JP5018244B2 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP5018244B2
JP5018244B2 JP2007143175A JP2007143175A JP5018244B2 JP 5018244 B2 JP5018244 B2 JP 5018244B2 JP 2007143175 A JP2007143175 A JP 2007143175A JP 2007143175 A JP2007143175 A JP 2007143175A JP 5018244 B2 JP5018244 B2 JP 5018244B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
plate
heating member
temperature
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007143175A
Other languages
Japanese (ja)
Other versions
JP2008300491A (en
Inventor
守 小坂井
義明 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2007143175A priority Critical patent/JP5018244B2/en
Publication of JP2008300491A publication Critical patent/JP2008300491A/en
Application granted granted Critical
Publication of JP5018244B2 publication Critical patent/JP5018244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、静電チャックに関し、さらに詳しくは、半導体ウェハ等の板状試料を静電気力により吸着固定する際に好適に用いられ、半導体製造ラインにおける成膜処理、エッチング処理、露光処理等の各種工程においても、板状試料における面内温度分布が小さく、プラズマ印加に伴う経時的な温度変化の調整や広い温度範囲での温度の調整が可能であり、局所的な温度制御も可能な静電チャックに関するものである。   The present invention relates to an electrostatic chuck. More specifically, the present invention is suitably used when a plate-like sample such as a semiconductor wafer is attracted and fixed by electrostatic force, and various types of film forming processing, etching processing, exposure processing, etc. in a semiconductor manufacturing line. In the process as well, the in-plane temperature distribution in the plate-like sample is small, and it is possible to adjust the temperature change over time accompanying plasma application and to adjust the temperature in a wide temperature range. It concerns the chuck.

静電チャックは、誘電体層に狭持された静電吸着用内部電極と前記誘電体層上に載置された半導体ウェハ等の板状試料との間に静電気力を発生させて板状試料を吸着固定するものであり、誘電体層の厚みを一定とし、静電吸着用電極を板状試料とほぼ同等の大きさとすれば、板状試料の全面にわたってほぼ均一な静電気力を発生させることができ、したがって、板状試料の表面が平坦になるように精度良く固定することができる。
この静電チャックは、静電吸着力を用いているために、真空下においても使用可能であることから、半導体製造ラインの成膜処理、エッチング処理、露光処理等の各種工程で広く利用されている。
The electrostatic chuck generates an electrostatic force between an internal electrode for electrostatic attraction held between dielectric layers and a plate-like sample such as a semiconductor wafer placed on the dielectric layer, thereby producing a plate-like sample. If the thickness of the dielectric layer is constant and the electrode for electrostatic adsorption is approximately the same size as the plate-like sample, a substantially uniform electrostatic force can be generated over the entire surface of the plate-like sample. Therefore, it can be accurately fixed so that the surface of the plate-like sample becomes flat.
Since this electrostatic chuck uses electrostatic attraction force, it can be used under vacuum, so it is widely used in various processes such as film formation, etching, and exposure in semiconductor manufacturing lines. Yes.

ところで、近年、半導体の製造工程では、ICなどの高集積化・微細化により、エッチング処理時に、より均一な温度にて半導体ウェハを処理することが求められている。
半導体ウェハのエッチング特性は、ウェハ面内のプラズマ密度およびウェハの温度に影響される。そのため、ウェハ面内におけるプラズマ密度および温度のばらつきは、ウェハ面内でのエッチング状態のバラツキを生じさせ、歩留まり低下の原因となっている。
また、プラズマ印加に伴うウェハの経時的な温度上昇により、エッチングの初期段階と後期段階では、エッチング状態が異なったものとなるために、面内のエッチング状態のバラつきに加え、深さ方向での変動といった問題が生じている。
Meanwhile, in recent years, in the semiconductor manufacturing process, it is required to process a semiconductor wafer at a more uniform temperature during the etching process due to high integration and miniaturization of ICs and the like.
The etching characteristics of a semiconductor wafer are affected by the plasma density within the wafer surface and the temperature of the wafer. For this reason, variations in plasma density and temperature within the wafer surface cause variations in the etching state within the wafer surface, causing a decrease in yield.
In addition, due to the temperature rise of the wafer over time due to plasma application, the etching state differs between the initial stage and the late stage of etching, so in addition to the variation in the etching state in the surface, in the depth direction There is a problem of fluctuation.

従来より、半導体ウェハの面内の温度分布を調整する方法として、ウェハと静電チャックの吸着面との間にヘリウム等のガスを介在させることにより、面内でガス圧力を調整する方法、あるいはウェハと静電チャックの吸着面との間の接触面積を調整する方法が取られてきた。
また、プラズマCVD装置においては、半導体ウェハを加熱した状態で成膜するために、アルミニウム等の金属材料にシーズヒータを埋めこんだ構造のものや、セラミックス中にタングステン等の高融点金属からなるヒータを焼き込んだ構造のものを使用することにより、プラズマによる温度分布を補正し、面内の温度分布を調整することが行われてきた。
このような静電チャックとしては、半導体ウェハ等の板状試料への温度制御を行うことができるヒータ内蔵型の静電チャックが提案されている(特許文献1、2)。
特開平9−134951号公報 特開2000−277592号公報
Conventionally, as a method of adjusting the temperature distribution in the surface of the semiconductor wafer, a method of adjusting the gas pressure in the surface by interposing a gas such as helium between the wafer and the adsorption surface of the electrostatic chuck, or Methods have been taken to adjust the contact area between the wafer and the chucking surface of the electrostatic chuck.
In addition, in a plasma CVD apparatus, in order to form a film while a semiconductor wafer is heated, a structure in which a sheathed heater is embedded in a metal material such as aluminum, or a heater made of a high melting point metal such as tungsten in ceramics It has been practiced to correct the temperature distribution due to the plasma and adjust the in-plane temperature distribution by using a structure in which is baked.
As such an electrostatic chuck, a heater built-in type electrostatic chuck capable of performing temperature control on a plate-like sample such as a semiconductor wafer has been proposed (Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 9-134951 Japanese Patent Laid-Open No. 2000-277592

しかしながら、従来のヒータ内蔵型の静電チャックでは、面内での温度分布の調整を行うことができるものの、プラズマ印加に伴う経時的な温度変化を調整することが困難であるという問題点があった。
特に、アルミニウム等の金属材料にシーズヒータを埋め込んだ構造や、セラミックス中にタングステン等の高融点金属からなるヒータを焼き込んだ構造では、全体としての熱容量が大きいために、昇温時に過度の電力を投入する必要があり、また、冷却にもある一定時間を必要とするという問題点があった。
加えて、セラミックス中にヒータを焼き込んだ構造では、工程数が多く、製造コストが嵩むという問題点もあった。
However, the conventional electrostatic chuck with a built-in heater can adjust the temperature distribution in the surface, but has a problem that it is difficult to adjust the temperature change with the application of plasma. It was.
In particular, a structure in which a sheathed heater is embedded in a metal material such as aluminum or a structure in which a heater made of a refractory metal such as tungsten is baked into ceramics has a large overall heat capacity, so excessive power is required when the temperature rises. However, there is a problem that a certain time is required for cooling.
In addition, the structure in which a heater is baked into ceramics has a problem that the number of processes is large and the manufacturing cost increases.

一方、面内でヘリウム等のガス圧力を調整する方法やウェハと静電チャックの吸着面との間の接触面積を調整する方法により温度制御を行った場合、調整することのできる温度の幅が狭く、また局所的な温度制御を行うことが難しいという問題点があった。   On the other hand, when temperature control is performed by adjusting the gas pressure of helium or the like in the surface or by adjusting the contact area between the wafer and the chucking surface of the electrostatic chuck, the temperature range that can be adjusted is There is a problem that it is narrow and it is difficult to perform local temperature control.

本発明は、上記の課題を解決するためになされたものであって、半導体製造ラインにおける成膜処理、エッチング処理等において、プラズマ印加に伴う半導体ウェハ等の板状試料の経時的な温度変化の調整や広い温度範囲での温度の調整を行うことができ、局所的な温度制御も行うことができる静電チャックを提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In the film forming process, the etching process, etc. in the semiconductor manufacturing line, the temperature change of the plate-like sample such as a semiconductor wafer accompanying the application of plasma over time. It is an object of the present invention to provide an electrostatic chuck capable of performing adjustment and temperature adjustment in a wide temperature range and capable of performing local temperature control.

本発明者等は、上記の課題を解決するべく鋭意検討を行った結果、静電チャック部と冷却ベース部との間に加熱部材を設け、この加熱部材を、前記静電チャック部に、厚みが0.5mm以下でありかつ前記内側加熱部材及び前記外側加熱部材の体積固有抵抗の10倍以上の体積固有抵抗を有するシリコン樹脂またはポリイミド樹脂からなる中間層を介して接触させるとともに、前記冷却ベース部に、シリコン樹脂に絶縁性及び熱伝導性のフィラーを添加した複合樹脂からなりかつ熱伝達率が5000W/m 以上かつ50000W/m 以下の接着剤層により固定した構成とすれば、プラズマ印加に伴う板状試料の経時的な温度変化を小さくすることができ、広い温度範囲にて温度の調整を行うことができ、局所的な温度制御も行うことができることを知見し、本発明を完成するに到った。 As a result of intensive studies to solve the above-described problems, the present inventors have provided a heating member between the electrostatic chuck portion and the cooling base portion, and this heating member is provided on the electrostatic chuck portion with a thickness. Is not more than 0.5 mm and is brought into contact through an intermediate layer made of silicon resin or polyimide resin having a volume resistivity of 10 times or more of the volume resistivity of the inner heating member and the outer heating member, and the cooling base If the part is made of a composite resin in which an insulating and thermally conductive filler is added to silicon resin and fixed by an adhesive layer having a heat transfer coefficient of 5000 W / m 2 or more and 50000 W / m 2 or less , the plasma It is possible to reduce the temperature change over time of the plate-like sample accompanying application, to adjust the temperature in a wide temperature range, and to perform local temperature control And found that kill, which resulted in the completion of the present invention.

すなわち、本発明の静電チャックは、板状試料を載置する載置面を有する絶縁性のセラミックス焼結体からなる載置板と、この載置板と一体化されて該載置板を支持する絶縁性のセラミックス焼結体からなる支持板と、これら載置板と支持板との間に設けられ導電性セラミックスからなる静電吸着用内部電極とを備え、厚みが0.5mm以上かつ3mm以下の静電チャック部と、この静電チャック部に固定された冷却ベース部とを備えてなる静電チャックにおいて、前記静電チャック部と前記冷却ベース部との間に、中心部に形成された内側加熱部材と該内側加熱部材の外側に形成された外側加熱部材とにより構成される加熱部材を設け、この加熱部材を、前記静電チャック部に、厚みが0.5mm以下でありかつ前記内側加熱部材及び前記外側加熱部材の体積固有抵抗の10倍以上の体積固有抵抗を有するシリコン樹脂またはポリイミド樹脂からなる中間層を介して接触させるとともに、前記冷却ベース部に、シリコン樹脂に絶縁性及び熱伝導性のフィラーを添加した複合樹脂からなりかつ熱伝達率が5000W/m 以上かつ50000W/m 以下の接着剤層により固定してなることを特徴とする。 That is, the electrostatic chuck of the present invention comprises a mounting plate made of an insulating ceramic sintered body having a mounting surface on which a plate-like sample is mounted, and the mounting plate integrated with the mounting plate. A support plate made of an insulating ceramic sintered body to be supported, and an electrostatic adsorption internal electrode made of conductive ceramics provided between the mounting plate and the support plate, and having a thickness of 0.5 mm or more and In an electrostatic chuck comprising an electrostatic chuck portion of 3 mm or less and a cooling base portion fixed to the electrostatic chuck portion, a central portion is formed between the electrostatic chuck portion and the cooling base portion. A heating member comprising an inner heating member formed and an outer heating member formed on the outer side of the inner heating member, the heating member having a thickness of 0.5 mm or less on the electrostatic chuck portion, and The inner heating member and the With contacting with the intermediate layer made of silicon resin or polyimide resin having a volume specific 10 times the volume resistivity of the resistance of the side heating members, to the cooling base, the insulating and thermally conductive filler in silicone resin And is fixed by an adhesive layer having a heat transfer coefficient of 5000 W / m 2 or more and 50000 W / m 2 or less .

この静電チャックでは、静電チャック部と冷却ベース部との間に、中心部に形成された内側加熱部材と該内側加熱部材の外側に形成された外側加熱部材とにより構成される加熱部材を設け、この加熱部材を、静電チャック部に、厚みが0.5mm以下でありかつ内側加熱部材及び外側加熱部材の体積固有抵抗の10倍以上の体積固有抵抗を有するシリコン樹脂またはポリイミド樹脂からなる中間層を介して接触させるとともに、冷却ベース部に、シリコン樹脂に絶縁性及び熱伝導性のフィラーを添加した複合樹脂からなりかつ熱伝達率が5000W/m 以上かつ50000W/m 以下の接着剤層により固定したことにより、加熱部材と静電チャック部との間の熱抵抗が小さくなり、加熱部材から発生する熱を静電チャック部を介して板状試料に伝達する。これにより、エッチングの初期段階において板状試料を所望のエッチング処理温度まで効率的に昇温させることにより、この板状試料のプラズマ印加に伴う経時的な温度変化を抑制し、所望の一定のエッチング処理温度に調整することが可能になる。
また、この加熱部材が静電チャック部を介して板状試料を加熱することにより、板状試料の温度を広い温度範囲にて調整することが可能になり、局所的な温度制御も可能になる。
In this electrostatic chuck, a heating member constituted by an inner heating member formed at the center and an outer heating member formed outside the inner heating member is provided between the electrostatic chuck portion and the cooling base portion. The heating member is provided on the electrostatic chuck portion with a thickness of 0.5 mm or less and a silicon resin or a polyimide resin having a volume resistivity of 10 times or more of the volume resistivity of the inner heating member and the outer heating member. with contacting with the intermediate layer, the cooling base, the insulating and thermally conductive filler consists added composite resin and adhesive heat transfer rate is 5000 W / m 2 or more and 50000W / m 2 or less in the silicon resin by fixed by adhesive layer, the thermal resistance is reduced, via the electrostatic chuck portion of heat generated from the heating element plate between the heating member and the electrostatic chuck portion Transmitted to the sample. As a result, in the initial stage of etching, the plate-shaped sample is efficiently heated to the desired etching processing temperature, thereby suppressing the temperature change over time associated with the plasma application of the plate-shaped sample, and the desired constant etching. It becomes possible to adjust to processing temperature.
In addition, when the heating member heats the plate-like sample via the electrostatic chuck portion, the temperature of the plate-like sample can be adjusted in a wide temperature range, and local temperature control is also possible. .

この静電チャックでは、接着剤層の熱伝達率を5000W/m 以上かつ50000W/m 以下の範囲に限定することにより、静電チャック部から接着剤層を経由して冷却ベース部へ流れる熱の伝達量が制御され、よって、冷却ベース部による静電チャック部の冷却効率が所定の範囲内に制御される。
また、加熱部材にて発生した熱を効率的に用いることが可能になり、静電チャック部の載置面に載置された板状試料を、少ない電力量で所定の温度範囲に加熱・保持することが可能になる。
また、静電チャック部の厚みを0.5mm以上かつ3mm以下とすることにより、この静電チャック部に十分な強度を付与するとともに、その熱容量、昇温特性及び降温特性を所定の範囲内に保持する。
In this electrostatic chuck, the heat transfer coefficient of the adhesive layer is limited to a range of 5000 W / m 2 or more and 50000 W / m 2 or less , thereby flowing from the electrostatic chuck portion to the cooling base portion via the adhesive layer. The amount of heat transfer is controlled, so that the cooling efficiency of the electrostatic chuck portion by the cooling base portion is controlled within a predetermined range.
In addition, the heat generated by the heating member can be used efficiently, and the plate-like sample placed on the placement surface of the electrostatic chuck unit is heated and held within a predetermined temperature range with a small amount of power. It becomes possible to do.
In addition, by setting the thickness of the electrostatic chuck portion to 0.5 mm or more and 3 mm or less, the electrostatic chuck portion is given sufficient strength, and its heat capacity, temperature rise characteristic and temperature fall characteristic are within a predetermined range. Hold.

本発明の静電チャックは、前記載置面に突起部が複数個形成され、かつ、これらの突起部が形成された載置面と前記板状試料との間の接触面積が、静電吸着面の面積の0.01%以上かつ15%以下であることを特徴とする。
この静電チャックでは、載置面と板状試料との間の接触面積を、静電吸着面の面積の0.01%以上かつ15%以下と限定することにより、載置面と板状試料との間の熱伝達率が所定の範囲内に制御され、板状試料における面内温度分布及び経時的な温度変化がさらに小さくなる。
The electrostatic chuck of the present invention has a plurality of protrusions formed on the mounting surface, and the contact area between the mounting surface on which the protrusions are formed and the plate-like sample has an electrostatic adsorption. It is 0.01% or more and 15% or less of the surface area.
In this electrostatic chuck, the contact area between the mounting surface and the plate-like sample is limited to 0.01% or more and 15% or less of the area of the electrostatic chucking surface, whereby the mounting surface and the plate-like sample are limited. The heat transfer coefficient between the two is controlled within a predetermined range, and the in-plane temperature distribution and the temporal temperature change in the plate-like sample are further reduced.

本発明の静電チャックは、前記加熱部材の厚みが0.5mm以下であることを特徴とする。
この静電チャックでは、加熱部材の厚みを0.5mm以下とすることにより、静電チャック部と冷却ベース部との間における加熱部材がある部分と無い部分との熱伝達率の差異により生じる温度差を抑制する。
The electrostatic chuck of the present invention is characterized in that the heating member has a thickness of 0.5 mm or less.
In this electrostatic chuck, by setting the thickness of the heating member to 0.5 mm or less, the temperature generated by the difference in heat transfer coefficient between the electrostatic chuck portion and the cooling base portion where the heating member is present and where the heating member is absent. Suppress the difference.

本発明の静電チャックによれば、静電チャック部と冷却ベース部との間に、中心部に形成された内側加熱部材と該内側加熱部材の外側に形成された外側加熱部材とにより構成される加熱部材を設け、この加熱部材を、静電チャック部に、厚みが0.5mm以下でありかつ内側加熱部材及び外側加熱部材の体積固有抵抗の10倍以上の体積固有抵抗を有するシリコン樹脂またはポリイミド樹脂からなる中間層を介して接触させるとともに、冷却ベース部に、シリコン樹脂に絶縁性及び熱伝導性のフィラーを添加した複合樹脂からなりかつ熱伝達率が5000W/m 以上かつ50000W/m 以下の接着剤層により固定したので、加熱部材と静電チャック部との間の熱抵抗を小さくすることができ、加熱部材から発生する熱を静電チャック部を介して板状試料に効率的に伝達することができる。したがって、エッチングの初期段階において板状試料を所望のエッチング処理温度まで効率的に昇温させることにより、この板状試料のプラズマ印加に伴う経時的な温度変化を抑制し、所望の一定のエッチング処理温度に調整することができる。
また、この加熱部材が静電チャック部を介して板状試料を効率的に加熱するので、板状試料の温度を広い温度範囲にて調整することができ、局所的な温度制御を行うこともできる。
According to the electrostatic chuck of the present invention, it is constituted by the inner heating member formed at the center and the outer heating member formed outside the inner heating member between the electrostatic chuck portion and the cooling base portion. Or a silicon resin having a volume resistivity of 10 mm or more of the volume resistivity of the inner heating member and the outer heating member. The contact is made through an intermediate layer made of polyimide resin , and the cooling base part is made of a composite resin in which an insulating and thermally conductive filler is added to silicon resin, and the heat transfer coefficient is 5000 W / m 2 or more and 50000 W / m. Having fixed by two or less of the adhesive layer, it is possible to reduce the thermal resistance between the heating member and the electrostatic chuck portion, the electrostatic chuck heat generated by the heating element It can be efficiently transferred to the plate-like sample via the. Therefore, by efficiently raising the temperature of the plate sample to the desired etching processing temperature in the initial stage of etching, the temperature change over time associated with the plasma application of this plate sample is suppressed, and the desired constant etching process is performed. Can be adjusted to temperature.
In addition, since the heating member efficiently heats the plate sample via the electrostatic chuck portion, the temperature of the plate sample can be adjusted in a wide temperature range, and local temperature control can be performed. it can.

本発明の静電チャックの最良の形態について、図面に基づき説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of the electrostatic chuck of the present invention will be described with reference to the drawings.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

図1は、本発明の一実施形態の双極型の静電チャックを示す断面図であり、この静電チャック1は、静電チャック部2と、冷却ベース部3と、ヒータ(加熱部材)4と、耐熱性及び絶縁性を有する接着剤層5とにより構成されている。
この静電チャック部2は、半導体ウェハ等の板状試料を載置する載置面11aを有する載置板11と、この載置板11と一体化され該載置板11を支持する支持板12と、これら載置板11と支持板12との間に設けられた静電吸着用内部電極13及び静電吸着用内部電極13の周囲を絶縁する絶縁材層14と、支持板12を貫通するようにして設けられ静電吸着用内部電極13に直流電圧を印加する給電用端子15とにより構成されている。
FIG. 1 is a cross-sectional view showing a bipolar electrostatic chuck according to an embodiment of the present invention. The electrostatic chuck 1 includes an electrostatic chuck portion 2, a cooling base portion 3, and a heater (heating member) 4. And an adhesive layer 5 having heat resistance and insulating properties.
The electrostatic chuck unit 2 includes a mounting plate 11 having a mounting surface 11 a on which a plate-like sample such as a semiconductor wafer is mounted, and a support plate that is integrated with the mounting plate 11 and supports the mounting plate 11. 12, the electrostatic adsorption internal electrode 13 provided between the mounting plate 11 and the support plate 12, the insulating material layer 14 insulating the periphery of the electrostatic adsorption internal electrode 13, and the support plate 12. The power supply terminal 15 is provided so as to apply a DC voltage to the internal electrode 13 for electrostatic attraction.

これら載置板11および支持板12は、その重ね合わせた面の形状を同じくする円板状のもので、炭化ケイ素−酸化アルミニウム複合焼結体等の絶縁性のセラミックス焼結体からなるものである。
この載置板11の載置面11aには、直径が板状試料の厚みより小さい突起部が複数個形成され、かつ、これらの突起部が形成された載置面11aと板状試料との間の接触面積は、静電吸着面の面積の0.01%以上かつ15%以下が好ましく、より好ましくは0.01%以上かつ5%以下である。
ここで、「静電吸着面」とは、静電吸着するための静電吸着用内部電極13が形成された載置面11aの全領域のうち、現に板状試料が搭載されている搭載面のことを指す。
The mounting plate 11 and the support plate 12 are disk-like ones having the same shape of the superimposed surfaces, and are made of an insulating ceramic sintered body such as a silicon carbide-aluminum oxide composite sintered body. is there.
A plurality of protrusions having a diameter smaller than the thickness of the plate-shaped sample are formed on the mounting surface 11a of the mounting plate 11, and the mounting surface 11a on which these protrusions are formed and the plate-like sample are formed. The contact area between them is preferably 0.01% or more and 15% or less, more preferably 0.01% or more and 5% or less of the area of the electrostatic adsorption surface.
Here, the “electrostatic adsorption surface” is a mounting surface on which the plate-like sample is actually mounted out of the entire area of the mounting surface 11a on which the electrostatic adsorption internal electrode 13 for electrostatic adsorption is formed. Refers to that.

ここで、載置面11aと板状試料との間の接触面積を上記の範囲に限定した理由は、接触面積が15%を超えると、載置面11aと板状試料との間の熱伝達率が高くなり、ヘリウム等のガス圧による温度制御の幅が狭くなるとともに、ヒータ4のパターン形状により生じる温度分布が板状試料に反映されるからであり、一方、接触面積が0.01%未満では、十分な吸着力を得ることが難しいとともに、突起部に加わる接触面圧が高すぎてしまい、突起部頂面が摩耗したり、載置面11aに傷が生じたり等の不具合が生じ、その結果、パーティクルが増加することとなるので好ましくない。   Here, the reason why the contact area between the mounting surface 11a and the plate sample is limited to the above range is that when the contact area exceeds 15%, the heat transfer between the mounting surface 11a and the plate sample. This is because the rate is increased, the range of temperature control by the gas pressure of helium or the like is narrowed, and the temperature distribution generated by the pattern shape of the heater 4 is reflected on the plate-like sample, while the contact area is 0.01%. If it is less than this, it is difficult to obtain a sufficient adsorption force, and the contact surface pressure applied to the protrusions is too high, and the top surface of the protrusions is worn away, or the mounting surface 11a is damaged. As a result, the number of particles increases, which is not preferable.

静電吸着用内部電極13は、電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
この静電吸着用内部電極13は、酸化アルミニウム−炭化タンタル導電性複合焼結体、酸化アルミニウム−タングステン導電性複合焼結体、酸化アルミニウム−炭化ケイ素導電性複合焼結体、窒化アルミニウム−タングステン導電性複合焼結体、窒化アルミニウム−タンタル導電性複合焼結体等の導電性セラミックス、あるいは、タングステン、タンタル、モリブデン等の高融点金属により形成されている。
The internal electrode 13 for electrostatic adsorption is used as an electrode for an electrostatic chuck for generating a charge and fixing a plate-like sample with an electrostatic adsorption force. Adjusted.
The internal electrode 13 for electrostatic adsorption includes an aluminum oxide-tantalum carbide conductive composite sintered body, an aluminum oxide-tungsten conductive composite sintered body, an aluminum oxide-silicon carbide conductive composite sintered body, and an aluminum nitride-tungsten conductive body. Conductive sintered bodies, aluminum nitride-tantalum conductive composite sintered bodies, or the like, or a high melting point metal such as tungsten, tantalum, or molybdenum.

絶縁材層14は、載置板11と支持板12との境界部、すなわち静電吸着用内部電極13以外の外周部領域を接合一体化するためのもので、載置板11及び支持板12を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。   The insulating material layer 14 is for joining and integrating the boundary portion between the mounting plate 11 and the support plate 12, that is, the outer peripheral region other than the internal electrode 13 for electrostatic attraction, and the mounting plate 11 and the support plate 12. The same composition as that of the material constituting the material or the main component is made of the same insulating material.

給電用端子15は、静電吸着用内部電極13に直流電圧を印加するために設けられた棒状のもので、この静電吸着用内部電極13を構成している導電性セラミックス、あるいは、タングステン、タンタル、モリブデン等の高融点金属により形成されている。
そして、後述する高温、高圧下でのホットプレス処理により、給電用端子15は支持板12に接合一体化され、さらに、載置板11と支持板12とは、静電吸着用内部電極13及び絶縁材層14により接合一体化されて静電チャック部2を構成している。
The power feeding terminal 15 is a rod-shaped one provided to apply a DC voltage to the electrostatic adsorption internal electrode 13. The conductive ceramic constituting the electrostatic adsorption internal electrode 13 or tungsten, It is made of a refractory metal such as tantalum or molybdenum.
The power supply terminal 15 is joined and integrated with the support plate 12 by hot pressing under high temperature and high pressure, which will be described later. Further, the mounting plate 11 and the support plate 12 include the electrostatic adsorption internal electrode 13 and The electrostatic chuck portion 2 is configured by being joined and integrated by the insulating material layer 14.

この静電チャック部2の厚みは0.5mm以上かつ3mm以下が好ましく、より好ましくは0.8mm以上かつ1.5mm以下である。
厚みが0.5mm未満では、静電チャック部として十分な強度が得られず、一方、厚みが3mmを超えると、静電チャック部の熱容量が増加し、昇温特性及び降温特性が低下するからである。
The thickness of the electrostatic chuck portion 2 is preferably 0.5 mm or more and 3 mm or less, more preferably 0.8 mm or more and 1.5 mm or less.
If the thickness is less than 0.5 mm, sufficient strength as the electrostatic chuck portion cannot be obtained. On the other hand, if the thickness exceeds 3 mm, the heat capacity of the electrostatic chuck portion increases, and the temperature rise characteristics and temperature drop characteristics are reduced. It is.

冷却ベース部3は、静電チャック部2を所定の温度範囲に冷却するためのもので、静電チャック部2より熱伝達率の高い金属により構成されている。この金属としては、例えば、アルミニウム、アルミニウム合金、銅、銅合金等が好適に用いられる。   The cooling base portion 3 is for cooling the electrostatic chuck portion 2 to a predetermined temperature range, and is made of a metal having a higher heat transfer rate than the electrostatic chuck portion 2. As this metal, for example, aluminum, aluminum alloy, copper, copper alloy and the like are preferably used.

ヒータ4は、静電チャック部2と冷却ベース部3との間に設けられたもので、中心部に形成された内側ヒータ21と、この内側ヒータ21の外側に形成された外側ヒータ22とにより構成され、これら内側ヒータ21及び外側ヒータ22は、支持板12に直接接触するか、もしくは、厚みが0.5mm以下の中間層を介して支持板12に接触し、固定されている。
これら内側ヒータ21及び外側ヒータ22各々には、耐熱性の導電性樹脂23を介して、絶縁碍子24により絶縁された取り出し電極25が接着・固定されている。
The heater 4 is provided between the electrostatic chuck portion 2 and the cooling base portion 3, and includes an inner heater 21 formed at the center portion and an outer heater 22 formed outside the inner heater 21. The inner heater 21 and the outer heater 22 are configured to be in direct contact with the support plate 12 or are in contact with and fixed to the support plate 12 through an intermediate layer having a thickness of 0.5 mm or less.
A take-out electrode 25 insulated by an insulator 24 is bonded and fixed to each of the inner heater 21 and the outer heater 22 via a heat-resistant conductive resin 23.

これら内側ヒータ21及び外側ヒータ22のパターン形状は、特に限定されるものではないが、吸着される板状試料が円形状の場合、同心円状のパターンが好ましい。
また、板状試料の面内の温度を細かくコントロールする場合には、内側ヒータ21及び外側ヒータ22それぞれのヒータゾーンを複数のゾーンに分割して制御しても良い。
The pattern shapes of the inner heater 21 and the outer heater 22 are not particularly limited. However, when the adsorbed plate-like sample is circular, a concentric pattern is preferable.
In addition, when the temperature in the surface of the plate-like sample is finely controlled, the heater zones of the inner heater 21 and the outer heater 22 may be divided into a plurality of zones.

ヒータ4の材質としては、特に限定しないが、蒸着、スパッタ、溶射、メタライズ、めっき等により形成した金属膜、または、金属箔やシート状導電材料、あるいは、ポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の耐熱性樹脂に、金属、炭素等の導電材料、もしくは炭化ケイ素(SiC)等の半導体材料を混合した複合樹脂等が挙げられる。
中でも、ポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の耐熱性樹脂に、金属、炭素等の導電材料、もしくは炭化ケイ素(SiC)等の半導体材料を混合した複合樹脂は、金属やセラミックスと比較して軟質な材料であり、ヒータ4を加熱した際にヒータ4と支持板12との間に発生する応力が小さいので好ましい。
The material of the heater 4 is not particularly limited, but a metal film formed by vapor deposition, sputtering, thermal spraying, metallization, plating, or the like, or a metal foil or a sheet-like conductive material, or a polyimide resin, a silicon resin, an epoxy resin, or the like. Examples thereof include composite resins obtained by mixing a heat-resistant resin with a conductive material such as metal and carbon, or a semiconductor material such as silicon carbide (SiC).
In particular, composite resins in which conductive materials such as metals, carbon, or semiconductor materials such as silicon carbide (SiC) are mixed with heat-resistant resins such as polyimide resins, silicon resins, and epoxy resins are softer than metals and ceramics. This is preferable because the stress generated between the heater 4 and the support plate 12 when the heater 4 is heated is small.

このヒータ4では、支持板12との間の熱伝達率が向上し、その結果、昇温特性が向上する。
なお、中間層を設ける場合、この中間層の材質としては、耐熱性を有し、かつ、内側ヒータ21及び外側ヒータ22の発熱に大きく影響しない範囲であることが好ましく、例えば、内側ヒータ21及び外側ヒータ22の体積固有抵抗の10倍以上の体積固有抵抗を有することが好ましい。
この中間層の材質としては、シリコン樹脂、ポリイミド樹脂、ガラス等の無機系接着剤等が挙げられる。
In the heater 4, the heat transfer coefficient with the support plate 12 is improved, and as a result, the temperature rise characteristics are improved.
When the intermediate layer is provided, the material of the intermediate layer is preferably in a range that has heat resistance and does not significantly affect the heat generation of the inner heater 21 and the outer heater 22. It is preferable that the volume resistivity of the outer heater 22 is 10 times or more the volume resistivity.
Examples of the material for this intermediate layer include inorganic adhesives such as silicon resin, polyimide resin, and glass.

ヒータ4の厚みは0.5mm以下が好ましい。
このヒータ4の厚みを0.5mm以下としたのは、静電チャック部2と冷却ベース部3との間におけるヒータ4がある部分と無い部分との熱伝達率の差異により生じる温度差を抑制することができるからである。
The thickness of the heater 4 is preferably 0.5 mm or less.
The thickness of the heater 4 is set to 0.5 mm or less to suppress a temperature difference caused by a difference in heat transfer coefficient between the electrostatic chuck portion 2 and the cooling base portion 3 between the portion with the heater 4 and the portion without the heater 4. Because it can be done.

接着剤層5は、ヒータ4を支持板12に接触した状態で固定するとともに、冷却ベース部3にも固定するもので、その材質としては、耐熱性及び絶縁性を有する材料であるシリコン樹脂、あるいは、シリコン樹脂に絶縁性の酸化アルミニウムまたは窒化アルミニウム等の熱伝導性フイラーを添加した複合樹脂等からなる接着剤が好ましい。
特に、シリコン樹脂を成分とする接着剤は、200℃までの耐熱性を有し、他の耐熱性接着剤であるエポキシやポリイミドを成分とする接着剤と比較して伸びが大きく、静電チャック部2と冷却ベース部3との間の応力を緩和することができ、しかも熱伝導率が高いため、好ましい。
また、接着剤層5の熱伝導率を制御することを目的として、酸化アルミニウムもしくは窒化アルミニウム等からなる絶縁性のフイラーを添加することも有効である。
The adhesive layer 5 fixes the heater 4 in contact with the support plate 12 and also fixes the heater 4 to the cooling base 3. The material is silicon resin, which is a material having heat resistance and insulation, Alternatively, an adhesive made of a composite resin obtained by adding a heat conductive filler such as insulating aluminum oxide or aluminum nitride to a silicon resin is preferable.
In particular, the adhesive containing silicon resin as a component has a heat resistance up to 200 ° C., and has a large elongation compared to other heat resistant adhesives such as epoxy and polyimide. The stress between the part 2 and the cooling base part 3 can be relaxed, and the thermal conductivity is high, which is preferable.
It is also effective to add an insulating filler made of aluminum oxide or aluminum nitride for the purpose of controlling the thermal conductivity of the adhesive layer 5.

この接着剤層5の熱伝達率は1000W/mK以上かつ100000W/mK以下が好ましく、より好ましくは5000W/mK以上かつ50000W/mK以下である。
ここで、熱伝達率が100000W/mKを超える場合、静電チャック部2から冷却ベース部3までの間の冷却効率が高くなり、静電チャック部2から絶縁性の接着剤層5を通って冷却ベース部3へ至る部分の熱伝達が大きくなる。そのために、プラズマからの入熱あるいはヒータ4による加熱により発生した熱量のほとんどが冷却ベース部3側へ流れてしまい、板状試料の温度上昇が鈍くなると共に、一定の温度制御を行うためにヒータ4を加熱するのに過度の電力の投入が必要となる。
Heat transfer coefficient of the adhesive layer 5 is preferably from 1000W / m 2 K or more and 100000W / m 2 K, more preferably not more than 5000 W / m 2 K or more and 50000W / m 2 K.
Here, when the heat transfer coefficient exceeds 100,000 W / m 2 K, the cooling efficiency between the electrostatic chuck portion 2 and the cooling base portion 3 is increased, and the insulating adhesive layer 5 is removed from the electrostatic chuck portion 2. The heat transfer in the portion that passes through to the cooling base portion 3 is increased. Therefore, most of the heat generated by the heat input from the plasma or the heating by the heater 4 flows to the cooling base portion 3 side, the temperature rise of the plate-like sample becomes slow, and the heater is used to perform constant temperature control. Excessive power input is required to heat 4.

一方、熱伝達率が1000W/mKより低い場合、静電チャック部2から冷却ベース部3までの間の冷却効率が悪く、静電チャック部2から絶縁性の接着剤層5を通って冷却ベース部3へ至る部分の熱伝達率が小さくなる。そのため、最初のプラズマ印加時には、板状試料の温度が所定の温度まで上昇するが、プラズマ印加後の板状試料の冷却効率が悪く、静電チャック部2及び板状試料の温度が下がり難いために、次の処理時には、板状試料の温度が最初の処理時より高い温度となっている。その結果、次の板状試料を処理するまでに時間を有し、スループットの低下を招くことになる。
また、プラズマ処理を複数回連続して行った場合、後段のプラズマ印加開始時の静電チャック部2の載置面の温度は前段のプラズマ印加時より高い状態となり、後段へ行くほど、プラズマ処理中の板状試料の温度が当初の設定温度より高くなるので好ましくない。
On the other hand, when the heat transfer coefficient is lower than 1000 W / m 2 K, the cooling efficiency between the electrostatic chuck part 2 and the cooling base part 3 is poor, and the electrostatic chuck part 2 passes through the insulating adhesive layer 5. The heat transfer coefficient at the part reaching the cooling base 3 is reduced. Therefore, when the plasma is first applied, the temperature of the plate-like sample rises to a predetermined temperature, but the cooling efficiency of the plate-like sample after the plasma application is poor, and the temperature of the electrostatic chuck portion 2 and the plate-like sample is difficult to decrease. In the next process, the temperature of the plate-like sample is higher than that in the first process. As a result, it takes time to process the next plate-like sample, leading to a decrease in throughput.
Further, when the plasma treatment is continuously performed a plurality of times, the temperature of the mounting surface of the electrostatic chuck unit 2 at the start of the subsequent stage of plasma application becomes higher than that at the time of the previous stage of plasma application. Since the temperature of the plate-shaped sample inside becomes higher than the initial set temperature, it is not preferable.

次に、この静電チャック1の製造方法について説明する。
まず、炭化ケイ素−酸化アルミニウム複合焼結体により板状の載置板11及び支持板12を作製する。この場合、炭化ケイ素粉末及び酸化アルミニウム粉末を含む混合粉末を所望の形状に成形し、その後、例えば1600℃〜2000℃の温度、非酸化性雰囲気、好ましくは不活性雰囲気下にて所定時間、焼成することにより、載置板11及び支持板12を得ることができる。
Next, a method for manufacturing the electrostatic chuck 1 will be described.
First, the plate-shaped mounting plate 11 and the support plate 12 are produced from a silicon carbide-aluminum oxide composite sintered body. In this case, a mixed powder containing silicon carbide powder and aluminum oxide powder is formed into a desired shape, and then fired at a temperature of 1600 ° C. to 2000 ° C. in a non-oxidizing atmosphere, preferably an inert atmosphere for a predetermined time. By doing so, the mounting plate 11 and the support plate 12 can be obtained.

次いで、支持板12に、給電用端子15を嵌め込み保持するための固定孔を複数個形成する。これらの固定孔の穿設方法としては、特に制限されるものでないが、例えば、ダイヤモンドドリルによる孔開け加工法、レーザ加工法、放電加工法、超音波加工法等を用いて穿設することができる。   Next, a plurality of fixing holes for fitting and holding the power supply terminals 15 are formed in the support plate 12. The method for drilling these fixed holes is not particularly limited, but for example, drilling using a diamond drill, laser machining, electric discharge machining, ultrasonic machining, or the like can be used. it can.

次いで、給電用端子15を、支持板12の固定孔に密着固定し得る大きさ、形状となるように作製する。この給電用端子15の作製方法としては、例えば、給電用端子15を導電性複合焼結体とした場合、導電性セラミックス粉末を、所望の形状に成形して加圧焼成する方法等が挙げられる。
このとき、給電用端子15に用いられる導電性セラミックス粉末としては、静電吸着用内部電極13と同様の材質からなる導電性セラミックス粉末が好ましい。
また、給電用端子15を金属とした場合、高融点金属を用い、研削法、粉末治金等の金属加工法等により形成する方法等が挙げられる。
この給電用端子15は、後の高温・高圧下でのホットプレス時に再焼成されて支持板12に密着固定され、嵌合一体化される。
Next, the power supply terminal 15 is fabricated so as to have a size and shape that can be tightly fixed to the fixing hole of the support plate 12. As a method for producing the power supply terminal 15, for example, when the power supply terminal 15 is made of a conductive composite sintered body, a method of forming a conductive ceramic powder into a desired shape and pressurizing and firing can be cited. .
At this time, the conductive ceramic powder used for the power feeding terminal 15 is preferably a conductive ceramic powder made of the same material as the internal electrode 13 for electrostatic adsorption.
In addition, when the power supply terminal 15 is made of metal, a method of using a refractory metal and a metal working method such as a grinding method or powder metallurgy, or the like can be used.
The power supply terminal 15 is refired at the time of subsequent hot pressing under high temperature and high pressure, is closely fixed to the support plate 12, and is integrally integrated.

次いで、給電用端子15が嵌め込まれた支持板12の表面の所定領域に、給電用端子15に接触するように、上記の導電性セラミックス粉末等の導電材料をエチルアルコール等の有機溶媒に分散した静電吸着用内部電極形成用塗布液を塗布し、乾燥して、静電吸着用内部電極形成層とする。
この塗布法としては、均一な厚さに塗布する必要があることから、スクリーン印刷法等を用いることが望ましい。また、他の方法としては、蒸着法あるいはスパッタリング法により上記の高融点金属の薄膜を成膜する方法、上記の導電性セラミックスあるいは高融点金属からなる薄板を配設して静電吸着用内部電極形成層とする方法等がある。
Next, the conductive material such as the conductive ceramic powder is dispersed in an organic solvent such as ethyl alcohol so as to contact the power supply terminal 15 in a predetermined region on the surface of the support plate 12 in which the power supply terminal 15 is fitted. A coating solution for forming an internal electrode for electrostatic adsorption is applied and dried to form an internal electrode forming layer for electrostatic adsorption.
As this coating method, it is desirable to use a screen printing method or the like because it is necessary to apply the film to a uniform thickness. Other methods include forming a thin film of the above-mentioned refractory metal by vapor deposition or sputtering, or arranging an electroconductive ceramic or refractory metal thin plate to provide an internal electrode for electrostatic adsorption. There is a method of forming a formation layer.

また、支持板12上の静電吸着用内部電極形成層を形成した領域以外の領域に、絶縁性、耐腐食性、耐プラズマ性を向上させるために、載置板11及び支持板12と同一組成または主成分が同一の粉末材料を含む絶縁材層を形成する。この絶縁材層は、例えば、載置板11及び支持板12と同一組成または主成分が同一の絶縁材料粉末をエチルアルコール等の有機溶媒に分散した塗布液を、上記所定領域にスクリーン印刷等で塗布し、乾燥することにより形成することができる。   Further, in order to improve insulation, corrosion resistance, and plasma resistance in a region other than the region where the internal electrode forming layer for electrostatic attraction is formed on the support plate 12, the same as the mounting plate 11 and the support plate 12. An insulating material layer including a powder material having the same composition or main component is formed. For example, the insulating material layer is formed by applying a coating liquid in which an insulating material powder having the same composition or main component as the mounting plate 11 and the support plate 12 is dispersed in an organic solvent such as ethyl alcohol by screen printing or the like in the predetermined area. It can be formed by applying and drying.

次いで、支持板12上の静電吸着用内部電極形成層及び絶縁材層の上に載置板11を重ね合わせ、次いで、これらを高温、高圧下にてホットプレスして一体化する。このホットプレスにおける雰囲気は、真空、あるいはAr、He、N等の不活性雰囲気が好ましい。また、圧力は5〜10MPaが好ましく、温度は1600℃〜1850℃が好ましい。 Next, the mounting plate 11 is overlaid on the electrostatic adsorption internal electrode forming layer and the insulating material layer on the support plate 12, and these are then integrated by hot pressing under high temperature and high pressure. The atmosphere in this hot press is preferably a vacuum or an inert atmosphere such as Ar, He, N 2 or the like. The pressure is preferably 5 to 10 MPa, and the temperature is preferably 1600 ° C to 1850 ° C.

このホットプレスにより、静電吸着用内部電極形成層は焼成されて導電性複合焼結体からなる静電吸着用内部電極13となる。同時に、支持板12及び載置板11は、絶縁材層14を介して接合一体化される。
また、給電用端子15は、高温、高圧下でのホットプレスで再焼成され、支持板12の固定孔に密着固定される。
そして、これら接合体の上下面、外周およびガス穴等を機械加工し、静電チャック部2とする。
By this hot pressing, the internal electrode forming layer for electrostatic adsorption is fired to become the internal electrode 13 for electrostatic adsorption made of a conductive composite sintered body. At the same time, the support plate 12 and the mounting plate 11 are joined and integrated through the insulating material layer 14.
In addition, the power supply terminal 15 is refired by hot pressing under high temperature and high pressure, and is closely fixed to the fixing hole of the support plate 12.
Then, the upper and lower surfaces, outer periphery, gas holes, and the like of these joined bodies are machined to form an electrostatic chuck portion 2.

次いで、静電チャック部2の吸着面の裏側、すなわち支持板12上に、蒸着、スパッタ、溶射、メタライズ、めっき等による金属膜、または、金属箔やシート状導電材料を貼着、あるいは、ポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の耐熱性樹脂に金属、炭素等の導電材料、もしくは炭化ケイ素(SiC)等の半導体材料を混合した複合樹脂等を塗布し、硬化することにより、ヒータ4を形成する。   Next, a metal film by vapor deposition, sputtering, thermal spraying, metallization, plating, or the like, or a metal foil or a sheet-like conductive material is attached to the back side of the adsorption surface of the electrostatic chuck portion 2, that is, the support plate 12, or polyimide Heater resin such as resin, silicon resin, epoxy resin, etc. is coated with a composite resin such as metal, carbon or other conductive material mixed with semiconductor material such as silicon carbide (SiC), and cured to form heater 4 To do.

次いで、取り出し電極25を耐熱性の導電性接着剤23により接着し、絶縁碍子24を接着材層5により接着する。さらに、静電チャック部2をヒータ4及びそれを覆う接着剤層5を介して冷却ベース部3上に設置する。
また、接着剤層5が熱硬化性樹脂の場合には、加熱処理により静電チャック部2と冷却ベース部3とを接着・固定する。
以上により、本実施形態の静電チャック1を作製することができる。
Next, the take-out electrode 25 is bonded with the heat-resistant conductive adhesive 23, and the insulator 24 is bonded with the adhesive layer 5. Furthermore, the electrostatic chuck part 2 is installed on the cooling base part 3 via the heater 4 and the adhesive layer 5 covering it.
When the adhesive layer 5 is a thermosetting resin, the electrostatic chuck portion 2 and the cooling base portion 3 are bonded and fixed by heat treatment.
As described above, the electrostatic chuck 1 of this embodiment can be manufactured.

なお、本実施形態においては、双極型の静電チャックを例に取り説明したが、本発明の静電チャックは、双極型に限定させることなく、単極型の静電チャックに対しても適用することができる。   In this embodiment, the bipolar electrostatic chuck is described as an example. However, the electrostatic chuck of the present invention is not limited to the bipolar type, and can be applied to a single type electrostatic chuck. can do.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例]
「給電用端子の作製」
酸化アルミニウム粉末(平均粒子径0.2μm)40重量部、炭化タンタル粉末(平均粒子径1μm)60重量部、2−プロパノール150重量部を混合し、さらに遊星型ボールミルを用いて均一に分散させてスラリーを得た。このスラリーから、吸引濾過により2−プロパノールを除去し、その後乾燥し、酸化アルミニウム−炭化タンタル複合粉末を得た。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.
[Example]
"Production of power supply terminals"
40 parts by weight of aluminum oxide powder (average particle size 0.2 μm), 60 parts by weight of tantalum carbide powder (average particle size 1 μm), 150 parts by weight of 2-propanol are mixed, and further dispersed uniformly using a planetary ball mill. A slurry was obtained. From this slurry, 2-propanol was removed by suction filtration and then dried to obtain an aluminum oxide-tantalum carbide composite powder.

次いで、この酸化アルミニウム−炭化タンタル複合粉末を成型し、その後、加圧焼成し、直径2.5mm、長さ10mmの棒状の酸化アルミニウム−炭化タンタル導電性複合焼結体を得、これを給電用端子15とした。なお、加圧焼成は、ホットプレスを用いて温度1700℃、圧力20MPaの条件にて行った。
得られた酸化アルミニウム−炭化タンタル導電性複合焼結体の相対密度は98%以上であった。
Next, this aluminum oxide-tantalum carbide composite powder is molded and then pressure fired to obtain a rod-shaped aluminum oxide-tantalum carbide conductive composite sintered body having a diameter of 2.5 mm and a length of 10 mm, which is used for power supply Terminal 15 was designated. The pressure firing was performed using a hot press under conditions of a temperature of 1700 ° C. and a pressure of 20 MPa.
The relative density of the obtained aluminum oxide-tantalum carbide conductive composite sintered body was 98% or more.

「支持板の作製」
プラズマCVD法により気相合成された高純度炭化ケイ素微粉末5重量部と、酸化アルミニウム粉末(平均粒子径0.2μm)95重量部とからなる混合粉末を、成型、焼成し、直径320mm、厚さ10mmの円板状の炭化ケイ素−酸化アルミニウム複合焼結体を得た。焼成条件は、給電用端子15と同様とした。次いで、この炭化ケイ素−酸化アルミニウム複合焼結体上で板状試料と接することができる範囲内に、給電用端子15を組み込み固定するための固定孔を、ダイヤモンドドリルにより孔あけ加工することにより穿設し、炭化ケイ素−酸化アルミニウム複合焼結体からなる支持板12を得た。
"Production of support plate"
A mixed powder composed of 5 parts by weight of high-purity silicon carbide fine powder synthesized by a plasma CVD method and 95 parts by weight of aluminum oxide powder (average particle size 0.2 μm) is molded and fired to have a diameter of 320 mm and a thickness of A disc-shaped silicon carbide-aluminum oxide composite sintered body having a thickness of 10 mm was obtained. The firing conditions were the same as those for the power supply terminal 15. Next, a fixing hole for incorporating and fixing the power supply terminal 15 is drilled by a diamond drill within a range in which the silicon carbide-aluminum oxide composite sintered body can contact the plate-like sample. And a support plate 12 made of a silicon carbide-aluminum oxide composite sintered body was obtained.

「載置板の作製」
上記の支持板3の作製に準じて、直径320mm、厚み5mmの円板状の炭化ケイ素−酸化アルミニウム複合焼結体からなる載置板11を得た。
"Production of mounting plate"
A mounting plate 11 made of a disk-shaped silicon carbide-aluminum oxide composite sintered body having a diameter of 320 mm and a thickness of 5 mm was obtained in accordance with the production of the support plate 3 described above.

「一体化」
支持板12に穿設された固定孔に給電用端子15を嵌め込み固定した。次いで、この支持板12上の静電吸着用内部電極を形成すべき領域に、酸化アルミニウム粉末40重量%及び炭化タンタル粉未60重量%からなる混合粉末をエタノールに分散した塗布液を、スクリーン印刷法にて塗布し、その後乾燥し、静電吸着用内部電極形成層を形成した。
"Integration"
The power supply terminal 15 was fitted and fixed in a fixing hole formed in the support plate 12. Next, a coating liquid in which a mixed powder composed of 40% by weight of aluminum oxide powder and 60% by weight of tantalum carbide powder is dispersed in ethanol in a region where the internal electrode for electrostatic adsorption on the support plate 12 is to be formed is screen-printed. It was applied by the method, and then dried to form an internal electrode forming layer for electrostatic adsorption.

次いで、支持板12上の静電吸着用内部電極を形成すべき領域以外の領域に、酸化アルミニウム粉末(平均粒子径0.2μm)及びエタノールを含む塗布液を、スクリーン印刷法にて塗布し、その後乾燥して、絶縁材層形成層を形成した。
次いで、この支持板12の静電吸着用内部電極形成層及び絶縁材層形成層上に載置板11を重ね合わせ、次いで、これらをホットプレスにて加圧焼成して一体化した。このときのホットプレスの条件は、温度1750℃、圧力7.5MPaであった。
次いで、この一体化された焼結体に機械加工を施し、外径298mm、支持板12の厚み0.5mm、載置板11の厚み1.0mmの静電チャック部2を得た。
Next, a coating liquid containing aluminum oxide powder (average particle diameter 0.2 μm) and ethanol is applied to a region other than the region where the electrostatic adsorption internal electrode is to be formed on the support plate 12 by screen printing, Then, it was dried to form an insulating material layer forming layer.
Next, the mounting plate 11 was superposed on the internal electrode forming layer for electrostatic attraction and the insulating material layer forming layer of the support plate 12, and then these were integrated by pressing and baking with a hot press. The hot press conditions at this time were a temperature of 1750 ° C. and a pressure of 7.5 MPa.
Next, the integrated sintered body was machined to obtain an electrostatic chuck portion 2 having an outer diameter of 298 mm, a thickness of the support plate 12 of 0.5 mm, and a thickness of the mounting plate 11 of 1.0 mm.

「ヒータの形成」
この静電チャック部2の支持板12側の面に、Ag粒子をフイラーとして混入させた熱硬化性ポリイミドをスクリーン印刷法により塗布し、その後、大気中、300℃にて加熱硬化し、所定のパターンの内側ヒータ21及び外側ヒータ22を形成した。
ここでは、直径240mmより内側の円形部分を内側ヒータ21とし、直径240mmより外側の環状部分を外側ヒータ22とした。また、このヒータ4の厚みは30μmであった。
"Formation of heater"
A thermosetting polyimide mixed with Ag particles as a filler is applied to the surface of the electrostatic chuck portion 2 on the side of the support plate 12 by a screen printing method, and then heated and cured at 300 ° C. in the atmosphere. A pattern inner heater 21 and outer heater 22 were formed.
Here, a circular portion inside 240 mm in diameter is the inner heater 21, and an annular portion outside the diameter 240 mm is the outer heater 22. The thickness of the heater 4 was 30 μm.

「取り出し電極の接着」
静電吸着用内部電極13及び給電用端子15に外部から電圧を印加するための金属性の取り出し電極25を、熱硬化型の導電性接着剤を用いて接着・固定した。その後、絶縁性の酸化アルミニウムからなる絶縁碍子24を絶縁性の接着材層5により接着・固定した。
"Adhesion of extraction electrode"
A metallic extraction electrode 25 for applying a voltage from the outside to the electrostatic adsorption internal electrode 13 and the power feeding terminal 15 was bonded and fixed using a thermosetting conductive adhesive. Thereafter, an insulator 24 made of insulating aluminum oxide was bonded and fixed by the insulating adhesive layer 5.

「取り出し電極の接着」
この静電チャック部2の内側ヒータ21及び外側ヒータ22を被覆するように、液状シリコン樹脂に熱伝導性フイラーとして窒化アルミニウム(AlN)粉末を添加した接着剤を塗布し、さらに、冷却ベース部3の接着側にも同接着剤を塗布した。次いで、これらを真空脱泡の後、静電チャック部2及び冷却ベース部3の接着面同士を合わせ、荷重を加えた状態で加熱硬化し、静電チャック部2をヒータ4及びそれを覆う接着剤層5を介して冷却ベース部3に接着した。この接着剤の熱伝導率は0.8W/mK、厚みは100μm(すなわち、熱伝達率は8000W/mK)であった。
その後、ブラスト加工により、先端の直径が0.2mm、高さが40μm、板状試料との接触面積が1%の突起部を有する載置面11aを得、実施例の静電チャック1を作製した。
"Adhesion of extraction electrode"
In order to cover the inner heater 21 and the outer heater 22 of the electrostatic chuck portion 2, an adhesive obtained by adding aluminum nitride (AlN) powder as a heat conductive filler is applied to a liquid silicon resin, and the cooling base portion 3 is further coated. The same adhesive was also applied to the adhesive side. Next, after vacuum defoaming, the adhesive surfaces of the electrostatic chuck portion 2 and the cooling base portion 3 are aligned and heat-cured in a state where a load is applied, and the electrostatic chuck portion 2 is bonded to cover the heater 4 and the same. It was bonded to the cooling base portion 3 through the agent layer 5. This adhesive had a thermal conductivity of 0.8 W / mK and a thickness of 100 μm (that is, a heat transfer coefficient of 8000 W / m 2 K).
Thereafter, a mounting surface 11a having a protrusion having a tip diameter of 0.2 mm, a height of 40 μm, and a contact area of 1% with a plate-like sample is obtained by blasting, and the electrostatic chuck 1 of the example is manufactured. did.

「評価」
板状試料として温度センサを埋め込んだ12インチのシリコンウェハを用い、このシリコンウェハを上記の静電チャック1に静電吸着させてプラズマ印加し、このときのシリコンウェハの表面の応答性及び面内温度分布を測定した。
ここでは、ヒータ4の加熱パターンを下記のA、Bの2点とし、冷却ベース部3の冷媒の温度を20℃、プラズマの印加電力を3000W、印加時間を60秒とし、シリコンウェハと静電チャック1の吸着面との間に30Torrのヘリウムガスを導入した状態で測定を行った。
"Evaluation"
A 12-inch silicon wafer embedded with a temperature sensor is used as a plate-like sample, and this silicon wafer is electrostatically attracted to the electrostatic chuck 1 and plasma is applied. At this time, the responsiveness and in-plane of the surface of the silicon wafer are obtained. The temperature distribution was measured.
Here, the heating pattern of the heater 4 is the following two points A and B, the coolant temperature of the cooling base 3 is 20 ° C., the plasma application power is 3000 W, the application time is 60 seconds, Measurement was performed in a state where 30 Torr helium gas was introduced between the chuck 1 and the suction surface.

加熱パターンA:プラズマ印加と同時に、内側ヒータに1000W相当の電力を印加した。
加熱パターンB:プラズマ印加10秒前に、内側ヒータに1500W相当の電力を、外側ヒータに500W相当の電力を、それぞれ印加し、次いで、プラズマ印加10秒後に、内側ヒータに1500W相当の電力を印加すると共に、外側ヒータの印加電力を0Wとした。
Heating pattern A: At the same time as plasma application, power equivalent to 1000 W was applied to the inner heater.
Heating pattern B: Electric power equivalent to 1500 W is applied to the inner heater 10 seconds before plasma application, and electric power equivalent to 500 W is applied to the outer heater, and then electric power equivalent to 1500 W is applied to the inner heater 10 seconds after plasma application In addition, the applied power of the outer heater was set to 0W.

応答性は、昇温時においては、板状試料の温度がプラズマ印加60秒後の温度との差が3℃以内になるまでの時間を測定し、降温時においては、板状試料の温度が初期状態の温度(プラズマ印加前の温度)から3℃以内に冷却されるまでの時間を測定した。
面内温度分布は、プラズマ印加5秒後、10秒後、30秒後、60秒後それぞれにおける板状試料の面内の温度差(最高温度と最低温度との差)を測定した。
応答性及び面内温度分布の測定結果を表1に示す。また、加熱パターンAにおける応答性を図2に示す。
なお、この表1では、実施例の静電チャックに加熱パターンC(ヒータに電圧を印加しない状態でプラズマを60秒印加)を適用した場合を、参考例1として挙げてある。
The responsiveness is measured by measuring the time until the difference between the temperature of the plate-like sample and the temperature after 60 seconds of plasma application is within 3 ° C. when the temperature is raised, and when the temperature is lowered, the temperature of the plate-like sample is The time from the initial state temperature (temperature before plasma application) to cooling within 3 ° C. was measured.
The in-plane temperature distribution was determined by measuring the in-plane temperature difference (difference between the maximum temperature and the minimum temperature) of the plate-like sample at 5 seconds, 10 seconds, 30 seconds, and 60 seconds after plasma application.
Table 1 shows the measurement results of responsiveness and in-plane temperature distribution. Moreover, the responsiveness in the heating pattern A is shown in FIG.
In Table 1, a case where the heating pattern C (plasma is applied for 60 seconds in a state where no voltage is applied to the heater) is applied to the electrostatic chuck of the example is given as Reference Example 1.

[比較例]
実施例に準じて静電チャックを得た。ただし、ヒータは静電チャックに内蔵した構造とし、ヒータを含めた静電チャック全体の厚みを4mmとした。
次いで、実施例に準じて、シリコンウェハの表面の応答性及び面内温度分布を測定した。このときの印加電圧を±2000Vとした。
応答性及び面内温度分布の測定結果を表1に示す。また、Aの加熱パターンにおける応答性を図2に示す。
なお、この表1では、比較例の静電チャックに加熱パターンC(ヒータに電圧を印加しない状態でプラズマを60秒印加)を適用した場合を、参考例2として挙げてある。
[Comparative example]
An electrostatic chuck was obtained according to the example. However, the heater was built in the electrostatic chuck, and the thickness of the entire electrostatic chuck including the heater was 4 mm.
Next, according to the example, the responsiveness and in-plane temperature distribution of the surface of the silicon wafer were measured. The applied voltage at this time was ± 2000V.
Table 1 shows the measurement results of responsiveness and in-plane temperature distribution. Moreover, the responsiveness in the heating pattern of A is shown in FIG.
In Table 1, the case where the heating pattern C (plasma is applied for 60 seconds without applying voltage to the heater) is applied to the electrostatic chuck of the comparative example is given as Reference Example 2.

Figure 0005018244
Figure 0005018244

表1及び図2によれば、実施例は、面内温度分布については比較例と差がないものの、応答性については、昇温時、降温時共に比較例と比べて2/3程度に短縮されており、応答性に優れていることが分かった。   According to Table 1 and FIG. 2, although the example has no difference in the in-plane temperature distribution from the comparative example, the responsiveness is shortened to about 2/3 compared with the comparative example at the time of temperature rise and temperature drop. It was found that it was excellent in responsiveness.

本発明の静電チャックは、静電チャック部と冷却ベース部との間に加熱部材を設け、この加熱部材を、静電チャック部に直接または厚みが0.5mm以下の中間層を介して接触させるとともに、冷却ベース部に絶縁性の接着剤層により固定したことにより、プラズマ印加に伴う板状試料の経時的な温度変化の調整や、広い温度範囲での温度調整を可能にしたものであるから、その有用性は非常に大きいものである。   In the electrostatic chuck of the present invention, a heating member is provided between the electrostatic chuck portion and the cooling base portion, and the heating member is brought into contact with the electrostatic chuck portion directly or through an intermediate layer having a thickness of 0.5 mm or less. In addition, by fixing to the cooling base portion with an insulating adhesive layer, it is possible to adjust the temperature change over time of the plate-like sample accompanying plasma application and to adjust the temperature in a wide temperature range. Therefore, its usefulness is very large.

本発明の一実施形態の双極型の静電チャックを示す概略断面図である。It is a schematic sectional drawing which shows the bipolar type electrostatic chuck of one Embodiment of this invention. 実施例及び比較例の加熱パターンAにおける応答性を示す図である。It is a figure which shows the responsiveness in the heating pattern A of an Example and a comparative example.

符号の説明Explanation of symbols

1 静電チャック
2 静電チャック部
3 冷却ベース部
4 ヒータ
5 接着剤層
11 載置板
11a 載置面
12 支持板
13 静電吸着用内部電極
14 絶縁材層
15 給電用端子
21 内側ヒータ
22 外側ヒータ
23 導電性樹脂
24 絶縁碍子
25 取り出し電極
W 板状試料
DESCRIPTION OF SYMBOLS 1 Electrostatic chuck 2 Electrostatic chuck part 3 Cooling base part 4 Heater 5 Adhesive layer 11 Mounting plate 11a Mounting surface 12 Support plate 13 Electrostatic adsorption internal electrode 14 Insulating material layer 15 Power supply terminal 21 Inner heater 22 Outside Heater 23 Conductive resin 24 Insulator 25 Extraction electrode W Plate sample

Claims (3)

板状試料を載置する載置面を有する絶縁性のセラミックス焼結体からなる載置板と、この載置板と一体化されて該載置板を支持する絶縁性のセラミックス焼結体からなる支持板と、これら載置板と支持板との間に設けられ導電性セラミックスからなる静電吸着用内部電極とを備え、厚みが0.5mm以上かつ3mm以下の静電チャック部と、この静電チャック部に固定された冷却ベース部とを備えてなる静電チャックにおいて、
前記静電チャック部と前記冷却ベース部との間に、中心部に形成された内側加熱部材と該内側加熱部材の外側に形成された外側加熱部材とにより構成される加熱部材を設け、
この加熱部材を、前記静電チャック部に、厚みが0.5mm以下でありかつ前記内側加熱部材及び前記外側加熱部材の体積固有抵抗の10倍以上の体積固有抵抗を有するシリコン樹脂またはポリイミド樹脂からなる中間層を介して接触させるとともに、前記冷却ベース部に、シリコン樹脂に絶縁性及び熱伝導性のフィラーを添加した複合樹脂からなりかつ熱伝達率が5000W/m 以上かつ50000W/m 以下の接着剤層により固定してなることを特徴とする静電チャック。
A mounting plate made of insulating ceramics sintered body having a mounting surface for mounting a plate-like sample, an insulating ceramics sintered body for supporting the placing plate is integral with the mounting plate a support plate made of, and provided a internal electrode for electrostatic adsorption formed of a conductive ceramic, a thickness of 0.5mm or more and 3mm or less of the electrostatic chuck portion between these mounting plate and the support plate, this In an electrostatic chuck comprising a cooling base portion fixed to the electrostatic chuck portion,
Provided between the electrostatic chuck part and the cooling base part is a heating member constituted by an inner heating member formed in the center and an outer heating member formed outside the inner heating member,
This heating member is made of silicon resin or polyimide resin having a volume specific resistance of not less than 0.5 mm and a volume specific resistance of 10 times or more of the volume specific resistance of the inner heating member and the outer heating member. The cooling base portion is made of a composite resin obtained by adding an insulating and thermally conductive filler to the cooling base portion, and has a heat transfer coefficient of 5000 W / m 2 or more and 50000 W / m 2 or less. An electrostatic chuck characterized by being fixed by an adhesive layer .
前記載置面に突起部が複数個形成され、かつ、これらの突起部が形成された載置面と前記板状試料との間の接触面積は、静電吸着面の面積の0.01%以上かつ15%以下であることを特徴とする請求項1記載の静電チャック。 A plurality of protrusions are formed on the mounting surface, and the contact area between the mounting surface on which the protrusions are formed and the plate-like sample is 0.01% of the area of the electrostatic adsorption surface The electrostatic chuck according to claim 1 , wherein the electrostatic chuck is at least 15%. 前記加熱部材の厚みは0.5mm以下であることを特徴とする請求項1または2記載の静電チャック。 The electrostatic chuck according to claim 1, wherein the heating member has a thickness of 0.5 mm or less.
JP2007143175A 2007-05-30 2007-05-30 Electrostatic chuck Active JP5018244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143175A JP5018244B2 (en) 2007-05-30 2007-05-30 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143175A JP5018244B2 (en) 2007-05-30 2007-05-30 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2008300491A JP2008300491A (en) 2008-12-11
JP5018244B2 true JP5018244B2 (en) 2012-09-05

Family

ID=40173743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143175A Active JP5018244B2 (en) 2007-05-30 2007-05-30 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP5018244B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236448B2 (en) * 2008-12-16 2013-07-17 アドヴァンスド・ディスプレイ・プロセス・エンジニアリング・コーポレーション・リミテッド Electrostatic chuck and substrate bonding apparatus including the same
JP5097152B2 (en) * 2009-03-02 2012-12-12 和夫 田▲邉▼ Wafer peeling method
JP5496630B2 (en) * 2009-12-10 2014-05-21 東京エレクトロン株式会社 Electrostatic chuck device
JP5846186B2 (en) * 2010-01-29 2016-01-20 住友大阪セメント株式会社 Electrostatic chuck device and method of manufacturing electrostatic chuck device
JP5423632B2 (en) * 2010-01-29 2014-02-19 住友大阪セメント株式会社 Electrostatic chuck device
JP5504924B2 (en) * 2010-01-29 2014-05-28 住友大阪セメント株式会社 Electrostatic chuck device
KR101636764B1 (en) * 2010-05-31 2016-07-06 주식회사 미코 Electrostatic chuck and apparatus for processing a substrate including the same
JP5618638B2 (en) * 2010-06-07 2014-11-05 株式会社日立ハイテクノロジーズ Plasma processing equipment or sample mounting table
KR101712538B1 (en) 2011-03-23 2017-03-06 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck device
US9269600B2 (en) 2011-04-27 2016-02-23 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
JP5957812B2 (en) 2011-06-21 2016-07-27 住友大阪セメント株式会社 Electrostatic chuck device
JP5879879B2 (en) * 2011-09-29 2016-03-08 住友大阪セメント株式会社 Electrostatic chuck device
JP5522220B2 (en) * 2012-09-12 2014-06-18 住友大阪セメント株式会社 Electrostatic chuck device
KR20180110213A (en) * 2013-08-06 2018-10-08 어플라이드 머티어리얼스, 인코포레이티드 Locally heated multi-zone substrate support
JP6244804B2 (en) 2013-10-15 2017-12-13 住友大阪セメント株式会社 Electrostatic chuck device
JP6030045B2 (en) * 2013-12-03 2016-11-24 日本碍子株式会社 Ceramic heater and manufacturing method thereof
JP6215104B2 (en) * 2014-03-20 2017-10-18 新光電気工業株式会社 Temperature control device
JP6287695B2 (en) * 2014-08-29 2018-03-07 住友大阪セメント株式会社 Electrostatic chuck device and manufacturing method thereof
KR102233925B1 (en) 2014-11-20 2021-03-30 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck device
JP6380177B2 (en) * 2015-03-12 2018-08-29 住友大阪セメント株式会社 Electrostatic chuck device
JP6451536B2 (en) * 2015-07-21 2019-01-16 住友大阪セメント株式会社 Electrostatic chuck device and method of manufacturing electrostatic chuck device
WO2017051748A1 (en) 2015-09-25 2017-03-30 住友大阪セメント株式会社 Electrostatic chuck device
JP6597437B2 (en) * 2016-03-24 2019-10-30 住友大阪セメント株式会社 Electrostatic chuck device
US10811296B2 (en) 2017-09-20 2020-10-20 Applied Materials, Inc. Substrate support with dual embedded electrodes
US10510575B2 (en) 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
JP6489195B1 (en) 2017-11-15 2019-03-27 住友大阪セメント株式会社 Electrostatic chuck device
CN111081517B (en) * 2018-10-19 2023-03-03 长鑫存储技术有限公司 Anti-corrosion method of electrostatic chuck
US11302536B2 (en) 2019-10-18 2022-04-12 Applied Materials, Inc. Deflectable platens and associated methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172057A (en) * 1995-12-20 1997-06-30 Souzou Kagaku:Kk Electrostatic chuck
JP3985003B2 (en) * 1996-03-12 2007-10-03 キヤノン株式会社 X-ray projection exposure apparatus and device manufacturing method
JPH1050811A (en) * 1996-03-16 1998-02-20 Miyata R Andei:Kk Temperature adjustment mechanism for semiconductor substrate
JP2003258065A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer-mounting stage
JP2004031594A (en) * 2002-06-25 2004-01-29 Kyocera Corp Electrostatic chuck and its manufacturing method
US6905984B2 (en) * 2003-10-10 2005-06-14 Axcelis Technologies, Inc. MEMS based contact conductivity electrostatic chuck
JP4761723B2 (en) * 2004-04-12 2011-08-31 日本碍子株式会社 Substrate heating device
JP2006332204A (en) * 2005-05-24 2006-12-07 Toto Ltd Electrostatic chuck
JP2007088411A (en) * 2005-06-28 2007-04-05 Hitachi High-Technologies Corp Electrostatic attraction device, wafer processing apparatus and plasma processing method
JP2007067036A (en) * 2005-08-30 2007-03-15 Hitachi High-Technologies Corp Vacuum processing device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11776789B2 (en) 2020-07-31 2023-10-03 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Also Published As

Publication number Publication date
JP2008300491A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5018244B2 (en) Electrostatic chuck
JP5423632B2 (en) Electrostatic chuck device
JP6064908B2 (en) Electrostatic chuck device
JP6052169B2 (en) Electrostatic chuck device
JP5163349B2 (en) Electrostatic chuck device
JP5117146B2 (en) Heating device
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
JP6176771B2 (en) Electrostatic chuck device
JP5982887B2 (en) Electrostatic chuck device
JP5846186B2 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
JP5522220B2 (en) Electrostatic chuck device
WO2015056697A1 (en) Electrostatic chuck device
JP5504924B2 (en) Electrostatic chuck device
JP7110828B2 (en) Electrostatic chuck device
JP4275682B2 (en) Electrostatic chuck
US20050028739A1 (en) Semiconductor Manufacturing Apparatus
JP2005085657A (en) Ceramic heater
KR100918714B1 (en) Susceptor with built-in electrode and manufacturing method therefor
JP2004146568A (en) Ceramic heater for semiconductor manufacturing device
JP2002184851A (en) Electrostatic chuck stage and its manufacturing method
JPH08330402A (en) Semiconductor wafer holding device
JP2002025913A (en) Susceptor for semiconductor manufacturing device and semiconductor manufacturing device using the same
JP2017174987A (en) Electrostatic chuck device
JP2007088498A (en) Ceramic heater for semiconductor manufacturing apparatus
JP2017157607A (en) Electrostatic chuck device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3