JP5012152B2 - Drive control device - Google Patents

Drive control device Download PDF

Info

Publication number
JP5012152B2
JP5012152B2 JP2007098461A JP2007098461A JP5012152B2 JP 5012152 B2 JP5012152 B2 JP 5012152B2 JP 2007098461 A JP2007098461 A JP 2007098461A JP 2007098461 A JP2007098461 A JP 2007098461A JP 5012152 B2 JP5012152 B2 JP 5012152B2
Authority
JP
Japan
Prior art keywords
sma
voltage
value
shape memory
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007098461A
Other languages
Japanese (ja)
Other versions
JP2008259301A (en
Inventor
武司 青井
康隆 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2007098461A priority Critical patent/JP5012152B2/en
Publication of JP2008259301A publication Critical patent/JP2008259301A/en
Application granted granted Critical
Publication of JP5012152B2 publication Critical patent/JP5012152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

本発明は、形状記憶合金からなるアクチュエータの駆動を制御する駆動制御装置に関する。   The present invention relates to a drive control device that controls the drive of an actuator made of a shape memory alloy.

形状記憶合金(SMA;Shape Memory Alloy)は、マルテンサイト変態終了温度以下の温度において所定の外力を受けて塑性変形したとしても、逆変態終了温度以上の温度に加熱されると形状が回復する特性を有している。このSMAに通電すると、自身のジュール熱によって発熱し、上記逆変態終了温度以上の温度になると形状が回復する。この特性を利用すると、SMAをアクチュエータとして使用することが可能となる。このSMAのアクチュエータ(SMAアクチュエータ)の駆動制御に関し、例えば特許文献1には、SMAの抵抗値を実際に検出して制御する技術が開示されている。
特許第2911051号公報
Shape memory alloy (SMA) has a characteristic that its shape recovers when heated to a temperature equal to or higher than the reverse transformation end temperature, even if it undergoes a plastic deformation under a predetermined external force at a temperature lower than the martensitic transformation end temperature. have. When this SMA is energized, it generates heat due to its own Joule heat, and the shape recovers when the temperature reaches the reverse transformation end temperature. If this characteristic is utilized, SMA can be used as an actuator. Regarding the drive control of the SMA actuator (SMA actuator), for example, Patent Document 1 discloses a technique for actually detecting and controlling the resistance value of the SMA.
Japanese Patent No. 2911051

しかしながら、上記従来技術では、SMAの抵抗値を検出するために、抵抗値検出回路、サンプルホールド回路やPIDコントローラなどを設ける必要があり、回路構成が複雑になってしまう。一般的に、SMAアクチュエータの駆動制御に際しては当該抵抗値を得る必要があるが、この抵抗値を計算によって求めるには所謂割り算回路が必要(CPUを備えずとも、少なくとも割り算回路は必要)となるため、同じく回路構成が複雑になる。   However, in the above prior art, in order to detect the resistance value of SMA, it is necessary to provide a resistance value detection circuit, a sample hold circuit, a PID controller, etc., and the circuit configuration becomes complicated. In general, it is necessary to obtain the resistance value when controlling the driving of the SMA actuator, but a so-called division circuit is necessary to obtain this resistance value by calculation (at least a division circuit is necessary even without a CPU). Therefore, the circuit configuration is also complicated.

本発明は上記事情に鑑みてなされたもので、抵抗値検出回路や割り算回路(CPU)が不要な簡易で且つ低コストな回路構成であるとともに、精度良くSMAアクチュエータの駆動制御を行うことが可能な駆動制御装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a simple and low-cost circuit configuration that does not require a resistance value detection circuit and a division circuit (CPU), and can accurately control the drive of the SMA actuator. An object of the present invention is to provide a simple drive control device.

本発明に係る駆動制御装置は、形状記憶合金に直列に接続された固定抵抗と、前記形状記憶合金及び固定抵抗のそれぞれにかかる電圧値を検出する検出手段と、前記形状記憶合金に前記固定抵抗を介して電力を供給して通電加熱する駆動手段と、前記検出手段により検出された各電圧値の情報に基づいて、前記駆動手段の駆動量を制御する制御手段とを備える駆動制御装置であって、前記制御手段は、前記形状記憶合金及び固定抵抗のそれぞれにかかる電圧値の比率を制御することで前記駆動手段の駆動量を制御することを特徴とする。   The drive control device according to the present invention includes a fixed resistor connected in series to a shape memory alloy, a detection means for detecting a voltage value applied to each of the shape memory alloy and the fixed resistor, and the fixed resistor to the shape memory alloy. A drive control device comprising: a drive means for supplying and supplying electric power through a heating means; and a control means for controlling a drive amount of the drive means based on information on each voltage value detected by the detection means. The control means controls the drive amount of the drive means by controlling the ratio of the voltage values applied to the shape memory alloy and the fixed resistance.

上記構成によれば、駆動制御装置が、形状記憶合金に直列に接続された固定抵抗と、形状記憶合金及び固定抵抗のそれぞれにかかる電圧値を検出する検出手段と、形状記憶合金に固定抵抗を介して電力を供給して通電加熱する駆動手段と、検出手段により検出された各電圧値の情報に基づいて、駆動手段の駆動量を制御する制御手段とを備える駆動制御装置とされ、制御手段によって、形状記憶合金及び固定抵抗のそれぞれにかかる電圧値の比率を制御することで駆動手段の駆動量が制御されるので、すなわち、実際に形状記憶合金の抵抗値を検出せずに、形状記憶合金の電圧値と固定抵抗の電圧値との比率(電圧比)を制御することで、駆動手段の駆動量つまり形状記憶合金及び固定抵抗に流す電流量を制御することができるので、抵抗値検出回路や割り算回路(CPU)を備えることなく簡易で且つ低コストな回路構成で精度良く形状記憶合金(形状記憶合金のアクチュエータ)の駆動制御を行うことができる。   According to the above configuration, the drive control device includes a fixed resistance connected in series to the shape memory alloy, a detection unit that detects a voltage value applied to each of the shape memory alloy and the fixed resistance, and a fixed resistance to the shape memory alloy. A drive control device comprising: a drive unit that supplies electric power through the heating unit; and a control unit that controls a drive amount of the drive unit based on information on each voltage value detected by the detection unit. Since the driving amount of the driving means is controlled by controlling the ratio of the voltage values applied to the shape memory alloy and the fixed resistance, that is, the shape memory is not actually detected without detecting the resistance value of the shape memory alloy. By controlling the ratio (voltage ratio) between the voltage value of the alloy and the voltage value of the fixed resistance, the driving amount of the driving means, that is, the amount of current flowing through the shape memory alloy and the fixed resistance can be controlled. Drive control of the detection circuit and divider circuit accurately shape memory alloy and low-cost circuit configuration simplified without providing a (CPU) (actuator of the shape memory alloy) can be performed.

また、上記構成において、前記制御手段は、前記固定抵抗にかかる電圧値を所定ゲイン倍してなる電圧値と、前記形状記憶合金にかかる電圧値との差がゼロとなるように前記電圧値の比率を制御することが好ましい(請求項2)。   Further, in the above configuration, the control means may adjust the voltage value so that a difference between a voltage value obtained by multiplying a voltage value applied to the fixed resistor by a predetermined gain and a voltage value applied to the shape memory alloy becomes zero. It is preferable to control the ratio (claim 2).

これによれば、制御手段によって、固定抵抗にかかる電圧値を所定ゲイン倍してなる電圧値と、形状記憶合金にかかる電圧値との差がゼロとなるように電圧値の比率が制御されるので、当該電圧値の比率の制御を容易に行うことができる。   According to this, the ratio of the voltage value is controlled by the control means so that the difference between the voltage value obtained by multiplying the voltage value applied to the fixed resistance by a predetermined gain and the voltage value applied to the shape memory alloy becomes zero. Therefore, it is possible to easily control the ratio of the voltage values.

また、上記構成において、前記ゲイン倍の値は、前記形状記憶合金の目標とする抵抗値を、前記固定抵抗の抵抗値で除算した値であることが好ましい(請求項3)。   In the above configuration, the value of the gain multiple is preferably a value obtained by dividing the target resistance value of the shape memory alloy by the resistance value of the fixed resistance.

これによれば、上記ゲイン倍の値が、単に、形状記憶合金の目標とする抵抗値を固定抵抗の抵抗値で除算した値とされるので、固定抵抗にかかる電圧値を所定ゲイン倍する際のこのゲイン倍の値を容易に設定することができ、ひいては容易且つ確実に形状記憶合金(形状記憶合金のアクチュエータ)の駆動制御を行うことができる。   According to this, since the value of the gain multiple is simply a value obtained by dividing the target resistance value of the shape memory alloy by the resistance value of the fixed resistance, the voltage value applied to the fixed resistance is multiplied by a predetermined gain. This gain multiple value can be easily set, and as a result, drive control of the shape memory alloy (shape memory alloy actuator) can be performed easily and reliably.

実際に形状記憶合金の抵抗値を検出せずに、形状記憶合金の電圧値と固定抵抗の電圧値との比率(電圧比)を制御することで、駆動手段の駆動量つまり形状記憶合金及び固定抵抗に流す電流量を制御することができるので、抵抗値検出回路や割り算回路(CPU)を備えることなく簡易で且つ低コストな回路構成で精度良く形状記憶合金(形状記憶合金のアクチュエータ)の駆動制御を行うことができる。   By controlling the ratio (voltage ratio) between the voltage value of the shape memory alloy and the voltage value of the fixed resistance without actually detecting the resistance value of the shape memory alloy, the driving amount of the driving means, that is, the shape memory alloy and the fixed value Since the amount of current flowing through the resistor can be controlled, the shape memory alloy (shape memory alloy actuator) can be accurately driven with a simple and low-cost circuit configuration without a resistance value detection circuit or a division circuit (CPU). Control can be performed.

図1は、本発明の実施形態に係る駆動制御装置の一例を示すブロック構成図である。駆動制御装置1は、SMA部2、駆動部3、制御量算出部4及び比較部5を備えている。SMA部2は、例えばNi−Ti−Cu合金からなるSMA(後述のSMA23或いはSMA抵抗21)と、このSMAに電気的に接続された固定抵抗(後述の固定抵抗22)とを備えるとともに、これらSMA及び固定抵抗それぞれの電圧値を検出するものである。   FIG. 1 is a block diagram showing an example of a drive control apparatus according to an embodiment of the present invention. The drive control device 1 includes an SMA unit 2, a drive unit 3, a control amount calculation unit 4, and a comparison unit 5. The SMA unit 2 includes, for example, a SMA (SMA 23 or SMA resistor 21 described later) made of, for example, a Ni-Ti-Cu alloy, and a fixed resistor (fixed resistor 22 described later) electrically connected to the SMA. The voltage values of the SMA and the fixed resistor are detected.

ところで、SMAは、一般的に例えば図4に示すような抵抗値と歪率(変態率)との関係(抵抗歪み特性という)を有している。すなわち、SMAの抵抗値と歪率とは1:1の関係があり、歪率が大きくなるほど抵抗値は小さくなる。SMAのこの抵抗歪み特性は、周囲温度が変動(例えば−20℃〜+70℃の範囲で変動)しても変わらない。本発明はSMAのこの特性を利用するものである。後で詳述するが、例えば或る駆動部材を或る目標位置(歪率)まで移動させたい場合、SMAの抵抗値が、その目標位置(歪率)での抵抗値(目標抵抗値という)となるように制御することで、当該目標位置への移動を行うことができる。このようにSMAの抵抗歪み特性を利用した制御を行うことで、位置センサ等が不要となり、広範囲な環境温度下での高精度な位置決めが可能となる。   By the way, SMA generally has a relationship between resistance value and strain rate (transformation rate) as shown in FIG. That is, there is a 1: 1 relationship between the resistance value of SMA and the distortion rate, and the resistance value decreases as the distortion rate increases. This resistance strain characteristic of SMA does not change even when the ambient temperature varies (for example, varies in the range of −20 ° C. to + 70 ° C.). The present invention takes advantage of this property of SMA. As will be described in detail later, for example, when it is desired to move a certain drive member to a certain target position (distortion rate), the resistance value of the SMA is a resistance value (referred to as a target resistance value) at the target position (distortion rate). By controlling so as to become, it is possible to move to the target position. By performing control using the resistance strain characteristics of SMA in this way, a position sensor or the like is not necessary, and high-accuracy positioning can be performed under a wide range of environmental temperatures.

駆動部3は、制御量算出部4から送信されてくる信号値(後述の制御量)に応じてSMA部2におけるSMAを駆動するものである。制御量算出部4は、比較部5から送信されてくる各種信号値に応じてSMA駆動制御における制御量を算出し、この制御量を駆動部3に出力するものである。比較部5は、SMA部2において検出されたSMA及び固定抵抗における2つの電圧値の比(現在の電圧比;現在電圧比という)を算出するとともに、この現在電圧比と比較部5に入力された指示値すなわち目標となる電圧比(目標電圧比という)とを比較し、現在電圧比と目標電圧比との差に応じた各種信号値(算出値)を制御量算出部4に出力するものである。このように駆動制御装置1は、SMA部2の現在の状態(現在電圧比)を検出し、この現在電圧比を比較部5へフィードバックし、比較部5に与えられた目標電圧比と比較してこの比較結果に基づき制御量を算出してこの制御量でSMA部2を駆動し、再び、この制御量で駆動されているときの現在電圧比を検出してこれに基づいて制御量を算出する、というような所謂ループ制御を行う。このループ制御によって、SMAの歪率が、最終的に目標電圧比に相当する歪率に収束する。   The drive unit 3 drives the SMA in the SMA unit 2 in accordance with a signal value (a control amount described later) transmitted from the control amount calculation unit 4. The control amount calculation unit 4 calculates a control amount in the SMA drive control according to various signal values transmitted from the comparison unit 5, and outputs this control amount to the drive unit 3. The comparison unit 5 calculates a ratio of two voltage values (current voltage ratio; current voltage ratio) in the SMA and the fixed resistor detected in the SMA unit 2 and inputs the current voltage ratio and the comparison unit 5 to the current voltage ratio. The command value, that is, the target voltage ratio (referred to as target voltage ratio) is compared, and various signal values (calculated values) corresponding to the difference between the current voltage ratio and the target voltage ratio are output to the control amount calculation unit 4 It is. Thus, the drive control device 1 detects the current state (current voltage ratio) of the SMA unit 2, feeds back this current voltage ratio to the comparison unit 5, and compares it with the target voltage ratio given to the comparison unit 5. The control amount is calculated based on the comparison result, and the SMA unit 2 is driven with the control amount. The current voltage ratio when the control unit is driven with the control amount is detected again, and the control amount is calculated based on the current voltage ratio. So-called loop control is performed. By this loop control, the distortion rate of the SMA finally converges to a distortion rate corresponding to the target voltage ratio.

図2は、上記図1に示すブロック構成における、実際の回路構成の一例を示す回路図である。この回路図に示すように、駆動制御装置1は、SMA部2における、SMAの抵抗に相当するSMA抵抗21及び所定の固定抵抗22と、駆動部3に相当するドライバ31と、制御量算出部4に相当する電圧加算器41と、比較部5に相当する、差分アンプ51、VGA52(Variable Gain Amplifier;増幅器)、差分アンプ53及びアンプ54とを備えている。   FIG. 2 is a circuit diagram showing an example of an actual circuit configuration in the block configuration shown in FIG. As shown in the circuit diagram, the drive control device 1 includes an SMA resistor 21 corresponding to the SMA resistance and a predetermined fixed resistor 22, a driver 31 equivalent to the drive unit 3, and a control amount calculation unit in the SMA unit 2. 4, a voltage adder 41 corresponding to 4, a differential amplifier 51, a VGA 52 (Variable Gain Amplifier), a differential amplifier 53 and an amplifier 54 corresponding to the comparison unit 5.

この回路において、固定抵抗22はSMA抵抗21に直列に接続されており(SMA抵抗21の一端はGND;基準電位0V)、この固定抵抗22の両端の電圧がそれぞれ差分アンプ51に入力される。差分アンプ51は、この固定抵抗22の両端の電圧の差の電圧VdをVGA52に出力するとともに、電圧加算器41に出力する。この電圧Vdは、ドライバ31から出力された電流Iによって固定抵抗22にかかる電圧値と等しい。VGA52は、差分アンプ51の出力すなわち電圧Vdを増幅し(電圧VdをゲインGv倍する)、この増幅した電圧(Vd×Gv)を差分アンプ53に出力するとともに、電圧加算器41に出力する。   In this circuit, the fixed resistor 22 is connected in series to the SMA resistor 21 (one end of the SMA resistor 21 is GND; a reference potential of 0 V), and the voltage at both ends of the fixed resistor 22 is input to the differential amplifier 51. The differential amplifier 51 outputs the voltage Vd, which is the difference between the voltages at both ends of the fixed resistor 22, to the VGA 52 and also to the voltage adder 41. This voltage Vd is equal to the voltage value applied to the fixed resistor 22 by the current I output from the driver 31. The VGA 52 amplifies the output of the differential amplifier 51, that is, the voltage Vd (multiplies the voltage Vd by a gain Gv), outputs the amplified voltage (Vd × Gv) to the differential amplifier 53, and outputs it to the voltage adder 41.

ここで、図5は、VGA52における指示値と増幅率との関係を示す特性グラフである。この特性グラフに示すように、VGA52の増幅率は、当該外部から与えられる指示値に比例して変化する(指示値が大きくなると増幅率も大きくなる)ようになっている。差分アンプ53は、VGA52の出力電圧(Vd×Gv)とSMA抵抗21にかかる電圧Vsとの差の電圧(Vs−Vd×Gv)を、アンプ54に出力する。アンプ54は、当該VGA52の出力電圧とSMA抵抗21にかかる電圧Vsとの差の電圧をゲインGp倍し、この電圧((Vs−Vd×Gv)×Gp)を電圧加算器41に出力する。電圧加算器41は、入力された上記3つの電圧(電圧Vd、電圧Vd×Gv、電圧(Vs−Vd×Gv)×Gp)を加算し、この加算電圧(後述の(3)式における制御値に相当)をドライバ31に出力する。ドライバ31は、電圧加算器41からの加算電圧値に応じた電流I(電圧)をSMA抵抗21及び固定抵抗22に流す、すなわち電流Iを流すことによる電圧降下によってSMA抵抗21及び固定抵抗22それぞれに電圧Vd、Vsを印加する。なお、差分アンプ53とアンプ54とを纏めて1個のアンプで構成してもよい。   Here, FIG. 5 is a characteristic graph showing the relationship between the indicated value and the amplification factor in the VGA 52. As shown in this characteristic graph, the amplification factor of the VGA 52 changes in proportion to the instruction value given from the outside (the amplification factor increases as the instruction value increases). The difference amplifier 53 outputs a difference voltage (Vs−Vd × Gv) between the output voltage (Vd × Gv) of the VGA 52 and the voltage Vs applied to the SMA resistor 21 to the amplifier 54. The amplifier 54 multiplies the difference voltage between the output voltage of the VGA 52 and the voltage Vs applied to the SMA resistor 21 by a gain Gp, and outputs this voltage ((Vs−Vd × Gv) × Gp) to the voltage adder 41. The voltage adder 41 adds the above three input voltages (voltage Vd, voltage Vd × Gv, voltage (Vs−Vd × Gv) × Gp), and adds this added voltage (control value in equation (3) described later). To the driver 31. The driver 31 causes the current I (voltage) corresponding to the added voltage value from the voltage adder 41 to flow through the SMA resistor 21 and the fixed resistor 22, that is, the SMA resistor 21 and the fixed resistor 22, respectively, due to a voltage drop caused by flowing the current I. Voltages Vd and Vs are applied to. Note that the differential amplifier 53 and the amplifier 54 may be configured as a single amplifier.

次に、当該回路構成を有する駆動制御装置1による具体的な制御方法について説明する。図2において、SMA抵抗21及び固定抵抗22の抵抗値をそれぞれRs、Rdとし、これらSMA抵抗21及び固定抵抗22にドライバ31からの電流Iが流れたとする。このとき、SMA抵抗21にかかる電圧VsはVs=Rs×Iで与えられ、固定抵抗22にかかる電圧VdはVd=Rd×Iで与えられる。   Next, a specific control method by the drive control device 1 having the circuit configuration will be described. In FIG. 2, it is assumed that the resistance values of the SMA resistor 21 and the fixed resistor 22 are Rs and Rd, respectively, and the current I from the driver 31 flows through the SMA resistor 21 and the fixed resistor 22. At this time, the voltage Vs applied to the SMA resistor 21 is given by Vs = Rs × I, and the voltage Vd applied to the fixed resistor 22 is given by Vd = Rd × I.

これより以下の(1.1)及び(1.2)式を経て(1.3)式の関係が導かれる。
Rd:Rs=Vd:Vs ・・・(1.1)
Vs/Vd=Rs/Rd ・・・(1.2)
Vs=Vd×(Rs/Rd) ・・・(1.3)
但し、Rdは、固定抵抗22の抵抗値であることから、固定値である。また、記号「/」は除算を示す(以下同様)。
From this, the relationship of the formula (1.3) is derived through the following formulas (1.1) and (1.2).
Rd: Rs = Vd: Vs (1.1)
Vs / Vd = Rs / Rd (1.2)
Vs = Vd × (Rs / Rd) (1.3)
However, Rd is a fixed value because it is the resistance value of the fixed resistor 22. The symbol “/” indicates division (the same applies hereinafter).

したがって、Rsを目標の値Rtにしたい場合には、(1.3)式より、Vsを以下の(2)式に示すものとすればよいことになる。
Vs=Vd×(Rt/Rd) ・・・(2)
Therefore, when it is desired to set Rs to the target value Rt, Vs may be expressed by the following equation (2) from equation (1.3).
Vs = Vd × (Rt / Rd) (2)

ここで、(2)式における(Rt/Rd)を上述のゲインGv(目標の比;後述の目標抵抗比或いは目標電圧比)とし(Gv=Rt/Rd)、制御式を以下の(3)式とする。
制御値=(Vs−Vd×Gv)×Gp+(Vd+Vd×Gv) ・・・(3)
但し、この制御値つまり(3)式の右辺各項は、上記電圧加算器41に入力された3つの電圧値、Vd、Vd×Gv、及び(Vs−Vd×Gv)×Gpの加算(合計)値に相当する。
Here, (Rt / Rd) in equation (2) is the above-described gain Gv (target ratio; target resistance ratio or target voltage ratio described later) (Gv = Rt / Rd), and the control equation is as follows (3) Let it be an expression.
Control value = (Vs−Vd × Gv) × Gp + (Vd + Vd × Gv) (3)
However, this control value, that is, each term on the right side of the equation (3), is an addition (total of three voltage values input to the voltage adder 41, Vd, Vd × Gv, and (Vs−Vd × Gv) × Gp. ) Value.

この(3)式は、上記Rsが目標の抵抗値Rtとなると、Vs=Vd×(Rt/Rd)((2)式参照)となる、すなわちGv=Rt/Rdであるから、Vs=Vd×Gvとなると、上記(3)式の右辺左項がゼロ(VsとVd×Gvとの差がゼロ)となるようにしている。また、Gpは、SMAの変位の速度を速くするためのゲインであり、Gpの値が大きい程この変位速度を速くすることができるが、大きすぎると発振してしまうため、適度な値に設定する必要がある。   In this equation (3), when Rs reaches the target resistance value Rt, Vs = Vd × (Rt / Rd) (see equation (2)), that is, Gv = Rt / Rd, so Vs = Vd When xGv, the left term on the right side of the above equation (3) is zero (the difference between Vs and Vd × Gv is zero). Gp is a gain for increasing the speed of displacement of the SMA. The larger the value of Gp, the faster the displacement speed can be. There is a need to.

また、上記(3)式の右辺右項の(Vd+Vd×Gv)は、制御が安定点に達してVs=Vd×(Rt/Rd)=Vd×Gvとなり、上記左項がゼロとなったときのオフセット量である。これは、制御が安定点に達するとVs=Vd×Gvとなり、このとき、SMA(SMA抵抗21及び固定抵抗22)に対する制御量すなわち駆動量(Vd+Vs)は、制御が安定点に達するとVs=Vd×Gvとなっていることから、この駆動量(Vd+Vs)のVsをVd×Gvに入れ替えて得られる(Vd+Vd×Gv)がオフセット量として与えられている。なお、この(Vd+Vs)は、駆動部3(ドライバ31)から出力される電流IによってSMA抵抗21及び固定抵抗22で得られる電圧Vs、Vdであることから、上記“駆動量”は、駆動部3の駆動量であると言える。駆動部3は、制御量算出部4からの制御量の情報に基づいて当該駆動量を制御することで、SMA抵抗21及び固定抵抗22に流す電流Iの流量(電流出力)を制御する。   Also, (Vd + Vd × Gv) in the right term on the right side of the above equation (3) is when the control reaches a stable point and Vs = Vd × (Rt / Rd) = Vd × Gv, and the left term becomes zero. Offset amount. This is Vs = Vd × Gv when the control reaches a stable point. At this time, the control amount for the SMA (SMA resistor 21 and fixed resistor 22), that is, the drive amount (Vd + Vs) is Vs = Vd = Since Vd × Gv, (Vd + Vd × Gv) obtained by replacing Vs of this drive amount (Vd + Vs) with Vd × Gv is given as an offset amount. Since (Vd + Vs) is the voltages Vs and Vd obtained by the SMA resistor 21 and the fixed resistor 22 by the current I output from the drive unit 3 (driver 31), the “drive amount” is the drive unit. It can be said that the driving amount is 3. The drive unit 3 controls the drive amount based on the control amount information from the control amount calculation unit 4 to control the flow rate (current output) of the current I flowing through the SMA resistor 21 and the fixed resistor 22.

また、上述のように、VdをゲインGv倍するのはVGA52で行われるが、このVGA52にGv倍に相当する指示値を入力するとVdがGv倍される構成となっている。このとき、例えば固定抵抗22の抵抗値Rd=3Ωとし、SMA抵抗21の抵抗値RsがRt=30Ωの目標値となるように制御したい場合は、Gv=10倍(=30/10=Rt/Rd)に相当する指示値をVGA52に入力すればよい。例えば同様にRt=27Ωにしたい場合はGv=9倍に相当する指示値を入力すればよい。なお、Rt/Rd(=Gv)のことを、目標抵抗比という。   As described above, Vd is multiplied by the gain Gv by the VGA 52, but when an instruction value corresponding to Gv times is input to the VGA 52, Vd is multiplied by Gv. At this time, for example, when the resistance value Rd of the fixed resistor 22 is set to 3Ω and control is performed so that the resistance value Rs of the SMA resistor 21 becomes the target value of Rt = 30Ω, Gv = 10 times (= 30/10 = Rt / An instruction value corresponding to Rd) may be input to the VGA 52. For example, if it is desired to set Rt = 27Ω, an instruction value corresponding to Gv = 9 times may be input. Note that Rt / Rd (= Gv) is referred to as a target resistance ratio.

このようにGvの値を制御することは、「抵抗比を制御する」、つまり抵抗比は電圧比に置き換えることができるので「電圧比を制御する」ことになる。上述では、SMA抵抗21及び固定抵抗22における現在の抵抗比(Rs/Rd)が上記目標抵抗比(Rt/Rd)になるような、すなわちこの現在抵抗比に対応する上記現在電圧比が上記目標電圧比になるようなGv値を与えている。本実施形態では、このようにSMA抵抗21及び固定抵抗22のそれぞれにかかる電圧値の比率を制御する(電圧比制御を行う)ことで、実際にはSMA(SMA抵抗21)の抵抗値を検出していないにも拘わらず、SMAが目標の抵抗値となるように制御することができる。すなわち、抵抗値検出回路や割り算回路(CPU)を備えることなく、実際の抵抗値検出による制御(抵抗値制御という)を行う場合と同じく精度良くSMA(後述の駆動機構20、SMAアクチュエータ)の駆動制御(後述の可動部材24の位置決め等)を行うことができる。   Controlling the value of Gv in this way means “controlling the resistance ratio”, that is, “controlling the voltage ratio” because the resistance ratio can be replaced with a voltage ratio. In the above description, the current resistance ratio (Rs / Rd) in the SMA resistor 21 and the fixed resistor 22 becomes the target resistance ratio (Rt / Rd), that is, the current voltage ratio corresponding to the current resistance ratio is the target resistance. A Gv value that gives a voltage ratio is given. In the present embodiment, the resistance value of the SMA (SMA resistor 21) is actually detected by controlling the ratio of the voltage values applied to the SMA resistor 21 and the fixed resistor 22 in this way (performing voltage ratio control). In spite of this, the SMA can be controlled so as to have a target resistance value. That is, without providing a resistance value detection circuit or a division circuit (CPU), driving SMA (driving mechanism 20 and SMA actuator described later) with high accuracy is performed in the same manner as when control by actual resistance value detection (referred to as resistance value control) is performed. Control (positioning of a movable member 24 described later, etc.) can be performed.

なお、本実施形態における駆動制御装置1は、例えば図3に示す駆動機構20に適用される。駆動機構20は、SMA23、可動部材24、ベース25、回転軸26及び付勢バネ27等を備えている。SMA23は上述におけるSMA(SMA抵抗21)であって、例えば変位方向と垂直な方向の断面形状が略真円である線材とされている。このSMA23の一端側は可動部材24に連結(固定)されており、他端側はベース25(筐体)に連結(固定)されている。可動部材24は、同図に示すように略L字状をしており、該L字の屈曲部において回転軸26によって回転(揺動)可能に軸支されている。この可動部材24の一端側(第1アーム;例えば同図に示すように腕の長さが短い方)に上記SMA23が連結されている。また可動部材24の他端側(第2アーム;腕の長さが長い方)とベース25との間には、付勢バネ27が取り付けられている。これら可動部材24、SMA23及び付勢バネ27は、回転軸26を支点として、可動部材24の一端側(第1アーム)におけるSMA23が連結されている箇所を力点、可動部材24の他端側の先端部(第2アームの先端)を作用点とする所謂“梃子”を構成している。ここではこのように第1アームの長さよりも第2アームの長さの方が長くなっているので、可動部材24の他端側の先端部は、SMA23の変位よりも大きく移動することができる。   In addition, the drive control apparatus 1 in this embodiment is applied to the drive mechanism 20 shown, for example in FIG. The drive mechanism 20 includes an SMA 23, a movable member 24, a base 25, a rotating shaft 26, an urging spring 27, and the like. The SMA 23 is the SMA (SMA resistor 21) described above, and is a wire whose cross-sectional shape in a direction perpendicular to the displacement direction is substantially a perfect circle, for example. One end side of the SMA 23 is connected (fixed) to the movable member 24, and the other end side is connected (fixed) to the base 25 (housing). The movable member 24 is substantially L-shaped as shown in the figure, and is pivotally supported by a rotating shaft 26 at a bent portion of the L-shape so as to be rotatable (oscillated). The SMA 23 is connected to one end side of the movable member 24 (first arm; for example, the shorter arm length as shown in the figure). An urging spring 27 is attached between the other end side (second arm; the longer arm length) of the movable member 24 and the base 25. The movable member 24, the SMA 23, and the biasing spring 27 have a rotation point 26 as a fulcrum and a point where the SMA 23 is connected to one end side (first arm) of the movable member 24 as a force point, and the other end side of the movable member 24. A so-called “insulator” having the tip (the tip of the second arm) as an action point is formed. Here, since the length of the second arm is longer than the length of the first arm in this way, the tip on the other end side of the movable member 24 can move larger than the displacement of the SMA 23. .

図3では図示省略しているが、SMA23に上記固定抵抗22が直列に接続されるとともに、上記駆動部3、制御量算出部4及び比較部5の各回路が接続されている。この構成において、SMA23は予め所定形状(例えば所定寸法の長さの形状)が記憶されており、SMA23に電流Iを流すと、自己の抵抗によりジュール熱を発生し、加熱(通電加熱)されてSMA23が収縮し、可動部材24の上記付勢バネ27側の先端部が同図中の上方向に移動する(回転軸26を中心に回転する)。当該電流を流すのを止めると、可動部材24が付勢バネ27による付勢力で押し戻されて同図中の下方向に回転移動することでSMAが伸長されて元の長さに戻る。このSMA23に対する電流Iの値(電流量)を変えることで、可動部材24先端部の移動位置を変える(位置決めを行う)ことができる。なお、駆動機構20におけるSMA23やその他各部の形状(構成)はこれに限定されない。   Although not shown in FIG. 3, the fixed resistor 22 is connected in series to the SMA 23, and the circuits of the drive unit 3, the control amount calculation unit 4, and the comparison unit 5 are connected. In this configuration, the SMA 23 has a predetermined shape (for example, a shape having a predetermined length) stored in advance. When the current I is supplied to the SMA 23, Joule heat is generated by its own resistance and is heated (energized heating). The SMA 23 contracts, and the tip of the movable member 24 on the biasing spring 27 side moves upward in the figure (rotates about the rotation shaft 26). When the flow of the current is stopped, the movable member 24 is pushed back by the urging force of the urging spring 27 and is rotated downward in the figure, whereby the SMA is expanded and returned to its original length. By changing the value (current amount) of the current I with respect to the SMA 23, the moving position of the distal end portion of the movable member 24 can be changed (positioning is performed). Note that the shape (configuration) of the SMA 23 and other components in the drive mechanism 20 is not limited to this.

以上のように、本実施形態における駆動制御装置1によれば、駆動制御装置1が、形状記憶合金(SMA23、SMA抵抗21)に直列に接続された固定抵抗22と、上記形状記憶合金及び固定抵抗22のそれぞれにかかる電圧値(Vs、Vd)を検出する検出手段(比較部5、差分アンプ51)と、形状記憶合金に固定抵抗22を介して電力を供給して通電加熱する(形状記憶合金及び固定抵抗22に電流Iを流す駆動を行う)駆動手段(駆動部3、ドライバ31)と、上記検出手段により検出された各電圧値の情報に基づいて、駆動手段の駆動量(出力電流量)を制御する制御手段(制御量算出部4及び比較部5)とを備える駆動制御装置1とされ、上記制御手段によって、形状記憶合金及び固定抵抗のそれぞれにかかる電圧値の比率を制御することで駆動手段の駆動量(駆動手段に対する制御量)が制御されるので、すなわち、実際に形状記憶合金の抵抗値を検出せずに(抵抗値制御を行うことなく)、形状記憶合金の電圧値と固定抵抗の電圧値との比率(電圧比;Gv値)を制御する(電圧比制御を行う)ことで、上記駆動手段の駆動量つまり形状記憶合金及び固定抵抗に流す電流量(電流I)を制御することができるので、抵抗値検出回路や割り算回路(CPU)を備えることなく簡易で且つ低コストな回路構成で精度良く形状記憶合金(SMAアクチュエータ)の駆動制御を行うことができる。   As described above, according to the drive control device 1 of the present embodiment, the drive control device 1 includes the fixed resistor 22 connected in series to the shape memory alloy (SMA 23, SMA resistor 21), the shape memory alloy, and the fixed Detection means (comparing unit 5, differential amplifier 51) for detecting voltage values (Vs, Vd) applied to each of the resistors 22 and supplying heat to the shape memory alloy via the fixed resistor 22 to heat the current (shape memory) Based on the information of each voltage value detected by the driving means (driving unit 3, driver 31) for driving the current I to the alloy and the fixed resistor 22) and the detecting means, the driving amount (output current) The control unit 1 includes a control unit (control amount calculation unit 4 and comparison unit 5) for controlling the amount), and by the control unit, the ratio of the voltage value applied to each of the shape memory alloy and the fixed resistance is determined. By controlling, the drive amount of the drive means (control amount for the drive means) is controlled, that is, without actually detecting the resistance value of the shape memory alloy (without performing resistance value control), the shape memory alloy By controlling the ratio (voltage ratio; Gv value) between the voltage value of the first resistor and the voltage value of the fixed resistor (voltage ratio control is performed), the driving amount of the driving means, that is, the amount of current flowing through the shape memory alloy and the fixed resistor ( Since the current I) can be controlled, the drive control of the shape memory alloy (SMA actuator) can be accurately performed with a simple and low-cost circuit configuration without a resistance value detection circuit or a division circuit (CPU). it can.

また、上記制御手段によって、固定抵抗22にかかる電圧値(Vd)を所定ゲイン(Gv)倍してなる電圧値(Vd×Gv)と、形状記憶合金にかかる電圧値(Vs)との差がゼロとなるように電圧値の比率が制御されるので、当該電圧値の比率の制御を容易に行うことができる。   In addition, a difference between a voltage value (Vd × Gv) obtained by multiplying the voltage value (Vd) applied to the fixed resistor 22 by a predetermined gain (Gv) by the control means and a voltage value (Vs) applied to the shape memory alloy is obtained. Since the ratio of the voltage values is controlled to be zero, the ratio of the voltage values can be easily controlled.

さらに、上記ゲイン倍(Gv)の値が、単に、形状記憶合金の目標とする抵抗値(Rt)を固定抵抗22の抵抗値(Rd)で除算した値とされるので、固定抵抗22にかかる電圧値(Vs)を所定ゲイン(Gv)倍する際のこのGvの値を容易に設定することができ、ひいては容易且つ確実に形状記憶合金(SMAアクチュエータ)の駆動制御を行うことができる。   Further, since the value of the gain multiple (Gv) is simply a value obtained by dividing the target resistance value (Rt) of the shape memory alloy by the resistance value (Rd) of the fixed resistor 22, the value applied to the fixed resistor 22 is applied. This Gv value when the voltage value (Vs) is multiplied by the predetermined gain (Gv) can be easily set, and as a result, drive control of the shape memory alloy (SMA actuator) can be performed easily and reliably.

本発明の実施形態に係る駆動制御装置の一例を示すブロック構成図である。It is a block block diagram which shows an example of the drive control apparatus which concerns on embodiment of this invention. 図1に示すブロック構成における、実際の回路構成の一例を示す回路図である。FIG. 2 is a circuit diagram illustrating an example of an actual circuit configuration in the block configuration illustrated in FIG. 1. 上記駆動制御装置が適用される一例としての駆動機構の概略構成図である。It is a schematic block diagram of the drive mechanism as an example to which the said drive control apparatus is applied. 上記駆動制御装置におけるSMAの抵抗値と歪率との関係を示すグラフ図である。It is a graph which shows the relationship between the resistance value of SMA and a distortion rate in the said drive control apparatus. 上記図2に示すVGAにおける指示値と増幅率との関係を示すグラフ図である。It is a graph which shows the relationship between the instruction | indication value and amplification factor in VGA shown in the said FIG.

符号の説明Explanation of symbols

1 駆動制御装置
2 SMA部
21 SMA抵抗
22 固定抵抗
3 駆動部
31 ドライバ
4 制御量算出部
41 電圧加算器
5 比較部
51、53 差分アンプ
52 VGA
54 アンプ
20 駆動機構
23 SMA
24 可動部材
25 ベース
26 回転軸
27 付勢バネ
DESCRIPTION OF SYMBOLS 1 Drive control apparatus 2 SMA part 21 SMA resistance 22 Fixed resistance 3 Drive part 31 Driver 4 Control amount calculation part 41 Voltage adder 5 Comparison part 51, 53 Difference amplifier 52 VGA
54 Amplifier 20 Drive mechanism 23 SMA
24 Movable member 25 Base 26 Rotating shaft 27 Biasing spring

Claims (3)

形状記憶合金に直列に接続された固定抵抗と、
前記形状記憶合金及び固定抵抗のそれぞれにかかる電圧値を検出する検出手段と、
前記形状記憶合金に前記固定抵抗を介して電力を供給して通電加熱する駆動手段と、
前記検出手段により検出された各電圧値の情報に基づいて、前記駆動手段の駆動量を制御する制御手段とを備える駆動制御装置であって、
前記制御手段は、前記形状記憶合金及び固定抵抗のそれぞれにかかる電圧値の比率を制御することで前記駆動手段の駆動量を制御することを特徴とする駆動制御装置。
A fixed resistor connected in series to the shape memory alloy;
Detecting means for detecting a voltage value applied to each of the shape memory alloy and the fixed resistor;
Driving means for supplying electric power to the shape memory alloy through the fixed resistor to heat the current,
A drive control device comprising: control means for controlling the drive amount of the drive means based on information of each voltage value detected by the detection means;
The drive control device, wherein the control means controls a drive amount of the drive means by controlling a ratio of voltage values applied to the shape memory alloy and the fixed resistance.
前記制御手段は、前記固定抵抗にかかる電圧値を所定ゲイン倍してなる電圧値と、前記形状記憶合金にかかる電圧値との差がゼロとなるように前記電圧値の比率を制御することを特徴とする請求項1に記載の駆動制御装置。   The control means controls the ratio of the voltage value so that a difference between a voltage value obtained by multiplying a voltage value applied to the fixed resistor by a predetermined gain and a voltage value applied to the shape memory alloy becomes zero. The drive control apparatus according to claim 1, wherein 前記ゲイン倍の値は、前記形状記憶合金の目標とする抵抗値を、前記固定抵抗の抵抗値で除算した値であることを特徴とする請求項2に記載の駆動制御装置。   3. The drive control device according to claim 2, wherein the value of the gain multiple is a value obtained by dividing a target resistance value of the shape memory alloy by a resistance value of the fixed resistance.
JP2007098461A 2007-04-04 2007-04-04 Drive control device Expired - Fee Related JP5012152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098461A JP5012152B2 (en) 2007-04-04 2007-04-04 Drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098461A JP5012152B2 (en) 2007-04-04 2007-04-04 Drive control device

Publications (2)

Publication Number Publication Date
JP2008259301A JP2008259301A (en) 2008-10-23
JP5012152B2 true JP5012152B2 (en) 2012-08-29

Family

ID=39982327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098461A Expired - Fee Related JP5012152B2 (en) 2007-04-04 2007-04-04 Drive control device

Country Status (1)

Country Link
JP (1) JP5012152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475768B (en) * 2014-12-24 2016-09-14 陕西海力特精密机械有限公司 It is automatically obtained part to have turned around the precise numerical control machine of its two-sided processing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280679A (en) * 1989-04-19 1990-11-16 Olympus Optical Co Ltd Shape memory actuator
JP2911051B2 (en) * 1990-09-14 1999-06-23 オリンパス光学工業株式会社 Bending section drive control device
JP4775115B2 (en) * 2006-05-29 2011-09-21 コニカミノルタオプト株式会社 Length control device, length control program, and lens driving device

Also Published As

Publication number Publication date
JP2008259301A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP4822358B2 (en) Position control method for shape memory alloy actuator
JP4883187B2 (en) Shape memory alloy drive unit
JP5221672B2 (en) Control of shape memory alloy working structure
JP4363500B2 (en) Drive device
JP2007522373A (en) Shape memory alloy actuator
JP4747679B2 (en) Drive device
JP2007247593A (en) Actuator drive device
JP2672110B2 (en) Shape memory actuator
CA2714496A1 (en) Feedback control for shape memory alloy actuators
JP5012152B2 (en) Drive control device
US8717714B2 (en) Magnetic head positioning and driving device including heaters and diodes
Cao et al. Self-sensing and control of soft electrothermal actuator
JP2003195382A (en) Driving device using shape memory alloy
JP6550398B2 (en) Method and apparatus for operating a device
JP2007153077A (en) Blade driving device of swing resistor
WO2011145463A1 (en) Apparatus and method for driving actuator
JP2020202691A (en) Control device and motor unit for dc shunt winding motor
JP6034208B2 (en) Galvano scanner control device and laser processing device
WO2012093567A1 (en) Shape-memory alloy actuator control device and optical component drive unit
Teh et al. A new control system for fast motion control of SMA actuator wires
JP3267513B2 (en) Flow velocity detector
JP5809461B2 (en) DC motor rotation controller
Wu et al. Characteristics of Thermally Actuated Pneumatic Proportional Pressure Valves and Their Application
JP2001238483A (en) Drive control method and apparatus
JP2009108729A (en) Control method and control device for shape memory alloy actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees