JP5016786B2 - POLYMER COMPOSITION, COMPOSITE FIBER, METHOD FOR PRODUCING THEM, AND FABRIC - Google Patents

POLYMER COMPOSITION, COMPOSITE FIBER, METHOD FOR PRODUCING THEM, AND FABRIC Download PDF

Info

Publication number
JP5016786B2
JP5016786B2 JP2004544180A JP2004544180A JP5016786B2 JP 5016786 B2 JP5016786 B2 JP 5016786B2 JP 2004544180 A JP2004544180 A JP 2004544180A JP 2004544180 A JP2004544180 A JP 2004544180A JP 5016786 B2 JP5016786 B2 JP 5016786B2
Authority
JP
Japan
Prior art keywords
weight
acrylonitrile
cellulose acetate
polymer composition
based polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004544180A
Other languages
Japanese (ja)
Other versions
JPWO2004058883A1 (en
Inventor
晋一郎 堤
亮 越智
泰行 藤井
宏子 松村
暢久 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2004544180A priority Critical patent/JP5016786B2/en
Publication of JPWO2004058883A1 publication Critical patent/JPWO2004058883A1/en
Application granted granted Critical
Publication of JP5016786B2 publication Critical patent/JP5016786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/08Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • C09J133/20Homopolymers or copolymers of acrylonitrile
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Woven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、衣料用途、建寝装用途の布帛素材に適した酢酸セルロースとアクリロニトリル系ポリマーの複合機能繊維及びその製造方法に関する。  The present invention relates to a composite functional fiber of cellulose acetate and acrylonitrile-based polymer suitable for a fabric material for clothing and bedding, and a method for producing the same.

従来より、アクリロニトリル系繊維は、発色性、嵩高性、保温性、ソフトな風合に優れ、衣料分野、寝装分野、インテリア分野、資材分野等で広く用いられている素材である。主にステープルの形態で用いられているが、近年、新しい風合や機能面の付与、特に消臭機能、吸保湿機能及び耐熱性能を有する新素材開発の要求が強まってきている。アクリロニトリル系繊維への耐熱性能の付与、特に湿熱特性の向上については、従来よりこの課題解決のため種々提案がなされてきたが、未だ実用化しうる程度には解決されておらず、繊維用途、特に織物分野での制限があり、耐熱性の改善が依然として要求されている。
このような機能性付与の技術手法の一つとして、異種ポリマーとの複合化が試みられており、例えば吸湿性を付与する一例として、アクリロニトリル系ポリマーと酢酸セルロースとの複合化が多数試みられている(例えば、特許文献1、特許文献2参照)。しかし、フィブリル化防止の観点からは技術的困難性が高いため、殆ど研究がなされていなかった。
アクリロニトリル系ポリマーと酢酸セルロースは、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホオキシド等の共通溶剤に溶解し、アクリロニトリル系ポリマーと酢酸セルロースからなる混合溶液(例えばポリマー濃度20重量%溶液)は、比較的安定性に優れ、相当長時間相分離しない安定な状態が保持される。この点を利用しアクリロニトリル系ポリマーと酢酸セルロースを共通溶剤に溶解した混合溶液を紡糸原液として用い、繊維に賦形され、得られる繊維は、涼感、吸湿性等の優れた性能が付加されたものとして知られている。
しかしながら、異種ポリマーとの複合化の場合、ポリマー間の相溶性不足による繊維物性の低下や、耐摩耗性が問題となる。アクリロニトリル系ポリマーと酢酸セルロースの場合もその混合溶液を400倍程度の光学顕微鏡にて微視的に観察すると、ポリマー相が分離しており、必ずしも相溶性のよいものではない。また、このような混合溶液を紡糸原液として用いて紡糸した繊維をエッチング加工したうえで500〜1000倍程度の走査型電子顕微鏡にて観察すると、液滴状の相分離状態を反映した繊維構造をとっていることが確認できる。
このようなアクリロニトリル系ポリマーと酢酸セルロースの実質的な相溶性の低さは、その繊維物性に大きく影響し、繊維強度や伸度等の基本物性を低下させるだけでなく、得られる繊維は、機械的抵抗、例えば擦過等によりフィブリル化しやすくなり、耐摩性能に劣る。この繊維を用いてなる織編物は、フィブリル化した部分が外観上白っぽくなる傾向にあり、製品用途においては致命的な欠陥となりその実用化を非常に困難にしている。
かかる背景から、アクリロニトリル系ポリマーに親和性のあるセグメントと酢酸セルロースに親和性のあるセグメントを有するブロックコポリマーをアクリロニトリル系ポリマーと酢酸セルロースの混合溶液に添加することによって、両ポリマーの相溶性を高め、アクリロニトリル系ポリマーと酢酸セルロースを複合した繊維の機械物性を改善する試みがなされている(例えば、特許文献3、特許文献4参照)。しかし、このブロックコポリマー添加による方法は、紡糸原液中の液滴サイズを微細化して安定化し、繊維の強度、伸度等の機械的物性を若干ながら改善する傾向にはあるが、擦過等による繊維のフィブリル化を抑制することが難しいのが実状である。
文献のリスト:
特許文献1.特開平9−176917号公報
特許文献2.特開平9−291416号公報
特許文献3.特開昭55−92755号公報
特許文献4.特開昭55−62953号公報
Conventionally, acrylonitrile fiber is excellent in color development, bulkiness, heat retention, and soft texture, and is a material widely used in the clothing field, bedding field, interior field, material field, and the like. Although it is mainly used in the form of staples, in recent years, there has been an increasing demand for the development of new materials having a new texture and a functional surface, in particular, a deodorizing function, a moisture absorbing / holding function and a heat resistance performance. Various proposals have been made to solve this problem with regard to imparting heat resistance performance to acrylonitrile fiber, especially improvement in wet heat characteristics, but it has not been solved to the extent that it can be put into practical use, and fiber applications, especially Due to limitations in the textile field, improvements in heat resistance are still required.
As one of the techniques for imparting such functionality, complexation with a different polymer has been attempted. For example, as an example of imparting hygroscopicity, numerous attempts have been made to complex acrylonitrile-based polymer and cellulose acetate. (For example, refer to Patent Document 1 and Patent Document 2). However, since the technical difficulty is high from the viewpoint of preventing fibrillation, little research has been done.
Acrylonitrile polymer and cellulose acetate are dissolved in a common solvent such as dimethylacetamide, dimethylformamide, dimethylsulfoxide, etc., and a mixed solution composed of acrylonitrile polymer and cellulose acetate (for example, a polymer concentration 20% by weight solution) is relatively stable. And a stable state that does not phase-separate for a considerable time is maintained. Utilizing this point, a mixed solution of acrylonitrile polymer and cellulose acetate dissolved in a common solvent is used as the spinning dope, and the resulting fiber is shaped with excellent performance such as coolness and hygroscopicity. Known as.
However, in the case of compounding with a different polymer, there is a problem of deterioration in fiber properties due to insufficient compatibility between the polymers and wear resistance. In the case of an acrylonitrile-based polymer and cellulose acetate, when the mixed solution is microscopically observed with an optical microscope of about 400 times, the polymer phase is separated and the compatibility is not necessarily good. Moreover, when the fiber spun using such a mixed solution as a spinning dope is etched and observed with a scanning electron microscope of about 500 to 1000 times, a fiber structure reflecting a droplet-like phase separation state is obtained. You can see that
Such a substantially low compatibility between the acrylonitrile polymer and cellulose acetate greatly affects the physical properties of the fibers, not only lowering the basic physical properties such as fiber strength and elongation, but also the resulting fibers are mechanical It becomes easy to fibrillate due to mechanical resistance, such as abrasion, and is inferior in abrasion resistance. The woven or knitted fabric using this fiber has a tendency that the fibrillated portion becomes whitish in appearance, and becomes a fatal defect in product use, making its practical use very difficult.
From such a background, by adding a block copolymer having a segment having an affinity for an acrylonitrile-based polymer and a segment having an affinity for cellulose acetate to a mixed solution of the acrylonitrile-based polymer and cellulose acetate, the compatibility of both polymers is increased, Attempts have been made to improve the mechanical properties of fibers in which an acrylonitrile-based polymer and cellulose acetate are combined (see, for example, Patent Document 3 and Patent Document 4). However, this block copolymer addition method tends to improve the mechanical properties such as the strength and elongation of the fiber slightly while stabilizing the droplet size in the spinning solution. Actually, it is difficult to suppress the fibrillation.
List of documents:
Patent Document 1. Japanese Patent Laid-Open No. 9-176917 Patent Document 2. Japanese Patent Laid-Open No. 9-291416 Patent Document 3 Japanese Patent Laid-Open No. 55-92755 Patent Document 4. JP 55-62953 A

本発明は、酢酸セルロースとアクリロニトリル系ポリマーとの複合化のために用いることのできる機能性のポリマー組成物を提供することを目的とする。
また本発明は、フィブリル化が抑制されて耐摩性に優れ、かつ吸湿性、消臭性、更には耐熱性に優れた酢酸セルロースとアクリロニトリル系ポリマーとからなる複合機能繊維を提供することを目的とする。
さらに本発明は、優れた消臭性能を有すると共に耐摩耗性に優れた布帛を提供することを目的とする。
本発明は、以下の事項に関するものである。
1. (a)酢酸セルロース成分10〜70重量%とアクリロニトリル系ポリマー成分90〜30重量%からなるアセトン不溶の複合体20〜100重量%と
(b)酢酸セルロース80〜0重量%と
を含むポリマー組成物。
2. 酢酸セルロースとアクリロニトリル主体のビニル系モノマーとの混合物を重合して得られたものである上記1記載のポリマー組成物。
3. 酢酸セルロースが、酢化度48〜63%の酢酸セルロースである上記1または2記載のポリマー組成物。
4. アクリロニトリル系ポリマー成分は、少なくとも60重量%がアクリロニトリル単位である上記1〜3のいずれか1項に記載のポリマー組成物。
5. 酢酸セルロースと、酢酸セルロースに対して0.5〜10重量比のアクリロニトリル主体のビニル系モノマーとの混合物を、該ビニル系モノマーに可溶の重合開始剤を用いて水系懸濁重合し、酢酸セルロースとアクリロニトリル系ポリマーからなるアセトン不溶の複合体20〜100重量%と、酢酸セルロース80〜0重量%のポリマー組成物とすることを特徴とするポリマー組成物の製造方法。
6. 重合開始剤として、有機過酸化物、アゾビス系化合物及び過マンガン酸カリウムからなる群から選ばれる重合開始剤を用いる上記5記載のポリマー組成物の製造方法。
7. 酢酸セルロース及び/又はセルロースと、アクリロニトリル系ポリマーからなる繊維であって、繊維横断面において、酢酸セルロース及び/又はセルロースが島としてアクリロニトリル系ポリマーの海部中に分散し、酢酸セルロース及び/又はセルロースの分散相のサイズが200nm以下であることを特徴とする複合繊維。
8. 繊維に占める酢酸セルロース及び/又はセルロースが10〜50重量%、アクリロニトリル系ポリマーが90〜50重量%である上記7記載の複合繊維。
9. 動的粘弾性の測定における少なくとも低温側の損失正接(tanδ)のピーク温度が120℃以上である上記7記載の複合繊維。
10. ディスクリファイナー装置にてディスククリアランス0.05mm、ディスク回転数5000rpmの条件で繰り返し5回叩解処理後の濾水度R1と叩解処理前の濾水度R0との濾水度差ΔRが200以下である上記7〜9のいずれか1項記載の複合繊維。
11. 酢酸セルロースと、酢酸セルロースに対して0.5〜10重量比のアクリロニトリル主体のビニル系モノマーとの混合物を該ビニル系モノマーに可溶の重合開始剤を用いて水系懸濁重合して得られたポリマー組成物と、アクリロニトリル系ポリマーとを、全体に占める酢酸セルロース成分の割合が10〜50重量%、前記ポリマー組成物に含有されるアクリロニトリル系ポリマー成分と前記アクリロニトリル系ポリマーの合計が90〜50重量%となるように配合し、酢酸セルロースとアクリロニトリル系ポリマーの共通溶剤に溶解した紡糸原液を用い、紡糸することを特徴する複合繊維の製造方法。
12. 酢酸セルロース及び/又はセルロース成分とアクリロニトリル系ポリマー成分とを含み、酢酸に対する消臭率が90%以上、ノネナールに対する消臭率が90%以上、且つマーチンデール法により摩擦回数5000回処理した際の重量減量率が1%以下である布帛。
13. 酢酸セルロース及び/又はセルロース成分が布帛全体の10〜50重量%である上記12記載の布帛。
14. アクリロニトリル系ポリマー成分が、布帛全体の10〜90%である上記12記載の布帛。
15. 酢酸セルロース及び/又はセルロース成分とアクリロニトリル系ポリマー成分とを含有する繊維を含む上記12〜14のいずれか1項記載の布帛。
本発明のポリマー組成物は、アクリロニトリル系ポリマーとの相溶性に優れているため、このポリマー組成物を使用することにより、酢酸セルロースをアクリロニトリル系ポリマーと従来にない形態に複合化することができる。このポリマー組成物をアクリロニトリル系ポリマーと複合させて繊維とすると、フィブリル化が抑制され、機械的抵抗、例えば摩擦に対する優れた耐摩性及び優れた耐熱性を有する繊維が得られる。この繊維は、酢酸セルロースに基づく涼感、吸湿性、消臭性能、アクリロニトリル系ポリマーに基づく発色性等の複合機能に加え、実用的な耐熱性を有し、かつ繊維として優れた耐摩性を有する。従ってこの複合繊維は、新たな機能を有するアクリロニトリル系繊維というよりは、むしろ新規な繊維というべきものである。
An object of the present invention is to provide a functional polymer composition that can be used for complexing cellulose acetate and an acrylonitrile-based polymer.
Another object of the present invention is to provide a composite functional fiber composed of cellulose acetate and an acrylonitrile-based polymer that is suppressed in fibrillation, has excellent wear resistance, and is hygroscopic, deodorant, and heat resistant. To do.
Furthermore, an object of the present invention is to provide a fabric having excellent deodorizing performance and excellent wear resistance.
The present invention relates to the following matters.
1. (A) a polymer composition comprising 10 to 70% by weight of a cellulose acetate component and 20 to 100% by weight of an acetone insoluble complex comprising 90 to 30% by weight of an acrylonitrile-based polymer component; and (b) 80 to 0% by weight of cellulose acetate. .
2. 2. The polymer composition according to 1 above, which is obtained by polymerizing a mixture of cellulose acetate and a vinyl monomer mainly composed of acrylonitrile.
3. 3. The polymer composition according to 1 or 2 above, wherein the cellulose acetate is cellulose acetate having an acetylation degree of 48 to 63%.
4). 4. The polymer composition according to any one of 1 to 3 above, wherein the acrylonitrile-based polymer component is at least 60% by weight of acrylonitrile units.
5. Cellulose acetate and a mixture of a vinyl monomer mainly composed of acrylonitrile at a ratio of 0.5 to 10% by weight with respect to cellulose acetate are subjected to aqueous suspension polymerization using a polymerization initiator soluble in the vinyl monomer, and cellulose acetate is obtained. A method for producing a polymer composition, comprising: 20-100% by weight of an acetone insoluble complex composed of acrylonitrile-based polymer and 80-80% by weight of cellulose acetate.
6). 6. The method for producing a polymer composition as described in 5 above, wherein a polymerization initiator selected from the group consisting of an organic peroxide, an azobis compound and potassium permanganate is used as the polymerization initiator.
7). A fiber comprising cellulose acetate and / or cellulose and an acrylonitrile-based polymer, in which the cellulose acetate and / or cellulose is dispersed as islands in the sea of the acrylonitrile-based polymer in the fiber cross section, and the cellulose acetate and / or cellulose is dispersed. A composite fiber having a phase size of 200 nm or less.
8). 8. The composite fiber according to 7 above, wherein cellulose acetate and / or cellulose occupy 10 to 50% by weight and acrylonitrile-based polymer 90 to 50% by weight.
9. 8. The composite fiber according to 7 above, wherein the peak temperature of at least the low temperature loss tangent (tan δ) in the measurement of dynamic viscoelasticity is 120 ° C. or higher.
10. The freeness difference ΔR between the freeness R1 after the beating treatment repeatedly 5 times and the freeness R0 before the beating treatment is 200 or less under the conditions of a disc clearance of 0.05 mm and a disc rotation speed of 5000 rpm in the disc refiner device. 10. The composite fiber according to any one of 7 to 9 above.
11. Obtained by aqueous suspension polymerization of a mixture of cellulose acetate and a vinyl monomer mainly composed of acrylonitrile at a ratio of 0.5 to 10% by weight with respect to cellulose acetate using a polymerization initiator soluble in the vinyl monomer. The ratio of the cellulose acetate component in the whole of the polymer composition and the acrylonitrile-based polymer is 10 to 50% by weight, and the total of the acrylonitrile-based polymer component and the acrylonitrile-based polymer contained in the polymer composition is 90 to 50% by weight. %, And using a spinning stock solution dissolved in a common solvent of cellulose acetate and acrylonitrile polymer, spinning is performed.
12 Contains cellulose acetate and / or a cellulose component and an acrylonitrile-based polymer component, has a deodorization rate of 90% or more with respect to acetic acid, a deodorization rate with respect to Nonenal of 90% or more, and the weight when the number of friction is processed 5000 times by the Martindale method A fabric having a weight loss rate of 1% or less.
13. 13. The fabric according to 12 above, wherein the cellulose acetate and / or the cellulose component is 10 to 50% by weight of the entire fabric.
14 13. The fabric according to 12 above, wherein the acrylonitrile-based polymer component is 10 to 90% of the entire fabric.
15. 15. The fabric according to any one of 12 to 14 above, comprising a fiber containing cellulose acetate and / or a cellulose component and an acrylonitrile-based polymer component.
Since the polymer composition of the present invention is excellent in compatibility with an acrylonitrile-based polymer, cellulose acetate can be combined with an acrylonitrile-based polymer into an unconventional form by using this polymer composition. When this polymer composition is combined with an acrylonitrile polymer to form a fiber, fibrillation is suppressed, and a fiber having excellent resistance to mechanical resistance, for example, friction, and excellent heat resistance can be obtained. This fiber has practical heat resistance and excellent abrasion resistance as a fiber in addition to composite functions such as coolness based on cellulose acetate, hygroscopicity, deodorizing performance, and color developability based on acrylonitrile-based polymer. Therefore, this composite fiber should be a new fiber rather than an acrylonitrile fiber having a new function.

本発明のポリマー組成物では、酢酸セルロースとアクリロニトリル系ポリマーとのアセトン不溶の複合体と、この複合体とは分別可能な(即ち、アセトン可溶の)酢酸セルロースとが混合状態にある。このポリマー組成物は、酢酸セルロースとアクリロニトリル主体のビニル系モノマーとの混合物を懸濁重合して得られるため、懸濁重合に用いられる酢酸セルロースは、溶剤への溶解性、繊維物性の面から、酢化度48〜63%の酢酸セルロースであることが好ましく、特に酢化度48〜56%のセルロースジアセテート及び酢化度56〜63%のセルローストリアセテートから選ばれる酢酸セルロースであることが好ましい。
また、アクリロニトリル主体のビニル系モノマーは、アクリロニトリルを通常50重量%以上、好ましくは60重量%以上、より好ましくは85重量%以上含むビニル系モノマーである。本発明のポリマー組成物におけるアクリロニトリル系ポリマー成分は、アクリロニトリルを主体とするビニル系モノマーの重合物であり、アクリロニトリル単位を主成分、通常50重量%以上、好ましくは60重量%以上、より好ましくは85重量%以上含むアクリロニトリルのホモポリマー或いはコポリマーである。
アクリロニトリルと共に用いうるビニル系モノマーとしては、アクリル酸、メタクリル酸、これらのアルキルエステル、酢酸ビニル、アクリルアミド、2−ヒドロキシエチルメタクリレート、2−ヒドロキシエチルアクリレート、グリシジルメタクリレート、グリシジルアクリレート、アリルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム等が挙げられ、これらは単独で或いは2種以上組み合わされていてもよい。特に酢酸ビニル、アクリル酸メチルが、品質、コストの面から好ましく用いられる。
本発明のポリマー組成物は、酢酸セルロース成分とアクリロニトリル系ポリマー成分を含有するアセトン不溶の複合体20〜100重量%と酢酸セルロース80〜0重量%、好ましくはアセトン不溶の複合体25〜90重量%、酢酸セルロース75〜10重量%の混合物からなる。そして、この複合体に占める酢酸セルロースが10〜70重量%、アクリロニトリル系ポリマーが90〜30重量%であることが必要である。アセトン不溶の複合体は、アクリロニトリル主体のビニル系モノマーの重合の過程で、モノマーが酢酸セルロース中に含浸された状態でポリマーが形成され、酢酸セルロース分子鎖とアクリロニトリル系ポリマー分子鎖とが相互に絡み合った構造をとることによりアセトン不溶になるものと推定され、酢酸セルロースの溶剤であるアセトンには不溶ではあるが、アクリロニトリル系ポリマーの溶剤に可溶であり、本発明のポリマー組成物は、アクリロニトリル系ポリマーと酢酸セルロースの共通溶剤に良好に溶解する。
ポリマー組成物におけるアセトン不溶の複合体が20重量%未満であったり、また複合体に占める酢酸セルロースが10重量%未満或いは70重量%を超えると、紡糸原液中での酢酸セルロースとアクリロニトリル系ポリマーとの相溶性が低下する傾向にあり、得られる繊維の擦過等によるフィブリル化を抑制すること、更には耐熱性を得ることが困難となりやすい。
本発明のポリマー組成物は、酢酸セルロースと酢酸セルロースに対して0.5〜10重量比、好ましくは1〜5重量比のアクリロニトリルを主体とするビニル系モノマーとの混合物を、アクリロニトリルを主体とするビニル系モノマーに可溶の重合開始剤を用いて水系懸濁重合することによって製造することができる。
本発明のポリマー組成物の製造において用いられるビニル系モノマーに可溶の重合開始剤としては、好ましくは、tert−ブチルパーオキシ−2−エチルヘキサノエイト、tert−ブチルヒドロパーオキサイド等の有機過酸化物、アゾビスイソブチリニトリル等のアゾビス系化合物、過マンガン酸カリウム等が挙げられ、特に金属イオン等の不純物が生成物に残存しない点で、有機過酸化物、アゾビス系化合物が好ましく用いられる。重合開始剤の使用量は、重合開始剤の種類、重合条件等によっても異なるが、ビニル系モノマー100重量部に対し、好ましくは0.001〜30重量部、より好ましくは0.01〜10重量部である。
本発明のポリマー組成物の製造における水系懸濁重合では、例えば酢酸セルロースを脱イオン水等の水に分散させた分散液中に、重合開始剤を添加したアクリロニトリルを主体とするビニル系モノマーを添加し、撹拌下に所定時間適宜、適当な温度に加温してモノマーを重合する。重合生成物を適宜水洗、脱水を繰り返し未反応のモノマーを除去し、乾燥して、アセトン不溶の複合体のみからなる、或いはアセトン不溶の複合体とこの複合体の形成には関与しなかった酢酸セルロースとからなるポリマー組成物を得る。
重合条件は、重合開始剤の種類、仕込み組成比によっても異なるが、酢酸セルロースとアクリロニトリル系ポリマーからなるアセトン不溶の複合体20〜100重量%と、酢酸セルロース80〜0重量%のポリマー組成物とするために、好ましく用いられる重合開始剤における条件例を次に示す。
重合開始剤としてtert−ブチルパーオキシ−2−エチルヘキサノエイト或いはアゾビスイソブチリニトリルを用いる場合、例えば仕込み組成比が脱イオン水1000重量部、酢化度55%の酢酸セルロース30重量部、アクリロニトリル:酢酸ビニル=93:7の重量比のモノマー混合物70重量部のとき、重合温度は、好ましくは30〜150℃、よりが好ましく50〜80℃であり、重合時間は、好ましくは0.5〜12時間、よりが好ましくは3〜9時間である。
重合開始剤としてtert−ブチルヒドロパーオキサイドを用いる場合、例えば仕込み組成比が脱イオン水1000重量部、酢化度55%の酢酸セルロース25重量部、アクリロニトリル:酢酸ビニル=93:7の重量比のモノマー混合物75重量部のとき、重合温度は、好ましくは30〜150℃、より好ましくは50〜80℃であり、重合時間は、好ましくは0.5〜4時間である。また重合開始剤として過マンガン酸カリウムを用いる場合、例えば仕込み組成比が、脱イオン水1700重量部、硫酸40重量部、酢化度55%の酢酸セルロース20重量部、アクリロニトリル:酢酸ビニル=93:7の重量比のモノマー混合物80重量部のとき、重合温度は、好ましくは20〜60℃であり、重合時間は、好ましくは0.5〜30時間である。
また、重合系の安定性や取り扱い性を考慮した場合、これら重合開始剤は、アクリロニトリルの沸点(77.3℃)よりも低い温度で開始反応を起こさせることが好ましく、場合によっては、硫酸第一鉄等の重合開始助剤を併用してもよい。
本発明のポリマー組成物を製造する際の水系懸濁重合においては、重合開始剤がアクリロニトリルを主体とするビニル系モノマーに可溶であることにより、酢酸セルロース中にアクリロニトリル主体のビニル系モノマーが含浸する際に重合開始剤も共に浸透含浸しビニル系モノマーの重合が酢酸セルロース内で選択的に起こると推定しており、結果としてアセトン不溶の複合体が形成される。
本発明のポリマー組成物は、その構成のアセトン不溶の複合体が酢酸セルロースとアクリロニトリル系ポリマーの相溶性を著しく向上させることから、アクリロニトリル系ポリマーと共に、酢酸セルロースとアクリロニトリル系ポリマーの共通溶剤に溶解したときに、酢酸セルロースの溶解相をアクリロニトリル系ポリマーの溶解相に微分散させることができる。
また本発明のポリマー組成物を用い、アクリロニトリルを主成分とするアクリロニトリル系ポリマーと混合して得られる繊維は、機械的抵抗、例えば擦過等によりフィブリル化を生ぜず耐摩性能に優れ、耐熱性に優れる繊維を得ることができる。本発明のポリマー組成物には、更に耐候安定剤、抗菌剤、顔料、染料、制電剤、導電剤、防汚剤等を添加してもよく、また、本発明のポリマー組成物においては、その製造時に用いる酢酸セルロース、アクリロニトリル系ポリマーのそれぞれの変性度や組成比等に基づいた複合機能を繊維に付与することができる。本発明においては、本発明のポリマー組成物をアクリロニトリル系ポリマーと併用して繊維に賦型することにより、次のような新規な複合機能繊維を提供することができる。
本発明の複合繊維は、酢酸セルロース及び/又はセルロースとアクリロニトリルを主成分とするアクリロニトリル系ポリマーから実質的になる繊維であって、その繊維横断面において、酢酸セルロース及び/又はセルロースが島としてアクリロニトリル系ポリマーの海部中に分散している。酢酸セルロース及び/又はセルロースの分散相のサイズは、円換算平均粒径として200nm以下である。サイズが微小な方が好ましいが通常は20nm以上である。酢酸セルロース及び/又はセルロースがかかる分散相のサイズでアクリロニトリル系ポリマー中に分散していることによって、繊維の擦過等によるフィブリル化が著しく抑制された繊維となる。
また、本発明の前記複合機能繊維は、繊維に占める酢酸セルロース及び/又はセルロースが10〜50重量%、アクリロニトリル系ポリマーが90〜50重量%であることを特徴とするものである。酢酸セルロース及び/又はセルロースが10重量%未満、すなわちアクリロニトリル系ポリマーが90重量%を超えると、酢酸セルロースに基づく吸湿性、消臭性等を得ることができないだけでなく、後述する耐熱性の向上効果がなく、また酢酸セルロースが50重量%を超えると、繊維製造の際の紡糸でのノズル切れや、延伸切れが多発するために紡糸性が不良になると共に繊維物性が低下し紡績工程通過性が不良となる。
更にまた、本発明の前記複合繊維は、動的粘弾性の測定における少なくとも低温側の損失正接(tanδ)のピーク温度が120℃以上であるものである。これは、酢酸セルロースがnmレベルでアクリロニトリル系ポリマー中に分散していることによって得られる特性である。前述の本発明のポリマー組成物は、アクリロニトリル系ポリマーに対する酢酸セルロースの相溶性を極めて高めるものであるため、本発明のポリマー組成物をアクリロニトリル系ポリマーと共に共通溶剤に溶解する際にアクリロニトリル系ポリマー中に酢酸セルロースが分子レベルで相溶化する。このため、繊維に賦型したとき、アクリロニトリル系ポリマーを構成する分子の運動性を拘束することができ、複合繊維は向上した耐熱性を有する。
繊維の耐熱性を表す基本物性は、動的粘弾性の測定により損失正接(tanδ)で評価することができる。tanδは、分子の運動性を表す指標であり、動的粘弾性特性を測定したときの貯蔵弾性率E’と損失弾性率E”との比として、次式で定義される。
tanδ=E”/E’
一般に、アクリロニトリル系繊維のtanδのピークは100〜110℃付近に観察され、酢酸セルロース繊維のtanδのピークは200〜210℃付近に観察される。アクリロニトリル系ポリマーと酢酸セルロースを単に混合して複合化し繊維とすると、相分離しているそれぞれ相に基因する二つのtanδのピークが観察される。tanδのピーク温度が異なる成分を単に混合して相分離構造をとった場合には、組成比に応じて各々のピークの強度が変化するだけで、ピークの温度位置は変化しない。これに対し、各々の成分が互いに相溶化すると、他方の成分に近い方にピークの温度位置がシフトする。
本発明の複合機能繊維においては、アクリロニトリル系ポリマーに基因するtanδのピークは高温側に、酢酸セルロースに基因するtanδのピークは低温側にシフトする。すなわち、アクリロニトリル系ポリマー相に酢酸セルロースが一部相溶することによって、アクリロニトリル系ポリマー分子の運動性が拘束され、分子が運動するためには大きい熱エネルギーが必要となり、繊維の耐熱性が向上する。アクリロニトリル系ポリマー相に酢酸セルロースが完全に相溶した場合には、tanδのピークは組成比で決まる温度位置に合一化して観察される。本発明のポリマー組成物を用いた繊維の製造方法によれば、アクリロニトリル系ポリマーと酢酸セルロースの相溶性を格段に高めることができるので、アクリロニトリル系ポリマーに基因するtanδのピーク温度を120℃以上にシフトさせることができ、本発明の複合機能繊維は、動的粘弾性の測定における少なくとも低温側のtanδのピーク温度が120℃以上である繊維である。
なお、少なくとも低温側のtanδのピーク温度とは、tanδのピークが二つあるときは、低温側のピーク温度をいい、tanδのピークが一つに合一化されているときは、その合一化されたピーク温度をいう。
更にまた、本発明の複合機能繊維は、JIS P8121に準拠する方法により、ディスクリファイナー装置にてディスククリアランス0.05mm、ディスク回転数5000rpmの条件で繰り返し5回叩解処理後の濾水度R1と叩解処理前の濾水度R0との濾水度差ΔRが200以下であるという割繊し難くフィブリル化が抑制された耐摩性に優れた繊維である。これは、酢酸セルロースが微小レベルでアクリロニトリル系ポリマー中に分散していることによって得られる特性である。
本発明の複合繊維は、例えば次のようにして製造することができる。すなわち、前述の本発明のポリマー組成物と、アクリロニトリルを主成分とするアクリロニトリル系ポリマー(以下、併用アクリロニトリル系ポリマーという)とを、全体に占める酢酸セルロースが10〜40重量%、アクリロニトリル系ポリマー成分(ポリマー組成物に由来する成分と併用アクリロニトリル系ポリマーとの合計)が90〜60重量%となるように配合し、酢酸セルロースとアクリロニトリル系ポリマーとの共通溶剤に溶解して紡糸原液を調製し、この紡糸原液を用いて紡糸することにより本発明の複合繊維を得ることができる。紡糸原液の調製の際には、必要により更に酢酸セルロースを前記割合になる範囲で添加することもできる。
尚、併用アクリロニトリル系ポリマーは、アクリロニトリルを主体とするビニル系モノマーの重合物であり、アクリロニトリル単位を主成分、通常50重量%以上、好ましくは60重量%以上、より好ましくは85重量%以上含むアクリロニトリルのホモポリマー或いはコポリマーである。アクリロニトリルと共に用いうるビニル系モノマーとしては、「本発明のポリマー組成物」に関して説明したものと同様のものを挙げることができる。
紡糸原液を調製する際に用いる共通溶剤は、特に限定されるものではなく、無機溶剤、有機溶剤のいずれでもよいが、回収プロセス等を考慮すると、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の有機溶剤を用いることが好ましい。また、紡糸原液の濃度についても、特に制限はないが、生産性、紡糸安定性を考慮すると、紡糸原液中のポリマー濃度が10〜40重量%であるこどが好ましい。紡糸方法としては、アクリロニトリ系繊維の製造に用いられると同様の湿式紡糸法、乾湿式紡糸法、乾式紡糸法のいずれでの方式であってもよく、例えば湿式紡糸法にて紡糸する際は、調製された紡糸原液を溶剤と水とからなる凝固浴中へ吐出した後、凝固糸を2〜8倍に延伸し、80〜100℃の熱水中で脱溶剤、油剤付与、乾燥緻密化する工程をとることによって、また、乾湿式紡糸法の場合は、同紡糸原液を凝固浴とある一定の間隔に保たれたノズルからまず空気中に吐出した後、溶剤と水からなる凝固浴にて凝固させたのち脱溶剤、延伸、油剤付与、乾燥することによって本発明の複合機能繊維が得られる。
また、上記の手法で得られた複合繊維をアルカリ処理することにより、複合繊維中のセルロースアセテートをセルロース化することも可能であり、この場合複合繊維は酢酸セルロース及び/又はセルロースとアクリル系重合体からなる複合繊維となる。セルロース化の割合は、アルカリ処理の程度により、0〜100%の間で適宜変更することができる。尚、アルカリ処理によってモルフォロジーに変更はなく、繊維横断面で見たときにはじめに島として存在していた酢酸セルロースは、部分的または完全にセルロース化されても、アクリロニトリル系ポリマーの海部中に島として分散した状態にある。
本発明の複合繊維の形態は特に限定されるものでなく、ステープル、フィラメント、ショットカットファイバーなどいずれの形態でも良い。その断面形状についても円形、空豆状、楕円状、ドックボーン状、扁平状等のいずれであってもよく、特に制限はない。また、本発明の繊維は、主たるアクリロニトリル系ポリマーに由来する性能に加え、耐摩性に優れ、特に酢酸セルロースに由来する涼感、吸湿性、消臭性の他に、耐熱性に優れた複合機能を有するものである。
本発明の布帛は、酢酸セルロース及び/又はセルロース成分とアクリロニトリル系ポリマー成分とを含み、酢酸に対する消臭率が90%以上、ノネナールに対する消臭率が90%以上、且つマーチンデール法により摩擦回数5000回処理した際の重量減量率が1%以下である布帛である。この布帛は編物、織物、不織布としてセーター、肌着、靴下などの衣料品、毛布、カーペット、マット等の寝装品など各種繊維製品に用いることができる。酢酸あるいはノネナールに対する消臭率が90%未満の場合、臭気を完全に除去することができずその吸着能力は不十分である。また、マーチンデール法により摩擦回数5000回処理した際の布帛の重量減量率が1%を超える場合、摩擦下による布帛の外観変化が著しく、またピリングが発生しやすくなる傾向にあり、繊維製品の品位として不十分となる。
従来、酢酸セルロース及び/又はセルロース成分とアクリロニトリル系ポリマー成分とを含む布帛であって、このような消臭性と耐摩擦性の両方の優れた性質を有するものは全く知られていなかったものである。
本発明の布帛は、酢酸セルロース及び/又はセルロース成分を布帛全体の5重量%以上、好ましくは10重量%以上含有する。特に10重量%以上含有することにより、酸成分に対して優れた消臭性能を有することになる。また、酢酸セルロース成分は、耐磨粍性を考慮すると、布帛全体の50重量%以下であることが好ましい。
本発明の布帛は、具体的には、酢酸セルロース及び/又はセルロース成分とアクリロニトリル系ポリマー成分とを含有する繊維を含有することにより、より具体的には前述の本発明の複合繊維を布帛中に含有させることで得ることができる。従って、酢酸セルロース成分は、本発明の複合繊維に由来するもののみであることが好ましい。本発明の複合繊維を含有させる量は、布帛の用途に応じて適当量を含有させればよいが、消臭性能および耐摩耗性の観点から、前述の酢酸セルロース含有量となるように布帛中に含有させることが好ましい。また、布帛中のアクリロニトリル系ポリマー成分は、本発明の複合繊維に由来するものと、この複合繊維と併用する通常のアクリル繊維に由来するものの合計である。アクリロニトリル系ポリマー成分の含有量としては、布帛全体の10〜90重量%である。尚、ここでいう「アクリロニトリル系ポリマー成分」は、組成物に関して説明した「アクリロニトリル系ポリマー成分」と同義である。
酢酸セルロース及び/又はセルロース成分とアクリロニトリル系ポリマー成分の量が前述の範囲を満たしていれば、本発明の布帛に、綿、ウール等の天然繊維、通常アクリル繊維、ポリエステル繊維、レーヨン繊維などの合成繊維もしくは半合成繊維等のその他の繊維を含めることができる。発色性および嵩高性を求める場合には、アクリロニトリル系ポリマー成分の含有量を多くし、吸湿性を重要視する場合には綿を含める等、布帛の目的に合わせて決めることができる。
In the polymer composition of the present invention, an acetone-insoluble complex of cellulose acetate and acrylonitrile-based polymer and cellulose acetate that can be separated from the complex (that is, acetone-soluble) are in a mixed state. Since this polymer composition is obtained by suspension polymerization of a mixture of cellulose acetate and acrylonitrile-based vinyl monomer, cellulose acetate used for suspension polymerization is from the viewpoint of solubility in a solvent and physical properties of fibers. Cellulose acetate having an acetylation degree of 48 to 63% is preferable, and cellulose acetate selected from cellulose diacetate having an acetylation degree of 48 to 56% and cellulose triacetate having an acetylation degree of 56 to 63% is particularly preferable.
The vinyl monomer mainly composed of acrylonitrile is a vinyl monomer containing acrylonitrile usually at 50% by weight or more, preferably 60% by weight or more, more preferably 85% by weight or more. The acrylonitrile-based polymer component in the polymer composition of the present invention is a polymer of a vinyl-based monomer mainly composed of acrylonitrile, and has an acrylonitrile unit as a main component, usually 50% by weight or more, preferably 60% by weight or more, more preferably 85 It is a homopolymer or copolymer of acrylonitrile containing at least% by weight.
Examples of vinyl monomers that can be used with acrylonitrile include acrylic acid, methacrylic acid, their alkyl esters, vinyl acetate, acrylamide, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, glycidyl methacrylate, glycidyl acrylate, sodium allyl sulfonate, and styrene. Sodium sulfonate etc. are mentioned, These may be individual or may be combined 2 or more types. In particular, vinyl acetate and methyl acrylate are preferably used in terms of quality and cost.
The polymer composition of the present invention comprises 20 to 100% by weight of an acetone insoluble complex containing a cellulose acetate component and an acrylonitrile-based polymer component and 80 to 0% by weight of cellulose acetate, preferably 25 to 90% by weight of an acetone insoluble complex. And a mixture of 75 to 10% by weight of cellulose acetate. And it is necessary that the cellulose acetate which occupies for this composite is 10 to 70% by weight and the acrylonitrile polymer is 90 to 30% by weight. Acetone-insoluble composites are polymerized in the process of polymerization of acrylonitrile-based vinyl monomers, with the monomers impregnated in cellulose acetate, and the cellulose acetate molecular chains and acrylonitrile-based polymer molecular chains are entangled with each other. Insoluble in acetone, which is a solvent for cellulose acetate, is soluble in an acrylonitrile-based polymer solvent, and the polymer composition of the present invention is an acrylonitrile-based solvent. It dissolves well in a common solvent for polymer and cellulose acetate.
When the acetone-insoluble complex in the polymer composition is less than 20% by weight or the cellulose acetate in the complex is less than 10% by weight or more than 70% by weight, the cellulose acetate and the acrylonitrile-based polymer in the spinning dope Therefore, it is likely to be difficult to suppress fibrillation due to rubbing of the obtained fiber and further to obtain heat resistance.
The polymer composition of the present invention is mainly composed of a mixture of cellulose acetate and a vinyl monomer mainly composed of acrylonitrile at a ratio of 0.5 to 10% by weight, preferably 1 to 5% by weight, based on cellulose acetate. It can be produced by aqueous suspension polymerization using a polymerization initiator soluble in a vinyl monomer.
The polymerization initiator soluble in the vinyl monomer used in the production of the polymer composition of the present invention is preferably an organic peroxide such as tert-butylperoxy-2-ethylhexanoate or tert-butylhydroperoxide. Examples thereof include oxides, azobis compounds such as azobisisobutyronitrile, potassium permanganate, and the like, and organic peroxides and azobis compounds are preferably used in that impurities such as metal ions do not remain in the product. . The amount of the polymerization initiator used varies depending on the type of polymerization initiator, polymerization conditions, etc., but is preferably 0.001 to 30 parts by weight, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer. Part.
In the aqueous suspension polymerization in the production of the polymer composition of the present invention, for example, a vinyl monomer mainly composed of acrylonitrile added with a polymerization initiator is added to a dispersion in which cellulose acetate is dispersed in water such as deionized water. Then, the monomer is polymerized by appropriately heating to an appropriate temperature for a predetermined time under stirring. The polymerization product is washed with water as appropriate, dehydration is repeated, unreacted monomers are removed, and the mixture is dried to form only an acetone-insoluble complex, or acetic acid that is not involved in the formation of the acetone-insoluble complex and this complex. A polymer composition comprising cellulose is obtained.
Although the polymerization conditions vary depending on the type of polymerization initiator and the charged composition ratio, an acetone-insoluble complex composed of cellulose acetate and an acrylonitrile-based polymer, 20 to 100% by weight, and a cellulose acetate 80 to 0% by weight polymer composition, In order to do so, an example of conditions in a polymerization initiator that is preferably used is shown below.
When tert-butylperoxy-2-ethylhexanoate or azobisisobutyronitrile is used as the polymerization initiator, for example, the charged composition ratio is 1000 parts by weight of deionized water, 30 parts by weight of cellulose acetate having an acetylation degree of 55%, When 70 parts by weight of the monomer mixture having a weight ratio of acrylonitrile: vinyl acetate = 93: 7, the polymerization temperature is preferably 30 to 150 ° C., more preferably 50 to 80 ° C., and the polymerization time is preferably 0.5. -12 hours, more preferably 3-9 hours.
When tert-butyl hydroperoxide is used as the polymerization initiator, for example, the charged composition ratio is 1000 parts by weight of deionized water, 25 parts by weight of cellulose acetate having an acetylation degree of 55%, and the weight ratio of acrylonitrile: vinyl acetate = 93: 7. When the monomer mixture is 75 parts by weight, the polymerization temperature is preferably 30 to 150 ° C, more preferably 50 to 80 ° C, and the polymerization time is preferably 0.5 to 4 hours. When potassium permanganate is used as the polymerization initiator, for example, the charge composition ratio is 1700 parts by weight of deionized water, 40 parts by weight of sulfuric acid, 20 parts by weight of cellulose acetate having an acetylation degree of 55%, acrylonitrile: vinyl acetate = 93: When the weight ratio of the monomer mixture is 7 parts by weight, the polymerization temperature is preferably 20 to 60 ° C., and the polymerization time is preferably 0.5 to 30 hours.
In consideration of the stability and handleability of the polymerization system, these polymerization initiators preferably cause an initiation reaction at a temperature lower than the boiling point of acrylonitrile (77.3 ° C.). A polymerization initiation assistant such as ferrous iron may be used in combination.
In the aqueous suspension polymerization for producing the polymer composition of the present invention, the polymerization initiator is soluble in a vinyl monomer mainly containing acrylonitrile, so that cellulose acetate is impregnated with vinyl monomer mainly containing acrylonitrile. In this case, it is presumed that the polymerization initiator is also impregnated and impregnated so that the polymerization of the vinyl monomer selectively occurs in the cellulose acetate, and as a result, an acetone-insoluble complex is formed.
The polymer composition of the present invention was dissolved in a common solvent of cellulose acetate and acrylonitrile polymer together with acrylonitrile polymer because the acetone-insoluble complex of the composition significantly improved the compatibility of cellulose acetate and acrylonitrile polymer. Sometimes, the cellulose acetate solution phase can be finely dispersed in the acrylonitrile polymer solution phase.
Further, the fiber obtained by mixing with the acrylonitrile-based polymer mainly composed of acrylonitrile using the polymer composition of the present invention has excellent abrasion resistance and excellent heat resistance without causing fibrillation due to mechanical resistance, for example, abrasion. Fiber can be obtained. In the polymer composition of the present invention, a weathering stabilizer, antibacterial agent, pigment, dye, antistatic agent, conductive agent, antifouling agent, etc. may be further added. In the polymer composition of the present invention, A composite function based on the degree of modification and composition ratio of cellulose acetate and acrylonitrile polymer used in the production can be imparted to the fiber. In the present invention, the following novel composite functional fiber can be provided by shaping the polymer composition of the present invention in combination with an acrylonitrile-based polymer into a fiber.
The composite fiber of the present invention is a fiber substantially composed of cellulose acetate and / or an acrylonitrile-based polymer mainly composed of cellulose and acrylonitrile, and cellulose acetate and / or cellulose is used as an island in the fiber cross section. Dispersed in the sea of polymer. The size of the dispersed phase of cellulose acetate and / or cellulose is 200 nm or less as a circle-equivalent average particle diameter. Although a smaller size is preferable, it is usually 20 nm or more. By dispersing cellulose acetate and / or cellulose in the acrylonitrile-based polymer in the size of such a dispersed phase, a fiber in which fibrillation due to fiber rubbing or the like is remarkably suppressed is obtained.
The composite functional fiber of the present invention is characterized in that cellulose acetate and / or cellulose occupying the fiber is 10 to 50% by weight, and acrylonitrile-based polymer is 90 to 50% by weight. When cellulose acetate and / or cellulose is less than 10% by weight, that is, when acrylonitrile-based polymer exceeds 90% by weight, not only moisture absorption and deodorization based on cellulose acetate can be obtained, but also the heat resistance described later is improved. If there is no effect, and cellulose acetate exceeds 50% by weight, the nozzles during spinning during fiber production and the draw breaks occur frequently, resulting in poor spinnability and poor fiber properties and passability in the spinning process. Becomes defective.
Furthermore, the composite fiber of the present invention has a peak temperature of at least a low temperature loss tangent (tan δ) of 120 ° C. or higher in the measurement of dynamic viscoelasticity. This is a characteristic obtained by dispersing cellulose acetate in an acrylonitrile-based polymer at the nm level. The above-described polymer composition of the present invention greatly enhances the compatibility of cellulose acetate with the acrylonitrile-based polymer. Therefore, when the polymer composition of the present invention is dissolved together with the acrylonitrile-based polymer in a common solvent, the acrylonitrile-based polymer is incorporated into the acrylonitrile-based polymer. Cellulose acetate is compatibilized at the molecular level. For this reason, when shape | molded to a fiber, the mobility of the molecule | numerator which comprises an acrylonitrile-type polymer can be restrained, and composite fiber has the improved heat resistance.
The basic physical properties representing the heat resistance of the fiber can be evaluated by loss tangent (tan δ) by measuring dynamic viscoelasticity. tan δ is an index representing the mobility of the molecule, and is defined as the ratio between the storage elastic modulus E ′ and the loss elastic modulus E ″ when the dynamic viscoelastic property is measured.
tan δ = E ″ / E ′
In general, the tan δ peak of acrylonitrile fiber is observed around 100 to 110 ° C., and the tan δ peak of cellulose acetate fiber is observed around 200 to 210 ° C. When an acrylonitrile-based polymer and cellulose acetate are simply mixed to form a composite fiber, two tan δ peaks attributed to the phases that are phase-separated are observed. When components having different tan δ peak temperatures are simply mixed to form a phase separation structure, the intensity of each peak changes according to the composition ratio, and the peak temperature position does not change. On the other hand, when each component becomes compatible with each other, the peak temperature position shifts closer to the other component.
In the composite functional fiber of the present invention, the tan δ peak due to the acrylonitrile polymer shifts to the high temperature side, and the tan δ peak due to cellulose acetate shifts to the low temperature side. That is, when cellulose acetate partially dissolves in the acrylonitrile-based polymer phase, the mobility of the acrylonitrile-based polymer molecule is restricted, so that a large amount of heat energy is required for the molecule to move, and the heat resistance of the fiber is improved. . When cellulose acetate is completely compatible with the acrylonitrile polymer phase, the peak of tan δ is observed at the temperature position determined by the composition ratio. According to the fiber production method using the polymer composition of the present invention, the compatibility between the acrylonitrile polymer and cellulose acetate can be remarkably increased, so that the tan δ peak temperature caused by the acrylonitrile polymer is 120 ° C. or higher. The composite functional fiber of the present invention that can be shifted is a fiber having a tan δ peak temperature of 120 ° C. or higher at least on the low temperature side in the measurement of dynamic viscoelasticity.
Note that at least the peak temperature of tan δ on the low temperature side refers to the peak temperature on the low temperature side when there are two tan δ peaks, and when the tan δ peaks are united, Refers to the peak temperature.
Furthermore, the composite functional fiber of the present invention is beaten with a freeness R1 after beating repeatedly 5 times in a disc refiner apparatus under the conditions of a disc clearance of 0.05 mm and a disc rotation speed of 5000 rpm by a method in accordance with JIS P8121. It is a fiber excellent in abrasion resistance in which the freeness difference ΔR with the freeness R0 before the treatment is 200 or less and the fiber formation is difficult and the fibrillation is suppressed. This is a characteristic obtained by dispersing cellulose acetate in an acrylonitrile-based polymer at a minute level.
The conjugate fiber of the present invention can be produced, for example, as follows. That is, the above-described polymer composition of the present invention and an acrylonitrile-based polymer containing acrylonitrile as a main component (hereinafter referred to as a combined acrylonitrile-based polymer) are composed of 10 to 40% by weight of cellulose acetate, acrylonitrile-based polymer component ( The total amount of the components derived from the polymer composition and the combined acrylonitrile polymer) is 90 to 60% by weight, dissolved in a common solvent of cellulose acetate and acrylonitrile polymer to prepare a spinning dope, The conjugate fiber of the present invention can be obtained by spinning using a spinning solution. In the preparation of the spinning dope, cellulose acetate can be further added within the above range if necessary.
The combined acrylonitrile-based polymer is a polymer of a vinyl monomer mainly composed of acrylonitrile, and acrylonitrile containing acrylonitrile units as a main component, usually 50% by weight or more, preferably 60% by weight or more, more preferably 85% by weight or more. Homopolymers or copolymers of Examples of the vinyl-based monomer that can be used with acrylonitrile include the same monomers as those described for the “polymer composition of the present invention”.
The common solvent used for preparing the spinning dope is not particularly limited and may be either an inorganic solvent or an organic solvent. However, in consideration of the recovery process, etc., organic solvents such as dimethylformamide, dimethylacetamide, and dimethylsulfoxide Is preferably used. The concentration of the stock solution for spinning is not particularly limited, but in consideration of productivity and spinning stability, the polymer concentration in the stock solution for spinning is preferably 10 to 40% by weight. The spinning method may be any of the same wet spinning method, dry wet spinning method, and dry spinning method as used for the production of acrylonitrile fibers. For example, when spinning by the wet spinning method, After the prepared spinning solution is discharged into a coagulation bath composed of a solvent and water, the coagulated yarn is stretched 2 to 8 times, removed in hot water at 80 to 100 ° C., oiled, and dried and densified. In the case of the dry-wet spinning method, the spinning solution is first discharged into the air from a nozzle that is kept at a certain distance from the coagulation bath, and then in a coagulation bath consisting of a solvent and water. After coagulation, the composite functional fiber of the present invention is obtained by removing the solvent, stretching, applying an oil agent, and drying.
It is also possible to celluloseize the cellulose acetate in the composite fiber by subjecting the composite fiber obtained by the above method to alkali treatment. In this case, the composite fiber is cellulose acetate and / or cellulose and an acrylic polymer. It becomes the composite fiber which consists of. The ratio of celluloseification can be appropriately changed between 0 to 100% depending on the degree of alkali treatment. There is no change in morphology due to alkali treatment, and cellulose acetate that was initially present as an island when viewed in the cross section of the fiber is an island in the sea part of the acrylonitrile-based polymer even if it is partially or completely celluloseized. It is in a distributed state.
The form of the composite fiber of the present invention is not particularly limited, and any form such as staple, filament, and shot cut fiber may be used. The cross-sectional shape may be any of a circular shape, an empty bean shape, an elliptical shape, a dock bone shape, a flat shape, and the like, and there is no particular limitation. In addition to the performance derived from the main acrylonitrile-based polymer, the fiber of the present invention is excellent in abrasion resistance, and in particular, has a composite function excellent in heat resistance in addition to coolness, moisture absorption and deodorization derived from cellulose acetate. I have it.
The fabric of the present invention contains cellulose acetate and / or a cellulose component and an acrylonitrile-based polymer component, has a deodorization rate of 90% or more with respect to acetic acid, a deodorization rate with respect to Nonenal of 90% or more, and a friction frequency of 5000 by the Martindale method. It is a fabric having a weight loss rate of 1% or less upon repeated processing. This fabric can be used as a knitted fabric, a woven fabric or a non-woven fabric for various textile products such as clothing such as sweaters, underwear and socks, and bedding such as blankets, carpets and mats. If the deodorization rate for acetic acid or nonenal is less than 90%, the odor cannot be completely removed and its adsorption capacity is insufficient. In addition, when the weight loss rate of the fabric when the number of frictions is processed 5000 times by the Martindale method exceeds 1%, the appearance change of the fabric due to friction is prominent, and pilling tends to easily occur. It becomes insufficient as the quality.
Conventionally, a cloth containing cellulose acetate and / or a cellulose component and an acrylonitrile-based polymer component, which has such excellent properties of both deodorizing properties and friction resistance, has never been known. is there.
The fabric of the present invention contains cellulose acetate and / or a cellulose component in an amount of 5% by weight or more, preferably 10% by weight or more based on the entire fabric. In particular, by containing 10% by weight or more, it has excellent deodorizing performance with respect to the acid component. In addition, the cellulose acetate component is preferably 50% by weight or less of the entire fabric in consideration of abrasion resistance.
Specifically, the fabric of the present invention contains cellulose acetate and / or fibers containing a cellulose component and an acrylonitrile-based polymer component, and more specifically, the above-described composite fiber of the present invention is incorporated into the fabric. It can be obtained by containing. Accordingly, the cellulose acetate component is preferably only derived from the composite fiber of the present invention. The amount of the composite fiber of the present invention may be an appropriate amount depending on the use of the fabric. From the viewpoint of deodorizing performance and wear resistance, the amount of cellulose acetate in the fabric is adjusted to the above-mentioned content. It is preferable to make it contain. The acrylonitrile-based polymer component in the fabric is the total of those derived from the composite fiber of the present invention and those derived from ordinary acrylic fiber used in combination with this composite fiber. The content of the acrylonitrile-based polymer component is 10 to 90% by weight of the entire fabric. The “acrylonitrile-based polymer component” mentioned here has the same meaning as the “acrylonitrile-based polymer component” described for the composition.
If the amount of cellulose acetate and / or cellulose component and acrylonitrile-based polymer component satisfies the above range, the fabric of the present invention is synthesized with natural fibers such as cotton and wool, usually acrylic fibers, polyester fibers, rayon fibers, etc. Other fibers such as fibers or semi-synthetic fibers can be included. When color development and bulkiness are required, the content of the acrylonitrile-based polymer component can be increased, and when emphasizing hygroscopicity, cotton can be included so as to be determined according to the purpose of the fabric.

以下、本発明を実施例により具体的に説明する。なお、実施例における評価方法は次のとおりである。
(アセトン不溶の複合体量の測定)
懸濁重合して得られたポリマー組成物を凍結粉砕後、アセトンに濃度1重量%になるように攪拌溶解した。この溶液を遠心分離により、沈殿物と上澄み液に分離、乾燥して、アセトン不溶の複合体の量を求めた。なお、ポリマー組成物中の複合体以外の複合体の形成に関与しない酢酸セルロースの量は複合体の量から逆算して求められる。
(アセトン不溶の複合体の組成分析)
アセトン不溶の複合体を重水素化ジメチルスルホキシドに4重量%濃度になるよう溶解し、1H−NMR測定から酢酸セルロースとアクリロニトリル系ポリマーとの割合を算出した。
(相溶性評価)
ポリマー組成物とアクリロニトリル系ポリマーとを、濃度18重量%になるように溶剤に攪拌溶解した。この溶液をガラス板に少量はさみ、位相差顕微鏡により相溶状態を観察した。観察データを画像処理ソフト(Image Pro Plus)で解析し、相分離サイズ(μm)を算出した。
(消臭性評価)
消臭評価の臭気成分として、カルボン酸の代表臭気であるイソ吉草酸と酢酸、およびアルデヒド化合物であるノネナール(C19O)を選定した。気温20℃、湿度65%RH環境下に24時間静置した試料1gを、イソ吉草酸あるいは酢酸のガス濃度が50ppmになるように調整した370mLの三角フラスコの中に封入し、1時間放置後に検知管(北川式ガス検知器)にてフラスコ内のガス濃度を測定した。対象として、試料が未封入である以外は同様の測定を行い、1時間放置後のフラスコ内のガス濃度を求めた。消臭率は、対象ガス濃度に対する試料封入のガス濃度の割合から算出した。
(吸湿性評価)
試料約5gを、40℃、90%RHの環境下に24時間放置後、採取し、その質量及び絶乾質量を測り、下記式によって吸湿率Aa(%)を算出した。同様に、20℃、65%RHの環境下とする以外は評価方法が同じである吸湿率Ab(%)も下記式によって算出した。
吸湿率Aa又はAb(%)=〔(採取時の質量−絶乾質量)/絶乾質量〕×100
(フィブリル化の評価手法)
下記に示すディスクリファイナーによる叩解処理後の濾水度評価にて行った。濾水度評価は、得られたトウ状繊維を長さ3mmのフロック状にした後、そのカットフロックを固形分6重量%となるように水中に分散させ、この液をディスクリファイナー装置(熊谷理機工業(株)製KRK高濃度ディスクリファイナーNo2500−I型)を用い、ディスククリアランス0.05mm、ディスク回転数5000rpmにて処理する。これを数回繰り返し、その処理液をJIS P8121のカナダ標準ろ水度試験方法に準じてその濾水度を測定した。このディスクリファイナーによる叩解処理前の濾水度をR0、5回繰り返し叩解処理後の濾水度をR1とし、その濾水度差ΔR(=R0−R1)を求めた。このΔRの数値が低い程いわゆる繊維が割繊し難くフィブリル化抑制効果が大きいと判断できる。
(繊維横断面中の酢酸セルロースの分散性評価)
得られた複合機能繊維を繊維軸と直角方向にミクロトームによって切断して切片を得、四酸化ルテニウムの蒸気により室温で10分間染色し、染色片をTEM観察し、酢酸セルロースの分散相のサイズ(nm)を測定した。分散相サイズの計測には画像処理ソフト(Image Pro Plus)を用い、少なくとも100個の分散相について個々の分散相の面積から円相当の径を求め平均値を算出した。
(耐熱性評価)
得られた複合機能繊維(約200dtex)を採取して、たるみのないように揃え、セイコー(株)製DMS200を用い、試験長さ20mm、周波数10Hz、昇温速度2℃/分で室温〜250℃の温度範囲の動的粘弾性を測定し、ポリアクリロニトリル系ポリマーに基因する少なくとも低温側に位置するtanδのピーク温度を求めた。
(摩擦による布帛減量率の評価)
JIS−L−1096(マーチンデール法、標準摩粍布、9.0KPa)に従い試験を実施。マーチンデール摩耗試験機による5000回処理後の試験布減量率を評価した。
Wa:処理前の布帛の重量
Wb:マーチンデール5000回処理後の布帛の重量
布帛減量率 R(%)=(Wa−Wb)/Wa ×100
(試着試験による評価)
被験者5名による着用テストを実施し、12時間着用後の外観変化を評価した。判定は以下の基準に従い2段階で行った。
外観変化なし・・・○
白化現象が発生・・・×
Hereinafter, the present invention will be specifically described by way of examples. In addition, the evaluation method in an Example is as follows.
(Measurement of the amount of complex insoluble in acetone)
The polymer composition obtained by suspension polymerization was freeze-ground and dissolved in acetone to a concentration of 1% by weight. This solution was separated into a precipitate and a supernatant by centrifugation and dried, and the amount of the acetone-insoluble complex was determined. In addition, the amount of cellulose acetate that is not involved in the formation of a complex other than the complex in the polymer composition is obtained by calculating backward from the amount of the complex.
(Composition analysis of acetone insoluble complex)
The acetone-insoluble complex was dissolved in deuterated dimethyl sulfoxide to a concentration of 4% by weight, and the ratio of cellulose acetate and acrylonitrile-based polymer was calculated from 1H-NMR measurement.
(Compatibility evaluation)
The polymer composition and the acrylonitrile-based polymer were stirred and dissolved in a solvent so as to have a concentration of 18% by weight. A small amount of this solution was sandwiched between glass plates, and the compatibility state was observed with a phase contrast microscope. The observation data was analyzed with image processing software (Image Pro Plus), and the phase separation size (μm) was calculated.
(Deodorization evaluation)
As odor components for deodorization evaluation, isovaleric acid and acetic acid, which are typical odors of carboxylic acid, and nonenal (C 6 H 19 O), which is an aldehyde compound, were selected. 1 g of a sample that was allowed to stand for 24 hours in an environment with an air temperature of 20 ° C. and a humidity of 65% RH was sealed in a 370 mL Erlenmeyer flask adjusted to have a gas concentration of isovaleric acid or acetic acid of 50 ppm, and left for 1 hour. The gas concentration in the flask was measured with a detector tube (Kitakawa gas detector). As a target, the same measurement was performed except that the sample was not sealed, and the gas concentration in the flask after being left for 1 hour was determined. The deodorization rate was calculated from the ratio of the gas concentration in the sample to the target gas concentration.
(Hygroscopic evaluation)
About 5 g of a sample was allowed to stand in an environment of 40 ° C. and 90% RH for 24 hours and then collected. The mass and the absolute dry mass were measured, and the moisture absorption Aa (%) was calculated by the following formula. Similarly, the moisture absorption rate Ab (%), which is the same evaluation method except that the environment is 20 ° C. and 65% RH, was also calculated by the following formula.
Moisture absorption Aa or Ab (%) = [(mass at the time of collection−absolute dry mass) / absolute dry mass] × 100
(Evaluation method for fibrillation)
The freeness was evaluated after beating with a disc refiner shown below. The freeness was evaluated by making the obtained tow-like fiber into a floc shape having a length of 3 mm, and then dispersing the cut floc in water to a solid content of 6% by weight. Using a KRK high-concentration disk refiner No. 2500-I type manufactured by Kikai Kogyo Co., Ltd., processing is performed at a disk clearance of 0.05 mm and a disk rotation speed of 5000 rpm. This was repeated several times, and the freeness of the treated liquid was measured according to the Canadian standard freeness test method of JIS P8121. The freeness before beating by this disc refiner was R0, and the freeness after beating repeatedly 5 times was R1, and the freeness difference ΔR (= R0−R1) was determined. It can be determined that the lower the numerical value of ΔR, the more so-called fibers are difficult to split and the greater the effect of suppressing fibrillation.
(Dispersibility evaluation of cellulose acetate in the fiber cross section)
The obtained composite functional fiber was cut with a microtome in a direction perpendicular to the fiber axis to obtain a section, dyed with ruthenium tetroxide vapor at room temperature for 10 minutes, the stained piece was observed with a TEM, and the size of the dispersed phase of cellulose acetate ( nm). For the measurement of the dispersed phase size, image processing software (Image Pro Plus) was used, and for at least 100 dispersed phases, a diameter corresponding to a circle was obtained from the area of each dispersed phase, and an average value was calculated.
(Heat resistance evaluation)
The obtained composite functional fiber (about 200 dtex) was collected and arranged so as not to sag, and using a DMS200 manufactured by Seiko Co., Ltd., a test length of 20 mm, a frequency of 10 Hz, and a heating rate of 2 ° C./min. The dynamic viscoelasticity in the temperature range of ° C. was measured, and the peak temperature of tan δ located at least on the low temperature side due to the polyacrylonitrile-based polymer was determined.
(Evaluation of fabric weight loss due to friction)
The test was carried out according to JIS-L-1096 (Martindale method, standard cloth, 9.0 KPa). The weight loss rate of the test cloth after 5000 times treatment by the Martindale abrasion tester was evaluated.
Wa: Weight of fabric before treatment Wb: Weight of fabric after 5000 times treatment of Martindale Fabric weight loss rate R (%) = (Wa−Wb) / Wa × 100
(Evaluation by fitting test)
A wearing test was conducted by five test subjects, and the appearance change after 12 hours of wearing was evaluated. Judgment was performed in two stages according to the following criteria.
No change in appearance ... ○
Whitening occurs ... ×

酢酸セルロース(酢化度55%)(ダイセル(株)製セルロースジアセテートMIフレーク)100重量部を脱イオン水5500重量部中に分散させ、1N−硫酸2000重量部と重合開始剤の過マンガン酸カリウム0.3重量%水溶液1000重量部とを添加してpH1.5とし、50℃で約60分間保持した。次いでアクリロニトリル(AN):酢酸ビニル(VA)=90:10の重量比のモノマー混合物400重量部を添加し、撹拌下に表1に示す条件で水系懸濁重合した後、チオ尿素を過マンガン酸カリウムの10倍モル添加して、残存している過マンガン酸カリウムを還元し、得られた生成物を水洗、脱水を繰返した後、70℃で乾燥を行い、表1に示すアセトン不溶の複合体と酢酸セルロースからなるポリマー組成物を得た。

Figure 0005016786
100 parts by weight of cellulose acetate (acetylation degree 55%) (cellulose diacetate MI flakes manufactured by Daicel Corporation) is dispersed in 5500 parts by weight of deionized water, 2000 parts by weight of 1N-sulfuric acid and permanganic acid as a polymerization initiator. The solution was adjusted to pH 1.5 by adding 1000 parts by weight of a 0.3% by weight aqueous solution of potassium and kept at 50 ° C. for about 60 minutes. Next, 400 parts by weight of a monomer mixture having a weight ratio of acrylonitrile (AN): vinyl acetate (VA) = 90: 10 was added, and after aqueous suspension polymerization under the conditions shown in Table 1 with stirring, thiourea was converted to permanganic acid. 10 times mole of potassium is added to reduce the remaining potassium permanganate, and the resulting product is washed with water and repeatedly dehydrated, followed by drying at 70 ° C., and the acetone-insoluble composites shown in Table 1 The polymer composition which consists of a body and a cellulose acetate was obtained.
Figure 0005016786

表1に示す条件で水系懸濁重合した以外は、実施例1と同様にして、残存している過マンガン酸カリウムを還元し、得られた生成物を水洗、脱水を繰返した後、乾燥を行ったところ、表1に示すアセトン不溶の複合体と酢酸セルロースからなるポリマー組成物を得ることができた。  Except for the aqueous suspension polymerization under the conditions shown in Table 1, the remaining potassium permanganate was reduced in the same manner as in Example 1, and the resulting product was washed with water, dehydrated repeatedly, and then dried. As a result, a polymer composition comprising an acetone-insoluble complex and cellulose acetate shown in Table 1 could be obtained.

酢酸セルロース(酢化度55%)(ダイセル(株)製セルロースジアセテートMIフレーク)60重量部、脱イオン水2000重量部、重合開始剤としてtert−ブチルヒドロパーオキサイド2.9重量部を3Lセパラブルフラスコ中にて混合し30℃で1時間攪拌保持した後、70℃に昇温し、次いで助剤として硫酸第一鉄0.001重量部とロンガリット1重量部を添加し、30分保持した後、ANモノマー140重量部を1時間かけて添加した。70℃で4時間懸濁重合した後、得られた生成物を水洗、脱水を繰返した後70℃で乾燥を行い、表2に示すアセトン不溶の複合体と未反応の酢酸セルロースからなるポリマー組成物を得た。後述する実施例4〜7で得られた組成物についての組成も併せて表2に示す。

Figure 0005016786
得られたポリマー組成物とAN93重量%、VA7重量%のAN系ポリマーとを、混合物中の酢酸セルロースが30重量%になるようにポリマー組成物100重量部に対しAN系ポリマー148.3重量部の比で混合し、更に濃度18重量%になるようにジメチルアセトアミドに溶解して紡糸原液を調製し、紡糸原液における相溶性を評価した。その後、この紡糸原液を用い湿式紡糸法により、孔径60μm、孔数1000のノズルを用いて、浴温40℃、ジメチルアセトアミド40重量%水溶液の凝固浴中に吐出した後、凝固糸を湿熱下で5倍に延伸し、熱水中での脱溶剤、油剤付与、乾燥緻密化を行い、更に135℃の加圧蒸気内で緩和処理を行い、単繊維繊度4dtexのトウ状の繊維を得た。
得られた繊維を長さ3mmのフロック状にした後、ディスクリファイナーによる濾水度測定によるフィブリル化の評価手法にしたがい、叩解処理前の濾水度(R0)、繰り返し5回叩解処理後の濾水度(R1)、その濾水度差ΔRを求めた。またその繊維断面での酢酸セルロースの分散相サイズ、耐熱性を測定し、その結果を表3に示した。後述する実施例4〜7についての結果も併せて表3に示す。
Figure 0005016786
表3に示すとおり、紡糸原液は、相分離サイズが小さく相溶性の良好なるものである。またこの紡糸原液を用いて紡糸して得られた繊維は、ディスクリファイナー評価での濾水度差ΔRの値が極めて小さく耐磨耗性が著しく向上している。その繊維横断面において酢酸セルロースが微小な島として分散していることが判る。また耐熱性評価によれば、得られた繊維は、動的粘弾性の測定によるtanδのピーク温度が高くなっており、耐熱性が向上したものであった。以上の評価は、後述する実施例4〜8についても言えることである。 <比較例1〜5>
表4に示す組成比のAN系ポリマー(AN93重量%、VA7重量%)と酢酸セルロース(酢化度55%)(ダイセル(株)製セルロースジアセテートMIフレーク)とブロックコポリマーの混合物を、濃度22重量%になるようにジメチルアセトアミドに溶解し紡糸原液を調製し、その後は実施例3と同様の条件にて湿式紡糸を行い、単繊維繊度4dtexのトウ状の繊維を得た。なお、ブロックコポリマーは、アクリロニトリル系ポリマーに親和性のあるセグメントと酢酸セルロースに親和性のあるセグメントを有するものであり、以下の方法で調製したものを用いた。
Figure 0005016786
(ブロックコポリマーの調製)
乳化剤(花王アトラス(株)製レベノールWz)4g、ロンガリット1.2g、硫酸第一鉄0.003gを含む脱イオン水400gを反応容器に入れ、次いで温度を40℃に保持し、窒素置換を行った。これにメタクリル酸メチル90gと2−ヒドロキシエチルメタクリレート10gにシクロヘキサノンパーオキサイド1.5gを溶解した溶液及びレベノールWz6gを含む水溶液100gを別々に90分かけて滴下し、第1段重合を行った。次いで2段階目として得られた乳化液にAN90g、VA10g、脱イオン水700gを入れ、温度を70℃に上げて3時間攪拌した。得られた重合液を濾過、水洗、乾燥を行うことによりブロックコポリマーを得た。
比較例1〜5にて得られた繊維を、フィブリル化の評価手法にしたがい、その濾水度差ΔRを求め、その結果を表5に実施例3の結果とともに示した。また、比較例1〜5により得られた繊維の酢酸消臭性、吸湿性の評価を行い、その結果を表5に示した。表5によれば、比較例1〜5による繊維は、実施例3による繊維と比べて明らかなように、紡糸原液での相分離サイズが大きく、フィブリル化し易いので耐摩性に劣り、また耐熱性も全く向上しないものであり、更に消臭性、吸湿性にも劣るものであり、複合機能を有する繊維ではなかった。
Figure 0005016786
60 parts by weight of cellulose acetate (acetylation degree 55%) (cellulose diacetate MI flakes manufactured by Daicel Corp.), 2000 parts by weight of deionized water, and 2.9 parts by weight of tert-butyl hydroperoxide as a polymerization initiator After mixing in a bull flask and stirring and holding at 30 ° C. for 1 hour, the temperature was raised to 70 ° C. Then, 0.001 part by weight of ferrous sulfate and 1 part by weight of Rongalite were added as auxiliary agents and held for 30 minutes. Thereafter, 140 parts by weight of AN monomer was added over 1 hour. After suspension polymerization at 70 ° C. for 4 hours, the resulting product was washed with water, dehydrated repeatedly, dried at 70 ° C., and a polymer composition comprising an acetone-insoluble complex shown in Table 2 and unreacted cellulose acetate. I got a thing. The compositions of the compositions obtained in Examples 4 to 7 described later are also shown in Table 2.
Figure 0005016786
The obtained polymer composition and AN polymer of 93% by weight and AN of 7% by weight VA are 148.3 parts by weight of AN polymer with respect to 100 parts by weight of the polymer composition so that cellulose acetate in the mixture is 30% by weight. The mixture was further dissolved in dimethylacetamide to a concentration of 18% by weight to prepare a spinning dope, and the compatibility in the spinning dope was evaluated. Thereafter, the spinning solution is discharged into a coagulation bath of 40 ° C. dimethylacetamide and 40% by weight aqueous solution of dimethylacetamide using a nozzle having a pore diameter of 60 μm and a number of holes of 1000 by a wet spinning method. The resultant was stretched 5 times, desolvated in hot water, applied with an oil agent, dried and densified, and further subjected to relaxation treatment in pressurized steam at 135 ° C. to obtain a tow-like fiber having a single fiber fineness of 4 dtex.
After making the obtained fiber into a floc shape having a length of 3 mm, according to the evaluation method of fibrillation by measuring the freeness with a disc refiner, the freeness before beating treatment (R0), and the filtration after repeated beating treatment 5 times The water content (R1) and the freeness difference ΔR were determined. Further, the dispersed phase size and heat resistance of cellulose acetate in the fiber cross section were measured, and the results are shown in Table 3. The results for Examples 4 to 7 described later are also shown in Table 3.
Figure 0005016786
As shown in Table 3, the spinning dope has a small phase separation size and good compatibility. Further, the fiber obtained by spinning using this spinning dope has a very small freeness difference ΔR in the disc refiner evaluation, and the wear resistance is remarkably improved. It can be seen that cellulose acetate is dispersed as fine islands in the fiber cross section. Further, according to the heat resistance evaluation, the obtained fiber had a high tan δ peak temperature measured by dynamic viscoelasticity, and the heat resistance was improved. The above evaluation is also true for Examples 4 to 8 described later. <Comparative Examples 1-5>
A mixture of AN polymer (AN 93% by weight, VA 7% by weight), cellulose acetate (acetylation degree 55%) (cellulose diacetate MI flakes manufactured by Daicel Corporation) and a block copolymer having a composition ratio shown in Table 4 at a concentration of 22 A spinning stock solution was prepared by dissolving in dimethylacetamide so as to be in% by weight, and thereafter wet spinning was carried out under the same conditions as in Example 3 to obtain tow-like fibers having a single fiber fineness of 4 dtex. In addition, the block copolymer has a segment having an affinity for acrylonitrile-based polymer and a segment having an affinity for cellulose acetate, and one prepared by the following method was used.
Figure 0005016786
(Preparation of block copolymer)
400 g of deionized water containing 4 g of emulsifier (Lebenol Wz manufactured by Kao Atlas Co., Ltd.), 1.2 g of Rongalite, and 0.003 g of ferrous sulfate was placed in the reaction vessel, and then the temperature was kept at 40 ° C. to perform nitrogen substitution. It was. A solution prepared by dissolving 1.5 g of cyclohexanone peroxide in 90 g of methyl methacrylate and 10 g of 2-hydroxyethyl methacrylate and 100 g of an aqueous solution containing 6 g of lebenol Wz were separately added dropwise thereto over 90 minutes to perform the first stage polymerization. Next, 90 g of AN, 10 g of VA and 700 g of deionized water were added to the emulsion obtained as the second stage, and the temperature was raised to 70 ° C. and stirred for 3 hours. The resulting polymerization solution was filtered, washed with water, and dried to obtain a block copolymer.
The fibers obtained in Comparative Examples 1 to 5 were measured for the freeness difference ΔR according to the fibrillation evaluation method, and the results are shown in Table 5 together with the results of Example 3. Moreover, the acetic acid deodorizing property and hygroscopic evaluation of the fiber obtained by Comparative Examples 1-5 were evaluated, and the result was shown in Table 5. According to Table 5, the fibers according to Comparative Examples 1 to 5 have a large phase separation size in the spinning stock solution and are easy to fibrillate, as is apparent from the fibers according to Example 3, and are inferior in abrasion resistance and heat resistance. No deodorization and hygroscopicity were obtained, and the fiber was not a composite function.
Figure 0005016786

AN:VA=93:7の重量比のモノマー混合物70重量部に重合開始剤としてtert−ブチルパーオキシ−2−エチルヘキサノエイト0.1重量部を混合した。次いで酢酸セルロース(酢化度55%)(ダイセル(株)製セルロースジアセテートMIフレーク)30重量部を添加、攪拌し、酢酸セルロースにモノマー混合物及び重合開始剤を含浸膨潤させた。次いでこれらを攪拌しながら脱イオン水1000重量部を加えて懸濁液を得た後、70℃5時間攪拌下に懸濁重合した。得られた生成物を水洗、脱水を繰返した後70℃で乾燥を行い、表2に示すアセトン不溶の複合体と酢酸セルロースからなるポリマー組成物を得た。
得られたポリマー組成物とAN93重量%、VA7重量%のAN系ポリマーとを、混合物中の酢酸セルロースが30重量%になるようにポリマー組成物100重量部に対しAN系ポリマー134.2重量部の比で混合し、更に濃度18重量%になるようにジメチルアセトアミドに溶解して紡糸原液を調製し、紡糸原液における相分離サイズよりその相溶性を評価した。その後は実施例3と同様の条件にて湿式紡糸を行い、単繊維繊度4dtexのトウ状の繊維を得た。得られた繊維の評価結果を表3に示した。
As a polymerization initiator, 0.1 part by weight of tert-butylperoxy-2-ethylhexanoate was mixed with 70 parts by weight of a monomer mixture having a weight ratio of AN: VA = 93: 7. Then, 30 parts by weight of cellulose acetate (acetylation degree 55%) (cellulose diacetate MI flakes manufactured by Daicel Corporation) was added and stirred, and the cellulose mixture was impregnated and swollen with the monomer mixture and the polymerization initiator. Next, 1000 parts by weight of deionized water was added with stirring to obtain a suspension, followed by suspension polymerization with stirring at 70 ° C. for 5 hours. The obtained product was washed with water and dehydrated repeatedly, and then dried at 70 ° C. to obtain a polymer composition comprising an acetone-insoluble complex and cellulose acetate shown in Table 2.
The obtained polymer composition, AN 93% by weight, AN 7% by weight AN-based polymer, 134.2 parts by weight of AN-based polymer with respect to 100 parts by weight of the polymer composition so that cellulose acetate in the mixture is 30% by weight. The mixture was further dissolved in dimethylacetamide to a concentration of 18% by weight to prepare a spinning stock solution, and the compatibility was evaluated from the phase separation size in the spinning stock solution. Thereafter, wet spinning was performed under the same conditions as in Example 3 to obtain tow-like fibers having a single fiber fineness of 4 dtex. Table 3 shows the evaluation results of the obtained fibers.

実施例3において、重合開始剤としてクメンヒドロパーオキサイドを用いた以外は、実施例3と同様に水系懸濁重合して表2に示すアセトン不溶の複合体と酢酸セルロースからなるポリマー組成物を得た。得られたポリマー組成物とAN93重量%、VA7重量%のAN系ポリマーとを、混合物中の酢酸セルロースが30重量%になるようにポリマー組成物100重量部に対しAN系ポリマー179.2重量部の比で混合し、更に濃度18重量%になるようにジメチルアセトアミドに溶解して紡糸原液を調製し、紡糸原液における相溶性を評価した。その後は実施例3と同様の条件にて湿式紡糸を行い、単繊維繊度4dtexのトウ状の繊維を得た。得られた繊維の評価結果を表3に示した。  In Example 3, except that cumene hydroperoxide was used as a polymerization initiator, aqueous suspension polymerization was carried out in the same manner as in Example 3 to obtain a polymer composition comprising an acetone-insoluble complex and cellulose acetate shown in Table 2. It was. The obtained polymer composition and AN polymer of 93% by weight and AN of 7% by weight of VA were 179.2 parts by weight of AN polymer with respect to 100 parts by weight of the polymer composition so that cellulose acetate in the mixture was 30% by weight. The mixture was further dissolved in dimethylacetamide to a concentration of 18% by weight to prepare a spinning dope, and the compatibility in the spinning dope was evaluated. Thereafter, wet spinning was performed under the same conditions as in Example 3 to obtain tow-like fibers having a single fiber fineness of 4 dtex. Table 3 shows the evaluation results of the obtained fibers.

実施例4において、重合開始剤としてアゾビスイソブチロニトリルを用いた以外は、実施例4と同様に水系懸濁重合して表2に示すアセトン不溶の複合体と酢酸セルロースからなるポリマー組成物を得た。得られたポリマー組成物とAN93重量%、VA7重量%のAN系ポリマーとを、混合物中の酢酸セルロースが30重量%になるようにポリマー組成物100重量部に対しAN系ポリマー117.8重量部の比で混合し、更に濃度18重量%になるようにジメチルアセトアミドに溶解して紡糸原液を調製し、紡糸原液における相溶性を評価した。その後は実施例3と同様の条件にて湿式紡糸を行い、単繊維繊度4dtexのトウ状の繊維を得た。得られた繊維の評価結果を表3に示した。  In Example 4, except that azobisisobutyronitrile was used as a polymerization initiator, a water-based suspension polymerization was conducted in the same manner as in Example 4 and a polymer composition comprising an acetone-insoluble complex and cellulose acetate shown in Table 2 Got. The obtained polymer composition and AN polymer of 93% by weight and AN of 7% by weight of VA are 117.8 parts by weight of AN polymer to 100 parts by weight of the polymer composition so that cellulose acetate in the mixture is 30% by weight. The mixture was further dissolved in dimethylacetamide to a concentration of 18% by weight to prepare a spinning dope, and the compatibility in the spinning dope was evaluated. Thereafter, wet spinning was performed under the same conditions as in Example 3 to obtain tow-like fibers having a single fiber fineness of 4 dtex. Table 3 shows the evaluation results of the obtained fibers.

80Lアルミ重合釜に脱イオン水42000重量部と酢酸セルロース(酢化度55%)(ダイセル(株)製セルロースジアセテートMIフレーク)をボールミルで1mm程度に粉砕したもの6000重量部を添加した。次いでAN:VA=93:7の重量比のモノマー混合物6000重量部に重合開始剤としてtert−ブチルパーオキシ−2−エチルヘキサノエイト90重量部を混合したモノマー液を室温で1時間かけて重合釜に添加し、更に室温で30分攪拌保持した。その後、70℃で3時間攪拌下に懸濁重合した。得られた生成物を水洗、脱水を二回繰り返した後、70℃で乾燥を行い表2に示すアセトン不溶の複合体と酢酸セルロースからなるポリマー組成物を得た。
得られたポリマー組成物とAN93重量%、VA7重量%のAN系ポリマーとを、混合物中の酢酸セルロースが30重量%になるようにポリマー組成物100重量部に対しAN系ポリマー107.5重量部の比で混合し、更に濃度18重量%になるようにジメチルアセトアミドに溶解して紡糸原液を調製し、紡糸原液における相溶性を評価した。その後は実施例3と同様の条件にて湿式紡糸を行い、単繊維繊度4dtexのトウ状の繊維を得た。得られた繊維の評価結果を表3に示した。
6000 parts by weight of 42000 parts by weight of deionized water and cellulose acetate (acetylation degree 55%) (cellulose diacetate MI flakes manufactured by Daicel Corporation) ground to about 1 mm with a ball mill were added to an 80 L aluminum polymerization kettle. Next, a monomer solution obtained by mixing 6000 parts by weight of a monomer mixture having a weight ratio of AN: VA = 93: 7 with 90 parts by weight of tert-butylperoxy-2-ethylhexanoate as a polymerization initiator was polymerized at room temperature over 1 hour. The mixture was added to the kettle and further stirred at room temperature for 30 minutes. Thereafter, suspension polymerization was performed at 70 ° C. with stirring for 3 hours. The obtained product was washed with water and dehydrated twice, and then dried at 70 ° C. to obtain a polymer composition comprising an acetone-insoluble complex and cellulose acetate shown in Table 2.
The obtained polymer composition and AN polymer of 93% by weight and AN of 7% by weight are 107.5 parts by weight of AN polymer with respect to 100 parts by weight of the polymer composition so that cellulose acetate in the mixture is 30% by weight. The mixture was further dissolved in dimethylacetamide to a concentration of 18% by weight to prepare a spinning dope, and the compatibility in the spinning dope was evaluated. Thereafter, wet spinning was performed under the same conditions as in Example 3 to obtain tow-like fibers having a single fiber fineness of 4 dtex. Table 3 shows the evaluation results of the obtained fibers.

実施例7と同様にして得られたポリマー組成物とAN93重量%、VA7重量%のAN系ポリマーとを、混合物中の酢酸セルロースが30重量%になるようにポリマー組成物100重量部に対しAN系ポリマー107.5重量部の比で混合し、更に濃度18重量%になるようにジメチルアセトアミドに溶解して紡糸原液を調製した。ノズルと凝固液液面までの距離を12mmに設定し、この紡糸原液を孔径120μm、孔数60Hのノズルから空気中に押し出し、この形成された溶液流を直ちに浴温40℃、ジメチルアセトアミド70重量%水溶液の凝固浴に導き繊維を形成させた。この後、水洗、沸水中での3.5倍の延伸、更に乾燥後1.2倍の延伸をした後に270℃の熱板上にて10%の緩和を施して単繊維繊度2.8dtex、トータル繊度170dtexの複合繊維フィラメントを得た。得られた繊維の評価結果を表3に示した。  The polymer composition obtained in the same manner as in Example 7 and AN-based polymer of 93% by weight and 7% by weight of VA were mixed with AN based on 100 parts by weight of the polymer composition so that cellulose acetate in the mixture was 30% by weight. The mixture was mixed at a ratio of 107.5 parts by weight of the base polymer, and further dissolved in dimethylacetamide to a concentration of 18% by weight to prepare a spinning dope. The distance from the nozzle to the coagulating liquid surface was set to 12 mm, and this spinning solution was extruded into air from a nozzle having a pore diameter of 120 μm and a hole number of 60 H, and the formed solution stream was immediately heated to a bath temperature of 40 ° C. The fiber was led to a coagulation bath of a% aqueous solution. Then, after washing with water, stretching 3.5 times in boiling water, and further stretching 1.2 times after drying, 10% relaxation was performed on a hot plate at 270 ° C. to obtain a single fiber fineness of 2.8 dtex, A composite fiber filament having a total fineness of 170 dtex was obtained. Table 3 shows the evaluation results of the obtained fibers.

実施例3で得られた繊維を60℃、30分の条件下でNaOHの添加量を繊維に対し12wt%のアルカリ条件で処理を行い、得られた繊維の吸湿性能を評価した。
<比較例6>
表4の比較例1に示す組成比でAN系ポリマー(AN93重量%、VA7重量%)と酢酸セルロース(酢化度55%)(ダイセル(株)製セルロースジアセテートMIフレーク)とブロックコポリマーの混合物を、濃度22重量%になるようにジメチルアセトアミドに溶解し紡糸原液を調製し、あとは実施例8と同様に紡糸を行い、単繊維繊度2.8dtex、トータル繊度170dtexの複合繊維フィラメントを得た。
<比較例7>
表4の比較例4に示す組成比でAN系ポリマー(AN93重量%、VA7重量%)と酢酸セルロース(酢化度55%)(ダイセル(株)製セルロースジアセテートMIフレーク)とブロックコポリマーの混合物を、濃度22重量%になるようにジメチルアセトアミドに溶解し紡糸原液を調製し、あとは実施例8と同様に紡糸を行い、単繊維繊度2.8dtex、トータル繊度170dtexの複合繊維のフィラメントを得た。
比較例6,7にて得られた繊維の評価結果を表6に実施例8の結果とともに示した。表6によれば、比較例6、7による繊維は、実施例8による繊維と比べて明らかなように、紡糸原液での相分離サイズが大きく、フィブリル化し易いので耐摩性に劣り、また耐熱性も全く向上しないものであった。
また、実施例9についてはアルカリ処理により酢酸セルロースのセルロース化が進行した為結果として吸湿、保湿性能が向上することがわかる。

Figure 0005016786
The fiber obtained in Example 3 was treated under alkaline conditions of 12 wt% of NaOH with respect to the fiber at 60 ° C. for 30 minutes, and the moisture absorption performance of the obtained fiber was evaluated.
<Comparative Example 6>
Mixture of AN polymer (AN 93% by weight, VA 7% by weight), cellulose acetate (acetylation degree 55%) (cellulose diacetate MI flakes manufactured by Daicel Corporation) and block copolymer at the composition ratio shown in Comparative Example 1 of Table 4 Was dissolved in dimethylacetamide to a concentration of 22% by weight to prepare a spinning stock solution, and then spinning was performed in the same manner as in Example 8 to obtain a composite fiber filament having a single fiber fineness of 2.8 dtex and a total fineness of 170 dtex. .
<Comparative Example 7>
Mixture of AN polymer (AN 93% by weight, VA 7% by weight), cellulose acetate (acetylation degree 55%) (cellulose diacetate MI flakes manufactured by Daicel Corp.) and block copolymer at the composition ratio shown in Comparative Example 4 of Table 4 Is dissolved in dimethylacetamide to a concentration of 22% by weight to prepare a spinning stock solution, and then spinning is performed in the same manner as in Example 8 to obtain a filament of a composite fiber having a single fiber fineness of 2.8 dtex and a total fineness of 170 dtex. It was.
The evaluation results of the fibers obtained in Comparative Examples 6 and 7 are shown in Table 6 together with the results of Example 8. According to Table 6, the fibers according to Comparative Examples 6 and 7 have a large phase separation size in the spinning stock solution and are easily fibrillated as is clear from the fibers according to Example 8, and are inferior in abrasion resistance and heat resistance. Was not improved at all.
Moreover, about Example 9, since cellulose conversion of a cellulose acetate advanced by alkali treatment, it turns out that moisture absorption and a moisture retention performance improve as a result.
Figure 0005016786

実施例7にて得られた複合機能繊維を51mmにカットし、単繊維繊度1.7dtexの市販のアクリル繊維(三菱レイヨン(株)H815)とその重量比が50重量%となるように混紡し1/52番手の紡績糸を作製し染色を行った。表糸にこの染色した紡績糸3本を、裏糸にFTY(40/75)(FTYはポリウレタン長繊維75デシテックスとポリアミド長繊維40デシテックスの交撚糸)1本を使用して直径4インチ、針数136本の靴下編み機を用い2×2リブ編みによる靴下を編みたてた。  The composite functional fiber obtained in Example 7 was cut into 51 mm, and blended so that a commercially available acrylic fiber (Mitsubishi Rayon Co., Ltd. H815) having a single fiber fineness of 1.7 dtex and the weight ratio thereof was 50% by weight. A 1 / 52-th spun yarn was prepared and dyed. Using the dyed spun yarn for the front yarn and FTY (40/75) for the back yarn (FTY is a twisted yarn of 75 long polyurethane fibers and 40 long polyamide fibers), 4 inches in diameter, needle The socks were knitted with 2 × 2 ribs using several 136 sock knitting machines.

実施例7にて得られた複合機能繊維を51mmにカットし、単繊維繊度1.7dtexの市販のアクリル繊維(三菱レイヨン(株)H815)とその重量比が50重量%となるように混紡し1/52番手の紡績糸を作製し染色を行った。表糸にこの染色した紡績糸2本と1/30番手の綿紡績糸を、裏糸にFTY(40/75)1本を使用して直径4インチ、針数136本の靴下編み機を用い2×2リブ編みによる靴下を編みたてた。  The composite functional fiber obtained in Example 7 was cut into 51 mm, and blended so that a commercially available acrylic fiber (Mitsubishi Rayon Co., Ltd. H815) having a single fiber fineness of 1.7 dtex and the weight ratio thereof was 50% by weight. A 1 / 52-th spun yarn was prepared and dyed. Using the dyed spun yarn and the 1 / 30th cotton spun yarn for the front yarn, one FTY (40/75) for the back yarn and a sock knitting machine with a diameter of 4 inches and 136 needles 2 X2 Ribbed socks.

実施例9にて得られた紡績糸を染色した後、22G、33インチ、口数60のスムース編みにより生地を編み立て、その編地から各被験者のサイズにあった肌着を作製した。  After the spun yarn obtained in Example 9 was dyed, the fabric was knitted by smooth knitting with 22G, 33 inches and 60 numerators, and an underwear suitable for the size of each subject was produced from the knitted fabric.

実施例8にて得られたフィラメントに仮撚加工施した後、チーズ染色を行い、2本引き揃えて14Gの横編み機に編地を作成し、その編地より各被験者のサイズにあったニット製品を作製した。  After false twisting was applied to the filament obtained in Example 8, cheese dyeing was performed, and two knitted fabrics were arranged to create a knitted fabric on a 14G flat knitting machine. The product was made.

実施例9にて得られた複合繊維を用いた以外は、実施例10と同様にして靴下を作成した。  A sock was prepared in the same manner as in Example 10 except that the composite fiber obtained in Example 9 was used.

実施例9にて得られた複合繊維を用いた以外は実施例11と同様にして肌着を作成した。
<比較例8>
比較例2にて得られた複合機能繊維を51mmにカットし、単繊維繊度1.7dtexの市販のアクリル繊維(三菱レイヨン(株)H815)とその重量比が50重量%となるように混紡し1/52番手の紡績糸を作製した。表糸にこの染色した紡績糸3本を、裏糸にFTY(40/75)1本を使用して直径4インチ、針数136本の靴下編み機を用い2×2リブ編みによる靴下を編みたてた。
<比較例9>
比較例8にて得られた紡績糸を染色した後、22G、33インチ、口数60のスムース編みにより生地を編み立て、その編地から各被験者のサイズにあった肌着を作製した。
<比較例10>
比較例6にて得られたフィラメントに仮撚加工施した後、チーズ染色を行い、2本引き揃えて14Gの横編み機に編地を作成し、その編地より各被験者のサイズにあったニット製品を作製した。
実施例9〜12、比較例8〜10にて得られた繊維製品を被験者5人により試着試験をし、その外観変化を評価した。また、その繊維製品の一部を切り取り、直径3.8cmの試験片とした後、マーチンデール摩耗試験機を用いて評価を行い、処理前の試験片重量をWa、5000回処理後の試験片重量をWbから減量率Rを求めた。また、切り取った試験片を用いて各種消臭性について評価した。その結果を表7に示す。

Figure 0005016786
表7によると実施例9〜12は酢酸、ノネナールに対し優れた消臭性能を有するとともに比較例8〜10に比べマーチンデール摩擦試験機5000回処理による基布減量率が非常に小さく、また試着試験評価による外観変化も殆どない耐磨耗性に優れた布帛であることがわかる。An undergarment was prepared in the same manner as in Example 11 except that the conjugate fiber obtained in Example 9 was used.
<Comparative Example 8>
The composite functional fiber obtained in Comparative Example 2 was cut to 51 mm, and blended with a commercially available acrylic fiber having a single fiber fineness of 1.7 dtex (Mitsubishi Rayon Co., Ltd. H815) and a weight ratio of 50% by weight. 1/52 count spun yarn was produced. 3 x dyed spun yarn was used for the front yarn, 2x2 rib socks were knitted using a sock knitting machine with a diameter of 4 inches and 136 needles using 1 FTY (40/75) as the back yarn. It was.
<Comparative Example 9>
After the spun yarn obtained in Comparative Example 8 was dyed, a fabric was knitted by smooth knitting with 22G, 33 inches and 60 numerators, and an underwear suitable for the size of each subject was produced from the knitted fabric.
<Comparative Example 10>
After applying false twisting to the filament obtained in Comparative Example 6, cheese dyeing was performed, and two knitted fabrics were knitted to create a knitted fabric on a 14G flat knitting machine. The product was made.
The fiber products obtained in Examples 9 to 12 and Comparative Examples 8 to 10 were subjected to a fitting test by five test subjects, and the appearance change was evaluated. Further, after cutting out a part of the fiber product to make a test piece having a diameter of 3.8 cm, the evaluation is performed using a Martindale abrasion tester, and the weight of the test piece before treatment is set to Wa, 5000 times. The weight loss rate R was determined from the weight Wb. Moreover, various deodorizing properties were evaluated using the cut specimens. The results are shown in Table 7.
Figure 0005016786
According to Table 7, Examples 9 to 12 have excellent deodorizing performance with respect to acetic acid and nonenal, and have a very small weight loss rate of the base fabric by the treatment with the Martindale friction tester 5000 times as compared with Comparative Examples 8 to 10, and try-on. It can be seen that the fabric is excellent in abrasion resistance with little change in appearance by test evaluation.

本発明のポリマー組成物を、アクリロニトリル系ポリマーと共に共通溶剤に溶解すると、極めて相分離サイズの小さい混合溶液となる。そのため、アクリロニトリル系ポリマーと酢酸セルロースとの相溶性に極めて優れた紡糸溶液を得ることでき、紡糸性良好に繊維に賦形し得る。また本発明のポリマー組成物を、アクリロニトリル系ポリマーと共に用いるときには、涼感、吸湿性、消臭性、耐熱性等の優れた性能を繊維に付与することができると共に機械的抵抗、例えば摩擦に対する優れた耐摩性を付与し得る。
このような複合機能を有し、また特に耐熱性が付与されたことにより、アクリロニトリル系繊維の用途、特に織物形態での用途を拡大することが可能であり、ニット、ジャージ等の編物や特にスチームアイロン掛けが要求される織物等の衣料品、カーテン、ハイパイル、ボア、毛布、マット、カーペット等の建寝装品等の分野に好適な繊維素材或いは布帛として用いることができる。
When the polymer composition of the present invention is dissolved in a common solvent together with an acrylonitrile-based polymer, a mixed solution having a very small phase separation size is obtained. Therefore, a spinning solution having extremely excellent compatibility between the acrylonitrile-based polymer and cellulose acetate can be obtained, and the fiber can be shaped with good spinning properties. Further, when the polymer composition of the present invention is used with an acrylonitrile-based polymer, it can impart excellent performance such as coolness, hygroscopicity, deodorizing property, heat resistance, etc. to the fiber and mechanical resistance such as excellent friction. Abrasion resistance can be imparted.
By having such a composite function and particularly heat resistance, it is possible to expand the use of acrylonitrile fibers, especially in the form of woven fabrics, such as knitted fabrics, knitted fabrics, and particularly steam. It can be used as a textile material or fabric suitable for fields such as clothing such as textiles that require ironing, and bedding products such as curtains, high piles, bores, blankets, mats, and carpets.

Claims (15)

(a)酢酸セルロース成分10〜70重量%とアクリロニトリル単位を50重量%以上含むアクリロニトリル系ポリマー成分90〜30重量%からなるアセトン不溶の複合体25〜90重量%と、(b)酢酸セルロース75〜10重量%とを含むポリマー組成物。
但し、アセトン不溶の量は、該ポリマー組成物を凍結粉砕した後、アセトン中で濃度1重量%で攪拌して、アセトンによって酢酸セルロースを溶解し、この溶液を遠心分離により、沈殿物と上澄み液に分離し、沈殿物を乾燥することによって測定される値である。
(A) 25 to 90% by weight of an acetone-insoluble complex composed of 10 to 70% by weight of a cellulose acetate component and 90 to 30% by weight of an acrylonitrile-based polymer component containing 50% by weight or more of an acrylonitrile unit ; and (b) 75 to 75% of cellulose acetate. 10% by weight of a polymer composition.
However, the amount of acetone insoluble is determined by freezing and crushing the polymer composition, stirring in acetone at a concentration of 1% by weight, dissolving cellulose acetate with acetone, and centrifuging the solution to precipitate and supernatant. It is a value measured by separating and drying the precipitate.
酢酸セルロースとアクリロニトリルを50重量%以上含むビニル系モノマーとの混合物を重合して得られたものである請求項1記載のポリマー組成物。  2. The polymer composition according to claim 1, wherein the polymer composition is obtained by polymerizing a mixture of cellulose acetate and a vinyl monomer containing 50% by weight or more of acrylonitrile. 酢酸セルロースが、酢化度48〜63%の酢酸セルロースである請求項1または2記載のポリマー組成物。  The polymer composition according to claim 1 or 2, wherein the cellulose acetate is cellulose acetate having an acetylation degree of 48 to 63%. アクリロニトリル単位を50重量%以上含むアクリロニトリル系ポリマー成分は、少なくとも60重量%がアクリロニトリル単位である請求項1〜3のいずれか1項に記載のポリマー組成物。The polymer composition according to any one of claims 1 to 3, wherein at least 60% by weight of the acrylonitrile-based polymer component containing 50% by weight or more of acrylonitrile units is an acrylonitrile unit. 酢酸セルロースとアクリロニトリルを50重量%以上含むビニル系モノマーとの混合物であって、酢酸セルロースに対して0.5〜10重量比の該ビニル系モノマーとの混合物を、該ビニル系モノマーに可溶の重合開始剤を用いて水系懸濁重合し、酢酸セルロースとアクリロニトリル系ポリマーからなるアセトン不溶の複合体25〜90重量%と、酢酸セルロース75〜10重量%のポリマー組成物とすることを特徴とするポリマー組成物の製造方法。
但し、アセトン不溶の量は、該ポリマー組成物を凍結粉砕した後、アセトン中で濃度1重量%で攪拌して、アセトンによって酢酸セルロースを溶解し、この溶液を遠心分離により、沈殿物と上澄み液に分離し、沈殿物を乾燥することによって測定される値である。
A mixture of cellulose acetate and a vinyl monomer containing 50% by weight or more of acrylonitrile, wherein the mixture of the vinyl monomer in a ratio of 0.5 to 10% by weight with respect to cellulose acetate is soluble in the vinyl monomer. Aqueous suspension polymerization is performed using a polymerization initiator to form a polymer composition of 25 to 90% by weight of an acetone-insoluble complex composed of cellulose acetate and an acrylonitrile polymer and 75 to 10% by weight of cellulose acetate. A method for producing a polymer composition.
However, the amount of acetone insoluble is determined by freezing and crushing the polymer composition, stirring in acetone at a concentration of 1% by weight, dissolving cellulose acetate with acetone, and centrifuging the solution to precipitate and supernatant. It is a value measured by separating and drying the precipitate.
重合開始剤として、有機過酸化物、アゾビス系化合物及び過マンガン酸カリウムからなる群から選ばれる重合開始剤を用いる請求項5記載のポリマー組成物の製造方法。  The method for producing a polymer composition according to claim 5, wherein a polymerization initiator selected from the group consisting of an organic peroxide, an azobis compound and potassium permanganate is used as the polymerization initiator. 請求項1記載のポリマー組成物とアクリロニトリル系ポリマーを用いた、酢酸セルロースとアクリロニトリル系ポリマーからなる繊維であって、繊維横断面において、酢酸セルロースが島としてアクリロニトリル系ポリマーの海部中に分散し、酢酸セルロースの分散相のサイズが200nm以下であることを特徴とする複合繊維。  A fiber comprising cellulose acetate and an acrylonitrile-based polymer using the polymer composition according to claim 1 and an acrylonitrile-based polymer, wherein the cellulose acetate is dispersed in the sea part of the acrylonitrile-based polymer as an island in the cross section of the fiber. A composite fiber having a dispersed phase size of cellulose of 200 nm or less. 繊維に占める酢酸セルロースが10〜50重量%、アクリロニトリル系ポリマーが90〜50重量%である請求項7記載の複合繊維。  The composite fiber according to claim 7, wherein cellulose acetate accounts for 10 to 50% by weight and acrylonitrile-based polymer is 90 to 50% by weight. 動的粘弾性の測定における少なくとも低温側の損失正接(tanδ)のピーク温度が120℃以上である請求項7記載の複合繊維。  The composite fiber according to claim 7, wherein the peak temperature of at least the low-temperature loss tangent (tan δ) in the measurement of dynamic viscoelasticity is 120 ° C or higher. ディスクリファイナー装置にてディスククリアランス0.05mm、ディスク回転数5000rpmの条件で繰り返し5回叩解処理後の濾水度R1と叩解処理前の濾水度R0との濾水度差ΔRが200以下である請求項7〜9のいずれか1項記載の複合繊維。  The freeness difference ΔR between the freeness R1 after the beating treatment repeatedly 5 times and the freeness R0 before the beating treatment is 200 or less under the conditions of a disc clearance of 0.05 mm and a disc rotation speed of 5000 rpm in the disc refiner device. The composite fiber according to any one of claims 7 to 9. 酢酸セルロースとアクリロニトリルを50重量%以上含むビニル系モノマーとの混合物であって、酢酸セルロースに対して0.5〜10重量比の該ビニル系モノマーとの混合物を該ビニル系モノマーに可溶の重合開始剤を用いて水系懸濁重合して得られた請求項1項記載のポリマー組成物と、アクリロニトリル系ポリマーとを、全体に占める酢酸セルロース成分の割合が10〜50重量%、前記ポリマー組成物に含有されるアクリロニトリル単位を50重量%以上含むアクリロニトリル系ポリマー成分と前記アクリロニトリル系ポリマーの合計が90〜50重量%となるように配合し、酢酸セルロースとアクリロニトリル系ポリマーの共通溶剤に溶解した紡糸原液を用い、紡糸することを特徴する複合繊維の製造方法。Polymerization that is a mixture of cellulose acetate and a vinyl monomer containing acrylonitrile at 50% by weight or more, and that is soluble in the vinyl monomer in a mixture of 0.5 to 10 weight ratio of the vinyl monomer to cellulose acetate The polymer composition according to claim 1 obtained by aqueous suspension polymerization using an initiator and an acrylonitrile-based polymer in a proportion of 10 to 50% by weight of the cellulose acetate component in the whole, the polymer composition Spinning stock solution which is blended so that the total of the acrylonitrile-based polymer component containing 50% by weight or more of the acrylonitrile unit contained in the acrylonitrile-based polymer is 90 to 50% by weight and dissolved in a common solvent of cellulose acetate and acrylonitrile-based polymer A process for producing a composite fiber, characterized in that the fiber is spun. 請求項7記載の複合繊維に由来する酢酸セルロース成分と、アクリロニトリル単位を50重量%以上含むアクリロニトリル系ポリマー成分とを含み、酢酸に対する消臭率が90%以上、ノネナールに対する消臭率が90%以上、且つマーチンデール法により摩擦回数5000回処理した際の重量減量率が1%以下である布帛。A cellulose acetate component derived from the composite fiber according to claim 7 and an acrylonitrile-based polymer component containing 50% by weight or more of an acrylonitrile unit, having a deodorization rate of 90% or more for acetic acid and a deodorization rate of 90% or more for nonenal. In addition, a fabric having a weight loss rate of 1% or less when treated with the number of frictions 5000 times by the Martindale method. 酢酸セルロース成分が布帛全体の10〜50重量%である請求項12記載の布帛。  The fabric according to claim 12, wherein the cellulose acetate component is 10 to 50% by weight of the total fabric. アクリロニトリル単位を50重量%以上含むアクリロニトリル系ポリマー成分が、布帛全体の10〜90%である請求項12記載の布帛。 The fabric according to claim 12, wherein the acrylonitrile-based polymer component containing 50% by weight or more of acrylonitrile units is 10 to 90% of the entire fabric. 酢酸セルロース成分とアクリロニトリル単位を50重量%以上含むアクリロニトリル系ポリマー成分とを含有する繊維を含む請求項12〜14のいずれか1項記載の布帛。The fabric according to any one of claims 12 to 14, comprising a fiber containing a cellulose acetate component and an acrylonitrile-based polymer component containing 50% by weight or more of an acrylonitrile unit .
JP2004544180A 2002-12-26 2003-12-25 POLYMER COMPOSITION, COMPOSITE FIBER, METHOD FOR PRODUCING THEM, AND FABRIC Expired - Fee Related JP5016786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004544180A JP5016786B2 (en) 2002-12-26 2003-12-25 POLYMER COMPOSITION, COMPOSITE FIBER, METHOD FOR PRODUCING THEM, AND FABRIC

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002377471 2002-12-26
JP2002377472 2002-12-26
JP2002377471 2002-12-26
JP2002377472 2002-12-26
JP2003300943 2003-08-26
JP2003300943 2003-08-26
PCT/JP2003/016750 WO2004058883A1 (en) 2002-12-26 2003-12-25 Polymer composition, composite fiber, processes for producing these, and woven fabric
JP2004544180A JP5016786B2 (en) 2002-12-26 2003-12-25 POLYMER COMPOSITION, COMPOSITE FIBER, METHOD FOR PRODUCING THEM, AND FABRIC

Publications (2)

Publication Number Publication Date
JPWO2004058883A1 JPWO2004058883A1 (en) 2006-04-27
JP5016786B2 true JP5016786B2 (en) 2012-09-05

Family

ID=32685840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004544180A Expired - Fee Related JP5016786B2 (en) 2002-12-26 2003-12-25 POLYMER COMPOSITION, COMPOSITE FIBER, METHOD FOR PRODUCING THEM, AND FABRIC

Country Status (2)

Country Link
JP (1) JP5016786B2 (en)
WO (1) WO2004058883A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483833B2 (en) * 2007-12-06 2014-05-07 三菱レイヨン株式会社 Heat resistance improver, thermoplastic resin composition and molded product
JP5429933B2 (en) * 2009-08-31 2014-02-26 三菱レイヨン株式会社 Manufacturing method of resin molding
JP5362805B2 (en) * 2011-11-28 2013-12-11 三菱レイヨン株式会社 A nonwoven fabric containing fibers in which an acrylonitrile polymer and a cellulose polymer are uniformly mixed.
JP6108145B2 (en) * 2012-03-26 2017-04-05 三菱レイヨン株式会社 Acrylic deodorant fiber and spun yarn and woven / knitted fabric containing the same.
JP6108171B2 (en) * 2013-08-01 2017-04-05 三菱レイヨン株式会社 Acrylic composite fiber having antibacterial and deodorant properties and deodorant property, and spun yarn and woven / knitted fabric containing the same
JP6767760B2 (en) * 2015-03-27 2020-10-14 株式会社リブドゥコーポレーション Deodorant and absorbent articles with it
WO2018098072A1 (en) * 2016-11-22 2018-05-31 E. I. Du Pont De Nemours And Company Process for making polyacrylonitrile fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69936C (en) * B. MÜNSBERG in Berlin O., Mühlenstrafse 8 Microphone in which the power circuit is formed by charred fiber
JPS56148915A (en) * 1980-04-07 1981-11-18 Asahi Chem Ind Co Ltd Novel composite fiber
JPH01158928A (en) * 1987-09-17 1989-06-22 Sanyo Electric Co Ltd Dehydrator for eating and drinking vessels
JPH10158928A (en) * 1996-11-19 1998-06-16 Kanebo Ltd Splittable acrylic synthetic yarn and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454014A (en) * 1987-08-25 1989-03-01 Nippon Oils & Fats Co Ltd Production of graft copolymer resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69936C (en) * B. MÜNSBERG in Berlin O., Mühlenstrafse 8 Microphone in which the power circuit is formed by charred fiber
JPS56148915A (en) * 1980-04-07 1981-11-18 Asahi Chem Ind Co Ltd Novel composite fiber
JPH01158928A (en) * 1987-09-17 1989-06-22 Sanyo Electric Co Ltd Dehydrator for eating and drinking vessels
JPH10158928A (en) * 1996-11-19 1998-06-16 Kanebo Ltd Splittable acrylic synthetic yarn and its production

Also Published As

Publication number Publication date
WO2004058883A1 (en) 2004-07-15
JPWO2004058883A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
KR101548762B1 (en) Antistatic acrylic fiber and method for manufacturing the same
JP3851192B2 (en) Method for producing acrylic composite fiber
JP5016786B2 (en) POLYMER COMPOSITION, COMPOSITE FIBER, METHOD FOR PRODUCING THEM, AND FABRIC
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
JP6108145B2 (en) Acrylic deodorant fiber and spun yarn and woven / knitted fabric containing the same.
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
CN114302985A (en) Acrylic fiber, spun yarn and knitted fabric comprising same
JP4299551B2 (en) Composite fiber and method for producing the same
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP4895280B2 (en) Anti-pill acrylic fiber and production method thereof
JPH1136172A (en) Improvement in processability in producing spun yarn, production of fibrous structural product and spun yarn
JPH05295615A (en) Pill-resistant acrylic acid fiber and its production
JP2908046B2 (en) Anti-pilling acrylic fiber and method for producing the same
JPH10266019A (en) Water-sensitive acrylic conjugate fiber having pill resistance and its production
JP2020059939A (en) Hygroscopic and exothermic acrylic fiber
JPH0559608A (en) Anti-pilling acrylic fiber and its production
JPH0457911A (en) Porous actylic yarn having excellent water retention and its production
KR102067570B1 (en) Acrylonitrile-based fiber, manufacturing process therefor and fiber structure containing said fiber
JPH07102420A (en) Composite fiber
JPH07150470A (en) Porous acrylonitrile fiber
JPH03130416A (en) Sheath-core conjugate polyester fiber and its fabric composed
JPH073530A (en) Pill-resistant acrylic yarn and production thereof
JPH07216640A (en) Acrylic synthetic yarn having excellent yellowing resistance
JP2019157329A (en) Crimpable moisture-absorptive acrylonitrile-based fiber, method of producing the fiber and fiber structure containing the fiber
JPS5976969A (en) Polyester fabric having functionality excellent in durability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5016786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees