JP5017636B2 - Heat resistant composite grease - Google Patents

Heat resistant composite grease Download PDF

Info

Publication number
JP5017636B2
JP5017636B2 JP2005057756A JP2005057756A JP5017636B2 JP 5017636 B2 JP5017636 B2 JP 5017636B2 JP 2005057756 A JP2005057756 A JP 2005057756A JP 2005057756 A JP2005057756 A JP 2005057756A JP 5017636 B2 JP5017636 B2 JP 5017636B2
Authority
JP
Japan
Prior art keywords
grease
sample
vgcf
volume
molybdenum disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005057756A
Other languages
Japanese (ja)
Other versions
JP2006241277A (en
Inventor
祐嗣 榎本
守信 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2005057756A priority Critical patent/JP5017636B2/en
Publication of JP2006241277A publication Critical patent/JP2006241277A/en
Application granted granted Critical
Publication of JP5017636B2 publication Critical patent/JP5017636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、摺動部材に使用されるグリースに関する。   The present invention relates to a grease used for a sliding member.

半固体潤滑剤であるグリースは、少量で長期間補給せずに潤滑できる、シール性があり外部からの異物の混入による潤滑不良を防止できるなど、他種潤滑剤に比べて優れた特徴を有する。このため、グリースは、メンテナンス・フリーが要求される場所で多用されている。   Grease, which is a semi-solid lubricant, has excellent characteristics compared to other types of lubricants, such as being able to lubricate in a small amount without being replenished for a long period of time, and having a sealing property to prevent lubrication failure due to the entry of foreign matter from the outside. . For this reason, grease is frequently used in places where maintenance-free is required.

しかし、近年、グリースが多用されている機械システム(例えば自動車の電装部品、OA機器など)では小型高性能化が進み、すべり軸受などの摺動部品の摩擦面がより高面圧化および高速化している。面圧および速度が上昇すると、摩擦熱が大きくなり、グリースが軟化あるいは分解劣化し、その結果、グリースの潤滑性能が低下するという問題が生じる。したがって、グリースの上記特徴を活かしながら、その放熱性を改善する必要がある。放熱性を改善する手法としては、例えば、熱伝導性に優れる炭素繊維をグリースに混合する方法が知られている(例えば、特許文献1参照)。
特開2002−332490号公報(特許請求の範囲等)
However, in recent years, mechanical systems that use a lot of grease (for example, automotive electrical parts, OA equipment, etc.) have become smaller and higher performance, and the frictional surfaces of sliding parts such as slide bearings have become higher in surface pressure and higher in speed. ing. When the surface pressure and speed increase, the frictional heat increases and the grease softens or decomposes, resulting in a problem that the lubrication performance of the grease decreases. Therefore, it is necessary to improve the heat dissipation while utilizing the above characteristics of grease. As a method for improving heat dissipation, for example, a method of mixing carbon fiber excellent in thermal conductivity with grease is known (see, for example, Patent Document 1).
JP 2002-332490 A (Claims etc.)

しかし、上述の従来技術には、次のような問題がある。炭素繊維の持つ優れた熱伝導性を利用すべく、炭素繊維をグリースに混合すると、確かにグリースの熱伝導性が高くなり放熱性が良くなる。しかし、炭素繊維を混合したグリースは、潤滑性が悪く、グリースの優れた特徴を活かすことができなくなるという問題が生じる。   However, the above prior art has the following problems. If carbon fiber is mixed with grease in order to use the excellent thermal conductivity of carbon fiber, the thermal conductivity of the grease will surely increase and the heat dissipation will be improved. However, grease mixed with carbon fibers has a problem of poor lubricity, making it impossible to take advantage of the excellent characteristics of grease.

本発明は、上記の問題に鑑みてなされたものであり、熱伝導性と潤滑性を兼ね備えた耐熱複合グリースを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat-resistant composite grease having both thermal conductivity and lubricity.

上記目的を達成するために、本発明は、炭素繊維と二硫化モリブデンとを混合してなる耐熱複合グリースとするようにしている。このため、熱伝導性と潤滑性の両機能に優れたグリースとすることができる。グリースは、ウレア系グリース、ファイバグリース、グラファイトグリース等を使用できる。中でも、自動車の電装部品、OA機器等に多く用いられるウレア系グリースが好ましい。
さらに、本発明においては、炭素繊維と二硫化モリブデンとは、体積換算で実質的に同量含まれる耐熱複合グリースとしている。このため、熱伝導性と潤滑性のバランスにより優れたグリースとすることができる。本来、炭素繊維と二硫化モリブデンの混合量は必ずしも同一でなくても良く、熱伝導性と潤滑性のバランスを見て、用途に応じて各混合比を決定するのが望ましい。ただし、多くの用途においては、できるだけ熱伝導性が高く、かつ潤滑性もできるだけ良好であることが望まれるので、各混合比を実質的に同量とするのが望ましい。ここで、「実質的に同量」とは、両混合比がプラスマイナス2体積%以内であることを意味するものとする。
また、本発明における炭素繊維は、その繊維径が1ミクロン未満のカーボンナノチューブであるVGCF(登録商標、以下、単に「VGCF」と略す。)を用いた耐熱複合グリースとしている。炭素繊維として、繊維径の細いカーボンナノチューブであるVGCFを採用することによって、潤滑性を低下せずに、熱伝導性を向上させることができる。さらに、少量の混合により熱伝導性の大幅な向上を図ることができる。ここで、カーボンナノチューブは、グラフェンという炭素六角網面がナノレベルの直径を持つ円筒に丸めた中空状のチューブであり、一枚のグラフェンからなる単層カーボンナノチューブ(Single-Walled Carbon Nano Tube: SWCNT)と、複数枚のグラフェンを丸めた径の異なる筒を入れ子状の構造とした多層カーボンナノチューブ(Multi-Walled Carbon Nano Tube: MWCNT)に大別される。本発明では、SWCNTおよびMWCNTのいずれを使用しても良い。さらには、両方の混合物を使用しても良い。また、カーボンナノチューブは、アーク放電法、レーザーアブレーション法、プラズマ合成法、化学気相析出(Chemical Vapor Deposition: CVD)法等のいずれの製法により製造されたものでも採用可能である。ただし、量産に有利なCVD法により製造されたカーボンナノチューブの方が好ましい。
In order to achieve the above object, the present invention provides a heat-resistant composite grease obtained by mixing carbon fibers and molybdenum disulfide. For this reason, it can be set as the grease excellent in both the function of heat conductivity and lubricity. As the grease, urea grease, fiber grease, graphite grease, or the like can be used. Among these, urea-based greases that are frequently used for automobile electrical parts, OA equipment, and the like are preferable.
Furthermore, in the present invention, the carbon fiber and molybdenum disulfide are heat-resistant composite grease containing substantially the same amount in terms of volume. For this reason, it can be set as the outstanding grease by the balance of heat conductivity and lubricity. Originally, the mixing amount of carbon fiber and molybdenum disulfide does not necessarily have to be the same, and it is desirable to determine the mixing ratio according to the application in view of the balance between thermal conductivity and lubricity. However, in many applications, it is desired that the thermal conductivity is as high as possible and the lubricity is as good as possible. Therefore, it is desirable that the mixing ratios be substantially the same. Here, “substantially the same amount” means that both mixing ratios are within ± 2% by volume.
The carbon fiber in the present invention is a heat-resistant composite grease using VGCF (registered trademark, hereinafter simply abbreviated as “VGCF”) which is a carbon nanotube having a fiber diameter of less than 1 micron. By using VGCF, which is a carbon nanotube with a small fiber diameter, as the carbon fiber, the thermal conductivity can be improved without deteriorating the lubricity. Furthermore, the heat conductivity can be significantly improved by mixing a small amount. Here, the carbon nanotube is a hollow tube in which a carbon hexagonal network surface called graphene is rolled into a cylinder having a nano-level diameter, and a single-walled carbon nano tube (SWCNT) made of a single graphene. ) And multi-walled carbon nanotubes (MWCNTs) that are formed by nesting a plurality of graphene-rolled tubes with different diameters. In the present invention, either SWCNT or MWCNT may be used. Furthermore, a mixture of both may be used. The carbon nanotubes can be produced by any method such as an arc discharge method, a laser ablation method, a plasma synthesis method, and a chemical vapor deposition (CVD) method. However, carbon nanotubes produced by a CVD method advantageous for mass production are preferred.

さらに、本発明は、炭素繊維の混合率がグリース全体に対して5〜20体積%である耐熱複合グリースとしている。特に、炭素繊維の混合率を5〜20体積%の範囲とすることにより、潤滑性の低下をより小さくし、熱伝導性を向上させることができる。具体的には、炭素繊維の混合率が5体積%以上では熱伝導性の改善がより大きくなり、20体積%以下では潤滑性の低下をほとんど招かないようにすることができる。 Furthermore, the present invention is the mixing ratio of carbon-containing fibers are heat-resistant complex grease from 5 to 20% by volume based on the total of the grease. In particular, when the mixing ratio of carbon fibers is in the range of 5 to 20% by volume, the decrease in lubricity can be further reduced and the thermal conductivity can be improved. Specifically, when the mixing ratio of the carbon fibers is 5% by volume or more, the improvement in thermal conductivity becomes larger, and when it is 20% by volume or less, the lubricity is hardly lowered.

本発明によれば、熱伝導性と潤滑性を兼ね備えた耐熱複合グリースとすることができる。   According to the present invention, a heat-resistant composite grease having both thermal conductivity and lubricity can be obtained.

次に、本発明に係る耐熱複合グリースの実施例について説明する。   Next, examples of the heat-resistant composite grease according to the present invention will be described.

Figure 0005017636
Figure 0005017636

(1)試料
表1に示すように、グリースに混合する炭素繊維と二硫化モリブデンの混合比率を変化させた5種類の試料を用意して、性能を比較評価した。表1の数値欄において、かっこ外の数値は体積%を、かっこ内の数値は重量%を、それぞれ示す。
(1) Samples As shown in Table 1, five types of samples in which the mixing ratio of carbon fiber and molybdenum disulfide mixed in grease was changed were prepared, and the performance was compared and evaluated. In the numerical value column of Table 1, numerical values outside parentheses indicate volume%, and numerical values within parentheses indicate weight%.

グリースには、ウレア系グリース(出光興産株式会社製のダフリーポリレックスアルファグリース)を用いた。ウレア系グリースは、炭化水素とウレア結合からなり、その構成元素に基油の酸化・劣化の触媒となる金属分あるいは灰分を含まない有機化合物である。ウレア系グリースは、耐熱性 耐酸化安定性、長寿命性、耐漏洩性、磨耗防止性、付着性に優れており、製鉄機械、自動車等の輸送機械、建設機械、OA機器等に広範囲に使用されている。また、炭素繊維には、繊維径約150nmで繊維長10〜20μmの気相合成法にて製造したカーボンナノファイバ(Vapor Growth Carbon Fiber: VGCF)(昭和電工株式会社製)を用いた。二硫化モリブデンには、住鉱潤滑剤株式会社製のものを用いた。グリースへの炭素繊維および/または二硫化モリブデンの混合は、既存の混合法を適用できる。   As the grease, urea-based grease (Daffrey Polylex Alpha Grease manufactured by Idemitsu Kosan Co., Ltd.) was used. Urea grease is an organic compound that consists of a hydrocarbon and a urea bond, and does not contain metal or ash as a catalyst for oxidation / degradation of base oil. Urea grease is excellent in heat resistance, oxidation stability, long life, leakage resistance, wear resistance, and adhesion, and is widely used in steelmaking machines, transportation equipment such as automobiles, construction machinery, and office automation equipment. Has been. As the carbon fiber, carbon nanofiber (Vapor Growth Carbon Fiber: VGCF) (manufactured by Showa Denko KK) manufactured by a gas phase synthesis method having a fiber diameter of about 150 nm and a fiber length of 10 to 20 μm was used. As the molybdenum disulfide, one manufactured by Sumiko Lubricant Co., Ltd. was used. The existing mixing method can be applied to the mixing of the carbon fiber and / or molybdenum disulfide with the grease.

(2)装置および評価条件
(2.a)熱伝導特性評価
図1は、表1に示す5種類の試料の熱伝導特性を評価するための装置の概略側面図である。
(2) Apparatus and Evaluation Conditions (2.a) Thermal Conductivity Evaluation FIG. 1 is a schematic side view of an apparatus for evaluating the thermal conductivity characteristics of the five types of samples shown in Table 1.

この装置の構成は、ホットプレート1の上に、真ん中をくりぬいた厚さ約1mmのアクリル樹脂性のリング2をおき、真ん中の穴3に試料(図1の斜線で示す部分)を充填して、上から厚さ約0.2mmの銅板4をのせた構成である。銅板4には、放熱性を良くするためにフィン5が設けられている。フィン5の間には、銅板4に接するように温度計6を備え、間接的に試料の温度変化を測定するようにした。ホットプレート1の温度は68℃で一定に保持しながら、各試料の温度の経時変化を調べた。   The structure of this apparatus is that an acrylic resin ring 2 having a thickness of about 1 mm is formed on a hot plate 1 and a sample (portion indicated by hatching in FIG. 1) is filled in a hole 3 in the center. In this configuration, a copper plate 4 having a thickness of about 0.2 mm is placed from above. The copper plate 4 is provided with fins 5 to improve heat dissipation. A thermometer 6 was provided between the fins 5 so as to be in contact with the copper plate 4, and the temperature change of the sample was indirectly measured. While keeping the temperature of the hot plate 1 constant at 68 ° C., the temperature change of each sample was examined.

(2.b)潤滑性評価
図2は、表1に示す5種類の試料の潤滑性を評価するための摩擦試験機の概略斜視図である。
(2.b) Lubricity Evaluation FIG. 2 is a schematic perspective view of a friction tester for evaluating the lubricity of five types of samples shown in Table 1.

潤滑性の評価には、図2に示すボールオンディスク型の摩擦試験機(レスカ株式会社製;FPR−2000)を用いた。この摩擦試験機は、回転できる可動台10と、可動台10上の非中央部分に固定した試験片11の上に接触させるボール12と、そのボール12を固定するロッド13と、ロッド13にかける荷重を変えるためのリング形状のおもり14と、おもり14を通す軸15と、軸15と垂直方向に伸び、ロッド13のフリクション動作を可能に支持する支持プレート16とから、主に構成されている。   For the evaluation of lubricity, a ball-on-disk friction tester (manufactured by Reska Co., Ltd .; FPR-2000) shown in FIG. 2 was used. The friction tester includes a movable base 10 that can rotate, a ball 12 that is brought into contact with a test piece 11 that is fixed to a non-central portion of the movable base 10, a rod 13 that fixes the ball 12, and a rod 13. It is mainly composed of a ring-shaped weight 14 for changing the load, a shaft 15 through which the weight 14 passes, and a support plate 16 that extends in a direction perpendicular to the shaft 15 and supports the frictional motion of the rod 13. .

潤滑性の評価において、5種類の各試料は、試験片11の上表面に塗られ、ボール12と試験片11との間に介在する。おもり14に応じた所定荷重を試験片11にかけながら可動台10を回転させると(図2中の黒矢印のように)、試料の潤滑性によって支持プレート16にかかる負荷が変わる。本実施例では、試験時間に対して上記負荷を測定することによって、各試料の潤滑性を評価した。   In the evaluation of lubricity, each of the five types of samples is applied to the upper surface of the test piece 11 and interposed between the ball 12 and the test piece 11. When the movable table 10 is rotated while applying a predetermined load corresponding to the weight 14 to the test piece 11 (as indicated by the black arrow in FIG. 2), the load applied to the support plate 16 changes depending on the lubricity of the sample. In this example, the lubricity of each sample was evaluated by measuring the load with respect to the test time.

試験片11は、25mmφ×5mmtの円板形状を有すると共に、黄銅またはステンレス(SUS304)の2種類の各材料からなる。試験片11は、予め#100のサンドペーパでランダムなテキスチャリングを施した後、#1500のサンドペーパで表面の突起部分を平坦化した。かかる処理によって、試料が摩擦面の凹部に滞留しやすくした。ボール12には、10mmφのステンレス(SUS304)球を用いた。試験時間は4時間とした。荷重は、0.49N若しくは4.9Nとした。試験片11とボール12との接点と、可動台10の回転中心との間の距離(回転半径)は、9mmとした。評価のサンプリング時間は、0.1秒ごととした。また、試験中の室内は、気温22(プラスマイナス2)℃、相対湿度45(プラスマイナス5)%に保たれた。   The test piece 11 has a disk shape of 25 mmφ × 5 mmt, and is made of two kinds of materials such as brass or stainless steel (SUS304). The test piece 11 was subjected to random texturing with # 100 sandpaper in advance, and then the surface protrusion was flattened with # 1500 sandpaper. This treatment facilitated the sample to stay in the concave portion of the friction surface. For the ball 12, a 10 mmφ stainless steel (SUS304) ball was used. The test time was 4 hours. The load was 0.49N or 4.9N. The distance (rotation radius) between the contact point of the test piece 11 and the ball 12 and the rotation center of the movable table 10 was 9 mm. The sampling time for evaluation was set to every 0.1 seconds. Further, the room under test was kept at an air temperature of 22 (plus or minus 2) ° C. and a relative humidity of 45 (plus or minus 5)%.

(3)評価結果および考察
(3.a)熱伝導特性評価
図3は、グリースのみ(表1の試料No.1)およびグリースにVGCFのみを混合した2種類の試料(表1の試料No.2および試料No.4)の時間による温度変化を示すグラフである。また、図4は、グリースのみ(表1の試料No.1)、グリースにVGCFのみを混合した試料(表1の試料No.2のみ)、グリースに二硫化モリブデンのみを混合した試料(表1の試料No.3)およびグリースにVGCFと二硫化モリブデンを混合した試料(表1の試料No.5)の時間による温度変化を示すグラフである。なお、図4では、50℃に達する時間が短い順に、試料No.2(グリース95+CNT5)、試料No.5(グリース90+CNT5+MoS25)、試料No.3(グリース95+MoS25)、試料No.1(グリース100)となっている。また、図3および図4において、「CNT」および「MoS2」は、それぞれVGCFおよび二硫化モリブデンを意味する。
(3) Evaluation Results and Discussion (3.a) Thermal Conductivity Evaluation FIG. 3 shows two types of samples (sample No. 1 in Table 1) in which only grease (sample No. 1 in Table 1) and grease only mixed with VGCF are shown. 2 and sample No. 4) are graphs showing temperature changes with time. 4 shows only grease (sample No. 1 in Table 1), a sample in which only VGCF is mixed with grease (only sample No. 2 in Table 1), and a sample in which only grease is mixed with molybdenum disulfide (Table 1). It is a graph which shows the temperature change with time of the sample (sample No. 5 of Table 1) which mixed VGCF and molybdenum disulfide in grease and sample No. 3). In addition, in FIG. 2 (Grease 95 + CNT5), Sample No. 5 (grease 90 + CNT5 + MoS25), sample no. 3 (grease 95 + MoS25), sample no. 1 (grease 100). In FIGS. 3 and 4, “CNT” and “MoS2” mean VGCF and molybdenum disulfide, respectively.

図3に示すように、試料No.1、試料No.2および試料No.4の順に、飽和温度に達するまでの時間が短くなることがわかった。また、図4に示すように、VGCFのみを5体積%混合した試料No.2と、VGCFおよび二硫化モリブデンをそれぞれ5体積%混合した試料No.5とを比較すると、ほとんど変わらない温度変化を示すことがわかった。また、二硫化モリブデンのみを5体積%混合した試料No.3は、200秒までは、温度上昇率が試料No.2およびNo.5のそれらよりも低かった。この結果は、VGCFを混合することによって、温度上昇速度を改善することができ、かつ二硫化モリブデンをさらに混合しても温度上昇速度を低下させないことを意味する。   As shown in FIG. 1, sample no. 2 and Sample No. It was found that the time to reach the saturation temperature became shorter in the order of 4. In addition, as shown in FIG. 2 and VGCF and 5% by volume of each sample mixed with molybdenum disulfide. Comparison with 5 shows that the temperature change is almost unchanged. Sample No. 5 containing only 5% by volume of molybdenum disulfide was mixed. 3 shows that the temperature increase rate is up to 200 seconds until the sample No. 2 and no. It was lower than those of 5. This result means that the temperature increase rate can be improved by mixing VGCF, and the temperature increase rate is not lowered even if molybdenum disulfide is further mixed.

表2に、各試料の熱伝導度(α)を示す。各熱伝導度は、図3および図4の測定結果と下記の数式とを利用して求めた。   Table 2 shows the thermal conductivity (α) of each sample. Each thermal conductivity was calculated | required using the measurement result of FIG. 3 and FIG. 4, and the following numerical formula.

Figure 0005017636
Figure 0005017636

Figure 0005017636
Figure 0005017636

Figure 0005017636
Figure 0005017636

ここで、数式1は一次非定常熱伝導の式から導かれる熱伝導度の式である。式中、tは平衡温度、tはある時間経過後の温度、Tは無次元温度である。数式1中の無限級数は、παθ/(4L)>0.5、すなわち、ある程度以上時間が経過してからは急に収束して第2項以下が無視できるようになり、数式2に近似できる。数式2より、αは、log(4T/π)とθの傾きに表すことができる。αは、ごく初期および平衡温度付近を除いたデータに対して計算された。 Here, Equation 1 is an equation of thermal conductivity derived from the equation of primary unsteady heat conduction. Wherein, t a temperature of after equilibrium temperature, t is time, T is a dimensionless temperature. The infinite series in Equation 1 is π 2 αθ / (4L 2 )> 0.5, that is, after a certain amount of time has passed, the second term and the following terms can be ignored. Can be approximated. From Equation 2, α can be expressed as log (4T / π) and the slope of θ. α was calculated for data excluding very early and near equilibrium temperatures.

表2の結果から明らかなように、αは、VGCFの混合率が高くなるほど大きくなった。例えば、VGCF20体積%を混合した試料(試料No.4)のαは、グリースのみ(試料No.1)のαの約2倍であった。一方、VGCFと二硫化モリブデンを両方混合した試料(試料No.5)のαは、VGCFのみを混合した試料(試料No.2)のαとほぼ同じ値となった。この結果は、図4に示す結果と同じである。このことから、VGCFの混合によって熱伝導度を大きくすることができ、かつそこに二硫化モリブデンを混合しても熱伝導度を低下させないものと考えられる。   As is apparent from the results in Table 2, α increased as the mixing ratio of VGCF increased. For example, the α of the sample mixed with 20% by volume of VGCF (sample No. 4) was about twice that of the grease alone (sample No. 1). On the other hand, α of the sample (sample No. 5) in which both VGCF and molybdenum disulfide were mixed was substantially the same as α of the sample (sample No. 2) in which only VGCF was mixed. This result is the same as the result shown in FIG. From this, it is considered that the thermal conductivity can be increased by mixing VGCF, and that the thermal conductivity is not lowered even if molybdenum disulfide is mixed therein.

(3.b)潤滑性評価
図5は、グリースのみ(試料No.1:(A))、グリースにVGCFのみを混合した試料(試料No.2のみ:(B))、グリースに二硫化モリブデンのみを混合した試料(試料No.3:(C))およびグリースにVGCFと二硫化モリブデンを混合した試料(試料No.5:(D))の、試験片11に黄銅を用いて0.49Nの荷重を加えたときの摩擦係数の経時変化を示すグラフである。
(3.b) Lubricity evaluation FIG. 5 shows only grease (sample No. 1: (A)), a sample in which only VGCF is mixed in grease (only sample No. 2: (B)), and molybdenum disulfide in grease. Of the sample (sample No. 3: (C)) mixed only with the grease and the sample (sample No. 5: (D)) mixed with VGCF and molybdenum disulfide in the grease using brass for the test piece 11 of 0.49 N It is a graph which shows a time-dependent change of the friction coefficient when the load of is added.

図5の各グラフに示すように、グリースのみの場合、摩擦係数は0.2から0.4に推移し、摩擦変動も時間が経つにつれて増大した。また、グリースに5体積%のVGCFを混合した場合には、グリースのみの場合における摩擦係数の平均値と同程度であり、変動幅も大きかった。これに対して、グリースに5体積%の二硫化モリブデンのみを混合した場合には、摩擦係数を0.1以下に下げることができ、かつ変動幅も小さくすることができた。また、グリースに5体積%のVGCFと5体積%の二硫化モリブデンとを混合した場合には、摩擦係数を0.2以下に下げることができ、かつ変動幅も小さくすることができた。   As shown in each graph of FIG. 5, in the case of only grease, the friction coefficient changed from 0.2 to 0.4, and the friction variation also increased with time. Further, when 5% by volume of VGCF was mixed with grease, it was almost the same as the average value of the friction coefficient in the case of only grease, and the fluctuation range was large. On the other hand, when only 5% by volume of molybdenum disulfide was mixed with grease, the friction coefficient could be reduced to 0.1 or less and the fluctuation range could be reduced. Further, when 5% by volume of VGCF and 5% by volume of molybdenum disulfide were mixed with grease, the friction coefficient could be lowered to 0.2 or less and the fluctuation range could be reduced.

また、試験片11に黄銅を用いて4.9Nの荷重を加えた場合も同様の傾向が見られた。さらに、試験片11にステンレス(SUS304)を用いて、荷重を0.49N若しくは4.9Nに設定して潤滑性を評価しても、同様の傾向が確認された。また、VGCFの混合率を20体積%に増やした場合でも(二硫化モリブデンを混合する際には、VGCF20体積%、二硫化モリブデン20体積%)、VGCFの混合率を5体積%とした上述の場合(二硫化モリブデンを混合する際には、VGCF5体積%、二硫化モリブデン5体積%)と同様の傾向が確認された。   The same tendency was observed when a load of 4.9 N was applied to the test piece 11 using brass. Further, even when the test piece 11 was made of stainless steel (SUS304) and the load was set to 0.49 N or 4.9 N and the lubricity was evaluated, the same tendency was confirmed. Further, even when the mixing ratio of VGCF is increased to 20% by volume (when molybdenum disulfide is mixed, VGCF is 20% by volume, molybdenum disulfide is 20% by volume), and the mixing ratio of VGCF is 5% by volume. The same tendency as in the case (when mixing molybdenum disulfide, VGCF 5% by volume, molybdenum disulfide 5% by volume) was confirmed.

このような結果から、グリースに二硫化モリブデンを混合、あるいは二硫化モリブデンとVGCFを混合することにより、潤滑特性を大幅に改善できると考えられる。先に述べた熱伝導度の結果を併せると、グリースに二硫化モリブデンとVGCFを混合することによって、熱伝導性および潤滑性にすぐれたグリースができると考えられる。   From these results, it is considered that the lubrication characteristics can be greatly improved by mixing molybdenum disulfide with grease or mixing molybdenum disulfide and VGCF. Combining the results of thermal conductivity described above, it is considered that a grease having excellent thermal conductivity and lubricity can be obtained by mixing molybdenum disulfide and VGCF in the grease.

本発明は、自動車の電装部品、OA機器の他、宇宙環境で使用される機器あるいは原子力関連機器の摺動部材において実施可能である。   The present invention can be implemented in sliding members of automobile parts, OA equipment, equipment used in the space environment, or nuclear equipment.

本発明の実施の形態にかかる耐熱複合グリースの熱伝導特性を評価するための装置の概略側面図である。It is a schematic side view of the apparatus for evaluating the heat conductive characteristic of the heat-resistant composite grease concerning embodiment of this invention. 本発明の実施の形態にかかる耐熱複合グリースの潤滑性を評価するための摩擦試験機の概略斜視図である。1 is a schematic perspective view of a friction tester for evaluating the lubricity of a heat-resistant composite grease according to an embodiment of the present invention. 本発明の実施の形態にかかる耐熱複合グリースの時間による温度変化を示すグラフである。It is a graph which shows the temperature change by the time of the heat resistant composite grease concerning embodiment of this invention. 図3と一部異なる試料群の時間による温度変化を示すグラフである。It is a graph which shows the temperature change by the time of the sample group partially different from FIG. 本発明の実施の形態にかかる耐熱複合グリースを使用し、試験片に黄銅を用いて0.49Nの荷重を加えたときの摩擦係数の経時変化を示すグラフである。It is a graph which shows the time-dependent change of a friction coefficient when the heat resistant compound grease concerning embodiment of this invention is used and the load of 0.49N is applied to the test piece using brass.

Claims (1)

炭素繊維と二硫化モリブデンとを、体積換算で両混合比が同量プラスマイナス2体積%以内の範囲内で混合してなり、
前記炭素繊維は、VGCF(登録商標)であり、
前記炭素繊維の混合率がグリース全体に対して5〜20体積%であることを特徴とする耐熱複合グリース。
Carbon fiber and molybdenum disulfide are mixed in a volume conversion within a range where both mixing ratios are within the same amount plus or minus 2% by volume,
The carbon fibers, Ri VGCF (registered trademark) der,
Heat complex grease mixing ratio of the carbon fibers are characterized by 5-20% by volume der Rukoto for the entire grease.
JP2005057756A 2005-03-02 2005-03-02 Heat resistant composite grease Active JP5017636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057756A JP5017636B2 (en) 2005-03-02 2005-03-02 Heat resistant composite grease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057756A JP5017636B2 (en) 2005-03-02 2005-03-02 Heat resistant composite grease

Publications (2)

Publication Number Publication Date
JP2006241277A JP2006241277A (en) 2006-09-14
JP5017636B2 true JP5017636B2 (en) 2012-09-05

Family

ID=37048001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057756A Active JP5017636B2 (en) 2005-03-02 2005-03-02 Heat resistant composite grease

Country Status (1)

Country Link
JP (1) JP5017636B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205500B (en) * 2006-12-18 2010-09-22 中国石油化工股份有限公司 Composite nano particles, lubricating grease containing the same and preparation thereof
JP5053711B2 (en) 2007-05-29 2012-10-17 サンデン株式会社 Power transmission device
JP5222440B2 (en) 2007-06-04 2013-06-26 サンデン株式会社 Power transmission device
JP5084377B2 (en) 2007-07-12 2012-11-28 サンデン株式会社 Power transmission device
US9574155B2 (en) 2008-07-02 2017-02-21 Nanotech Lubricants, LLC Lubricant with nanodiamonds and method of making the same
EP2714874B1 (en) 2011-05-27 2021-12-29 Howard University Hybrid nanolubricant
CA2837217C (en) 2011-05-27 2019-11-12 Howard University Surface conditioning nanolubricant
JP5747230B2 (en) * 2011-06-17 2015-07-08 Nokクリューバー株式会社 Conductive grease composition
CN110373245A (en) * 2019-06-26 2019-10-25 包头协同纳米新材科技有限公司 The hud typed composite nano materials of carbon nanotube/disulphide and its preparation method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342203A (en) * 1976-09-30 1978-04-17 Mitsubishi Electric Corp Lubricant
JP4178806B2 (en) * 2001-03-07 2008-11-12 日本精工株式会社 Conductive grease and rolling device
JP2004132507A (en) * 2002-10-11 2004-04-30 Nsk Ltd Rolling bearing

Also Published As

Publication number Publication date
JP2006241277A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP5017636B2 (en) Heat resistant composite grease
Khalil et al. Tribological properties of dispersed carbon nanotubes in lubricant
Hongtao et al. Tribological properties of carbon nanotube grease
Paul et al. Nanolubricants dispersed with graphene and its derivatives: an assessment and review of the tribological performance
Santangelo et al. Evaluation of crystalline perfection degree of multi‐walled carbon nanotubes: correlations between thermal kinetic analysis and micro‐Raman spectroscopy
Liu et al. Lubrication effect of the paraffin oil filled with functionalized multiwalled carbon nanotubes for bismaleimide resin
Bhaumik et al. Analysis of tribological behavior of carbon nanotube based industrial mineral gear oil 250 cSt viscosity
Vander Wal et al. Friction properties of surface-fluorinated carbon nanotubes
Azman et al. The anti-wear and extreme pressure performance of CuO and graphite nanoparticles as an additive in palm oil
Sadeghalvaad et al. Lithium lubricating greases containing carbon base nano-additives: preparation and comprehensive properties evaluation
Zhang et al. Antiwear effect of Mo and W nanoparticles as additives for multialkylated cyclopentanes oil in vacuum
Ashour et al. Novel tribological behavior of hybrid MWCNTs/MLNGPs as an additive on lithium grease
Kumar et al. Investigation on friction, anti-wear, and extreme pressure properties of different grades of polyalphaolefins with functionalized multi-walled carbon nanotubes as an additive
Bhaumik et al. Extreme pressure property of Carbon Nano Tubes (CNT) based nanolubricant
Zhao et al. Effect of Ti 3 AlC 2 content on electrical friction and wear behaviors of Cu–Ti 3 AlC 2 composites
Kumar et al. Augmentation in tribological performance of polyalphaolefins by COOH-functionalized multiwalled carbon nanotubes as an additive in boundary lubrication conditions
Zhang et al. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface
Kang et al. Tribological behavior and self-lubricating mechanism of Ag–C fiber brushes under air and vacuum conditions
Alderete et al. Wear Reduction via CNT Coatings in Electrical Contacts Subjected to Fretting
Fatih Tunay et al. Investigation of the tribological properties of Cu‐based porous bearings
Zhang et al. Ultra low friction of conductive carbon nanotube films and their structural evolution during sliding
JP4590918B2 (en) Conductive grease composition and rolling device
Moon et al. Multiwall carbon nanotube sensor for monitoring engine oil degradation
Yang et al. Lubricating characteristic of grease composites with CNT additive
Gatti et al. Tribological performance of electrically conductive and self-lubricating polypropylene–ionic-liquid composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150