JP5011640B2 - Stacked fuel cell - Google Patents

Stacked fuel cell Download PDF

Info

Publication number
JP5011640B2
JP5011640B2 JP2004352147A JP2004352147A JP5011640B2 JP 5011640 B2 JP5011640 B2 JP 5011640B2 JP 2004352147 A JP2004352147 A JP 2004352147A JP 2004352147 A JP2004352147 A JP 2004352147A JP 5011640 B2 JP5011640 B2 JP 5011640B2
Authority
JP
Japan
Prior art keywords
electrode assembly
membrane electrode
peripheral end
separator
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004352147A
Other languages
Japanese (ja)
Other versions
JP2006164653A (en
Inventor
正樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2004352147A priority Critical patent/JP5011640B2/en
Publication of JP2006164653A publication Critical patent/JP2006164653A/en
Application granted granted Critical
Publication of JP5011640B2 publication Critical patent/JP5011640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、膜電極接合体をセパレーターで挟んで形成される単セルからなる積層形燃料電池の構成に関する。   The present invention relates to a structure of a stacked fuel cell including a single cell formed by sandwiching a membrane electrode assembly between separators.

燃料電池においては、膜電極接合体を反応ガス流路を備えたセパレーターで挟んで単セルが形成されるが、1個の単セルの発電電圧は1Vに満たない低い電圧であるため、実用
の燃料電池では、単セルを積層して積層形燃料電池とし、所要の電圧、電流を得ている。図5は、この種の積層形燃料電池の単セルの従来の構成例を示す分解斜視図で、図中の1は、発電反応に寄与する膜電極接合体、2は拡散層、3は、各単セルに流れる反応ガス、すなわち燃料ガスと酸化剤ガスの流れをそれぞれ分離するセパレーターである。図5に示された5個の構成要素を順次積層することにより単セルが構成される。すなわち、図中に斜線で示した膜電極接合体1の発電領域の両面に対向して拡散層2を配し、さらに、これらの拡散層2の外面にセパレーター3の反応ガス流路部分を配して、膜電極接合体1を2個のセパレーター3により挟持することにより単セルが構成される。
In a fuel cell, a single cell is formed by sandwiching a membrane electrode assembly with a separator having a reaction gas flow path. However, since the power generation voltage of one single cell is a low voltage of less than 1 V, it is practical. In a fuel cell, single cells are stacked to form a stacked fuel cell, and necessary voltage and current are obtained. FIG. 5 is an exploded perspective view showing a conventional configuration example of a single cell of this type of stacked fuel cell, in which 1 is a membrane electrode assembly that contributes to power generation reaction, 2 is a diffusion layer, 3 is It is a separator that separates the flow of reaction gas flowing through each single cell, that is, the flow of fuel gas and oxidant gas. A single cell is formed by sequentially stacking the five components shown in FIG. That is, the diffusion layer 2 is disposed opposite to both surfaces of the power generation region of the membrane electrode assembly 1 indicated by hatching in the drawing, and the reaction gas flow path portion of the separator 3 is disposed on the outer surface of these diffusion layers 2. A single cell is formed by sandwiching the membrane electrode assembly 1 between the two separators 3.

図5において、膜電極接合体1の周縁部とセパレーター3の周縁部とを連通する6個の孔は、反応ガスとして用いられる燃料ガスと酸化剤ガスの供給用マニホールドと排出用マニホールド、ならびに燃料電池の温度を制御するために用いられる冷却水の供給用マニホールドと排出用マニホールドの役割を果たす連通孔である。すなわち、燃料ガス(図中でAと表記)は、図中右手前側縁部の手前側に配置された燃料ガス供給用マニホールドから供給され、セパレーター3に設けられた燃料ガス流路を流れたのち、図中左奥側側縁部の奥側に配置された燃料ガス排出用マニホールドから排出され、また、酸化剤ガス(図中でBと表記)は、図中右手前側縁部の奥側に配置された酸化剤ガス供給用マニホールドから供給され、セパレーター3に設けられた酸化剤ガス流路を流れたのち、図中左奥側側縁部の手前側に配置された酸化剤ガス排出用マニホールドから排出されるよう構成されている。さらに、冷却水(図中でCと表記)は、図中右奥側側縁部に配置された冷却水供給用マニホールドから供給され、セパレーター3に適宜設けられた冷却水流路を流れたのち、図中左手前側側縁部に配置された冷却水排出用マニホールドから排出されるよう構成されている。   In FIG. 5, six holes communicating the peripheral edge of the membrane electrode assembly 1 and the peripheral edge of the separator 3 are a supply manifold and a discharge manifold for fuel gas and oxidant gas used as reaction gas, and fuel. This is a communication hole that serves as a cooling water supply manifold and a discharge manifold used to control the temperature of the battery. That is, fuel gas (indicated as A in the figure) is supplied from a fuel gas supply manifold disposed on the front side of the right front side edge in the figure, and flows through the fuel gas flow path provided in the separator 3 The exhaust gas is discharged from a fuel gas discharge manifold disposed on the back side of the left rear side edge in the figure, and the oxidant gas (denoted as B in the figure) is discharged to the back side of the right front side edge part in the figure. An oxidant gas discharge manifold which is supplied from the oxidant gas supply manifold arranged and flows through the oxidant gas flow path provided in the separator 3 and is arranged on the front side of the left rear side edge in the figure. It is configured to be discharged from. Further, the cooling water (denoted as C in the figure) is supplied from a cooling water supply manifold disposed on the right back side edge in the figure, and flows through a cooling water flow path appropriately provided in the separator 3, It is configured to be discharged from a cooling water discharge manifold arranged at the left front side edge portion in the figure.

なお、固体高分子電解質膜(PE膜)の両面に電極を密着した膜電極接合体を用いる固体高分子電解質型燃料電池においては、湿潤状態の変化に伴ってPE膜の寸法が大幅に膨張、あるいは収縮するので、膜電極接合体の構成によっては過度に応力が加わって破損を生じる恐れがある。これに対応するものとして、特許文献1には、方形状のPE膜の両面にこのPE膜より外形寸法の小さい方形状の電極を密着して膜電極接合体を形成するものにおいて、PE膜に密着させる方形状の電極の角部を円弧状に形成し、あるいは角部に面取りを施して膜電極接合体を形成し、PE膜に加わる応力の集中を緩和して過度の応力による破損を回避するよう構成した燃料電池が示されている。
特開平6−338335号公報
In a solid polymer electrolyte fuel cell using a membrane electrode assembly in which electrodes are closely attached to both surfaces of a solid polymer electrolyte membrane (PE membrane), the dimension of the PE membrane greatly expands as the wet state changes. Alternatively, since it contracts, depending on the configuration of the membrane electrode assembly, there is a possibility that stress is applied excessively and breakage occurs. Corresponding to this, in Patent Document 1, a membrane electrode assembly is formed by closely adhering a square electrode having a smaller outer dimension than the PE film on both sides of a square PE film. The corners of the square electrode to be adhered are formed in an arc shape, or the corners are chamfered to form a membrane electrode assembly, and the stress concentration applied to the PE film is reduced to avoid damage due to excessive stress. A fuel cell configured to do so is shown.
JP-A-6-338335

図5のごとく構成された積層形燃料電池の単セルでは、膜電極接合体1を挟む一組のセパレーター3のうち一方のセパレーター3のガス流路に燃料ガスを通流させ、もう一方のセパレーター3のガス流路に酸化剤ガスを通流させると、膜電極接合体1で電気化学反応が生じて両電極間に電位差が発生し、これを外部の導電部材に接続することによって外部に電気エネルギーが取り出されることとなる。
図6に示した積層方向の部分断面図に見られるように、積層して構成された単セルの周端部は、膜電極接合体1を同一の端面を有する一組のセパレーター3で挟んで構成されており、各電極に電気的に連結された一組のセパレーター3の間を電気絶縁性の膜電極接合体1で電気絶縁している。
したがって、単セルの端部の両電極間は膜電極接合体1の厚さを絶縁距離として電気絶縁されることとなっているが、膜電極接合体1の厚さは非常に薄いので、単セルの端部に水分や塵埃が付着すると電気絶縁が不十分となる危険性がある。このように電気絶縁性能の低下した部分が生じると、この部分に電流が集中的に流れ、外部に取り出される電力が減少して発電効率が下がることとなる。
In the single cell of the stacked fuel cell configured as shown in FIG. 5, the fuel gas is passed through the gas flow path of one separator 3 of the pair of separators 3 sandwiching the membrane electrode assembly 1, and the other separator When the oxidant gas is passed through the gas flow path 3, an electrochemical reaction occurs in the membrane electrode assembly 1, and a potential difference is generated between the two electrodes. Energy will be extracted.
As can be seen from the partial cross-sectional view in the stacking direction shown in FIG. 6, the peripheral end portion of the unit cell formed by stacking the membrane electrode assembly 1 is sandwiched between a pair of separators 3 having the same end face. A pair of separators 3 electrically connected to each electrode is electrically insulated by an electrically insulating membrane electrode assembly 1.
Therefore, the two electrodes at the end of the single cell are electrically insulated by using the thickness of the membrane electrode assembly 1 as an insulation distance, but the thickness of the membrane electrode assembly 1 is very thin. If moisture or dust adheres to the end of the cell, there is a risk of insufficient electrical insulation. When a portion where the electrical insulation performance is reduced is generated in this way, current flows intensively in this portion, and the power taken out to the outside is reduced and the power generation efficiency is lowered.

本発明は、上記のごとき従来技術の問題点を顧慮してなされたもので、本発明の目的は、膜電極接合体を一組のセパレーターで挟持して単セルが形成される積層形燃料電池において、各単セルの周端部のセパレーター間の電気絶縁性が十分に確保され、漏洩電流による特性低下が回避されて高い発電効率で運転できる積層形燃料電池を提供することにある。   The present invention has been made in consideration of the problems of the prior art as described above, and an object of the present invention is to provide a stacked fuel cell in which a single cell is formed by sandwiching a membrane electrode assembly with a set of separators. In other words, it is an object of the present invention to provide a stacked fuel cell that can sufficiently operate with high power generation efficiency while ensuring sufficient electrical insulation between separators at the peripheral edge of each single cell, avoiding deterioration in characteristics due to leakage current.

上記の目的を達成するために、本発明においては、
両面に拡散層を配した膜電極接合体と反応ガス流路を備えたセパレーターとからなる単セルを積層して構成される積層形燃料電池において、
(1)上記の膜電極接合体の周端部が、この膜電極接合体を挟んで相対する上記のセパレーターの周端部より周端方向に突出し、かつ、
(2)上記のセパレーターの前記膜電極接合体に相対する面の周端部に、面取り部を備えることとする。
In order to achieve the above object, in the present invention,
In a stacked fuel cell configured by laminating a single cell composed of a membrane electrode assembly in which diffusion layers are arranged on both sides and a separator having a reaction gas flow path,
(1) The peripheral end portion of the membrane electrode assembly protrudes in the peripheral end direction from the peripheral end portion of the separator facing the membrane electrode assembly, and
(2) A chamfered portion is provided at a peripheral end portion of the surface of the separator facing the membrane electrode assembly.

単セルが、両面に拡散層を配した膜電極接合体と反応ガス流路を備えたセパレーターとを積層して構成される積層形燃料電池において、上記の(1)のごとく、膜電極接合体の周端部がセパレーターの周端部より周端方向に突出するよう形成すれば、相対するセパレーター間の絶縁距離は、従来の絶縁距離に比べて膜電極接合体の突出部に相当する長さ分だけ長くなるので、これに見合って絶縁性能が向上し、特性低下の危険性が低減することとなる。
さらに、上記の(2)のごとく、膜電極接合体を挟んで相対するセパレーターの周端部に面取り部を備えることとすれば、相対するセパレーター間の絶縁距離は、膜電極接合体の厚さにセパレーターの周端部の面取り部の深さを加えた距離となり、従来の絶縁距離に比べて大幅に長くなるので、絶縁性能が向上し、特性低下の危険性が低減する。
In a stacked fuel cell in which a single cell is formed by laminating a membrane electrode assembly in which diffusion layers are disposed on both sides and a separator having a reaction gas flow path, as described in (1) above, the membrane electrode assembly If the peripheral end portion of the separator is formed so as to protrude in the peripheral end direction from the peripheral end portion of the separator, the insulating distance between the opposing separators is a length corresponding to the protruding portion of the membrane electrode assembly compared to the conventional insulating distance. Therefore, the insulation performance is improved correspondingly, and the risk of characteristic deterioration is reduced.
Further, as described in (2) above, if a chamfered portion is provided at the peripheral end of the separator facing the membrane electrode assembly, the insulation distance between the separators is the thickness of the membrane electrode assembly. In addition, the distance of the chamfered portion of the peripheral end of the separator is a distance that is significantly longer than the conventional insulation distance, so that the insulation performance is improved and the risk of characteristic deterioration is reduced.

本発明の最良の実施形態は、単セルが両面に拡散層を配した膜電極接合体と反応ガス流路を備えたセパレーターとを積層して構成される積層形燃料電池において、膜電極接合体の周端部が、この膜電極接合体を挟んで相対する上記のセパレーターの周端部より周端方向に突出するよう形成された形態にあり、他の最良の実施形態として、さらに、上記のセパレーターの周端部に面取り部を備えた形態としてもよい。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode of the present invention is to provide a membrane electrode assembly in which a single cell is formed by laminating a membrane electrode assembly in which diffusion layers are arranged on both sides and a separator having a reaction gas flow path. The peripheral end portion of the separator is formed so as to protrude in the peripheral end direction from the peripheral end portion of the separator facing each other with the membrane electrode assembly interposed therebetween. It is good also as a form provided with the chamfering part in the peripheral edge part of the separator.

参考例1Reference example 1

図1は、積層形燃料電池の第1の参考例の単セルの周端部の構成を模式的に示す積層方向の部分断面図である。本図は従来例を示した図6に対比して第1の参考例を示したもので、図6と同様に、1は膜電極接合体、3は、膜電極接合体1を挟持するセパレーターである。第1の参考例の特徴は、膜電極接合体1を挟んで相対するセパレーター3の周端部に面取り部を備えて単セルが構成されている点にある。セパレーター3の厚さは通常2 〜3 mm であるので、面取りの寸法は 0.5〜1 mm 程度とするのが適当である。本構成においては、相対するセパレーター3の間の周端部の絶縁距離が、従来の膜電極接合体1の厚さ相当分に比べて、面取り部の深さ相当分(0.5〜1 mmの2倍相当)増大するので、絶縁性能が飛躍的に増大し、漏洩電流の発生による特性低下の危険性が回避されることとなる。   FIG. 1 is a partial cross-sectional view in the stacking direction schematically showing a configuration of a peripheral end portion of a single cell of a first reference example of the stacked fuel cell. This figure shows a first reference example as compared with FIG. 6 showing the conventional example. Like FIG. 6, 1 is a membrane electrode assembly, and 3 is a separator for sandwiching the membrane electrode assembly 1. It is. A feature of the first reference example is that a single cell is configured by providing a chamfered portion at the peripheral end portion of the separator 3 facing each other with the membrane electrode assembly 1 interposed therebetween. Since the thickness of the separator 3 is usually 2 to 3 mm, it is appropriate that the chamfer dimension is about 0.5 to 1 mm. In this configuration, the insulation distance of the peripheral end portion between the separators 3 facing each other is equivalent to the depth of the chamfered portion (0.5 to 1 mm 2) compared to the thickness equivalent to the conventional membrane electrode assembly 1. Therefore, the insulation performance is dramatically increased, and the risk of characteristic deterioration due to the occurrence of leakage current is avoided.

図2は、本発明の積層形燃料電池の実施例の単セルの周端部の構成を模式的に示す積層方向の部分断面図である。本実施例の第1の特徴は、膜電極接合体1の周端部が、この膜電極接合体1を挟んで相対するセパレーター3の周端部より周端方向に距離δだけ突出するよう形成されている点にあり、第2の特徴は、第1の参考例と同様に、膜電極接合体1を挟んで相対するセパレーター3の周端部に面取り部が備えられている点にある。したがって、本構成では、膜電極接合体1をセパレーター3より周端方向に突出して組み込むことによって絶縁距離が増大し、さらに、セパレーター3の周端部に面取り部を設けることによって絶縁距離が増大するので、漏洩電流による特性低下がより確実に回避されることとなる。なお、第1の参考例のように厚さが2 〜3 mmの通常のセパレーター3の場合には、上記の膜電極接合体1の周端部の周端方向への突出距離δを1〜1.5 mm 程度とするのが適当である。また、本実施例では、膜電極接合体1の周端部を突出させ、同時にセパレーター3の周端部に面取り部を設けているが、膜電極接合体1の周端部を突出させるだけでも、絶縁距離が増大するので、漏洩電流による特性低下の回避に有効であることは改めて実施例を挙げるまでもなく明らかである。   FIG. 2 is a partial cross-sectional view in the stacking direction schematically showing the configuration of the peripheral end portion of the single cell of the embodiment of the stacked fuel cell of the present invention. The first feature of the present embodiment is that the peripheral end portion of the membrane electrode assembly 1 is protruded by a distance δ in the peripheral end direction from the peripheral end portion of the separator 3 opposed to the membrane electrode assembly 1. As in the first reference example, the second feature is that chamfered portions are provided at the peripheral end portions of the separator 3 facing each other across the membrane electrode assembly 1. Accordingly, in this configuration, the insulation distance is increased by incorporating the membrane electrode assembly 1 so as to protrude from the separator 3 in the circumferential direction, and further, the insulation distance is increased by providing a chamfered portion at the circumferential end of the separator 3. Therefore, characteristic deterioration due to leakage current can be avoided more reliably. In the case of a normal separator 3 having a thickness of 2 to 3 mm as in the first reference example, the protrusion distance δ in the peripheral direction of the peripheral end portion of the membrane electrode assembly 1 is 1 to 1 mm. A value of about 1.5 mm is appropriate. In this embodiment, the peripheral end portion of the membrane electrode assembly 1 is protruded and a chamfered portion is provided at the peripheral end portion of the separator 3 at the same time. However, only the peripheral end portion of the membrane electrode assembly 1 is protruded. Since the insulation distance increases, it is clear that it is effective in avoiding the characteristic deterioration due to the leakage current, without needing to give another example.

参考例2Reference example 2

図3は、積層形燃料電池の第2の参考例の単セルの周端部の構成を模式的に示す積層方向の部分断面図である。本参考例の特徴は、図1に示した第1の参考例のごとく膜電極接合体1を挟んで相対するセパレーター3の周端部に面取り部を備え、さらにその面取り部に絶縁性樹脂4を充填して単セルを構成した点にある。本構成では、第1の参考例と同様に相対するセパレーター3の間の絶縁距離が面取り部の形成によって増大し、絶縁性樹脂4の充填により確保されるので、漏洩電流の発生が特に効果的に防止され、燃料電池の特性低下が回避される。なお、面取り部に充填する絶縁性樹脂4としてシーリング用シリコーン樹脂などのシーリング剤を用いることとすれば施工が容易で、安価に製作できる。また、あらかじめ枠状に成形した、例えばフッ素樹脂等からなる絶縁性樹脂4をはめ込んで用いる構成としても、施工が容易となる。   FIG. 3 is a partial cross-sectional view in the stacking direction schematically showing the configuration of the peripheral end portion of the single cell of the second reference example of the stacked fuel cell. The feature of this reference example is that, as in the first reference example shown in FIG. 1, a chamfered portion is provided at the peripheral end portion of the separator 3 facing each other across the membrane electrode assembly 1, and the insulating resin 4 is further provided at the chamfered portion. In that a single cell is formed. In this configuration, as in the first reference example, the insulation distance between the opposing separators 3 is increased by the formation of the chamfered portion, and is ensured by filling with the insulating resin 4, so that the generation of leakage current is particularly effective. Therefore, deterioration of the characteristics of the fuel cell is avoided. If a sealing agent such as a silicone resin for sealing is used as the insulating resin 4 filled in the chamfered portion, the construction is easy and can be manufactured at low cost. Further, the construction can be facilitated even if the insulating resin 4 made of, for example, a fluororesin or the like is used by being fitted in a frame shape.

参考例3Reference example 3

図4は、積層形燃料電池の第3の参考例の単セルの周端部の構成を模式的に示す積層方向の部分断面図である。本参考例の特徴は、第2の参考例と同様に、セパレーターの周端部に面取り部を備え、その面取り部に絶縁性樹脂を充填して絶縁距離を増大させた構成にある。第2の参考例との相違点は、膜電極接合体1の周端部、ならびに面取り部に充填される絶縁性樹脂の形状にある。すなわち、第2の参考例の構成では膜電極接合体1の周端部がセパレーターの周端部と同一寸法であったのに対して、本参考例の構成では、膜電極接合体1の周端部がセパレーターの周端部より小さく、面取り部分の寸法と同一の寸法に形成されている。また、これに対応して、第2の参考例で膜電極接合体1の両面の周端部に組み込まれていた一組の絶縁性樹脂4に替わって一個の絶縁性樹脂4Aが組み込まれている。したがって、本構成では、絶縁距離が増大して漏洩電流の発生による燃料電池の特性低下が防止されるとともに、絶縁距離の増大に必要な絶縁部材の所要個数が少なく抑えられるので、製作コストが安価となる。   FIG. 4 is a partial cross-sectional view in the stacking direction schematically showing the configuration of the peripheral end of the single cell of the third reference example of the stacked fuel cell. As in the second reference example, this reference example is characterized in that a chamfered portion is provided at the peripheral end of the separator, and the insulating distance is increased by filling the chamfered portion with an insulating resin. The difference from the second reference example is the shape of the insulating resin filled in the peripheral end portion and the chamfered portion of the membrane electrode assembly 1. That is, in the configuration of the second reference example, the peripheral end portion of the membrane electrode assembly 1 has the same dimensions as the peripheral end portion of the separator, whereas in the configuration of this reference example, the peripheral end portion of the membrane electrode assembly 1 is the same. The end portion is smaller than the peripheral end portion of the separator and is formed to have the same size as the chamfered portion. Correspondingly, a single insulating resin 4A is incorporated instead of the pair of insulating resins 4 incorporated in the peripheral ends of both surfaces of the membrane electrode assembly 1 in the second reference example. Yes. Therefore, in this configuration, the insulation distance is increased and the deterioration of the characteristics of the fuel cell due to the generation of leakage current is prevented, and the required number of insulation members necessary for the increase of the insulation distance is reduced, so that the manufacturing cost is low. It becomes.

以上に述べたように、積層形燃料電池を本発明のごとく構成することとすれば、積層形燃料電池を構成する各単セルの周端部のセパレーター間の電気絶縁距離が大幅に増大するので、電気絶縁性が十分に確保され、漏洩電流による特性低下が回避されて高い発電効率での運転が可能となるので、本発明はこの種の積層形燃料電池に広く適用されるものと期待される。   As described above, if the stacked fuel cell is configured as in the present invention, the electrical insulation distance between the separators at the peripheral edge of each single cell constituting the stacked fuel cell is greatly increased. Therefore, the present invention is expected to be widely applied to this type of stacked fuel cell because the electrical insulation is sufficiently secured, the characteristic deterioration due to the leakage current is avoided, and the operation with high power generation efficiency is possible. The

第1の参考例の単セルの周端部の構成を模式的に示す積層方向の部分断面図Partial sectional view in the stacking direction schematically showing the configuration of the peripheral end of the single cell of the first reference example 本発明の実施例の単セルの周端部の構成を模式的に示す積層方向の部分断面図The partial cross section figure of the lamination direction which shows typically the structure of the peripheral edge part of the single cell of the Example of this invention 第2の参考例の単セルの周端部の構成を模式的に示す積層方向の部分断面図Partial sectional view in the stacking direction schematically showing the configuration of the peripheral end of the unit cell of the second reference example 第3の参考例の単セルの周端部の構成を模式的に示す積層方向の部分断面図Partial sectional view in the stacking direction schematically showing the configuration of the peripheral end of the unit cell of the third reference example この種の積層形燃料電池の単セルの従来の構成例を示す分解斜視図An exploded perspective view showing a conventional configuration example of a single cell of this type of stacked fuel cell 図5に示した従来の単セルの周端部の構成を模式的に示す積層方向の部分断面図Partial sectional view in the stacking direction schematically showing the configuration of the peripheral end of the conventional single cell shown in FIG.

1 膜電極接合体
2 拡散層
3 セパレーター
4,4A 絶縁性樹脂
1 Membrane electrode assembly
2 Diffusion layer
3 Separator
4,4A insulating resin

Claims (1)

両面に拡散層を配した膜電極接合体と反応ガス流路を備えたセパレーターとからなる単セルを積層して構成される積層形燃料電池において、
前記膜電極接合体の周端部が、該膜電極接合体を挟んで相対する前記セパレーターの周端部より周端方向に突出しており、
前記セパレーターの前記膜電極接合体に相対する面の周端部に、面取り部を備えたことを特徴とする積層形燃料電池。
In a stacked fuel cell configured by laminating a single cell composed of a membrane electrode assembly in which diffusion layers are arranged on both sides and a separator having a reaction gas flow path,
The peripheral end of the membrane electrode assembly protrudes in the peripheral direction from the peripheral end of the separator facing the membrane electrode assembly ,
A stacked fuel cell comprising a chamfered portion at a peripheral end of a surface of the separator facing the membrane electrode assembly.
JP2004352147A 2004-12-06 2004-12-06 Stacked fuel cell Expired - Fee Related JP5011640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352147A JP5011640B2 (en) 2004-12-06 2004-12-06 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352147A JP5011640B2 (en) 2004-12-06 2004-12-06 Stacked fuel cell

Publications (2)

Publication Number Publication Date
JP2006164653A JP2006164653A (en) 2006-06-22
JP5011640B2 true JP5011640B2 (en) 2012-08-29

Family

ID=36666427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352147A Expired - Fee Related JP5011640B2 (en) 2004-12-06 2004-12-06 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JP5011640B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822581B2 (en) * 2000-12-01 2011-11-24 三菱重工業株式会社 Fuel cell
JP4000790B2 (en) * 2001-06-08 2007-10-31 トヨタ自動車株式会社 Fuel cell having seal structure
JP2003068348A (en) * 2001-08-29 2003-03-07 Toyota Motor Corp Fuel cell consisting of sub-cells

Also Published As

Publication number Publication date
JP2006164653A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP3700642B2 (en) Fuel cell
JP6715278B2 (en) Fuel cell stack
JP2012516006A (en) Battery cell with jacket
JP4481423B2 (en) Polymer electrolyte fuel cell stack
JP5839122B2 (en) Fuel cell stack
JP3101464B2 (en) Fuel cell
KR20140013063A (en) Secondary battery
JP4959980B2 (en) Fuel cell
JP2008147047A (en) Battery module
JP3146758B2 (en) Solid polymer electrolyte fuel cell
JP6715277B2 (en) Fuel cell stack and dummy cell for fuel cell stack
JP5011640B2 (en) Stacked fuel cell
KR101162669B1 (en) Solid oxide fuel cell
JP6395122B2 (en) Fuel cell stack
JP3487884B2 (en) Molten carbonate stacked fuel cell
JP4304458B2 (en) Polymer electrolyte fuel cell
JP5286896B2 (en) FUEL CELL MANUFACTURING METHOD, FUEL CELL, AND SEPARATOR
JP7104008B2 (en) Fuel cell stack
JP2019212579A (en) Fuel cell stack
JP6722718B2 (en) Fuel cell stack and dummy cell manufacturing method
JP4306419B2 (en) Polymer electrolyte fuel cell
JP5087046B2 (en) Polymer electrolyte fuel cell stack
US20230318113A1 (en) Battery pack
JP5050434B2 (en) Fuel cell
JP5203571B2 (en) Fuel cell

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees