JP5009876B2 - Manufacturing method of fibrous filler-containing resin composite material - Google Patents

Manufacturing method of fibrous filler-containing resin composite material Download PDF

Info

Publication number
JP5009876B2
JP5009876B2 JP2008213502A JP2008213502A JP5009876B2 JP 5009876 B2 JP5009876 B2 JP 5009876B2 JP 2008213502 A JP2008213502 A JP 2008213502A JP 2008213502 A JP2008213502 A JP 2008213502A JP 5009876 B2 JP5009876 B2 JP 5009876B2
Authority
JP
Japan
Prior art keywords
resin
fibrous filler
composite material
resin foam
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008213502A
Other languages
Japanese (ja)
Other versions
JP2010046925A (en
Inventor
公一 木村
誠 石川
正通 石橋
陽平 清水
誠 東定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2008213502A priority Critical patent/JP5009876B2/en
Publication of JP2010046925A publication Critical patent/JP2010046925A/en
Application granted granted Critical
Publication of JP5009876B2 publication Critical patent/JP5009876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/295Feeding the extrusion material to the extruder in gaseous form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molding Of Porous Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、熱可塑性樹脂中に繊維状フィラーが均一に分散された繊維状フィラー含有樹脂複合材料を製造する方法に関するものである。   The present invention relates to a method for producing a fibrous filler-containing resin composite material in which fibrous fillers are uniformly dispersed in a thermoplastic resin.

近年、自動車産業を中心に繊維状フィラー(炭素繊維、ガラス繊維など)を用いた樹脂複合材料が注目を集めている。例えば、炭素繊維含有樹脂複合材料では、鉄に匹敵する機械的強度を有しながらも、その重量は極めて小さいといった特徴を有する。ただし、これらの諸特性を向上させるためには、多くの場合、樹脂複合材料中の繊維状フィラーの繊維長が長い状態を維持する必要があると言われている。押出機を用いた繊維状フィラーおよび熱可塑性樹脂からなる樹脂複合材料の製造には、金属微粒子やカーボンブラックといった従来のフィラーと同様に次に説明する方法が使用されてきた。
(1)熱可塑性樹脂を連続式同方向回転二軸押出機に供給・溶融させた後、サイドフィーダーから強制的に押出機シリンダ内にカーボンブラックを供給し、カーボンブラックが熱可塑性樹脂内に完全に分散する前に押出機に設けた脱気口より脱気し、その後先端ダイからカーボンブラック含有樹脂複合材料を得る方法(特許文献1参照)。
(2)熱可塑性樹脂を押出機に供給・溶融させた後、添加口より強化繊維を添加し、スクリュ表面および(もしくは)シリンダの内壁の少なくとも一部が表面異形化加工されたスクリュおよび(または)シリンダで形成される制御機構部を通過させ、強化繊維の開繊度合および(または)繊維長を制御する方法(特許文献2参照)。
In recent years, resin composite materials using fibrous fillers (carbon fiber, glass fiber, etc.) have attracted attention mainly in the automobile industry. For example, a carbon fiber-containing resin composite material has a feature that its weight is extremely small while having mechanical strength comparable to iron. However, in order to improve these various properties, it is often said that it is necessary to maintain a long fiber length of the fibrous filler in the resin composite material. In the production of a resin composite material composed of a fibrous filler and a thermoplastic resin using an extruder, the following method has been used as in the case of conventional fillers such as metal fine particles and carbon black.
(1) After supplying and melting the thermoplastic resin to the continuous co-rotating twin screw extruder, carbon black is forcibly supplied from the side feeder into the extruder cylinder, and the carbon black is completely contained in the thermoplastic resin. A method of deaeration from a deaeration port provided in an extruder before being dispersed in the extruder, and then obtaining a carbon black-containing resin composite material from a tip die (see Patent Document 1).
(2) After supplying and melting the thermoplastic resin to the extruder, a reinforcing fiber is added from an addition port, and / or a screw in which at least a part of the screw surface and / or the inner wall of the cylinder is subjected to surface modification processing and / or ) A method of controlling the fiber opening degree and / or fiber length of the reinforcing fiber by passing through a control mechanism formed by a cylinder (see Patent Document 2).

特開平7−53767号公報Japanese Patent Laid-Open No. 7-53767 特開平7−80838号公報JP 7-80838 A

しかしながら、上記従来技術のうちの(1)では、カーボンブラックに比べてかさ密度の小さい繊維状フィラーを供給する場合、押出機シリンダ内での溶融樹脂の粘度が増大するため、繊維状フィラーの解繊および熱可塑性樹脂中への分散を促進するために設けられた混練部で発生するせん断応力が高まる。その結果、繊維状フィラーの破断および短繊維化が進行し、製造された繊維状フィラー含有樹脂複合材料の物性が低下するといった問題点がある。   However, in the above prior art (1), when supplying a fibrous filler having a smaller bulk density than that of carbon black, the viscosity of the molten resin in the extruder cylinder increases. The shear stress generated in the kneading part provided to promote dispersion in the fiber and thermoplastic resin is increased. As a result, there is a problem that the fibrous filler breaks and shortens and the physical properties of the produced fibrous filler-containing resin composite material are deteriorated.

上記(2)では、繊維状フィラーの繊維長を維持することに対しては有効であるが、フィラー供給口の下流に配置された制御機構部のスクリュおよび(または)シリンダには特殊な加工が必要であり、既存の押出機のスクリュ・シリンダを用いてこれを実現することは困難であるといった問題点がある。またシリンダ表面、およびバレル内面に施される表面異形化加工は繊維が絡み易い形状であるため、操業停止時や、樹脂と強化繊維の組み合わせを変更する際、バレルとスクリュを分解してクリーニングする必要がある。   In the above (2), although effective for maintaining the fiber length of the fibrous filler, a special process is applied to the screw and / or cylinder of the control mechanism unit arranged downstream of the filler supply port. There is a problem that it is necessary and it is difficult to realize this by using a screw cylinder of an existing extruder. Also, because the surface modification process applied to the cylinder surface and the inner surface of the barrel is a shape in which the fibers are easily entangled, the barrel and screw are disassembled and cleaned when the operation is stopped or when the combination of resin and reinforcing fibers is changed. There is a need.

本発明は、上記従来の技術の有する問題点を鑑みてなされたものであって、スクリュやシリンダに特殊な加工を必要としない既存の二軸スクリュ押出機を用いて、熱可塑性樹脂中に均一分散させる繊維状フィラーの短繊維化を抑制した繊維状フィラー含有樹脂複合材料の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and is uniform in a thermoplastic resin using an existing twin screw extruder that does not require special processing of a screw or a cylinder. It aims at providing the manufacturing method of the fibrous filler containing resin composite material which suppressed the shortening of the fibrous filler to disperse | distribute.

上記目的を達成するために、本発明の繊維状フィラー含有樹脂複合材料の製造方法は、熱可塑性樹脂中に繊維状フィラーが分散された繊維状フィラー含有樹脂複合材料を製造する方法であって、シリンダと、前記シリンダ内に回転自在に配備された2本のスクリュと、前記スクリュを回転させる回転駆動機構とを有し、上流に設けられた供給口から下流に設けられたダイに向かって順次可塑化部、樹脂発泡体形成部、混練部、脱気部を備えた二軸スクリュ押出機を用い、前記供給口より熱可塑性樹脂を前記シリンダ内に投入して前記可塑化部で溶融させたのち前記樹脂発泡体形成部へ移送し、前記樹脂発泡体形成部で不活性気体または超臨界流体を注入して溶融樹脂中に分散または溶解させたのち脱気口にて急激に降圧することで樹脂発泡体を形成し、前記混練部に配備されたサイドフィーダーを介して繊維状フィラーを投入し、前記樹脂発泡体中に分散・混練を行ったのち、前記脱気部にて脱気することを特徴とする。   In order to achieve the above object, the method for producing a fibrous filler-containing resin composite material of the present invention is a method for producing a fibrous filler-containing resin composite material in which a fibrous filler is dispersed in a thermoplastic resin, A cylinder, two screws rotatably disposed in the cylinder, and a rotation drive mechanism for rotating the screw; sequentially from a supply port provided upstream to a die provided downstream Using a twin screw extruder provided with a plasticizing part, a resin foam forming part, a kneading part, and a deaeration part, a thermoplastic resin was introduced into the cylinder from the supply port and melted in the plasticizing part. After that, by transferring to the resin foam forming part, injecting an inert gas or supercritical fluid in the resin foam forming part to disperse or dissolve in the molten resin, and then rapidly reducing the pressure at the deaeration port Resin foam Formed and charged with a fibrous filler through a side feeder provided in the kneading part, dispersed and kneaded in the resin foam, and then deaerated in the deaeration part .

本発明は上述のとおり構成されているので、次に記載するような効果を奏する。
熱可塑性樹脂の可塑化後に高圧の不活性気体(もしくは超臨界流体)が溶融樹脂中に分散または溶解される。樹脂発泡体形成部内で高圧に保持された不活性気体(もしくは超臨界流体)を含む溶融樹脂は、脱気口にて大気圧に近い圧力まで急激に降圧されることで、内部の不活性気体(もしくは超臨界流体)の大部分が一気に気化し、樹脂発泡体が形成される。この樹脂発泡体は内部に気泡や空隙、そして除去されずに残存した不活性気体を含んでいるためにスポンジのように緩衝材として機能すると同時に溶融樹脂の見かけ粘度を低下させる。このような機能を有する樹脂発泡体中に繊維状フィラーを添加することで、繊維状フィラーの解繊および溶融樹脂中への分散の際に溶融材料に対して発生するせん断力が緩和され、繊維状フィラーの破断、すなわち短繊維化の進行を抑制することが可能である。また、このように柔軟性に富む材料を混練するため、低トルクでの押出機の運転が可能であり、消費電力およびランニングコストが低減される。
Since the present invention is configured as described above, the following effects can be obtained.
After plasticizing the thermoplastic resin, a high-pressure inert gas (or supercritical fluid) is dispersed or dissolved in the molten resin. The molten resin containing an inert gas (or supercritical fluid) held at a high pressure in the resin foam forming part is rapidly depressurized to a pressure close to atmospheric pressure at the degassing port, so that the inert gas inside Most of the (or supercritical fluid) is vaporized at once, and a resin foam is formed. Since this resin foam contains bubbles, voids, and inert gas that remains without being removed, it functions as a cushioning material like a sponge and at the same time lowers the apparent viscosity of the molten resin. By adding a fibrous filler to a resin foam having such a function, the shearing force generated on the molten material during fiber opening and defibration and dispersion in the molten resin is alleviated. It is possible to suppress breakage of the filler, that is, progress of shortening of the fiber. Further, since the flexible material is kneaded in this way, the extruder can be operated at a low torque, and the power consumption and running cost are reduced.

また、用いるスクリュおよびシリンダ(バレル)は標準的なものを採用できるので、操業停止や、樹脂および繊維状フィラーの組み合わせを変更する際も、通常押出機の樹脂替えと同様の作業(パージ用の樹脂を押出すこと)で機内の洗浄ができる。   In addition, since standard screws and cylinders (barrels) can be used, operations similar to those used to replace resins in ordinary extruders (for purging) can be used when stopping operations or changing the combination of resin and fibrous filler. The inside of the machine can be cleaned by extruding the resin.

本発明の繊維状フィラー含有樹脂複合材料の製造方法の一実施形態について説明する。   One embodiment of the method for producing the fibrous filler-containing resin composite material of the present invention will be described.

図1は本発明に係る繊維状フィラー含有樹脂複合材料の製造方法の実施に用いる二軸スクリュ押出機の一例を示す説明図である。図1に示すように、二軸スクリュ押出機Eは、図示しない温度調整手段によって温度制御されるシリンダ1と、シリンダ1内に回転自在に配備された2本のスクリュ3と、2本のスクリュ3を回転させる回転駆動機構7とを有している。   FIG. 1 is an explanatory view showing an example of a twin screw extruder used for carrying out the method for producing a fibrous filler-containing resin composite material according to the present invention. As shown in FIG. 1, a twin screw extruder E includes a cylinder 1 whose temperature is controlled by a temperature adjusting means (not shown), two screws 3 rotatably disposed in the cylinder 1, and two screws. And a rotation drive mechanism 7 that rotates the motor 3.

シリンダ1の上流端側に投入口2を配備し、シリンダ1の下流端にダイ12を配備し、投入口2からダイ12に向かって順次、可塑化部A、樹脂発泡体形成部B、混練部C、脱気部Dを備えている。   A charging port 2 is disposed on the upstream end side of the cylinder 1, a die 12 is disposed on the downstream end of the cylinder 1, and the plasticizing part A, the resin foam forming part B, and the kneading are sequentially performed from the charging port 2 toward the die 12. Part C and deaeration part D are provided.

樹脂発泡体形成部Bは、上流側のシール機構13と下流側のシール機構14とによって区切られており、シリンダ1にはガス供給装置5に流路5aを介して接続された注入ノズル4が配備されている。   The resin foam forming part B is divided by an upstream seal mechanism 13 and a downstream seal mechanism 14, and the injection nozzle 4 connected to the gas supply device 5 via the flow path 5 a is connected to the cylinder 1. Has been deployed.

混練部Cのシリンダには、下流側のシール機構14の下流側近傍に脱気口8が設けられており、脱気口8の下流側近傍にサイドフィーダー9が配備されている。   The cylinder of the kneading part C is provided with a deaeration port 8 in the vicinity of the downstream side of the downstream sealing mechanism 14, and a side feeder 9 is provided in the vicinity of the downstream side of the deaeration port 8.

脱気部Dは、シリンダ1の下流端に配備されたダイ12の上流側近傍に真空脱気口10を配備し、真空脱気口10には流路11aを介して真空ポンプ11が接続されている。   The deaeration part D is provided with a vacuum deaeration port 10 in the vicinity of the upstream side of the die 12 provided at the downstream end of the cylinder 1, and the vacuum pump 11 is connected to the vacuum deaeration port 10 via a flow path 11a. ing.

二軸スクリュ押出機Eの投入口2より熱可塑性樹脂を供給し、可塑化部Aで完全に溶融させる。上流側のシール機構13および下流側のシール機構14によって区切られた樹脂発泡体形成部Bに、ガス供給装置5でシリンダ1の内部圧力以上に加圧した不活性気体(もしくは超臨界流体)を注入ノズル4から注入し、溶融樹脂中に分散または溶解させる。樹脂発泡体形成部内で高圧に保持された不活性気体(もしくは超臨界流体)を含む溶融樹脂は、樹脂発泡体形成部Bの下流側のシール機構14を通過後に脱気口にて大気圧に近い圧力まで急激に降圧することで、樹脂内部に存在する不活性気体(もしくは超臨界流体)の大部分が気化し、部分的に不活性気体を含んだ樹脂発泡体が形成される。この樹脂発泡体にサイドフィーダー9より繊維状フィラーを強制的に供給し、繊維状フィラーの解繊および溶融樹脂中への分散混練を行ったのち、真空脱気口10から真空ポンプ11を用いて溶融樹脂中に残存した不活性気体および水分を強制的に除去し、つまり脱気してダイ12より繊維状フィラー含有樹脂複合材料を押し出す。   A thermoplastic resin is supplied from the inlet 2 of the twin screw extruder E and completely melted in the plasticizing part A. An inert gas (or supercritical fluid) pressurized to a pressure higher than the internal pressure of the cylinder 1 by the gas supply device 5 is applied to the resin foam forming portion B partitioned by the upstream seal mechanism 13 and the downstream seal mechanism 14. It is injected from the injection nozzle 4 and dispersed or dissolved in the molten resin. The molten resin containing the inert gas (or supercritical fluid) held at a high pressure in the resin foam forming portion passes through the sealing mechanism 14 on the downstream side of the resin foam forming portion B and then returns to atmospheric pressure at the deaeration port. By abruptly reducing the pressure to a near pressure, most of the inert gas (or supercritical fluid) present in the resin is vaporized, and a resin foam partially containing the inert gas is formed. After the fibrous filler is forcibly supplied to the resin foam from the side feeder 9 and the fibrous filler is defibrated and dispersed and kneaded into the molten resin, the vacuum pump 11 is used from the vacuum deaeration port 10. The inert gas and moisture remaining in the molten resin are forcibly removed, that is, degassed, and the fibrous filler-containing resin composite material is extruded from the die 12.

本発明において対象となる熱可塑性樹脂は特に限定されるものではないが、例えば、ポリ塩化ビニル樹脂、ポリオレフィン樹脂、ポリ乳酸樹脂、ポリスチレン樹脂、アクリルニトリルブタジエンスチレン樹脂、アクリルニトリルスチレン樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、飽和ポリエステル樹脂、アイオノマー樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアミドイミド樹脂、熱可塑性ポリイミド樹脂、液晶ポリエステル樹脂、熱可塑性エラストマーなどが挙げられる。これらの熱可塑性樹脂は単体でも複数種類の混合物でもかまわない。また、シリンダ内に超臨界流体を注入する際に用いる流体によってはシリンダ内部を高圧に維持する必要があるため、高圧下で分解が発生する熱可塑性樹脂は用いない方が好ましい。   The target thermoplastic resin in the present invention is not particularly limited. For example, polyvinyl chloride resin, polyolefin resin, polylactic acid resin, polystyrene resin, acrylonitrile butadiene styrene resin, acrylonitrile styrene resin, polymethyl methacrylate Resin, polyacrylonitrile resin, saturated polyester resin, ionomer resin, polycarbonate resin, polyamide resin, polyacetal resin, polyphenylene ether resin, modified polyphenylene ether resin, polyarylate resin, polysulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene Sulfide resin, polyetheretherketone resin, polyetherketone resin, polyamideimide resin, thermoplastic polyimide resin, liquid crystal polyester Resins, and thermoplastic elastomers. These thermoplastic resins may be a single substance or a mixture of plural kinds. Also, depending on the fluid used when injecting the supercritical fluid into the cylinder, it is necessary to maintain the inside of the cylinder at a high pressure. Therefore, it is preferable not to use a thermoplastic resin that decomposes under high pressure.

本発明において使用する二軸スクリュ押出機は、同/異方向回転、噛み合い/非噛み合い等の軸構成やスクリュエレメントを特に限定するものではないが、同方向回転噛み合い型二軸スクリュ押出機にフルフライトスクリュなど、セルフクリーニング効果の高いことが知られている構成のスクリュを使用すれば、操業終了時や製造する樹脂とフィラーの組み合わせを変更する際に、パージ用樹脂を流す等の通常の樹脂換え作業により、機内に残留するフィラーを除去することができ、メンテナンスが容易になる。   The twin screw extruder used in the present invention is not particularly limited in terms of the shaft configuration and screw elements such as the same / different direction rotation, meshing / non-meshing, etc. If you use a screw with a structure that is known to have a high self-cleaning effect, such as a flight screw, normal resin such as flowing purge resin at the end of operation or when changing the combination of resin and filler to be manufactured By the replacement work, the filler remaining in the machine can be removed, and the maintenance becomes easy.

上流側のシール機構13および下流側のシール機構14としては、シールリング、ゲートバルブ、ロータリーゲートバルブ、逆ニーディングディスクスクリュ、逆フルフライトスクリュなど溶融樹脂の流れを堰き止めてシール機能を生じるものであればいずれでもよいが、単純な機構でかつせん断力が低いシールリングや、樹脂の流れに対して大きな抵抗となる逆フルフライトスクリュが好ましい。   As the upstream side sealing mechanism 13 and the downstream side sealing mechanism 14, a seal ring, a gate valve, a rotary gate valve, a reverse kneading disk screw, a reverse full flight screw, etc. are used to block the flow of molten resin and produce a sealing function. However, a seal ring having a simple mechanism and low shearing force, or a reverse full-flight screw that provides a large resistance to the resin flow is preferable.

上流側のシール機構13および下流側のシール機構14で区切られた樹脂発泡体形成部B内に注入される不活性気体は特に限定されるものではないが、例えば、ヘリウム、ネオン、アルゴン、その他の希ガス、窒素、二酸化炭素などが挙げられるが、工業的に安価に製造可能かつ熱可塑性樹脂に溶解する窒素および二酸化炭素が好ましい。また、臨界圧力・臨界温度以上に加圧した状態の二酸化炭素は熱可塑性樹脂に対して高い溶解度を示すため、臨界圧力(7.4MPa)・臨界温度(31℃)以上に加圧した二酸化炭素を用いることが好ましい。   The inert gas injected into the resin foam forming part B partitioned by the upstream seal mechanism 13 and the downstream seal mechanism 14 is not particularly limited, but for example, helium, neon, argon, and the like Noble gases, nitrogen, carbon dioxide, and the like are preferable, and nitrogen and carbon dioxide that can be produced industrially at low cost and are soluble in a thermoplastic resin are preferable. Carbon dioxide pressurized to a critical pressure / critical temperature or higher shows high solubility in thermoplastic resin, so carbon dioxide pressurized to a critical pressure (7.4 MPa) / critical temperature (31 ° C.) or higher. Is preferably used.

ガス供給装置5は、耐圧容器内に貯留された二酸化炭素および窒素などの不活性気体を加圧し、必要であれば臨界圧力以上まで加圧し、超臨界流体を製造することができるものであればその種類は問わない。   As long as the gas supply device 5 can pressurize an inert gas such as carbon dioxide and nitrogen stored in a pressure-resistant vessel and pressurize to a critical pressure or higher if necessary to produce a supercritical fluid. The kind is not ask | required.

下流側のシール機構14を通過後に形成される樹脂発泡体は、上流側のシール機構13および下流側のシール機構14で区切られた樹脂発泡体形成部Bの内部圧力と大気圧との差圧に起因している。そのため、上流側のシール機構13および下流側のシール機構14で区切られた樹脂発泡体形成部Bの内部圧力および混練部内に注入される不活性気体(もしくは超臨界流体)は高圧である方が好ましい。また、脱気口8より真空発生装置を用いて強制排気を行うことも可能であるが、溶融樹脂内部に不活性気体を若干内包した状態で繊維状フィラーと混合することで、混練途中で気泡が発生し、溶融材料に対して作用するせん断力が緩和されるため、脱気口8では大気開放を行うことが好ましい。   The resin foam formed after passing through the downstream seal mechanism 14 is the differential pressure between the internal pressure of the resin foam formation portion B divided by the upstream seal mechanism 13 and the downstream seal mechanism 14 and the atmospheric pressure. Due to Therefore, the internal pressure of the resin foam forming part B partitioned by the upstream sealing mechanism 13 and the downstream sealing mechanism 14 and the inert gas (or supercritical fluid) injected into the kneading part should be higher in pressure. preferable. It is also possible to perform forced evacuation from the deaeration port 8 using a vacuum generator, but by mixing with a fibrous filler in a state in which an inert gas is slightly contained inside the molten resin, air bubbles are mixed in the middle of kneading. Is generated, and the shearing force acting on the molten material is relieved.

過飽和状態となった不活性気体(もしくは超臨界流体)が、高圧からの大気開放によって溶融樹脂内部に気泡を形成する際に、熱可塑性樹脂の溶融粘度や溶融張力が高いほど気泡や空隙などの構造が維持されやすい。そのため、本発明に用いる熱可塑性樹脂としては、溶融粘度や溶融張力が高いほうが好ましく、また本発明の実施に当たっては下流側のシール機構14およびサイドフィーダー9間の混練部Cのシリンダ設定温度を低く設定することが望ましい。   When the supersaturated inert gas (or supercritical fluid) forms bubbles inside the molten resin due to release from the atmosphere from high pressure, the higher the melt viscosity or melt tension of the thermoplastic resin, The structure is easy to maintain. Therefore, as the thermoplastic resin used in the present invention, it is preferable that the melt viscosity or the melt tension is high, and in carrying out the present invention, the cylinder set temperature of the kneading part C between the downstream seal mechanism 14 and the side feeder 9 is lowered. It is desirable to set.

下流側のシール機構14を通過後に形成された樹脂発泡体に対して、強いせん断力を作用させると気泡が破裂し、発泡体構造が失われる。そのため、発泡体構造を維持した状態でサイドフィーダー9より繊維状フィラーを供給するためには、順フルフライトスクリュ、切欠き順フライトスクリュ、深溝の順フルフライトスクリュなどせん断力が小さく下流への送り能力を有したスクリュであればいずれでもよいが、搬送能力が高い深溝の順フルフライトスクリュが好ましい。また、下流側のシール機構14とサイドフィーダー9との間隔は可能な限り短い方が好ましい。   When a strong shearing force is applied to the resin foam formed after passing through the downstream seal mechanism 14, the bubbles burst and the foam structure is lost. Therefore, in order to supply the fibrous filler from the side feeder 9 while maintaining the foam structure, the forward full flight screw, notch forward flight screw, deep groove forward full flight screw, etc. have low shearing force and are fed downstream. Any screw having the capability may be used, but a deep groove forward full flight screw having a high conveying capability is preferable. In addition, the distance between the downstream seal mechanism 14 and the side feeder 9 is preferably as short as possible.

本発明において対象となる繊維状フィラーは特に限定されるものではないが、例えば、カーボンファイバー、カーボンナノファイバー、カーボンナノチューブなどの炭素繊維やガラス繊維、セルロース、ジュート、ケナフ、バンブー、バガスなどの天然繊維が挙げられる。これらの繊維状フィラーは単体でも複数種類の混合物でもかまわない。   The target fibrous filler in the present invention is not particularly limited. For example, carbon fiber such as carbon fiber, carbon nanofiber, and carbon nanotube, glass fiber, cellulose, jute, kenaf, bamboo, bagasse, and other natural fibers. Fiber. These fibrous fillers may be a single substance or a mixture of plural kinds.

脱気口8で除去されずに溶融樹脂中に残存した不活性気体が、サイドフィーダー9以降において気泡を形成することで繊維状フィラーに作用するせん断力を緩和させることが可能であるが、これには溶融樹脂の内部まで不活性気体が浸透していることが必要である。そのため、シリンダ内に注入する不活性気体(もしくは超臨界流体)としては二酸化炭素のように熱可塑性樹脂に対して高い溶解度を示すものが好ましい。   The inert gas that remains in the molten resin without being removed at the deaeration port 8 can relieve the shearing force acting on the fibrous filler by forming bubbles after the side feeder 9. It is necessary for the inert gas to penetrate into the molten resin. For this reason, the inert gas (or supercritical fluid) injected into the cylinder is preferably one that exhibits high solubility in the thermoplastic resin, such as carbon dioxide.

サイドフィーダー9より供給される繊維状フィラーを解繊し、溶融樹脂に均一分散させるために溶融樹脂および繊維状フィラーに強いせん断を作用させると、樹脂発泡体が消失し、繊維状フィラーの破断が進行する。そのため、サイドフィーダー9以降で用いるスクリュとしては、せん断力が比較的小さく、攪拌効果が高い順ニーディングディスクスクリュ、切欠き順フライトスクリュ、切欠き逆フライトスクリュなどが好ましい。
真空脱気口10から強制排気を行う真空発生手段は、真空ポンプに限らず、アスピレーター、ブロアーなど溶融樹脂がベントアップしない圧力に調整できるものであれば他の公知の手段を用いることができる。
When the fibrous filler supplied from the side feeder 9 is defibrated and a strong shear is applied to the molten resin and the fibrous filler to uniformly disperse the molten resin, the resin foam disappears and the fibrous filler breaks. proceed. Therefore, as a screw used in the side feeder 9 and later, a forward kneading disk screw, a notched forward flight screw, a notched reverse flight screw and the like that have a relatively small shearing force and a high stirring effect are preferable.
The vacuum generating means for forcibly evacuating from the vacuum degassing port 10 is not limited to a vacuum pump, and any other known means can be used as long as it can be adjusted to a pressure at which the molten resin does not vent up, such as an aspirator or blower.

図1に概略図を示した同方向回転噛み合い型二軸スクリュ押出機(日本製鋼所製TEX30α、L/D:59.5)に、ポリブチレンテレフタレート樹脂(PBT)を投入口2より投入・可塑化させ、注入ノズル4からガス供給装置5としての超臨界二酸化炭素定量供給装置(昭和炭酸製)にて臨界圧力(7.4MPa)以上に加圧した二酸化炭素をPBTに対する比率が4重量部となるように注入してPBTに溶解させた。   Polybutylene terephthalate resin (PBT) is introduced into the same direction rotation meshing type twin screw extruder (TEX30α, L / D: 59.5 manufactured by Nippon Steel Works) shown in FIG. The carbon dioxide pressurized to a critical pressure (7.4 MPa) or higher by the supercritical carbon dioxide quantitative supply device (made by Showa Carbon Dioxide) as the gas supply device 5 from the injection nozzle 4 is 4 parts by weight with respect to PBT. It was injected and dissolved in PBT.

二酸化炭素を内包したPBTはそののち脱気口8より大気開放されることで溶融樹脂中の二酸化炭素が気化し、樹脂発泡体を形成した。樹脂発泡体形成後、サイドフィーダー9よりPBTに対して同重量(混合比率:50重量部)となるようにカーボンファイバー(CF)を強制的に供給し、その直後に配置した混練スクリュによって解繊・分散を促進し、真空脱気口10から残存した二酸化炭素および水分を除去し、ダイ12よりCF含有樹脂複合材料を押し出した。   The PBT containing carbon dioxide was then released to the atmosphere through the deaeration port 8, whereby carbon dioxide in the molten resin was vaporized to form a resin foam. After the formation of the resin foam, carbon fiber (CF) is forcibly supplied from the side feeder 9 to the PBT so as to have the same weight (mixing ratio: 50 parts by weight), and defibrated by a kneading screw arranged immediately after that. -Dispersion was promoted, carbon dioxide and water remaining from the vacuum deaeration port 10 were removed, and a CF-containing resin composite material was extruded from the die 12.

押し出しされたCF含有樹脂をマッフル炉にて550℃で2時間加熱処理し、CF繊維を抽出した。その後、これらのCF繊維を界面活性材水溶液に分散させ、光学顕微鏡(倍率:50倍)にてCF繊維の撮影を行った。ここで得られた分散写真から無作為に200本のCF繊維を選定し、そのときのCF繊維の測長を実施した。   The extruded CF-containing resin was heat-treated at 550 ° C. for 2 hours in a muffle furnace to extract CF fibers. Thereafter, these CF fibers were dispersed in an aqueous surfactant material solution, and the CF fibers were photographed with an optical microscope (magnification: 50 times). 200 CF fibers were randomly selected from the dispersion photograph obtained here, and the CF fibers at that time were measured.

図2からは、樹脂発泡体の形成によって50μm未満の短繊維数が減少しているのに対して、250μm以上の長繊維数は増加しており、本発明の実施により繊維の破断が抑制されていることが分かる。   From FIG. 2, the number of short fibers of less than 50 μm is decreased due to the formation of the resin foam, whereas the number of long fibers of 250 μm or more is increased, and the fiber breakage is suppressed by the practice of the present invention. I understand that

繊維の破断を抑制する本発明の効果については、図3に示すようにCF全体の平均繊維長が約27%増加していることからも伺えるが、さらに、副次的な効果として、同図に示した押出機消費電流が6%減少した事実により、本発明が低抵抗の樹脂発泡を利用することにより、高い省エネ効果を得られることが示された。   The effect of the present invention that suppresses fiber breakage can be seen from the fact that the average fiber length of the entire CF is increased by about 27% as shown in FIG. 3, but as a secondary effect, The fact that the current consumption of the extruder decreased by 6% indicated that the present invention can obtain a high energy saving effect by utilizing the low resistance resin foam.

以下の表1は、実施例および比較例における実験条件、押出機消費電流、CF含有複合材料中のCF平均繊維長を表す表である。   Table 1 below is a table showing experimental conditions, extruder consumption current, and CF average fiber length in the CF-containing composite material in Examples and Comparative Examples.

Figure 0005009876
Figure 0005009876

本発明による、繊維状フィラーの破断を抑制した繊維状フィラー含有樹脂複合材料の製造方法の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the manufacturing method of the fibrous filler containing resin composite material which suppressed the fracture | rupture of the fibrous filler by this invention. 樹脂発泡体を形成するために注入した超臨界二酸化炭素量とCF含有樹脂複合材料中のCFの特定繊維長分布の関係を示すグラフである。It is a graph which shows the relationship between the supercritical carbon dioxide amount inject | poured in order to form a resin foam, and specific fiber length distribution of CF in CF containing resin composite material. 樹脂発泡体を形成するために注入した超臨界二酸化炭素量と押出機の消費電流値の関係、およびCF含有樹脂複合材料中のCFの平均繊維長の関係を示すグラフである。It is a graph which shows the relationship between the amount of supercritical carbon dioxide inject | poured in order to form a resin foam, the consumption current value of an extruder, and the average fiber length of CF in CF containing resin composite material.

符号の説明Explanation of symbols

1 シリンダ
2 投入口
3 スクリュ
4 注入ノズル
5 ガス供給装置
6 圧力計
7 回転駆動機構
8 脱気口
9 サイドフィーダー
10 真空脱気口
11 真空ポンプ
12 ダイ
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Input port 3 Screw 4 Injection nozzle 5 Gas supply device 6 Pressure gauge 7 Rotation drive mechanism 8 Deaeration port 9 Side feeder 10 Vacuum deaeration port 11 Vacuum pump 12 Die

Claims (3)

熱可塑性樹脂中に繊維状フィラーが分散された繊維状フィラー含有樹脂複合材料を製造する方法であって、
シリンダと、前記シリンダ内に回転自在に配備された2本のスクリュと、前記スクリュを回転させる回転駆動機構とを有し、上流に設けられた供給口から下流に設けられたダイに向かって順次、可塑化部、樹脂発泡体形成部、混練部、脱気部を備えた二軸スクリュ押出機を用い、
前記供給口より熱可塑性樹脂を前記シリンダ内に供給して前記可塑化部で溶融させたのち前記樹脂発泡体形成部へ移送し、
前記樹脂発泡体形成部で高圧の不活性気体または超臨界流体を注入して溶融樹脂中に分散または溶解させたのち脱気口にて急激に降圧することで樹脂発泡体を形成し、
前記混練部に配備されたサイドフィーダーを介して繊維状フィラーを添加して前記樹脂発泡体中に分散・混練を行ったのち、前記脱気部にて脱気することを特徴とする繊維状フィラー含有樹脂複合材料の製造方法。
A method for producing a fibrous filler-containing resin composite material in which a fibrous filler is dispersed in a thermoplastic resin,
A cylinder, two screws rotatably disposed in the cylinder, and a rotation drive mechanism for rotating the screw; sequentially from a supply port provided upstream to a die provided downstream , Using a twin screw extruder equipped with a plasticizing part, a resin foam forming part, a kneading part, a deaeration part,
The thermoplastic resin is supplied from the supply port into the cylinder and melted in the plasticizing part, and then transferred to the resin foam forming part,
A resin foam is formed by injecting a high-pressure inert gas or a supercritical fluid in the resin foam forming portion and dispersing or dissolving in the molten resin, and then rapidly depressurizing at the deaeration port,
A fibrous filler, wherein a fibrous filler is added through a side feeder disposed in the kneading part, and dispersed and kneaded in the resin foam, and then deaerated in the deaeration part. Manufacturing method of containing resin composite material.
前記二軸スクリュ押出機は、噛み合い型同方向回転二軸スクリュ押出機であることを特徴とする請求項1に記載の繊維状フィラー含有樹脂複合材料の製造方法。   2. The method for producing a fibrous filler-containing resin composite material according to claim 1, wherein the biaxial screw extruder is a meshing type co-rotating biaxial screw extruder. 前記樹脂発泡体形成部の上流側端および下流側端に、それぞれシール機構を配備したことを特徴とする請求項1または2に記載の繊維状フィラー含有樹脂複合材料の製造方法。   The method for producing a fibrous filler-containing resin composite material according to claim 1 or 2, wherein a sealing mechanism is provided at each of an upstream end and a downstream end of the resin foam forming portion.
JP2008213502A 2008-08-22 2008-08-22 Manufacturing method of fibrous filler-containing resin composite material Active JP5009876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213502A JP5009876B2 (en) 2008-08-22 2008-08-22 Manufacturing method of fibrous filler-containing resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213502A JP5009876B2 (en) 2008-08-22 2008-08-22 Manufacturing method of fibrous filler-containing resin composite material

Publications (2)

Publication Number Publication Date
JP2010046925A JP2010046925A (en) 2010-03-04
JP5009876B2 true JP5009876B2 (en) 2012-08-22

Family

ID=42064434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213502A Active JP5009876B2 (en) 2008-08-22 2008-08-22 Manufacturing method of fibrous filler-containing resin composite material

Country Status (1)

Country Link
JP (1) JP5009876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104228030A (en) * 2014-09-19 2014-12-24 江苏旭华圣洛迪建材有限公司 Wood-plastic extruding system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101743794B1 (en) 2013-06-18 2017-06-05 주식회사 엘지화학 Metal pipe coating composition and method for preparing extruded products using them
JP2017165048A (en) * 2016-03-18 2017-09-21 トヨタ自動車株式会社 Method and apparatus for producing fiber-reinforced resin material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113959A (en) * 1996-10-10 1998-05-06 Omuni Techno Kk Molding method of kneaded matter containing foamed glass particle
JPH11165356A (en) * 1997-12-03 1999-06-22 Mitsubishi Plastics Ind Ltd Manufacture of foamed composite molding
JP2006026949A (en) * 2004-07-13 2006-02-02 Japan Steel Works Ltd:The Kneading extruder using supercritical fluid
US20060103045A1 (en) * 2004-11-17 2006-05-18 O'brien-Bernini Frank C Wet use chopped strand glass as reinforcement in extruded products
JP2006142589A (en) * 2004-11-18 2006-06-08 Japan Steel Works Ltd:The Manufacturing method of fine filler mixed composite material
JP2006274167A (en) * 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Method for producing thermoplastic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104228030A (en) * 2014-09-19 2014-12-24 江苏旭华圣洛迪建材有限公司 Wood-plastic extruding system

Also Published As

Publication number Publication date
JP2010046925A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
TWI818021B (en) Kneading method for conductive composite material
JP5009876B2 (en) Manufacturing method of fibrous filler-containing resin composite material
JP4790517B2 (en) Method for producing thermoplastic resin composition
JP2007237679A (en) Plasticization kneading extruder for plastic raw material
JP2007154057A (en) Method for applying ultrasonic vibration and resin composition
KR20100059874A (en) Continuous method for obtaining composite fibres containing colloidal particles and resulting fibre
WO1999003660A1 (en) Method and apparatus for molding plastic material and the like
JP6933951B2 (en) Fiber reinforced thermoplastic resin kneading method and plasticizing equipment
TW202043003A (en) Carbon fiber composite material containing recycled carbon fibers, molded body, and method for producing carbon fiber composite material
JP5511812B2 (en) Continuous extruder
WO2018131372A1 (en) Method and apparatus for manufacturing foamed product
KR20170011250A (en) Apparatus and method for recycling nylon wasted yarns
JP2009125975A (en) Method of removing foreign substance contained in thermoplastic resin
Zhuang et al. Preparation of pre-impregnated continuous carbon fiber reinforced nylon6 filaments and the mechanical properties of 3D printed composites
JP7261045B2 (en) METHOD FOR MANUFACTURING FILTER-CONTAINING RESIN COMPOSITE
JP2010253738A (en) Method for manufacturing nano-carbon dispersion molded body, and nano-carbon dispersion molded body
JP3886467B2 (en) Screw kneading extruder
KR100854506B1 (en) Lyocell method and device comprising a press water recirculation system
CN109906138B (en) Method and apparatus for producing foam molded body
US20240033974A1 (en) Method for producing fiber-reinforced composite material
Panjwani et al. Performance of 3D printed poly (lactic acid)/halloysite nanocomposites
Sakakibara et al. Simultaneous Nanofibrillation and Compounding of Wood Pulp Fibers Using Polyols as Plasticizers: Fabricating High-Performance Cellulose-Nanofiber-Reinforced Polyethylene Composites
JPH0976328A (en) Method and apparatus for extrusion molding long fiber-reinforced thermoplastic resin
Jafrey Daniel James et al. Manufacturing Issues and Process Parameters of Composite Filament for Additive Manufacturing Process
JP2001341186A (en) Method and apparatus for extrusion molding of foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Ref document number: 5009876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250