測定した出力例を示すグラフである。横軸の時間(秒)は排便所要時間を表し、t1は排便開始時、t2は排便終了時である。最高濃度は***ガス量が最も多い時点で出現するため、ピーク値が最大値Vpとなるピークの出力を利用すれば、より正確な腸内状態指標を推定することができる。 FIG. 5 is a graph showing an output example in which the gas sensor 7 measures the carbon dioxide gas concentration in the gas generated during defecation. The time (seconds) on the horizontal axis represents the time required for defecation, t1 is the start of defecation, and t2 is the end of defecation. Since the maximum concentration appears when the amount of excreted gas is the largest, a more accurate intestinal state index can be estimated by using the peak output at which the peak value becomes the maximum value Vp.

二酸化炭素ガス濃度の最大値を測定する手順として、二酸化炭素ガスセンサの出力を記憶し、ここから出力のピーク値が最大値Vpとなるピークを探し出して、そのピークの立ち上がりの勾配d、すなわちセンサ出力の変化速度を計算し、図4(c)に示す二酸化炭素ガス濃度と勾配dとの相関関係に基いて作成された出力の変化速度(勾配d)と二酸化炭素ガス濃度の対応表から二酸化炭素ガス濃度の最大値Cpを算出することとなる。 As a procedure for measuring the maximum value of the carbon dioxide gas concentration, the output of the carbon dioxide gas sensor is stored, a peak where the peak value of the output is the maximum value Vp is searched for, and the rising slope d of the peak, that is, the sensor output 4 is calculated, and carbon dioxide is calculated from the correspondence table of the output change rate (gradient d) and the carbon dioxide gas concentration created based on the correlation between the carbon dioxide gas concentration and the gradient d shown in FIG. The maximum value Cp of the gas concentration is calculated.

以下、二酸化炭素ガス濃度の最大値Cpを算出する方法をガス濃度を演算する演算部9の動作例に基づいて具体的に説明する。 Hereinafter, a method of calculating the maximum value Cp of the carbon dioxide gas concentration will be specifically described based on an operation example of the calculation unit 9 that calculates the gas concentration.

ガス濃度を演算する演算部は第1演算部、第2演算部からなっている。まず、第1演算部では演算部9に記憶されたガスセンサ7の出力信号データから出力信号の最大値Vpとその時刻を探し出す。また、最大値Vpから過去に遡って最初に出会った出力信号の最小値Vbおよびその時刻を探し出す。続いて、Vbの時刻からVpの時刻に向かって一定時間間隔、本実施例では2秒間隔ごとの出力変化量ΔVxを求め、記憶する。最後に得られた複数のΔVxからその最大値ΔVmaxを探し出す。こうして最大値Vpとなるピークの立ち上がり勾配d、すなわちセンサ出力の変化速度を求める。次に、第2演算部では予め記憶されている出力の変化速度(勾配d)とガス濃度との対応表(図4(c)に示す相関図に基く)から、出力のピーク値が最大値Vpとなるピークに対応するガス濃度の最大値Cpを算出する。 The calculation unit for calculating the gas concentration includes a first calculation unit and a second calculation unit. First, the first calculation unit finds the maximum value Vp of the output signal and its time from the output signal data of the gas sensor 7 stored in the calculation unit 9. Further, the minimum value Vb of the output signal first encountered retroactively from the maximum value Vp and its time are searched. Subsequently, an output change amount ΔVx is obtained and stored at a constant time interval from the time Vb to the time Vp, in this embodiment, every 2 seconds. The maximum value ΔVmax is found from a plurality of finally obtained ΔVx. Thus, the rising slope d of the peak having the maximum value Vp, that is, the change speed of the sensor output is obtained. Next, in the second calculation unit, the peak value of the output is the maximum value from the correspondence table (based on the correlation diagram shown in FIG. 4C) of the output change rate (gradient d) and gas concentration stored in advance. The maximum gas concentration Cp corresponding to the peak Vp is calculated.

次に、上述演算によって得られた二酸化炭素濃度の最大値Cpから腸内指標を制御部8によって推定する方法について説明する。本実施例では腸内指標の例として便pHを用いた。 Next, a method for estimating the intestinal index by the control unit 8 from the maximum value Cp of the carbon dioxide concentration obtained by the above calculation will be described. In this example, fecal pH was used as an example of an intestinal index.

図6(a)は排便時に発生したガス中の二酸化炭素ガス濃度(容量%で表示)の最大値と、そのときに採取した便中の酢酸濃度(μmol/g)との相関を示す実測データである。このように二酸化炭素ガス濃度と酢酸濃度との間に相関性があることの理由は必ずしも明確ではないが、便のpH値はその中に含まれるカルボン酸の濃度によって左右され、このカルボン酸の一定割合が体内で水と二酸化炭素に分解されているためと推測される。 FIG. 6A shows measured data indicating the correlation between the maximum value of carbon dioxide gas concentration (expressed in volume%) in gas generated during defecation and the acetic acid concentration (μmol / g) in stool collected at that time. It is. The reason why there is a correlation between the carbon dioxide gas concentration and the acetic acid concentration is not necessarily clear, but the pH value of the stool depends on the concentration of the carboxylic acid contained therein, and It is estimated that a certain percentage is broken down into water and carbon dioxide in the body.

したがって、カルボン酸のうちの大部分を占める酢酸の濃度も上記二酸化炭素ガス濃度と相関があることになる。また、図6(b)は便中の酢酸濃度と便中のpH値との相関を示す実測データであり、他に含まれる酸や塩基の影響を受けてデータは多少乱れるものの、ほぼ、直線的な関係を示している。   Therefore, the concentration of acetic acid occupying most of the carboxylic acid is also correlated with the carbon dioxide gas concentration. FIG. 6 (b) is actual measurement data showing the correlation between the acetic acid concentration in stool and the pH value in stool. Although the data is somewhat disturbed by the influence of other acids and bases contained therein, the data is almost linear. The relationship.

以上述べたように、***ガス中の二酸化炭素ガス最大濃度と便中酢酸、さらに便中酢酸と便pHとの間に相関性が認められているので、前記ガスセンサ7の出力の変化速度である勾配dから算出されたCpから、便中のpHを推定することができる。具体的には、制御部8ではまず図7(a)に示す二酸化炭素ガス濃度と便中の酢酸濃度との相関(図6(a)と同じ)を示すグラフから酢酸濃度Cacを推定し、さらに図7(b)の便中の酢酸濃度と便中のpH値との相関(図6(b)と同じ)を示すグラフからpH値を推定する。 As described above, the correlation between the maximum concentration of carbon dioxide gas in the excreted gas and acetic acid in stool, and also acetic acid in stool and stool pH is recognized, and therefore the change rate of the output of the gas sensor 7. The pH in the stool can be estimated from Cp calculated from the gradient d. Specifically, the control unit 8 first estimates the acetic acid concentration Cac from the graph showing the correlation between the carbon dioxide gas concentration shown in FIG. 7A and the acetic acid concentration in the stool (same as FIG. 6A), Furthermore, the pH value is estimated from the graph showing the correlation between the acetic acid concentration in the stool and the pH value in the stool (same as in FIG. 6B) in FIG.

以上、本発明の健康状態測定装置による***ガスの二酸化炭素ガス濃度測定値から腸内状態指標を推定する方法の例について説明した。 The example of the method for estimating the intestinal state index from the measured value of the carbon dioxide gas concentration of excretion gas by the health condition measuring apparatus of the present invention has been described above.

最後に、本発明の健康状態測定装置を使用した健康状態測定方法の手順を例示して説明する。   Finally, the procedure of the health condition measuring method using the health condition measuring apparatus of the present invention will be exemplified and described.

図8は、本発明の健康状態測定装置(洋式便器に付設された衛生洗浄便座装置に内蔵)を使用した健康状態測定方法の手順を示す一例である。使用者(以後、「ユーザ」と呼ぶ。)の動作を左側に、便座装置が行う処理(健康状態測定装置の処理を含む)を右側にわけて表示した。 FIG. 8 is an example showing a procedure of a health condition measuring method using the health condition measuring apparatus of the present invention (built in a sanitary washing toilet seat apparatus attached to a Western-style toilet). The operation of the user (hereinafter referred to as “user”) is displayed on the left side, and the processing performed by the toilet seat device (including the process of the health condition measuring device) is displayed on the right side.

本図の流れの通り、ユーザはトイレ内に入室し排便をして退室するのであるが、このトイレには本発明の健康状態測定装置が取り付けてあるため、退室する前には自分の腸内のpH推定値を表示部10に表示されることで、その日の体調を知り、あるいは継続的に測定していた場合は経時的な体調の変化を知ることができる。 As shown in the flow of this figure, the user enters the toilet, defecates, and then exits, but since the health condition measuring device of the present invention is attached to this toilet, By displaying the estimated pH value on the display unit 10, it is possible to know the physical condition of the day, or to know the change in physical condition over time when continuously measured.

まずユーザが入室すると人体検知センサによって入室が検知され、二酸化炭素ガスセンサ7が起動される。人体検知センサを使わない場合には、ユーザが健康状態測定装置の電源を手動で入れてもよい。 First, when the user enters the room, the human body detection sensor detects the room entry, and the carbon dioxide gas sensor 7 is activated. When the human body detection sensor is not used, the user may manually turn on the health condition measuring device.

ユーザが着座すると着座センサが着座を検知し、脱臭ファン5の起動後に二酸化炭素ガスセンサ7が記録および記憶を開始する。着座センサを使わずにユーザが各センサの始動スイッチを押してもよい。ここで稼動開始時のセンサの時刻をt1とし、その時刻に対応する二酸化炭素ガスセンサ7の出力値(V)をV1と呼ぶ。 When the user is seated, the seating sensor detects the seating, and after the deodorizing fan 5 is activated, the carbon dioxide gas sensor 7 starts recording and storing. The user may press the start switch of each sensor without using the seating sensor. Here, the time of the sensor at the start of operation is t1, and the output value (V) of the carbon dioxide gas sensor 7 corresponding to that time is called V1.

ユーザが排便を開始し終了するまで、二酸化炭素ガスセンサ7は一定時間tx、たとえば1秒おきにデータVxを検出し、それらを演算部9に書き込む。 Until the user starts and finishes defecation, the carbon dioxide gas sensor 7 detects the data Vx for a predetermined time tx, for example, every second, and writes them in the calculation unit 9.

排便終了後、ユーザが人体洗浄を開始する。このとき、洗浄ボタンと連動させて二酸化炭素ガスセンサ7の記録を終了させる。排便終了時の時間t2と二酸化炭素ガスセンサ7のそのときの検知データV2が記憶される。なお、排便前または排便中に洗浄ボタンが使われるケースもあることを考慮する場合は、洗浄ボタンと連動させずにユーザが手動で記憶終了させる形式としてもよい。 After defecation ends, the user starts washing the human body. At this time, the recording of the carbon dioxide gas sensor 7 is terminated in conjunction with the cleaning button. The time t2 at the end of the defecation and the detection data V2 at that time of the carbon dioxide gas sensor 7 are stored. When considering that the washing button may be used before or during defecation, the user may manually terminate the storage without interlocking with the washing button.

演算部9の第1演算部では、まずt1〜t2の範囲で二酸化炭素センサ出力の最大値Vmaxを検索する。そしてVmaxの値そのもの、またはVmaxから二酸化炭素ガス濃度の最小値を引いた値を最大ピーク値Vpとして算出する。次にVpに達する前の最小値に対応する時刻を探し出し、その時点からVpに達するまでの出力曲線の勾配d、すなわち出力変化速度を求める。出力変化速度(勾配d)の求め方として一定時間間隔の変化量など、周知な方法を用いてよい。そして演算部9の第2演算部では出力変化速度(勾配d)から予め演算部に記憶されている出力変化速度と二酸化炭素濃度との対応表から二酸化炭素最大濃度Cpを算出する。 The first calculation unit of the calculation unit 9 first searches for the maximum value Vmax of the carbon dioxide sensor output in the range of t1 to t2. Then, the value of Vmax itself or a value obtained by subtracting the minimum value of the carbon dioxide gas concentration from Vmax is calculated as the maximum peak value Vp. Next, the time corresponding to the minimum value before reaching Vp is found, and the slope d of the output curve from that time until reaching Vp, that is, the output change speed is obtained. As a method of obtaining the output change rate (gradient d), a known method such as a change amount at a constant time interval may be used. Then, the second calculation unit of the calculation unit 9 calculates the maximum carbon dioxide concentration Cp from the output change rate (gradient d) from the correspondence table of the output change rate and the carbon dioxide concentration stored in advance in the calculation unit.

最後に、制御部8では、Cp値から酢酸濃度Cac値を推定し、続いて酢酸濃度Cac値からpH値を推定する。同定したpH値は演算部9部に書き込み、さらに同定結果をユーザに表示部10等により報知する。 Finally, the control unit 8 estimates the acetic acid concentration Cac value from the Cp value, and then estimates the pH value from the acetic acid concentration Cac value. The identified pH value is written in 9 parts of the calculation unit, and the identification result is notified to the user via the display unit 10 or the like.

ユーザが離座すると、それを着座センサが感知し脱臭ファン5が停止する。そしてユーザが退室すると人体検知センサによって退室が検知され二酸化炭素ガスセンサ7の電源が切られる。
よって使用者が通常のトイレ行為で手軽に自分の腸内状態を知ることができる。
When the user leaves the seat, the seating sensor senses it and the deodorizing fan 5 stops. When the user leaves the room, the human body detection sensor detects the room leaving and the carbon dioxide gas sensor 7 is turned off.
Therefore, the user can easily know his / her intestinal state by a normal toilet action.

本発明の健康状態測定装置を搭載した洋式便器に付設された衛生洗浄便座装置の一例を示す(部分透視)外観図An external view (partial perspective) showing an example of a sanitary washing toilet seat apparatus attached to a Western-style toilet equipped with the health condition measuring apparatus of the present invention 本発明の健康状態測定装置に係る脱臭ファン用排気通路内の構成の一例を示す配置図The layout which shows an example of the structure in the exhaust passage for deodorizing fans concerning the health condition measuring apparatus of this invention 本発明の健康状態測定装置に使用される固体電解質型二酸化炭素ガスの構造の一例を示す図The figure which shows an example of the structure of the solid electrolyte type carbon dioxide gas used for the health condition measuring apparatus of this invention 固体電解質センサの特性を説明するためのグラフGraph for explaining characteristics of solid electrolyte sensor 排便時に発生したガス中の二酸化炭素ガス濃度を測定した出力例を示すグラフGraph showing the output example of measuring the carbon dioxide gas concentration in the gas generated during defecation 排便ガスの二酸化炭素ガス濃度をと便中酢酸濃度、および便中酢酸濃度と便pH値との相関関係を示すグラフGraph showing the correlation between the concentration of carbon dioxide gas in fecal gas and the concentration of acetic acid in stool, and the concentration of acetic acid in stool and the pH value of stool 固体電解質センサで測定された二酸化炭素ガス濃度をからpH値への換算手順を示すグラフThe graph which shows the conversion procedure from the carbon dioxide gas concentration measured with the solid electrolyte sensor to the pH value 本発明の健康状態測定装置(人体洗浄装置組込タイプ洋式便器に搭載)を使用した健康状態測定方法の手順の一例を示す図The figure which shows an example of the procedure of the health condition measuring method using the health condition measuring apparatus (installed in the human body washing apparatus built-in type Western style toilet) of this invention

符号の説明Explanation of symbols

1…便器、2…便座、3…便鉢、4…脱臭ファン用排気通路、5…脱臭ファン、6…脱臭カートリッジ、7…二酸化炭素ガスセンサ、8…制御部、9…演算部、10…表示部、11…操作パネル、12…邪魔板、21…作用電極、22…固体電解質層、23…対電極、24…セラミックス板、25…ヒータ、26…接着剤、27…加熱用電源 、28…電圧計 DESCRIPTION OF SYMBOLS 1 ... Toilet bowl, 2 ... Toilet seat, 3 ... Toilet bowl, 4 ... Deodorizing fan exhaust passage, 5 ... Deodorizing fan, 6 ... Deodorizing cartridge, 7 ... Carbon dioxide gas sensor, 8 ... Control part, 9 ... Calculation part, 10 ... Display 11, operation panel, 12 baffle plate, 21 working electrode, 22 solid electrolyte layer, 23 counter electrode, 24 ceramic plate, 25 heater, 26 adhesive, 27 heating power source, 28 voltmeter

Claims (2)

排便時に併発するガスのガス濃度を測定するガスセンサと、前記ガスセンサから得られるガス濃度より腸内状態を算出する制御部と、を備える腸内状態測定装置であって、前記ガスセンサは固体電解質型センサであり、前記固体電解質型センサから得られる出力の変化速度に対応するガス濃度を演算する演算部とを備えることを特徴とする健康状態測定装置。 An intestinal state measuring device comprising: a gas sensor that measures a gas concentration of a gas that coexists during defecation; and a control unit that calculates an intestinal state from the gas concentration obtained from the gas sensor, wherein the gas sensor is a solid electrolyte sensor A health condition measuring apparatus comprising: a calculation unit that calculates a gas concentration corresponding to a change rate of an output obtained from the solid electrolyte sensor. 排便時に併発するガスのガス濃度を固体電解質型ガスセンサで測定し、測定により得られた出力の変化速度を算出し、算出された変化速度に対応するガス濃度を演算し、得られたガス濃度から腸内状態を推定することを特徴とする健康状態測定方法。 Measure the gas concentration of the gas that accompanies during defecation with a solid electrolyte gas sensor, calculate the change rate of the output obtained by the measurement, calculate the gas concentration corresponding to the calculated change rate, and from the obtained gas concentration A health condition measuring method characterized by estimating an intestinal condition.
JP2008099510A 2008-04-07 2008-04-07 Health condition measuring device and health condition measuring method Active JP5019267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099510A JP5019267B2 (en) 2008-04-07 2008-04-07 Health condition measuring device and health condition measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099510A JP5019267B2 (en) 2008-04-07 2008-04-07 Health condition measuring device and health condition measuring method

Publications (2)

Publication Number Publication Date
JP2009250799A JP2009250799A (en) 2009-10-29
JP5019267B2 true JP5019267B2 (en) 2012-09-05

Family

ID=41311670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099510A Active JP5019267B2 (en) 2008-04-07 2008-04-07 Health condition measuring device and health condition measuring method

Country Status (1)

Country Link
JP (1) JP5019267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051290A1 (en) 2015-01-30 2016-08-03 Toto Ltd. Biological information measurement system
JP2016143171A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
CN105842285A (en) * 2015-01-30 2016-08-10 Toto株式会社 Biological information measurement system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083405A1 (en) * 2014-11-27 2016-06-02 Koninklijke Philips N.V. Chemical analysis of urine and feces vapor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199147A (en) * 1988-02-04 1989-08-10 Figaro Eng Inc Apparatus of detecting gas
JPH08211048A (en) * 1995-02-02 1996-08-20 Matsushita Electric Ind Co Ltd Health measuring apparatus
JPH0943182A (en) * 1995-08-04 1997-02-14 Hitachi Ltd Organism monitoring device
JP2001041916A (en) * 1999-05-21 2001-02-16 Daikin Ind Ltd Gas detector
JP2003090812A (en) * 2001-09-20 2003-03-28 Figaro Eng Inc Wind detecting method, and device therefor
JP2005292049A (en) * 2004-04-02 2005-10-20 Toto Ltd Excretory gas measuring apparatus and method
JP4385402B2 (en) * 2004-04-02 2009-12-16 Toto株式会社 Intestinal state notification device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051290A1 (en) 2015-01-30 2016-08-03 Toto Ltd. Biological information measurement system
JP2016143171A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
CN105842285A (en) * 2015-01-30 2016-08-10 Toto株式会社 Biological information measurement system

Also Published As

Publication number Publication date
JP2009250799A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP6899084B2 (en) Biological information measurement system
JP5131646B2 (en) Biological information measuring device
EP3051290B1 (en) Biological information measurement system
JP2009250922A (en) Health condition measuring instrument
JP5019267B2 (en) Health condition measuring device and health condition measuring method
US20170089875A1 (en) Biological information measurement system
JP5834319B2 (en) Apparatus for measuring redox potential
JPH08502589A (en) Bio-sensing meter with fail-safe function to prevent false display
JP5136285B2 (en) Intestinal state measuring device and measuring method
JP2001033419A (en) Detection of sample for starting timing of electrochemical measurement
US20160223549A1 (en) Biological information measurement system
KR20140040171A (en) Peak offset correction for analyte test strip
US20160223519A1 (en) Biological information measurement system
JP2009250647A (en) Health condition measuring instrument
US20160143561A1 (en) Self-contained, portable h2/co2 (air) ratio apparatus
JP2003090812A (en) Wind detecting method, and device therefor
JP2005292049A (en) Excretory gas measuring apparatus and method
JP2009288054A (en) Health state measuring device
JP5136280B2 (en) Intestinal state measuring device and measuring method
JP4849036B2 (en) Health condition measuring apparatus and measuring method
JP4915339B2 (en) Health condition measuring apparatus and measuring method
JP2003270242A (en) Method and apparatus for measurement of toxic gas in enteral gas
JP5168135B2 (en) Biological improvement effect analysis system and biological improvement effect analysis method
JP4992694B2 (en) Health condition measuring device
JP2010002252A (en) Health condition measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 5019267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3